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Abstract
We present a new multigrid scheme for solving the Poisson equation with
Dirichlet boundary conditions on a Cartesian grid with irregular domain
boundaries. This scheme was developed in the context of the Adaptive Mesh
Refinement (AMR) schemes based on a graded-octree data structure. The
Poisson equation is solved on a level-by-level basis, using a “one-way inter-
face” scheme in which boundary conditions are interpolated from the previ-
ous coarser level solution. Such a scheme is particularly well suited for self-
gravitating astrophysical flows requiring an adaptive time stepping strategy.
By constructing a multigrid hierarchy covering the active cells of each AMR
level, we have designed a memory-efficient algorithm that can benefit fully
from the multigrid acceleration. We present a simple method for capturing
the boundary conditions across the multigrid hierarchy, based on a second-
order accurate reconstruction of the boundaries of the multigrid levels. In
case of very complex boundaries, small scale features become smaller than
the discretization cell size of coarse multigrid levels and convergence prob-
lems arise. We propose a simple solution to address these issues. Using
our scheme, the convergence rate usually depends on the grid size for com-
plex grids, but good linear convergence is maintained. The proposed method
was successfully implemented on distributed memory architectures in the
RAMSES code, for which we present and discuss convergence and accuracy
properties as well as timing performances.
Keywords: Poisson equation; Multigrid methods; Adaptive mesh
refinement; Elliptic methods
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1. Introduction
Elliptical partial differential equations play a central role in many math-

ematical and physical problems. The Poisson equation, in particular, arises
naturally in the context of electromagnetism, fluid dynamics and gravity. It
is therefore of great significance in astrophysics, of which those fields are es-
sential theoretical aspects. In the classical Newtonian limit, one can relate
the gravitational potential Φ to the matter distribution (local density) ρ by:

∆Φ = ρ (1)

Applications in computational astrophysics therefore often require solving a
discretization of Eq. (1) on some discrete grid. The ubiquity of the Poisson
equation in science has led to the development of many suitable numerical
solving techniques, for a wide range of specific applications and problems.

In some cases, one can solve for the discretized potential directly from Eq.
(1): the convolution theorem allows to solve the Poisson equation directly
in Fourier space using the Green function of the Laplacian operator on the
grid of interest. In computational applications, this is usually done using
the Fast Fourier Transform (FFT), which is particularly suited to periodic
boundary conditions problems on rectangular, regular grids. This direct
method is very effective: on a grid of linear size N , the computing time in 3
dimensions is of order O(N3 logN), and yields the solution to the discretized
problem within numerical roundoff accuracy. The Green function method
can be generalized to non-periodic boundary conditions and adaptive grids
on rectangular domains [see e.g. 8].

Another class of Poisson solving schemes are relaxation methods, such
as Gauss-Seidel or successive over-relaxation (SOR) [see e.g. 22]. Unlike the
Green function method, those schemes are iterative, and rely on an initial
estimate (“first guess”) of the solution. The estimate is then successively im-
proved by iterative damping of the residual r = ∆Φ−ρ. Relaxation methods
are generally simple to implement, and suitable for a wide range of elliptic
problems. Methods such as Gauss-Seidel or SOR only require the forward
computation of the differential operator, which is usually inexpensive, and
makes it possible to use such relaxation methods on complex grid geometries.
Krylov subspace methods [see e.g. 25], such as the Conjugate Gradient (CG)
method, are another class of iterative methods which can be used to solve
Eq. (1) in the form of the optimization problem:

min
Φ
‖∆Φ− ρ‖2 (2)
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Classical iterative methods have gained in interest in the last decade
with the advent of massively parallel computing. They only require one-cell
thick, boundary layer from the neighboring processor, while FFT involves
a massive transpose of the whole volume of data. Moreover, one does not
need the exact solution of the discretized Poisson equation that the FFT
provides: the error in the solution is already dominated by truncation errors
of a fraction of a percent for practical applications. Iterative methods can
therefore be stopped quite early, when the residual norm has dropped well
below the truncation errors. Still, classical iterative methods can be very
time consuming, especially when the grid size is increased. Usually, the large
scale modes are the slowest to converge, and the number of iterations required
to reach a given level of residual usually increases with the number of grid
points per dimension [22].

The convergence rate of iterative relaxation methods, such as Gauss-
Seidel, can be dramatically improved by multigrid acceleration [2, 31]. Multi-
grid methods use a hierarchy of discretizations of decreasing spatial resolu-
tion. At the resolution of the initial problem (on the finest grid), the solution
is iteratively improved by subtracting corrections obtained from the coarser
grids. This ensures that the large-scale modes of the residual are efficiently
damped, while a traditional smoothing relaxation scheme takes care of the
small-scale modes of the error. In ideal cases (e.g. for smooth problems with
simple boundary conditions on rectangular domains), multigrid methods can
exhibit remarkable convergence properties: the residual norm decreases at a
constant rate during the whole convergence process (down to machine pre-
cision). The convergence rate can be very fast (see examples below), and
more importantly it does not depend on the size of the grid. This last prop-
erty is perhaps the most important one, since it allows one to consider very
large computational problems: for a given level of convergence in the resid-
ual norm, optimal multigrid methods are linear in the problem size N3. This
complexity is lower than the one offered by the FFT, and although multigrid
is still slower than optimized FFT for small configurations, it can be quite
competitive for large parallel computations and reasonable stopping criteria.
In contrast to traditional iterative schemes, the convergence properties of
multigrid are unaffected by the choice and quality of the first guess. Another
reason to use multigrid is that it couples nicely to adaptive Cartesian grids,
while FFT-based methods in this case are still possible, but quite complicated
[see e.g. 4, 8, 23]. Last but not least, while FFT requires a Poisson equation
with constant coefficients, multigrid methods, because they are defined in
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real space, can be adapted to solve Poisson equations with non-uniform coef-
ficients, or even non-linear equations. This property is particularly useful for
problems with complex boundaries [21], multiple incompressible fluids [24],
or models with modified gravity [12, 29, 15]).

