52 research outputs found

    Dynamic data consistency maintenance in peer-to-peer caching system

    Get PDF
    Master'sMASTER OF SCIENC

    Efficient Multicast Algorithms for Mesh and Torus Networks

    Get PDF
    With the increasing popularity of multicomputers, efficient way of communication within its processors has become a popular area of research. Multicomputers refer to a computer system that has multiple processors, they have high computational power and they can perform multiple tasks concurrently. Mesh and Torus are some of the commonly used network topologies in building multicomputer systems. Their performance highly depends on the underlying network communication such as multicast. Multicast is a communication method in which a message is sent from a source node to a certain number of destinations. Two major parameters used to evaluate multicast are time that a multicast process takes to deliver the message to all destinations and traffic that indicates the number of links used for this process. Research indicates that in general, it is NP- complete to find an optimal multicasting algorithm which is efficient on both time and traffic. This thesis suggests two new algorithms to achieve multicast in mesh and torus networks. Extensive simulations of these algorithms show that in practice they perform better than existing ones

    Network architecture for large-scale distributed virtual environments

    Get PDF
    Distributed Virtual Environments (DVEs) provide 3D graphical computer generated environments with stereo sound, supporting real-time collaboration between potentially large numbers of users distributed around the world. Early DVEs has been used over local area networks (LANs). Recently with the Internet's development into the most common embedding for DVEs these distributed applications have been moved towards an exploiting IP networks. This has brought the scalability challenges into the DVEs evolution. The network bandwidth resource is the more limited resource of the DVE system and to improve the DVE's scalability it is necessary to manage carefully this resource. To achieve the saving in the network bandwidth the different types of the network traffic that is produced by the DVEs have to be considered. DVE applications demand· exchange of the data that forms different types of traffic such as a computer data type, video and audio, and a 3D data type to keep the consistency of the application's state. The problem is that the meeting of the QoS requirements of both control and continuous media traffic already have been covered by the existing research. But QoS for transfer of the 3D information has not really been considered. The 3D DVE geometry traffic is very bursty in nature and places a high demands on the network for short intervals of time due to the quite large size of the 3D models and the DVE application requirements to transmit a 3D data as quick as possible. The main motivation in carrying out the work presented in this thesis is to find a solution to improve the scalability of the DVE applications by a consideration the QoS requirements of the 3D DVE geometrical data type. In this work we are investigating the possibility to decrease the network bandwidth utilization by the 3D DVE traffic using the level of detail (LOD) concept and the active networking approach. The background work of the thesis surveys the DVE applications and the scalability requirements of the DVE systems. It also discusses the active networks and multiresolution representation and progressive transmission of the 3D data. The new active networking approach to the transmission of the 3D geometry data within the DVE systems is proposed in this thesis. This approach enhances the currently applied peer-to-peer DVE architecture by adding to the peer-to-peer multicast neny_ork layer filtering of the 3D flows an application level filtering on the active intermediate nodes. The active router keeps the application level information about the placements of users. This information is used by active routers to prune more detailed 3D data flows (higher LODs) in the multicast tree arches that are linked to the distance DVE participants. The exploration of possible benefits of exploiting the proposed active approach through the comparison with the non-active approach is carried out using the simulation­based performance modelling approach. Complex interactions between participants in DVE application and a large number of analyzed variables indicate that flexible simulation is more appropriate than mathematical modelling. To build a test bed will not be feasible. Results from the evaluation demonstrate that the proposed active approach shows potential benefits to the improvement of the DVE's scalability but the degree of improvement depends on the users' movement pattern. Therefore, other active networking methods to support the 3D DVE geometry transmission may also be required

    A case for 3D streaming on peer-to-peer networks

    Full text link
    One of the most serious issues holding back the widespread of 3D contents on Internet has been their inaccessibility due to large data volume. Many compression and progressive transmission tech-niques, as well as format standards, have been proposed in recent years to make 3D streaming increasingly viable for the efficient and accessible delivery of 3D contents. However, existing propos-als have yet to seriously address one of the most important issues in practical adoption – a system’s scalability in terms of the number of concurrent users. We argue that due to 3D contents ’ large data vol-ume and interactive nature, client-server architecture, with its inher-ently fixed resource availability and high cost, will not be suitable to support popular Internet-scale 3D streaming. On the other hand, peer-to-peer (P2P) architectures hold the promise of both scalabil-ity and affordability. In this position paper, we describe the po-tential promises and challenges in adapting 3D streaming to P2P networks, using multi-user networked virtual environment (NVE) as an example. We also propose Flowing LoD (FLoD), a scalable, distributed and fault-tolerant P2P 3D streaming mechanism, that is based on Voronoi-based Overlay Network (VON), a P2P overlay specifically designed for NVE applications

    Anycast services and its applications

    Full text link
    Anycast in next generation Internet Protocol is a hot topic in the research of computer networks. It has promising potentials and also many challenges, such as architecture, routing, Quality-of-Service, anycast in ad hoc networks, application-layer anycast, etc. In this thesis, we tackle some important topics among them. The thesis at first presents an introduction about anycast, followed by the related work. Then, as our major contributions, a number of challenging issues are addressed in the following chapters. We tackled the anycast routing problem by proposing a requirement based probing algorithm at application layer for anycast routing. Compared with the existing periodical based probing routing algorithm, the proposed routing algorithm improves the performance in terms of delay. We addressed the reliable service problem by the design of a twin server model for the anycast servers, providing a transparent and reliable service for all anycast queries. We addressed the load balance problem of anycast servers by proposing new job deviation strategies, to provide a similar Quality-of-Service to all clients of anycast servers. We applied the mesh routing methodology in the anycast routing in ad hoc networking environment, which provides a reliable routing service and uses much less network resources. We combined the anycast protocol and the multicast protocol to provide a bidirectional service, and applied the service to Web-based database applications, achieving a better query efficiency and data synchronization. Finally, we proposed a new Internet based service, minicast, as the combination of the anycast and multicast protocols. Such a service has potential applications in information retrieval, parallel computing, cache queries, etc. We show that the minicast service consumes less network resources while providing the same services. The last chapter of the thesis presents the conclusions and discusses the future work

