1,759 research outputs found

    Nerfstudio: A Modular Framework for Neural Radiance Field Development

    Full text link
    Neural Radiance Fields (NeRF) are a rapidly growing area of research with wide-ranging applications in computer vision, graphics, robotics, and more. In order to streamline the development and deployment of NeRF research, we propose a modular PyTorch framework, Nerfstudio. Our framework includes plug-and-play components for implementing NeRF-based methods, which make it easy for researchers and practitioners to incorporate NeRF into their projects. Additionally, the modular design enables support for extensive real-time visualization tools, streamlined pipelines for importing captured in-the-wild data, and tools for exporting to video, point cloud and mesh representations. The modularity of Nerfstudio enables the development of Nerfacto, our method that combines components from recent papers to achieve a balance between speed and quality, while also remaining flexible to future modifications. To promote community-driven development, all associated code and data are made publicly available with open-source licensing at https://nerf.studio.Comment: Project page at https://nerf.studi

    Accelerating Missile Threat Engagement Simulations Using Personal Computer Graphics Cards

    Get PDF
    The 453rd Electronic Warfare Squadron supports on-going military operations by providing battlefield commanders with aircraft ingress and egress routes that minimize the risk of shoulder or ground-fired missile attacks on our aircraft. To determine these routes, the 453rd simulates engagements between ground-to-air missiles and allied aircraft to determine the probability of a successful attack. The simulations are computationally expensive, often requiring two-hours for a single 10-second missile engagement. Hundreds of simulations are needed to perform a complete risk assessment which includes evaluating the effectiveness of countermeasures such as flares, chaff, jammers, and missile warning systems. Thus, the need for faster simulations is acute. This research speeds up these mission critical simulations by using inexpensive commodity PC graphics cards to perform intensive image processing computations used to simulate a heat seeking missile\u27s tracking system. The innovative techniques developed in this research reduce execution time by 33% and incorporate a user-selectable fidelity feature to perform high-fidelity simulations when required. Furthermore, these image processing computations use only 5% of the available computational capacity of the graphics cards, providing a ready source of additional computational power for future simulation enhancements. Analysts can now meet shorter suspenses with more accurate products, ultimately enhancing the safety of Air Force pilots and their weapon systems. With ongoing operations in Iraq and Afghanistan, and a growing threat at home and abroad posed by the proliferation of man-portable missiles, the speed of these simulations play an important role in protecting forces and saving lives

    Picture: A Probabilistic Programming Language for Scene Perception

    Get PDF
    Recent progress on probabilistic modeling and statistical learning, coupled with the availability of large training datasets, has led to remarkable progress in computer vision. Generative probabilistic models, or “analysis-by-synthesis” approaches, can capture rich scene structure but have been less widely applied than their discriminative counterparts, as they often require considerable problem-specific engineering in modeling and inference, and inference is typically seen as requiring slow, hypothesize-and-test Monte Carlo methods. Here we present Picture, a probabilistic programming language for scene understanding that allows researchers to express complex generative vision models, while automatically solving them using fast general-purpose inference machinery. Picture provides a stochastic scene language that can express generative models for arbitrary 2D/3D scenes, as well as a hierarchy of representation layers for comparing scene hypotheses with observed images by matching not simply pixels, but also more abstract features (e.g., contours, deep neural network activations). Inference can flexibly integrate advanced Monte Carlo strategies with fast bottom-up data-driven methods. Thus both representations and inference strategies can build directly on progress in discriminatively trained systems to make generative vision more robust and efficient. We use Picture to write programs for 3D face analysis, 3D human pose estimation, and 3D object reconstruction – each competitive with specially engineered baselines.Norman B. Leventhal FellowshipUnited States. Office of Naval Research (Award N000141310333)United States. Army Research Office. Multidisciplinary University Research Initiative (W911NF-13-1-2012)National Science Foundation (U.S.). Science and Technology Centers (Center for Brains, Minds and Machines. Award CCF-1231216

    Interactive Geometry Remeshing

    Get PDF
    We present a novel technique, both flexible and efficient, for interactive remeshing of irregular geometry. First, the original (arbitrary genus) mesh is substituted by a series of 2D maps in parameter space. Using these maps, our algorithm is then able to take advantage of established signal processing and halftoning tools that offer real-time interaction and intricate control. The user can easily combine these maps to create a control map – a map which controls the sampling density over the surface patch. This map is then sampled at interactive rates allowing the user to easily design a tailored resampling. Once this sampling is complete, a Delaunay triangulation and fast optimization are performed to perfect the final mesh. As a result, our remeshing technique is extremely versatile and general, being able to produce arbitrarily complex meshes with a variety of properties including: uniformity, regularity, semiregularity, curvature sensitive resampling, and feature preservation. We provide a high level of control over the sampling distribution allowing the user to interactively custom design the mesh based on their requirements thereby increasing their productivity in creating a wide variety of meshes