The objective of this paper is to implement a simple and efficient multi-
grid Poisson solver for a Cartesian grid with arbitrary domain boundaries.
Complex boundary conditions are usually found in fluid mechanics problems
featuring immersed bodies or complex multiphase flows [27, 26, 14]. Here,
our motivation is different: we would like to design a Poisson solver for the
class of Adaptive Mesh Refinement (AMR) codes for which the mesh is de-
fined on a “graded octree” [13, 28, 21]. The octree mesh structure ensures
that the geometry of the grid closely adapts to the properties of the flow,
without the traditional overhead associated to the large rectangular patches
of block-structured AMR. The consequence is however that the mesh of a
given AMR level can have a very complicated shape, with holes and irregular
boundaries. If one solves the Poisson equation on the whole AMR hierarchy,
this translates into a modification of the Laplacian operator at fine-coarse
grid boundaries, but the corresponding multigrid solver remains similar to
its Cartesian grid equivalent [see e.g. 10].

In most astrophysical applications, it is however almost always impracti-
cal to solve the Poisson equation on the whole grid at once: self-gravity has
the effect of dramatically increasing the dynamical range of the density field,
leading to very different characteristic timescales within the same computa-
tional domain. Advancing the whole system with one single time step can
be very inefficient, since only a very small fraction of the volume actually
needs high accuracy in the time coordinate. This is particularly true for cos-
mological simulations, where most of the computational volume is covered
by low density regions that evolve slowly, while a small number of highly
resolved cells sample dense regions (such as galaxies), where the dynamical
time scale is very short. Most AMR codes address this problem by using
adaptive time stepping, where a given fine level is updated more frequently
than its coarser level, ensuring that the actual timestep remains close to the
natural CFL timestep (so that the whole AMR grid is not updated more
often than needed). In RAMSES, we typically update a finer level twice as
often as its coarser level. As a consequence, consecutive fine and coarse levels
are only synchronized at every other fine timestep.

Whenever all the AMR levels are synchronized, it is possible to solve the
Poisson equation on the whole grid at once. Such a Poisson solver is called a
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“two-way interface” scheme, as the information is propagated both from the
coarse grids to the finer grids and back: the coarse grids “feel” the effect of
the finer grids. Many multigrid solvers have been successfully implemented
in this case [10, 21, 19, 23]. Popinet [21] has developed an incompressible
flow solver with complex boundary conditions, using an octree data struc-
ture. The solver features a “half V-cycle” multigrid schedule, which makes it
possible to perform multigrid iterations within the existing AMR hierarchy,
with no additional storage. This pioneering work, however, requires the use
of a single global time step for the whole AMR grid. Most of the time, fine
and coarse levels are not synchronized, and it is not possible to solve on the
whole grid at once. It is therefore necessary to resort to a “one-way interface”
scheme [see 9, 13, 28, 19]. In the traditional “one-way interface” approach,
the AMR levels are updated separately: the coarsest level is updated first,
then the computed coarse potential is used to impose boundary conditions on
the finer levels, which can then be solved separately and more frequently. The
gravitational potential on finer AMR levels is solved by imposing Dirichlet
boundary conditions at the finer level boundary, enforcing potential conti-
nuity. Because we are dealing with an arbitrarily complex octree structure,
we must be able to solve the Poisson equation on a given refinement level
with arbitrarily shaped domains. The problem we would like to address here
is therefore to solve the Poisson equation using the multigrid method, with
the constraint that Dirichlet boundary conditions are imposed on the outer
cell faces of an arbitrary domain (see Fig. 1). Note that using adaptive time
stepping and one-way interface poses an time synchronization problem: as
the finer levels are stepped forward, the boundary conditions derived from
the coarser levels fall out of synchronization with the time at finer levels.
The problem of non-synchronized AMR levels has been approached in the
context of incompressible flows [17] and coupled collisional and collisionless
systems for cosmological applications [19]. A proposed solution is to update
the coarse levels first and obtain the fine boundary conditions by both time
and space interpolation of the coarse values. However, this requires storing
the time derivatives of the potential at every level. In addition, in order to
obtain a fully multilevel solution, the coarse levels should take into account
the solution on the finer levels. Whenever the coarse levels are updated
first, it is therefore necessary to correct their values with an estimate of the
difference between the single level and multilevel solutions, before the finer
levels are updated. Such an approach has been used for example by Martin
and Colella [17], Miniati and Colella [19] in order to provide corrected coarse
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boundary conditions for the time interpolation. RAMSES uses a different
approach: finer levels are updated first, using as boundary conditions val-
ues which are not extrapolated in time but fixed at the initial coarse time
step. Once the fine levels have been stepped forward in time, RAMSES up-
dates the matter density in the coarse cells by binning the fine children cells
into the coarse level density with a CIC scheme around their center of mass.
The information from the fine evolution thus flows back up to the coarse
levels. This scheme, however, does not guarantee the time accuracy of the
time interpolation and correction methods. Note that the solver presented
in this paper applies equally well to any scheme used to derive the boundary
conditions, as it handles each AMR level independently.

As Cartesian grids are much more practical than unstructured meshes,
the accurate description of boundaries immersed in Cartesian grids have been
the focus of much effort, especially in computational fluid dynamics [see e.g.
1, 32]. This approach has also led to the development of sophisticated Poisson
solvers, some relying on multigrid acceleration [10, 18].

Our goal is to present a simpler but efficient solver, suitable in particular
to the case of tree-based AMR codes with a one-way interface scheme. We will
apply our new scheme to the AMR code RAMSES, a self-gravitating fluid
dynamics code for astrophysical applications [28]. The octree structure is
based on the “Fully Threaded Tree” approach proposed by Khokhlov [11] for
which cells are split into “octs” (groups of 8 cells) on a cell-by-cell basis [13,
28]. The paper is organized as follows: we first describe our basic multigrid
algorithm for the Poisson equation with Dirichlet boundary conditions. We
then detail how we capture complex boundary conditions at coarse multigrid
levels within our framework. We report a very fundamental issue of our
approach (namely the “small islands” problems) and we propose a simple fix
to overcome it, and we finally discuss the performance of our algorithm.

Note that we only address the issue of the boundary reconstruction for
coarsened multigrid levels: for one-way interface AMR applications, at the
finest level (i.e., the AMR level to solve), the boundary is usually located
along faces of Cartesian grid cells constituting the fine AMR level, and no
cut-cell or level set reconstruction is needed in this case. However, we believe
our method can be adapted to a cut-cell or level set boundary at the fine
level, provided an appropriate fine operator is defined.
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2. A Multigrid algorithm for complex boundary conditions

Multigrid methods combine a relaxation solver (usually a smoother such
as Gauss-Seidel or Jacobi sweeps) and a multi-resolution approach, to ensure
efficient damping of both small and large scale components of the residual
(see for example [31] for an introduction).