    Static and Dynamic Scheduling for Effective Use of Multicore Systems

    Get PDF
    Multicore systems have increasingly gained importance in high performance computers. Compared to the traditional microarchitectures, multicore architectures have a simpler design, higher performance-to-area ratio, and improved power efficiency. Although the multicore architecture has various advantages, traditional parallel programming techniques do not apply to the new architecture efficiently. This dissertation addresses how to determine optimized thread schedules to improve data reuse on shared-memory multicore systems and how to seek a scalable solution to designing parallel software on both shared-memory and distributed-memory multicore systems. We propose an analytical cache model to predict the number of cache misses on the time-sharing L2 cache on a multicore processor. The model provides an insight into the impact of cache sharing and cache contention between threads. Inspired by the model, we build the framework of affinity based thread scheduling to determine optimized thread schedules to improve data reuse on all the levels in a complex memory hierarchy. The affinity based thread scheduling framework includes a model to estimate the cost of a thread schedule, which consists of three submodels: an affinity graph submodel, a memory hierarchy submodel, and a cost submodel. Based on the model, we design a hierarchical graph partitioning algorithm to determine near-optimal solutions. We have also extended the algorithm to support threads with data dependences. The algorithms are implemented and incorporated into a feedback directed optimization prototype system. The prototype system builds upon a binary instrumentation tool and can improve program performance greatly on shared-memory multicore architectures. We also study the dynamic data-availability driven scheduling approach to designing new parallel software on distributed-memory multicore architectures. We have implemented a decentralized dynamic runtime system. The design of the runtime system is focused on the scalability metric. At any time only a small portion of a task graph exists in memory. We propose an algorithm to solve data dependences without process cooperation in a distributed manner. Our experimental results demonstrate the scalability and practicality of the approach for both shared-memory and distributed-memory multicore systems. Finally, we present a scalable nonblocking topology-aware multicast scheme for distributed DAG scheduling applications

    Design and analysis of a 3-dimensional cluster multicomputer architecture using optical interconnection for petaFLOP computing

    Get PDF
    In this dissertation, the design and analyses of an extremely scalable distributed multicomputer architecture, using optical interconnects, that has the potential to deliver in the order of petaFLOP performance is presented in detail. The design takes advantage of optical technologies, harnessing the features inherent in optics, to produce a 3D stack that implements efficiently a large, fully connected system of nodes forming a true 3D architecture. To adopt optics in large-scale multiprocessor cluster systems, efficient routing and scheduling techniques are needed. To this end, novel self-routing strategies for all-optical packet switched networks and on-line scheduling methods that can result in collision free communication and achieve real time operation in high-speed multiprocessor systems are proposed. The system is designed to allow failed/faulty nodes to stay in place without appreciable performance degradation. The approach is to develop a dynamic communication environment that will be able to effectively adapt and evolve with a high density of missing units or nodes. A joint CPU/bandwidth controller that maximizes the resource allocation in this dynamic computing environment is introduced with an objective to optimize the distributed cluster architecture, preventing performance/system degradation in the presence of failed/faulty nodes. A thorough analysis, feasibility study and description of the characteristics of a 3-Dimensional multicomputer system capable of achieving 100 teraFLOP performance is discussed in detail. Included in this dissertation is throughput analysis of the routing schemes, using methods from discrete-time queuing systems and computer simulation results for the different proposed algorithms. A prototype of the 3D architecture proposed is built and a test bed developed to obtain experimental results to further prove the feasibility of the design, validate initial assumptions, algorithms, simulations and the optimized distributed resource allocation scheme. Finally, as a prelude to further research, an efficient data routing strategy for highly scalable distributed mobile multiprocessor networks is introduced

    Constructing efficient self-organising application layer multicast overlays

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Optical Wireless Data Center Networks

    Get PDF
    Bandwidth and computation-intensive Big Data applications in disciplines like social media, bio- and nano-informatics, Internet-of-Things (IoT), and real-time analytics, are pushing existing access and core (backbone) networks as well as Data Center Networks (DCNs) to their limits. Next generation DCNs must support continuously increasing network traffic while satisfying minimum performance requirements of latency, reliability, flexibility and scalability. Therefore, a larger number of cables (i.e., copper-cables and fiber optics) may be required in conventional wired DCNs. In addition to limiting the possible topologies, large number of cables may result into design and development problems related to wire ducting and maintenance, heat dissipation, and power consumption. To address the cabling complexity in wired DCNs, we propose OWCells, a class of optical wireless cellular data center network architectures in which fixed line of sight (LOS) optical wireless communication (OWC) links are used to connect the racks arranged in regular polygonal topologies. We present the OWCell DCN architecture, develop its theoretical underpinnings, and investigate routing protocols and OWC transceiver design. To realize a fully wireless DCN, servers in racks must also be connected using OWC links. There is, however, a difficulty of connecting multiple adjacent network components, such as servers in a rack, using point-to-point LOS links. To overcome this problem, we propose and validate the feasibility of an FSO-Bus to connect multiple adjacent network components using NLOS point-to-point OWC links. Finally, to complete the design of the OWC transceiver, we develop a new class of strictly and rearrangeably non-blocking multicast optical switches in which multicast is performed efficiently at the physical optical (lower) layer rather than upper layers (e.g., application layer). Advisors: Jitender S. Deogun and Dennis R. Alexande
    corecore