2,911 research outputs found

    A scalable meta-classifier for combining search and classification techniques for multi-level text categorization

    Get PDF
    Nowadays, documents are increasingly associated with multi-level category hierarchies rather than a flat category scheme. As the volume and diversity of documents grow, so do the size and complexity of the corresponding category hierarchies. To be able to access such hierarchically classified documents in real-time, we need fast automatic methods to navigate these hierarchies. Today’s data domains are also very different from each other, such as medicine and politics. These distinct domains can be handled by different classifiers. A document representation system which incorporates the inherent category structure of the data should also add useful semantic content to the data vectors and thus lead to better separability of classes. In this paper, we present a scalable meta-classifier to tackle today’s problem of multi-level data classification in the presence of large datasets. To speed up the classification process, we use a search-based method to detect the level-1 category of a test document. For this purpose, we use a category–hierarchy-based vector representation. We evaluate the meta-classifier by scaling to both longer documents as well as to a larger category set and show it to be robust in both cases. We test the architecture of our meta-classifier using six different base classifiers (Random forest, C4.5, multilayer perceptron, naïve Bayes, BayesNet (BN) and PART). We observe that even though there is a very small variation in the performance of different architectures, all of them perform much better than the corresponding single baseline classifiers. We conclude that there is substantial potential in this meta-classifier architecture, rather than the classifiers themselves, which successfully improves classification performance

    Scalable Text Mining with Sparse Generative Models

    Get PDF
    The information age has brought a deluge of data. Much of this is in text form, insurmountable in scope for humans and incomprehensible in structure for computers. Text mining is an expanding field of research that seeks to utilize the information contained in vast document collections. General data mining methods based on machine learning face challenges with the scale of text data, posing a need for scalable text mining methods. This thesis proposes a solution to scalable text mining: generative models combined with sparse computation. A unifying formalization for generative text models is defined, bringing together research traditions that have used formally equivalent models, but ignored parallel developments. This framework allows the use of methods developed in different processing tasks such as retrieval and classification, yielding effective solutions across different text mining tasks. Sparse computation using inverted indices is proposed for inference on probabilistic models. This reduces the computational complexity of the common text mining operations according to sparsity, yielding probabilistic models with the scalability of modern search engines. The proposed combination provides sparse generative models: a solution for text mining that is general, effective, and scalable. Extensive experimentation on text classification and ranked retrieval datasets are conducted, showing that the proposed solution matches or outperforms the leading task-specific methods in effectiveness, with a order of magnitude decrease in classification times for Wikipedia article categorization with a million classes. The developed methods were further applied in two 2014 Kaggle data mining prize competitions with over a hundred competing teams, earning first and second places

    Methods for efficient object categorization, detection, scene recognition, and image search

    Get PDF
    In the past few years there has been a tremendous growth in the usage of digital images. Users can now access millions of photos, a fact that poses the need of having methods that can efficiently and effectively search the visual information of interest. In this thesis, we propose methods to learn image representations to compactly represent a large collection of images, enabling accurate image recognition with linear classification models which offer the advantage of being efficient to both train and test. The entries of our descriptors are the output of a set of basis classifiers evaluated on the image, which capture the presence or absence of a set of high-level visual concepts. We propose two different techniques to automatically discover the visual concepts and learn the basis classifiers from a given labeled dataset of pictures, producing descriptors that highly-discriminate the original categories of the dataset. We empirically show that these descriptors are able to encode new unseen pictures, and produce state-of-the-art results in conjunct with cheap linear classifiers. We describe several strategies to aggregate the outputs of basis classifiers evaluated on multiple subwindows of the image in order to handle cases when the photo contains multiple objects and large amounts of clutter. We extend this framework for the task of object detection, where the goal is to spatially localize an object within an image. We use the output of a collection of detectors trained in an offline stage as features for new detection problems, showing competitive results with the current state of the art. Since generating rich manual annotations for an image dataset is a crucial limit of modern methods in object localization and detection, in this thesis we also propose a method to automatically generate training data for an object detector in a weakly-supervised fashion, yielding considerable savings in human annotation efforts. We show that our automatically-generated regions can be used to train object detectors with recognition results remarkably close to those obtained by training on manually annotated bounding boxes

    Ensemble deep learning: A review

    Get PDF
    Ensemble learning combines several individual models to obtain better generalization performance. Currently, deep learning models with multilayer processing architecture is showing better performance as compared to the shallow or traditional classification models. Deep ensemble learning models combine the advantages of both the deep learning models as well as the ensemble learning such that the final model has better generalization performance. This paper reviews the state-of-art deep ensemble models and hence serves as an extensive summary for the researchers. The ensemble models are broadly categorised into ensemble models like bagging, boosting and stacking, negative correlation based deep ensemble models, explicit/implicit ensembles, homogeneous /heterogeneous ensemble, decision fusion strategies, unsupervised, semi-supervised, reinforcement learning and online/incremental, multilabel based deep ensemble models. Application of deep ensemble models in different domains is also briefly discussed. Finally, we conclude this paper with some future recommendations and research directions
    corecore