For one-way interface schemes (in the RAMSES code for example), the
Poisson equation is solved over the whole AMR hierarchy on a level-by-level
basis, the size of the cell involved in each individual Poisson solve being uni-
form. Each AMR level constitutes the finest level of the multigrid hierarchy.
The finest multigrid level is therefore defined by a Cartesian grid with com-
plex irregular boundaries. We then build a hierarchy of coarser grids which
cover this reference domain (see Fig. 2 for an illustration). This new hier-
archy defines the multigrid structure for the current level. Although it is
also based on an octree structure similar to the underlying AMR grid, it is a
different structure that does not interfere with the coarse AMR levels (which
are, in a way, “orthogonal” to the multigrid levels).

One major advantage of using this secondary grid hierarchy for each Pois-
son solve is that the computational cost of the multigrid solver at a given
level only scales as the number of cells in that level, as we use only a subset of
the AMR coarser cells. This is especially crucial for astrophysical problems,
where fine grids can occupy a fraction of the volume much smaller than the
coarser levels.

Let us consider the Poisson problem, discretized on a fine grid domain
Ωf :

∆f Φf = ρf on Ωf ,

Dirichlet conditions on ∂Ωf .

where the f subscripts denote the discretized Laplacian operator and fields
on the fine grid. For a single multigrid iteration, we follow the traditional
recipe:

1. Perform Npre Gauss-Seidel smoothing passes on the current estimate
Φf of the fine solution,

2. Compute the fine residual

rf ←− ∆Φf − ρ,

7



Figure 1: Poisson problem at the fine level for a given AMR level. The solution potential to
be determined is defined at the cell centers (dots). The boundary conditions are defined
at the border cell faces (crosses). The boundary values are linearly interpolated from
the solution at the coarser AMR level (not represented), which was previously computed
because of the one-way interface scheme.

Figure 2: Levels of the multigrid hierarchy for the problem of Fig. 1.
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3. Compute the fine-to-coarse restrictions of the solution and residual:

Φc ←− R(Φf )
rc ←− R(rf ),

4. Define a coarsened domain Ωc and boundaries ∂Ωc from Ωf . The pre-
scription for deriving ∂Ωc from the fine level is the key issue, and will
be discussed in section 3.

5. Compute a coarse correction δΦc, by performing Ncycles multigrid iter-
ations for the following coarse problem:

∆c(δΦc) = −rc on Ωc

δΦc = 0 on ∂Ωc,

6. Prolong δΦc into a fine correction

δΦf ←− P (δΦc),

7. Correct the fine level solution

Φf ←− Φf + δΦf ,

8. Perform Npost smoothing passes on Φf .

This multigrid iteration is repeated on the fine grid until the norm of the fine
residual is considered small enough. To fully specify the scheme, one needs
to specify integers Npre, Npost and Ncycles, the restriction and prolongation
operators R and P , and the discretization of the Laplacian operator.

In our case, we have found Npre = Npost = 2 to yield the best perfor-
mance in terms of solver time for our applications in RAMSES. We will now
discuss the prolongation, restriction and discretized Laplacian operators. We
postpone the discussion of the parameter Ncycles to section 5.3.

We use a finite difference approach to discretize the Poisson equation on
the Cartesian grid. Inside the domain, away from the boundaries, we use the
standard 7-point discretization of the Laplacian operator:

(∆Φ)i = 1
(∆x)2

∑
{i,j}

(Φj − Φi) (3)
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R1

1/4

1/4

1/4

1/4

R2

1/64

1/64

1/64

1/64

9/64

9/64

9/64

9/64

3/64 3/64

3/64

3/64

3/64 3/64

3/64

3/64

P1

1

P2

9/16

3/16

3/16

1/16

Figure 3: Common first-order and second-order (respectively left and right) restriction
and prolongation schemes (respectively top and bottom). R1 simply averages the values
of the subcells to obtain a coarse value. P1 assigns the same coarse value to the all the
fine subcells (straight injection). Our multigrid scheme uses R1 and P2.

where the sum extends over all the 6 pairs {i, j} of neighboring cells, and
∆x is the size of the cells on which the Laplacian is evaluated. This Lapla-
cian operator is second-order accurate and our multigrid implementation is
currently restricted to this case.

For the relaxation smoother, we use a Gauss-Seidel smoother with red-
black ordering, with the Laplacian operator as defined above. With red-black
ordering, the cells are updated in two passes, each pass running over a half
of the domain following the colors of a checkerboard pattern.

Prolongation and restriction operators define how the problem is down-
sampled to a coarser level (restriction) and how the coarser level correction
is interpolated back to the finer level (prolongation).

A common rule of thumb for the choice of prolongation and restriction
operators for the Poisson equation is the order condition nP +nR > q, where
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nP and nR are the prolongation and restriction operator orders, respectively,
and q is the order of the Laplacian operator [see 31, 22]. Simple standard
operators are shown in Figure 3. Straight injection is defined as P1, while its
transpose, R1, boils down to a simple averaging. These operators are first-
order in space (nR = 1 and nP = 1). Second-order schemes can be easily
designed, like trilinear interpolation (noted here P2) and its transpose (R2),
whose weights are shown in Figure 3.

We have settled for simple averaging for restriction (R1), and linear inter-
polation (P2) for prolongation (see Fig. 3), as this choice turned out to yield
the best convergence rates for the classes of grids which we have studied. Ad-
ditionally, as will be discussed in Section 4, picking simple averaging as the
restriction operator turns out to be particularly convenient in conjunction
with our prescription for boundary representation.

3. Second-order multigrid boundary reconstruction and the mod-
ified Laplacian operator

In our multigrid algorithm, the key ingredient is the mathematical rep-
resentation of the domain boundary at coarse multigrid levels. Because our
goal is to take advantage of the Cartesian grid structure of the AMR scheme,
we restrict ourselves to Cartesian grid interface capturing techniques. Among
the many different solutions proposed in the literature, the cut cell [10] and
the level set [27, 20, 7] approaches stand out as simple and efficient techniques
for interface reconstruction. The multigrid algorithm for complex boundary
we propose here can be easily implemented with any of these techniques as
the basic interface reconstruction scheme.