    Mobile ray-tracing

    Get PDF
    Dissertação de mestrado em Computer ScienceThe technological advances and the massification of information technologies have allowed a huge and positive proliferation of the number of libraries and APIs. This large offer has made life easier for programmers in general, because they easily find a library, free or commercial, that helps them solve the daily challenges they have at hand. One area of information technology where libraries are critical is in Computer Graphics, due to the wide range of rendering techniques it offers. One of these techniques is ray tracing. Ray tracing allows to simulate natural electromagnetic phenomena such as the path of light and mechanical phenomena such as the propagation of sound. Similarly, it also allows to simulate technologies developed by men, like Wi-Fi networks. These simulations can have a spectacular realism and accuracy, at the expense of a very high computational cost. The constant evolution of technology allowed to leverage and massify new areas, such as mobile devices. Devices today are increasingly faster, replacing and often complementing tasks that were previously performed only on computers or on dedicated hardware. However, the number of image rendering libraries available for mobile devices is still very scarce, and no ray tracing based image rendering library has been able to assert itself on these devices. This dissertation aims to explore the possibilities and limitations of using mobile devices to execute rendering algorithms that use ray tracing, such as progressive path tracing. Its main goal is to provide a rendering library for mobile devices based on ray tracing.Os avanços tecnológicos e a massificação das tecnologias de informação permitiu uma enorme e positiva proliferação do número de bibliotecas e APIs. Esta maior oferta permitiu facilitar a vida dos programadores em geral, porque facilmente encontram uma biblioteca, gratuita ou comercial, que os ajudam a resolver os desafios diários que têm em mãos. Uma área das tecnologias de informação onde as bibliotecas são fundamentais é na Computação Gráfica, devido à panóplia de métodos de renderização que oferece. Um destes métodos é o ray tracing. O ray tracing permite simular fenómenos eletromagnéticos naturais como os percursos da luz e fenómenos mecânicos como a propagação do som. Da mesma forma também permite simular tecnologias desenvolvidas pelo homem, como por exemplo redes Wi-Fi. Estas simulações podem ter um realismo e precisão impressionantes, porém têm um custo computacional muito elevado. A constante evolução da tecnologia permitiu alavancar e massificar novas áreas, como os dispositivos móveis. Os dispositivos são hoje cada vez mais rápidos e cada vez mais substituem e/ou complementam tarefas que anteriormente eram apenas realizadas em computadores ou em hardware dedicado. Porém, o número de bibliotecas para renderização de imagens disponíveis para dispositivos móveis é ainda muito reduzido e nenhuma biblioteca de renderização de imagens baseada em ray tracing conseguiu afirmar-se nestes dispositivos. Esta dissertação tem como objetivo explorar possibilidades e limitações da utilização de dispositivos móveis para a execução de algoritmos de renderização que utilizem ray tracing, como por exemplo, o path tracing progressivo. O objetivo principal é disponibilizar uma biblioteca de renderização para dispositivos móveis baseada em ray tracing

    Ubiquitous volume rendering in the web platform

    Get PDF
    176 p.The main thesis hypothesis is that ubiquitous volume rendering can be achieved using WebGL. The thesis enumerates the challenges that should be met to achieve that goal. The results allow web content developers the integration of interactive volume rendering within standard HTML5 web pages. Content developers only need to declare the X3D nodes that provide the rendering characteristics they desire. In contrast to the systems that provide specific GPU programs, the presented architecture creates automatically the GPU code required by the WebGL graphics pipeline. This code is generated directly from the X3D nodes declared in the virtual scene. Therefore, content developers do not need to know about the GPU.The thesis extends previous research on web compatible volume data structures for WebGL, ray-casting hybrid surface and volumetric rendering, progressive volume rendering and some specific problems related to the visualization of medical datasets. Finally, the thesis contributes to the X3D standard with some proposals to extend and improve the volume rendering component. The proposals are in an advance stage towards their acceptance by the Web3D Consortium
    corecore