163 research outputs found

    High-Throughput Soft-Output MIMO Detector Based on Path-Preserving Trellis-Search Algorithm

    Get PDF
    In this paper, we propose a novel path-preserving trellis-search (PPTS) algorithm and its high-speed VLSI architecture for soft-output multiple-input-multiple-output (MIMO) detection. We represent the search space of the MIMO signal with an unconstrained trellis, where each node in stage of the trellis maps to a possible complex-valued symbol transmitted by antenna. Based on the trellis model, we convert the soft-output MIMO detection problem into a multiple shortest paths problem subject to the constraint that every trellis node must be covered in this set of paths. The PPTS detector is guaranteed to have soft information for every possible symbol transmitted on every antenna so that the log-likelihood ratio (LLR) for each transmitted data bit can be more accurately formed. Simulation results show that the PPTS algorithm can achieve near-optimal error performance with a low search complexity. The PPTS algorithm is a hardware-friendly data-parallel algorithm because the search operations are evenly distributed among multiple trellis nodes for parallel processing. As a case study, we have designed and synthesized a fully-parallel systolic-array detector and two folded detectors for a 4x4 16-QAM system using a 1.08 V TSMC 65-nm CMOS technology.With a 1.18 mm2 core area, the folded detector can achieve a throughput of 2.1 Gbps.With a 3.19 mm2 core area, the fully-parallel systolic-array detector can achieve a throughput of 6.4 Gbps

    Efficient DSP and Circuit Architectures for Massive MIMO: State-of-the-Art and Future Directions

    Full text link
    Massive MIMO is a compelling wireless access concept that relies on the use of an excess number of base-station antennas, relative to the number of active terminals. This technology is a main component of 5G New Radio (NR) and addresses all important requirements of future wireless standards: a great capacity increase, the support of many simultaneous users, and improvement in energy efficiency. Massive MIMO requires the simultaneous processing of signals from many antenna chains, and computational operations on large matrices. The complexity of the digital processing has been viewed as a fundamental obstacle to the feasibility of Massive MIMO in the past. Recent advances on system-algorithm-hardware co-design have led to extremely energy-efficient implementations. These exploit opportunities in deeply-scaled silicon technologies and perform partly distributed processing to cope with the bottlenecks encountered in the interconnection of many signals. For example, prototype ASIC implementations have demonstrated zero-forcing precoding in real time at a 55 mW power consumption (20 MHz bandwidth, 128 antennas, multiplexing of 8 terminals). Coarse and even error-prone digital processing in the antenna paths permits a reduction of consumption with a factor of 2 to 5. This article summarizes the fundamental technical contributions to efficient digital signal processing for Massive MIMO. The opportunities and constraints on operating on low-complexity RF and analog hardware chains are clarified. It illustrates how terminals can benefit from improved energy efficiency. The status of technology and real-life prototypes discussed. Open challenges and directions for future research are suggested.Comment: submitted to IEEE transactions on signal processin

    Performance - Complexity Comparison of Receivers for a LTE MIMO–OFDM System

    Get PDF
    Implementation of receivers for spatial multiplexing multiple-input multiple-output (MIMO) orthogonal-frequency-division-multiplexing (OFDM) systems is considered. The linear minimum mean-square error (LMMSE) and the K-best list sphere detector (LSD) are compared to the iterative successive interference cancellation (SIC) detector and the iterative K-best LSD. The performance of the algorithms is evaluated in 3G long-term evolution (LTE) system. The SIC algorithm is found to perform worse than the K-best LSD when the MIMO channels are highly correlated, while the performance difference diminishes when the correlation decreases. The receivers are designed for 2X2 and 4X4 antenna systems and three different modulation schemes. Complexity results for FPGA and ASIC implementations are found. A modification to the K-best LSD which increases its detection rate is introduced. The ASIC receivers are designed to meet the decoding throughput requirements in LTE and the K-best LSD is found to be the most complex receiver although it gives the best reliable data transmission throughput. The SIC receiver has the best performance–complexity tradeoff in the 2X2 system but in the 4X4 case, the K-best LSD is the most efficient. A receiver architecture which could be reconfigured to using a simple or a more complex detector as the channel conditions change would achieve the best performance while consuming the least amount of power in the receiver