In what follows, we however simplify the problem even further, since we
work in the framework of a one-way AMR Poisson solver. At the finest level
(i.e., on the actual grid where the Poisson equation is to be solved), the
boundaries ∂Ω are simply positioned at the faces of the outer cells them-
selves. In the level set approach, the boundary could have been placed at the
zero level of some interpolated distance function [see e.g. 7]. Since comput-
ing distance function comes with a cost, we have considered here a simpler
approach based on a coloring scheme: inner cells are initialized with a mask
function with value mi = 1 and outer cells with a mask mi = −1. The
domain boundary ∂Ω is defined at the position where the interpolated value
of the cell-centered mask (mi ∈ [−1, 1]) crosses zero. At the finest multigrid
level, these interpolated positions are at the cell faces, as desired.
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m < 0

m > 0

Figure 4: The Laplacian stencil near boundaries: the center of the leftmost cell lies outside
the domain, and therefore has a negative mask value m < 0. For this cell, a ghost value
will be reconstructed as shown on Fig. 5. For all the three other cells, the actual cell
center values are used unchanged.

We now compute the mask value at coarser multigrid levels by simply
averaging recursively the mask value at the finest level (as for the residual).
Here again, if one wants to use a distance function to capture the boundary,
one could compute the coarser representation of the distance function also
by simple averaging. At each level ` in the multigrid hierarchy, the domain
Ω` is defined as the set of cells for which m`

i > 0. The use of the R1 operator
maintains the correct location of the boundary as much as possible, without
spreading the boundary information too much across neighboring coarse cells.

In order to reconstruct the location of the multigrid boundary, and solve
for the corresponding Poisson problem, we use a prescription similar to the
one described in Gibou et al. [7]. The idea is to redefine the Laplacian oper-
ator close to the domain boundary. Whenever one of the neighboring Φj has
mj ≤ 0 (and therefore lies outside Ω, see Fig. 4), it is replaced by a ghost
value Φ̃j linearly extrapolated from Φi and the boundary value. This ghost
value depends explicitly on Φi and the boundary condition. A 1D illustration
is presented on Figure 5. Since this prescription uses a linear reconstruction
for the multigrid boundary in each direction, the boundary position is recov-
ered at second order spatial accuracy. As in [7], the boundary is positioned
in each direction independently, and the 1D case trivially generalizes to 3D.

The coarsening of the boundary from ∂Ωf to ∂Ωc is now fully specified by
the restriction operator used for the mask mi and by the modified Laplacian
closed to the boundary. These are the 2 key ingredients in our multigrid
scheme: the boundary remains at the same location (up to second order in
space) when we go from fine to coarse levels in the multigrid hierarchy. The
boundary condition Φ = 0 is therefore imposed at the correct location, so
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i − 1 i

m

Φ

ghost Φ̃i−1
Φb

Figure 5: Reconstruction of ghost cell values across boundaries. Cells with negative mask
(white dots at centers) are outside of the domain and do not carry a valid Φ value. The
computation of the Laplacian at cell i requires the use of a ghost value Φ̃i−1 which is
obtained from Φi by linearly extrapolating the boundary condition. In accordance with
the level set idea, the boundary is positioned at the point where m crosses zero, which is
found by linearly interpolating the mask values.

that the coarse solution of the Poisson equation with the coarse boundary
corresponds to the solution of the Poisson equation at the finer level with
the fine representation of the boundary.

We speculate that the chosen multigrid boundary reconstruction scheme
should satisfy an order condition similar to the prolongation and restriction
operators [31, 22]. Although a mathematical proof is beyond the scope of this
paper, our numerical experiments suggest that this is indeed the case. We see
in Figure 7 that, in case of a smooth boundary, our second-order multigrid
boundary reconstruction scheme results in a perfect multigrid convergence1,
while the first-order scheme doesn’t. As we will now discuss, in case of very
complex boundaries, second-order reconstruction of the multigrid boundary
is not possible anymore, and we have to degrade our scheme to first-order to
ensure convergence.

4. First-order multigrid boundary reconstruction and the “small
islands” problem

We see in Figure 7 that a different type of boundary can lead to a catas-
trophic divergence of our multigrid scheme (the blue line shows the residual
norm evolution in case of second-order multigrid boundary reconstruction).

1Multigrid convergence means here that the damping rate of the residual norm does
not depend on the grid size.
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m = −1 < 0, boundary

restrict

m = 1/2 > 0, no boundary

Figure 6: Coarsening (restriction) may cause loss of boundary conditions. The Dirichlet
BCs around an isolated cell with m = −1 among a sea of m = 1 cells are lost after one
coarsening step, as the resulting coarse mask is positive everywhere.

This rather complex boundary condition is typical of AMR grids in cosmo-
logical simulations [28]. It features many small disconnected domains that
cluster in a large central region with many “holes”. Successive coarsening
of the grid resolution leads in this case to a loss of boundary conditions,
especially when “holes” or “small islands” are present. Indeed, in this case,
the finer boundary small scale features cannot be represented anymore on
coarser grids. Figure 6 illustrates such a case, for which the fine grid still
has a cell with a negative mask value, so that the Φ = 0 boundary condition
still applies, but the coarse grid has cells with only positive values. Because
of this topological change in the boundary representation, the coarse and
fine solutions of the Poisson equation become significantly different. Spuri-
ous eigenmodes associated to this loss of constraints at the boundary are not
damped quickly enough by the smoothing operator at the fine level: this leads
to slower convergence rates and, in some case, to catastrophic divergence (see
Fig. 7).

One previously proposed solution to this problem is the subtraction of
the divergent modes introduced by these small islands, for example by re-
combining the multigrid iterants [3]. This however turns out to be too com-
putationally and memory intensive for us to use in the Poisson solver of
the RAMSES code: it requires storing a large number of previous solutions.
This recombination method also tends to perform worse when the number
of islands increases, which would likely render it useless in the case of the
complex grid structure encountered in cosmological simulations.

Another proposed solution is to stop coarsening the residual in the multi-
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grid hierarchy whenever such a problem occurs during multigrid coarsening
[10]. This degrades the performance of the multigrid method, since large
scale modes are no longer damped efficiently. In the case of very complex
boundaries with small islands, like in Figure 7, the level at which the hierar-
chy has to be truncated is so close to the finest level that the whole multigrid
approach breaks down.

