649,904 research outputs found

    Regular Cost Functions, Part I: Logic and Algebra over Words

    Full text link
    The theory of regular cost functions is a quantitative extension to the classical notion of regularity. A cost function associates to each input a non-negative integer value (or infinity), as opposed to languages which only associate to each input the two values "inside" and "outside". This theory is a continuation of the works on distance automata and similar models. These models of automata have been successfully used for solving the star-height problem, the finite power property, the finite substitution problem, the relative inclusion star-height problem and the boundedness problem for monadic-second order logic over words. Our notion of regularity can be -- as in the classical theory of regular languages -- equivalently defined in terms of automata, expressions, algebraic recognisability, and by a variant of the monadic second-order logic. These equivalences are strict extensions of the corresponding classical results. The present paper introduces the cost monadic logic, the quantitative extension to the notion of monadic second-order logic we use, and show that some problems of existence of bounds are decidable for this logic. This is achieved by introducing the corresponding algebraic formalism: stabilisation monoids.Comment: 47 page

    Verifying Monadic Second-Order Properties of Graph Programs

    Get PDF
    The core challenge in a Hoare- or Dijkstra-style proof system for graph programs is in defining a weakest liberal precondition construction with respect to a rule and a postcondition. Previous work addressing this has focused on assertion languages for first-order properties, which are unable to express important global properties of graphs such as acyclicity, connectedness, or existence of paths. In this paper, we extend the nested graph conditions of Habel, Pennemann, and Rensink to make them equivalently expressive to monadic second-order logic on graphs. We present a weakest liberal precondition construction for these assertions, and demonstrate its use in verifying non-local correctness specifications of graph programs in the sense of Habel et al.Comment: Extended version of a paper to appear at ICGT 201

    Generating Functions For Kernels of Digraphs (Enumeration & Asymptotics for Nim Games)

    Full text link
    In this article, we study directed graphs (digraphs) with a coloring constraint due to Von Neumann and related to Nim-type games. This is equivalent to the notion of kernels of digraphs, which appears in numerous fields of research such as game theory, complexity theory, artificial intelligence (default logic, argumentation in multi-agent systems), 0-1 laws in monadic second order logic, combinatorics (perfect graphs)... Kernels of digraphs lead to numerous difficult questions (in the sense of NP-completeness, #P-completeness). However, we show here that it is possible to use a generating function approach to get new informations: we use technique of symbolic and analytic combinatorics (generating functions and their singularities) in order to get exact and asymptotic results, e.g. for the existence of a kernel in a circuit or in a unicircuit digraph. This is a first step toward a generatingfunctionology treatment of kernels, while using, e.g., an approach "a la Wright". Our method could be applied to more general "local coloring constraints" in decomposable combinatorial structures.Comment: Presented (as a poster) to the conference Formal Power Series and Algebraic Combinatorics (Vancouver, 2004), electronic proceeding

    Existence and Free Logic

    Get PDF
    In this paper I aim to defend a first‐order non‐discriminating property view concerning existence. The version of this view that I prefer is based on negative (or a specific neutral) free logic that treats the existence predicate as first‐order logical predicate. I will provide reasons why such a view is more plausible than a second‐order discriminating property view concerning existence and I will also discuss four challenges for the proposed view and provide solutions to them

    Expressive power and complexity of a logic with quantifiers that count proportions of sets

    Get PDF
    We present a second-order logic of proportional quantifiers, SOLP, which is essentially a first-order language extended with quantifiers that act upon second-order variables of a given arity r and count the fraction of elements in a subset of r-tuples of a model that satisfy a formula. Our logic is capable of expressing proportional versions of different problems of complexity up to NP-hard as, for example, the problem of deciding if at least a fraction 1/n of the set of vertices of a graph form a clique; and fragments within our logic capture complexity classes as NL and P, with auxiliary ordering relation. When restricted to monadic second-order variables, our logic of proportional quantifiers admits a semantic approximation based on almost linear orders, which is not as weak as other known logics with counting quantifiers (restricted to almost orders), for it does not have the bounded number of degrees property. Moreover, we show that, in this almost-ordered setting, different fragments of this logic vary in their expressive power, and show the existence of an infinite hierarchy inside our monadic language. We extend our inexpressibility result of almost-ordered structure to a fragment of SOLP, which in the presence of full order captures P. To obtain all our inexpressibility results, we developed combinatorial games appropriate for these logics, whose application could go beyond the almost-ordered models and hence are interesting by themselves.Peer ReviewedPreprin

    On Existential MSO and its Relation to ETH

    Get PDF
    Impagliazzo et al. proposed a framework, based on the logic fragment defining the complexity class SNP, to identify problems that are equivalent to k-CNF-Sat modulo subexponential-time reducibility (serf-reducibility). The subexponential-time solvability of any of these problems implies the failure of the Exponential Time Hypothesis (ETH). In this paper, we extend the framework of Impagliazzo et al., and identify a larger set of problems that are equivalent to k-CNF-Sat modulo serf-reducibility. We propose a complexity class, referred to as Linear Monadic NP, that consists of all problems expressible in existential monadic second order logic whose expressions have a linear measure in terms of a complexity parameter, which is usually the universe size of the problem. This research direction can be traced back to Fagin\u27s celebrated theorem stating that NP coincides with the class of problems expressible in existential second order logic. Monadic NP, a well-studied class in the literature, is the restriction of the aforementioned logic fragment to existential monadic second order logic. The proposed class Linear Monadic NP is then the restriction of Monadic NP to problems whose expressions have linear measure in the complexity parameter. We show that Linear Monadic NP includes many natural complete problems such as the satisfiability of linear-size circuits, dominating set, independent dominating set, and perfect code. Therefore, for any of these problems, its subexponential-time solvability is equivalent to the failure of ETH. We prove, using logic games, that the aforementioned problems are inexpressible in the monadic fragment of SNP, and hence, are not captured by the framework of Impagliazzo et al. Finally, we show that Feedback Vertex Set is inexpressible in existential monadic second order logic, and hence is not in Linear Monadic NP, and investigate the existence of certain reductions between Feedback Vertex Set (and variants of it) and 3-CNF-Sat
    • 

    corecore