    Energy Efficient VLSI Circuits for MIMO-WLAN

    Get PDF
    Mobile communication - anytime, anywhere access to data and communication services - has been continuously increasing since the operation of the first wireless communication link by Guglielmo Marconi. The demand for higher data rates, despite the limited bandwidth, led to the development of multiple-input multiple-output (MIMO) communication which is often combined with orthogonal frequency division multiplexing (OFDM). Together, these two techniques achieve a high bandwidth efficiency. Unfortunately, techniques such as MIMO-OFDM significantly increase the signal processing complexity of transceivers. While fast improvements in the integrated circuit (IC) technology enabled to implement more signal processing complexity per chip, large efforts had and have to be done for novel algorithms as well as for efficient very large scaled integration (VLSI) architectures in order to meet today's and tomorrow's requirements for mobile wireless communication systems. In this thesis, we will present architectures and VLSI implementations of complete physical (PHY) layer application specific integrated circuits (ASICs) under the constraints imposed by an industrial wireless communication standard. Contrary to many other publications, we do not elaborate individual components of a MIMO-OFDM communication system stand-alone, but in the context of the complete PHY layer ASIC. We will investigate the performance of several MIMO detectors and the corresponding preprocessing circuits, being integrated into the entire PHY layer ASIC, in terms of achievable error-rate, power consumption, and area requirement. Finally, we will assemble the results from the proposed PHY layer implementations in order to enhance the energy efficiency of a transceiver. To this end, we propose a cross-layer optimization of PHY layer and medium access control (MAC) layer

    Low-Power and Error-Resilient VLSI Circuits and Systems.

    Full text link
    Efficient low-power operation is critically important for the success of the next-generation signal processing applications. Device and supply voltage have been continuously scaled to meet a more constrained power envelope, but scaling has created resiliency challenges, including increasing timing faults and soft errors. Our research aims at designing low-power and robust circuits and systems for signal processing by drawing circuit, architecture, and algorithm approaches. To gain an insight into the system faults due to supply voltage reduction, we researched the two primary effects that determine the minimum supply voltage (VMIN) in Intel’s tri-gate CMOS technology, namely process variations and gate-dielectric soft breakdown. We determined that voltage scaling increases the timing window that sequential circuits are vulnerable. Thus, we proposed a new hold-time violation metric to define hold-time VMIN, which has been adopted as a new design standard. Device scaling increases soft errors which affect circuit reliability. Through extensive soft error characterization using two 65nm CMOS test chips, we studied the soft error mechanisms and its dependence on supply voltage and clock frequency. This study laid the foundation of the first 65nm DSP chip design for a NASA spaceflight project. To mitigate such random errors, we proposed a new confidence-driven architecture that effectively enhances the error resiliency of deeply scaled CMOS and post-CMOS circuits. Designing low-power resilient systems can effectively leverage application-specific algorithmic approaches. To explore design opportunities in the algorithmic domain, we demonstrate an application-specific detection and decoding processor for multiple-input multiple-output (MIMO) wireless communication. To enhance the receive error rate for a robust wireless communication, we designed a joint detection and decoding technique by enclosing detection and decoding in an iterative loop to enhance both interference cancellation and error reduction. A proof-of-concept chip design was fabricated for the next-generation 4x4 256QAM MIMO systems. Through algorithm-architecture optimizations and low-power circuit techniques, our design achieves significant improvements in throughput, energy efficiency and error rate, paving the way for future developments in this area.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/110323/1/uchchen_1.pd

    Datacenter Design for Future Cloud Radio Access Network.

    Full text link
    Cloud radio access network (C-RAN), an emerging cloud service that combines the traditional radio access network (RAN) with cloud computing technology, has been proposed as a solution to handle the growing energy consumption and cost of the traditional RAN. Through aggregating baseband units (BBUs) in a centralized cloud datacenter, C-RAN reduces energy and cost, and improves wireless throughput and quality of service. However, designing a datacenter for C-RAN has not yet been studied. In this dissertation, I investigate how a datacenter for C-RAN BBUs should be built on commodity servers. I first design WiBench, an open-source benchmark suite containing the key signal processing kernels of many mainstream wireless protocols, and study its characteristics. The characterization study shows that there is abundant data level parallelism (DLP) and thread level parallelism (TLP). Based on this result, I then develop high performance software implementations of C-RAN BBU kernels in C++ and CUDA for both CPUs and GPUs. In addition, I generalize the GPU parallelization techniques of the Turbo decoder to the trellis algorithms, an important family of algorithms that are widely used in data compression and channel coding. Then I evaluate the performance of commodity CPU servers and GPU servers. The study shows that the datacenter with GPU servers can meet the LTE standard throughput with 4× to 16× fewer machines than with CPU servers. A further energy and cost analysis show that GPU servers can save on average 13× more energy and 6× more cost. Thus, I propose the C-RAN datacenter be built using GPUs as a server platform. Next I study resource management techniques to handle the temporal and spatial traffic imbalance in a C-RAN datacenter. I propose a “hill-climbing” power management that combines powering-off GPUs and DVFS to match the temporal C-RAN traffic pattern. Under a practical traffic model, this technique saves 40% of the BBU energy in a GPU-based C-RAN datacenter. For spatial traffic imbalance, I propose three workload distribution techniques to improve load balance and throughput. Among all three techniques, pipelining packets has the most throughput improvement at 10% and 16% for balanced and unbalanced loads, respectively.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120825/1/qizheng_1.pd
    • …
    corecore