In order to overcome these limitations, McCorquodale et al. [18] proposed
to keep track of the boundary representation at the fine level, and modify
the Laplacian on coarse grids, whenever the operator stencil crossed this fine
boundary. Stencil nodes which cannot be reached from the stencil center
by a straight segment without crossing the boundary are excluded, and an
asymmetric stencil is used, chosen in function of the local configuration of
the interface.

We propose here a simpler approach, based on the observation that these
small islands correspond to local minima in the color function mi (or equiv-
alently in the distance function if needed). The averaging scheme will tend
to smooth these extrema, resulting in the disappearance of the negative val-
ues (see Fig. 6) and in the apparition of spurious boundary conditions. In
analogy to traditional high-order numerical schemes for hyperbolic systems
of conservation laws [30, 5], we solve the problem by switching globally to a
first-order multigrid boundary reconstruction scheme. We impose the Φ = 0
constraint at the coarse level on the grid point nearest2 to the interface: in
practice, for each cell for which the mask value mi < 1, we impose Φi = 0.
The simple averaging restriction for the mask ensures that cell i has mi < 1
if and only if it has a non-zero intersection with the boundary.

We have tested our first-order multigrid boundary reconstruction scheme
on 2 extreme types of boundary conditions : a simple disk with no hole
or island, and a complex clustered grid, typical of AMR cosmological sim-
ulations. We have compared its convergence properties to the second-order
reconstruction scheme in Figure 7. In the disk case, the simple topology
of the boundary allows us to take full advantage of the second-order re-
construction of multigrid boundaries, resulting in fast convergence rates (in
blue), totally independent of the problem size. This shows that our overall
scheme features a true “textbook” multigrid convergence. Using the first-
order multigrid boundary reconstruction, we degrade the convergence rate

2The so-called NGP scheme for Nearest Grid Point.
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Figure 7: L2 norm of the residual as a function of iteration number in our multigrid
Poisson solver in 2D for both presented boundary capturing schemes. For each domain
shape shown in the insets, the residual for both 2nd order (in blue) and 1st order (in red)
boundary capturing schemes is presented for a 642 grid up to a 10242 grid.

significantly, and it now depends slightly on the problem size. This is ex-
pected since the position of the boundary at two consecutive multigrid levels
can differ by half a cell width, and this first-order error in the boundary
positioning limits the accuracy of the coarse correction.

In the complex boundary case, with many holes and islands, our second-
order reconstruction fails, as we can see from the divergent behavior of the
residual norm in Figure 7. We interpret this catastrophic behavior as follows:
topological changes in the boundary representation at coarse levels result in
spurious long-range mode that are not damped by the smoothing operators
at finer levels. If we use first-order multigrid boundary reconstruction, we
observe that the convergence is restored: although first-order reconstruction
of the boundary introduces small-scale errors close to the boundary, these
errors are efficiently damped by the smoothing operator at finer levels. Note
however that the convergence rate is slower than in the disc case, and that
the convergence rate now depends on the grid size. A similar effect was
observed in [6, 21].

Note that in our present implementation, we have to decide beforehand to
which order we wish to reconstruct the multigrid boundaries. We have tried
to implement an adaptive algorithm, for which the reconstruction scheme is
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adapted locally to the topological changes of the boundary, but no satisfac-
tory results were found. This then raises the question: how do we choose
between first or second order reconstruction, when solving the Poisson equa-
tion on an arbitrarily complex grid? It may be possible to decide from a
topological analysis of the grid (such as its genus and the number of con-
nected components), but this proves difficult to achieve in practice.

We have opted for a pragmatic approach, and decide at run time which
scheme to employ for each AMR level independently. When we start solving
the Poisson equation on a given level, we first try using the second-order
reconstruction. We monitor the convergence rate during the iterations, and
if it becomes slower than a fixed threshold, i.e. if ‖rn+1‖2 / ‖rn‖2 > η with
typically η = 0.5, we switch to the first-order scheme for that level only
and for the next 10 solves. With our current implementation, if the AMR
grid is really complex (with small islands), the solver only wastes a couple
of iterations before deciding on which of first or second-order gives the best
convergence rate. This works very well in practice, even in cosmological
simulations featuring clusters and filaments, as only a few intermediate AMR
levels exhibit very complex topologies.

5. Accuracy and performance tests

5.1. Accuracy tests
We have tested the accuracy of the solver by comparing numerical solu-

tions computed using RAMSES to exact analytical expressions. We chose a
2D setup inspired from galaxy simulations, with a radial mass distribution
centered in the computational box. With coordinates (x, y) ∈ [0, 1]2 the ra-
dial coordinate is given by r2 = (x − 1

2)2 + (y − 1
2)2. We take the analytic

potential Φe(r)—subscripted with e for exact—to be

Φe(r) := ln
([

r

r0

]2
+ 1

)
, (4)

which is smooth everywhere in the domain and features a core at the origin.
The parameter r0 controls the concentration of the profile. The corresponding
density profile ρe(r) is obtained from (1):

ρe(r) = 4r2
0

(r2 + r2
0)2 , (5)
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which is positive and smooth everywhere. The analytical expression for the
force intensity fe = |∇Φ| is

fe(r) = 2r
r2 + r2

0
, (6)

and the force vector everywhere points towards the center of the box. The
boundary conditions at the border of the computational box are set using
the exact solution (4).

Using this setup, we have computed the truncation error for the potential
and the force as a function of the finest grid resolution for both a Cartesian
grid and an AMR grid with 3 additional AMR levels. For the resolution
level `, the finest cell size ∆x in the grid is given by ∆x = (1/2)`. We use
a quasi-Lagrangian mesh refinement strategy, closest to what is commonly
employed in astrophysical applications: given a fixed threshold mass M , each
cell containing a mass exceeding 2NdimM is refined (split) into 2Ndim children
cells.

In our test, whenever the resolution is increased by 1, the base (coarsest)
AMR level is incremented by 1, and the mass resolution M is divided by
4 (in 2D). This procedure allows us to increase the resolution of the finest
AMR cells by exactly one level, while keeping the depth of the AMR grid a
constant. We initially pick the value of M such that it triggers the refinement
of 3 AMR levels. The resulting grid for resolution level 7 is shown on Fig. 9.

We have evaluated the truncation errors for both the potential and the
gravitational force in order to test the one-way interface scheme. Once a solu-
tion for the potential has been obtained at for a given AMR level, RAMSES
computes the force for this level using a 5-point finite difference approxima-
tion of the gradient:

∂xΦ = 4
3

Φi+1 − Φi−1

2∆x − 1
3

Φi+2 − Φi−2

4∆x +O((∆x)4) (7)

The truncation errors are presented on Fig. 8. For the potential, both
Cartesian and AMR grids feature second-order convergence. For a given
resolution level, the AMR truncation error is larger than the corresponding
Cartesian error: this is expected, since AMR will only use the maximal
resolution in particular areas of the grid, leading to bigger truncation errors
because of the presence of coarser cells.
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Figure 8: Truncation error on the potential (left) and force (right) for the setup described
in the text, as a function of the maximal resolution level `. The finest cell size ∆x is given
by ∆x = (1/2)`. The solid lines are O(∆x2) (second order), the dashed line is O(∆x)
(first order), and the dotted line is O(∆x1.6).

Figure 9: AMR grid in the accuracy test case described in the text, at resolution level
7. The base grid is at level 4, with 3 AMR levels reaching down to level 7 using a quasi-
Lagrangian refinement strategy.
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∂xΦ

Figure 10: Computation of the gravitational force in RAMSES using the finite difference
approximation (7). At a fine–coarse interface, the missing fine values (empty circles) are
computed from the coarse level potential by linear interpolation. Prior to solving for Φ
at the fine level, the boundary values for the fine Poisson problem (blue crosses, see also
Fig. 1) had been computed in the same manner.

Similarly to the potential, in the Cartesian case, the truncation error of
the force decreases at second order. In the AMR case however, the conver-
gence is degraded to first order for the L∞ norm. We attribute this effect to
the one-way interface scheme. Whenever the finite difference approximation
of the gradient crosses the level boundary, RAMSES fills in the missing values
by linear interpolation from the coarser level, as illustrated on Fig. 10. Since
the coarse Laplacian operator and linear interpolation are both accurate to
second order, the interpolated values (empty circles on Fig. 10) have a trun-
cation error of the form (∆x)2εi, where εi = O(1). Note that εi accounts for
both the coarse Laplacian and interpolation errors. The valid values at the
fine level (solid dots on Fig. 10) are accurate to second order, with a trunca-
tion error (∆x)2ηi, with ηi = O(1). Across the interface, the truncation error
jumps abruptly from (∆x)2εi to (∆x)2ηi. Since there is no reason for εi and
ηi to connect to the same value at the coarse–fine boundary, the difference
formula (7) will produce a O(1/∆x) spike on the derivative of these terms.
This translates to a O(1/∆x)(∆x)2 = O(∆x) error on the gradient of Φ.

This problem was previously noted in the case of AMR solvers [see e.g.
16, for a discussion for an AMR Poisson solver], and is inherent to the one-
way interface scheme. It could be avoided using higher order Laplacian and
interpolation operators. Using third order operators would reduce the error
at the interface to O(∆x)2.

Fig. 11 represents the local force error as a function of cell radius for
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Figure 11: Relative error on the force in the 3-level setup described in the text, at resolution
level 8. The values at cell centers are colored by level correspondingly to Fig. 9. On the
left panel, the border potential at fine–coarse boundaries is interpolated from the coarser
level, as implemented in RAMSES with the one-way interface scheme. The interpolation
results in a degradation of the force to order 1 within shallow regions around the AMR
level transitions. On the right panel, the border potential is obtained from the analytic
solution, illustrating a best-case solution on the given grid.

the test problem at resolution level 8. The left panel shows the RAMSES
prescription using interpolation for computing potential and force at level
boundaries, according to Fig. 10. In the right panel, the missing potential
values for both boundary conditions and force computation are no longer
interpolated from the coarse level, but rather evaluated directly from the
exact analytic solution, which suppresses any truncation error problem at the
level interfaces. The comparison of the two panels shows that the impact of
the one-way interface scheme on the global quality of the solution is minimal:
The local force error never exceeds about 1%, and the first order degradation
of the force is confined to thin shells of codimension 1. As a result, the L2
convergence of the force is still close to order 2, scaling approximately as
∆x1.6 (see Fig. 8).

Note that although this test case is simple, it provides valuable insight on
the properties of the one-way interface scheme coupled to the computation
of the force. In the case of RAMSES, extensive tests of force in the code had
been made for cosmological simulations in Teyssier [28] using the original
Poisson solver. Errors on the force due to the one-way interface AMR were
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typically found to be within 1%. Since the Laplacian operator is identical
at the fine (AMR) level in our multigrid implementation to the one used
for these tests, our solver would yield exactly the same solution when fully
converged to numerical accuracy.

Finally, we have tested the convergence and accuracy of the solver in the
presence of gradients at a level boundary. We used a concentrated mass
distribution, given by Eq. (5) with r0 = 0.01, centered in the computational
box. Starting from a base resolution at level 10 (corresponding to a regular
grid of 10242 cells), we introduced one level of refinement at level 11, delimited
by a circular boundary of radius 0.25. By moving around the refined region
within the box, we can probe the effect of the gradient on the solver as the
central peak in the mass distribution approaches the boundary. For various
positions of the refined level, we have performed multigrid iterations with
our algorithm with a residual reduction factor set to 10−7. The resulting
truncation error for the fine level is plotted on Fig. 12 as a function of the
boundary–mass center distance.

At separations greater than about 3r0, the gradient induced by the mass
distribution has no noticeable effect on the quality of the global solution,
for both the potential and the force. As the mass distribution gets closer to
the level boundary however, large derivatives at the interface will introduce
errors in the Dirichlet boundary condition, which will impact the quality
of the solution in the whole refined region. Note, nevertheless, that in our
test the force seems much less sensitive to this effect, possibly because its
truncation error is already dominated by the first order term arising at level
boundaries.

While this effect is inherently present in one-way interface methods, it
could likely be reduced by using higher-order reconstructions of the Dirichlet
boundary condition. As evidenced by the results on the force, however, it is
not clear that much can be gained by such a sophistication, unless the order
of the whole scheme is increased globally. Rather, these results highlight the
importance of selecting suitable AMR refinement criteria. In computational
astrophysics, AMR grids are often refined whenever the local density crosses
a threshold. RAMSES combines such criteria with a level dilation strategy—
which “grows” AMR level outwards, and helps reducing the granularity of
the grid while limiting sharp variations of the mass distribution along the
boundary.

In terms of convergence rate, the boundary gradient had no noticeable
effect, as the solver converged in 6 or 7 iterations for all of the data points
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Figure 12: Effect of the gradient at a level boundary on the quality of the fine level solution,
for the potential (circles) and the force (squares). For boundary–center of mass separations
greater than about 3r0, the location of the density peak has no sizable effect. As the peak
gets closer to the boundary, stronger gradients introduce errors in the numerical potential.
Note however that the errors on the force—which are dominated by the first-order terms
arising at the level boundary—are comparatively insensitive to the boundary gradient.

represented on Fig. 12, yielding a convergence factor of about 10.

5.2. Performance in cosmological simulations
The new Poisson solver has by now been used in RAMSES in a variety

of simulations. We present timings for our new multigrid (MG) solver on
Table 1, together with corresponding timings for the conjugate gradient (CG)
method, used here as a reference example of traditional iterative solvers. The
timings represent the total wall clock time required to solve for the Poisson
equation on the whole AMR grid, for a residual L2 norm reduction factor of
10−3. For the reference timings, we have set the initial guess of the solution
to zero everywhere on the grid, for both solvers.

The tests were run on the CEA/CCRT Platine computer, consisting of
BULL NovaScale 3045 units totaling 932 nodes, networked by an InfiniBand
interconnect. Each node hosts 4 Intel R© Itanium R© 2 dual-core 1.6 GHz pro-
cessors sharing 24 Gb of RAM.

Simulation A (a cosmological simulation at very early time) has a base
2563 grid, with no additional level of refinement, on 32 processors. Simula-
tion B is a “zoom” simulation, with a base resolution of 1283 and successive
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Type of AMR grid PE Resolution Ncells CG (s) MG (s)
A. Cartesian 32 2563 + 0 levels 19M 52 4.1
B. Zoom-in 64 1283 + 3 levels 47M 160 15
C. Cosmology 1024 10243 + 5 levels 4.8G 2750 1070

Table 1: Poisson solver timings on three reference simulations, for conjugate gradient (CG)
and multigrid (MG).

forced refinements up to a 10243-equivalent zoom-in area. The cosmological
computation follows the formation of a dense dark matter halo within the
focus area. Simulation C is a clustered, 50h−1Mpc box cosmological simu-
lation at z = 1, with 10243 particles. At this level of nonlinearity, the finer
AMR levels are extremely clustered, while the intermediate levels exhibit a
complex topology as they follow the intermediate-density structures (walls,
filaments and clumps).

All timings of Table 1 show a strong performance advantage of the multi-
grid method over the conjugate gradient. Additionally, during the time evo-
lution of cosmological simulations, we witnessed that the multigrid solver
convergence times are much more predictable and consistent across different
runs than the conjugate gradient. We attribute this effect to the fact that
the multigrid performance only depends on the topology of the grid, which
changes progressively during the simulations, whereas the conjugate gradient
is very sensitive to the quality of the first guess.

In the context of one-way interface solvers on AMR grids, we can signifi-
cantly improve the performance of the conjugate gradient solver by comput-
ing a first guess solution based on the coarser level solution. We choose to
linearly interpolate the initial guess of Φ at level ` from the solution at the
coarser level `−1, which has just been computed. This “multilevel” approach
guarantees an initial guess of reasonable quality at a small extra cost—the
cost of interpolating the solution from the coarser AMR level to the finer
level. Note that for our CG implementation, iterations only take place at
the finest level, and are therefore not multigrid-accelerated. We now discuss
timings for our 3 test simulations using this improved CG solver. Since new
multigrid timings have shown to be practically unchanged down to 2 digits,
when using this new first guess, we only give new timings for the conjugate
gradient solver.

Simulation A features a CG time between 5.8 and 23 seconds. The con-
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jugate gradient timings are particularly erratic on the first few timesteps,
because the first cosmological structures form at very small scale in the mid-
dle of a nearly uniform density field; therefore such small scale features are
not accurately represented on the first guess obtained by interpolating the
coarse solution. The number of iterations necessary to reach a given resid-
ual reduction factor is therefore high at the start of the simulation, before
decreasing significantly as larger structures grow. In any case, the multigrid
method performs significantly better than the conjugate gradient on carte-
sian grids, even though the conjugate gradient benefits dramatically from an
optimal first guess, and has less overall overhead.

On simulation B, the CG solver with the new first guess takes 140 sec-
onds. The almost tenfold performance gain of the multigrid algorithm over
the conjugate gradient can be explained by the fast evolution of the matter
density at the coarse levels in the early stages of the simulation. Since coarse
levels use a bigger time step than finer levels because of adaptive timestep-
ping, the potential on coarse cells—which is interpolated as a first guess for
the finer potentials—is updated less frequently. The finer first guesses thus
tend to be out of synchronization with the real solution, resulting in addi-
tional conjugate gradient iterations. The multigrid algorithm is much less
sensitive to first guess quality, resulting in a significant advantage over the
conjugate gradient. This situation shows the real strength of the new solver
in the context of adaptive time stepping.

Finally, in the case of simulation C, the CG solver runs for 850 seconds,
about 20% less than multigrid. Decomposing the solver time by level shows
that the MG solver spends most of its time dealing with very fine and very
clustered grids, at the finest end of the AMR structure. This is easily under-
stood, as this type of grid geometries represent a worst-case scenario for the
multigrid solver in terms of small islands, forcing intermediate AMR levels
into the slightly less efficient 1st order capturing mode. Moreover, at this
stage of the simulation, the timestep is usually extremely small, which is
beneficial to the conjugate gradient as discussed in the case of simulation
B. This result suggests using a hybrid scheme in practice, where one uses
the new multigrid method for most levels of the AMR hierarchy except the
finest ones, which can be handled by the CG solver. This method has been
implemented in RAMSES.

For most astrophysical applications, it is sufficient to improve the solution
on each level until the residual norm reaches about 10−3 times the norm of
the initial solution, which is obtained by interpolation of the coarse solution.
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Note that we use Npre = Npost = 2. In the vast majority of practical 3D grid
geometries encountered in cosmology and galaxy formation simulations, the
multigrid algorithm performs 4 to 5 iterations, corresponding to convergence
factors of about 4–6. We observe this behavior regardless of the resolution
of the simulation, from simple 1283 runs to full-scale simulations starting at
10243 with deep AMR grids. In this sense, the multigrid performance is close
to textbook multigrid convergence in practical situations.

5.3. Effect of Ncycles

The Ncycles parameter controls how many multigrid iterations are per-
formed when computing a coarse correction, at any level of the MG hierarchy.
More iterations usually yield a better correction (and less multigrid iterations
at the finest level before reaching tolerance), but significantly increase the
cost of each iteration. One must therefore find an appropriate trade-off.

Performing more than 2 or 3 cycles is usually not desirable, because the
coarse problem is only itself an approximation of the fine correction problem.
We have studied Ncycles = 1 (“V-cycles”), Ncycles = 2 (“W-cycles”) and
Ncycles = 3. We have measured the residual reduction rate and the total
solver time to solve to a given accuracy (10−10 in our tests) for a simple disk
domain as shown on Figure 7.

Typical results are presented on Figure 13. The first conclusion is that
V-cycles are very sensitive to the chosen boundary reconstruction scheme.
First-order multigrid boundary reconstruction is clearly detrimental to the
convergence rate, though it does ensure convergence of grids with small is-
lands. Interestingly enough, schedules with Ncycles ≥ 2 (like W-cycles) ap-
pear to be insensitive to the order of the boundary reconstruction scheme.
This suggests that first-order multigrid boundary reconstruction used in con-
junction with W-cycles would ensure a convergence of the solver as fast as
the second-order scheme. Since W-cycles have more costly iterations, we
see in Figure 13 that this additional cost translates however into a longer
overall time. For most astrophysical applications we have explored with the
RAMSES code, we have found that V-cycles perform generally better than
W-cycles. This can however depend on the actual implementation of the
solver, and the kind of grid geometries arising in other applications.

5.4. Parallel computing
The progress of distributed memory architectures over vector supercom-

puters has led to a regain of interest in iterative methods, as direct global
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Figure 13: Effect of the multigrid schedule on the solver, for a simple disk-shaped domain
test case where second-order multigrid boundary reconstruction does converge.

solvers such as FFT are particularly expensive in terms of inter-process com-
munications. Iterative methods can often be adapted to distributed memory
architectures, with little modification, and therefore remain simple to imple-
ment, while requiring limited communications.

A broad class of parallelization techniques for physical problems consists
of splitting the computational domain into subregions, which are each man-
aged and updated by a dedicated computing core. Such spatial domain de-
composition techniques rely on the ability to update each CPU independently
first, then address the couplings between different domains.

In RAMSES, this last step is implemented using buffer regions (see Fig. 14).
Each computing core manages its own cells, but also possesses a local copy
of cells from other neighboring CPUs which are needed for local compu-
tation. These buffer cells need to be updated after every iteration of the
various iterative solvers used in the code. The update operation is done by
communicating the updated values of the buffer cells from the CPUs which
own them to the buffer regions in other processors. Therefore, any CPU only
communicates with its direct neighbors, and the number of neighbors usually
remains small. Moreover, the number of buffer cells scales only as a surface
term, limiting the transfer to computation volume ratio. This is in contrast
to the FFT, which requires a full transpose of the grid, and global all-to-all
communications. In our multigrid scheme, we need to communicate both the
solution and the residual for each the buffer cell between every Gauss-Seidel
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Figure 14: Domain decomposition and buffer regions as used in RAMSES, in particular
for the Poisson solver. The thick black line marks the boundary of the spatial domain
decomposition between CPU 1 and CPU 2. CPU 1 owns all the red cells, while CPU 2
owns all the blue cells. In order to perform an update, each CPU needs the values of the
fields in the immediate exterior vicinity of its domain (light red and light blue for CPUs
2 and 1 respectively). These buffer cells are updated after each iteration of the various
solvers using inter-process communications.

sweep, and also after each restriction or prolongation operation.
We have performed weak and strong scaling timings of our multigrid

Poisson solver in RAMSES. The strong scaling test case is a simple 2563

cosmological simulation without any refinement (Cartesian grid), starting at
4 processes up to 512 processes. The weak scaling test scales from 2563 with
4 processes to 20483 with 2048 processes. The test results are presented on
Figure 15. We see that our parallel efficiency degrades down to 50% when
we reach 323 cells per processor. Beyond this limit, we spend more time
communicating data than updating the solution during each Gauss-Seidel
sweep. We could improve our scaling by a factor of 2 by hiding surface cells
communications by inner cells computations. The weak scaling tests shows
that if we keep the computational load above 643 cells per processor, the
scaling is almost perfect. This rule of thumb applies also for more complex
grid geometries, although load balancing can degrade significantly in case of
very deep adaptive time step strategies.
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Figure 15: Strong (left panel) and weak (right panel) scaling test of our multigrid Poisson
solver for a 2563 Cartesian grid.

6. Conclusion

We have presented a simple and efficient multigrid algorithm for solving
the Poisson equation on irregular domains defined on a regular Cartesian
grid. This kind of problem frequently arises in AMR codes using a one-
way interface strategy, and the method is therefore of particular interest
for astrophysical applications with multiple adaptive time steps. Using a
second-order reconstruction scheme for the boundaries of the multigrid lev-
els, we have shown that our multigrid scheme features optimal convergence
properties. Since we use a multigrid hierarchy orthogonal to the actual AMR
grid, our memory requirements are minimal. In case of particularly complex
boundary conditions, we have observed that our scheme fails to converge, an
issue previously identified as the “small island” problem. We have designed
a simple fix to this problem, degrading our multigrid boundary reconstruc-
tion accuracy to first-order. We have implemented this new technique in the
RAMSES code, using a simple algorithm to determine “on the fly” which
reconstruction technique should be used. We have shown the solver to be
second-order accurate for the potential even in the presence of AMR levels,
while the global force accuracy is close to second-order accuracy. Near level
interfaces, the one-way interface scheme causes degradation of the force to
first order, but only in very localized regions of codimension one. We have
measured significant performance gains over our standard conjugate gradi-
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ent solver, especially in the case of cosmological “zoom-in” simulations, where
large fully-refined domains are present in the AMR grid. This simple and
efficient multigrid solver could also be used for incompressible flow solvers,
in presence of multiphase fluids or complex embedded solid boundaries.
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