27 research outputs found

    Intelligent network intrusion detection using an evolutionary computation approach

    Get PDF
    With the enormous growth of users\u27 reliance on the Internet, the need for secure and reliable computer networks also increases. Availability of effective automatic tools for carrying out different types of network attacks raises the need for effective intrusion detection systems. Generally, a comprehensive defence mechanism consists of three phases, namely, preparation, detection and reaction. In the preparation phase, network administrators aim to find and fix security vulnerabilities (e.g., insecure protocol and vulnerable computer systems or firewalls), that can be exploited to launch attacks. Although the preparation phase increases the level of security in a network, this will never completely remove the threat of network attacks. A good security mechanism requires an Intrusion Detection System (IDS) in order to monitor security breaches when the prevention schemes in the preparation phase are bypassed. To be able to react to network attacks as fast as possible, an automatic detection system is of paramount importance. The later an attack is detected, the less time network administrators have to update their signatures and reconfigure their detection and remediation systems. An IDS is a tool for monitoring the system with the aim of detecting and alerting intrusive activities in networks. These tools are classified into two major categories of signature-based and anomaly-based. A signature-based IDS stores the signature of known attacks in a database and discovers occurrences of attacks by monitoring and comparing each communication in the network against the database of signatures. On the other hand, mechanisms that deploy anomaly detection have a model of normal behaviour of system and any significant deviation from this model is reported as anomaly. This thesis aims at addressing the major issues in the process of developing signature based IDSs. These are: i) their dependency on experts to create signatures, ii) the complexity of their models, iii) the inflexibility of their models, and iv) their inability to adapt to the changes in the real environment and detect new attacks. To meet the requirements of a good IDS, computational intelligence methods have attracted considerable interest from the research community. This thesis explores a solution to automatically generate compact rulesets for network intrusion detection utilising evolutionary computation techniques. The proposed framework is called ESR-NID (Evolving Statistical Rulesets for Network Intrusion Detection). Using an interval-based structure, this method can be deployed for any continuous-valued input data. Therefore, by choosing appropriate statistical measures (i.e. continuous-valued features) of network trafc as the input to ESRNID, it can effectively detect varied types of attacks since it is not dependent on the signatures of network packets. In ESR-NID, several innovations in the genetic algorithm were developed to keep the ruleset small. A two-stage evaluation component in the evolutionary process takes the cooperation of rules into consideration and results into very compact, easily understood rulesets. The effectiveness of this approach is evaluated against several sources of data for both detection of normal and abnormal behaviour. The results are found to be comparable to those achieved using other machine learning methods from both categories of GA-based and non-GA-based methods. One of the significant advantages of ESR-NIS is that it can be tailored to specific problem domains and the characteristics of the dataset by the use of different fitness and performance functions. This makes the system a more flexible model compared to other learning techniques. Additionally, an IDS must adapt itself to the changing environment with the least amount of configurations. ESR-NID uses an incremental learning approach as new flow of traffic become available. The incremental learning approach benefits from less required storage because it only keeps the generated rules in its database. This is in contrast to the infinitely growing size of repository of raw training data required for traditional learning

    Hybridizing and applying computational intelligence techniques

    Get PDF
    As computers are increasingly relied upon to perform tasks of increasing complexity affecting many aspects of society, it is imperative that the underlying computational methods performing the tasks have high performance in terms of effectiveness and scalability. A common solution employed to perform such complex tasks are computational intelligence (CI) techniques. CI techniques use approaches influenced by nature to solve problems in which traditional modeling approaches fail due to impracticality, intractability, or mathematical ill-posedness. While CI techniques can perform considerably better than traditional modeling approaches when solving complex problems, the scalability performance of a given CI technique alone is not always optimal. Hybridization is a popular process by which a better performing CI technique is created from the combination of multiple existing techniques in a logical manner. In the first paper in this thesis, a novel hybridization of two CI techniques, accuracy-based learning classifier systems (XCS) and cluster analysis, is presented that improves upon the efficiency and, in some cases, the effectiveness of XCS. A number of tasks in software engineering are performed manually, such as defining expected output in model transformation testing. Especially since the number and size of projects that rely on tasks that must be performed manually, it is critical that automated approaches are employed to reduce or eliminate manual effort from these tasks in order to scale efficiently. The second paper in this thesis details a novel application of a CI technique, multi-objective simulated annealing, to the task of test case model generation to reduce the resulting effort required to manually update expected transformation output --Abstract, page iv

    Contributions to comprehensible classification

    Get PDF
    xxx, 240 p.La tesis doctoral descrita en esta memoria ha contribuido a la mejora de dos tipos de algoritmos declasificación comprensibles: algoritmos de \'arboles de decisión consolidados y algoritmos de inducciónde reglas tipo PART.En cuanto a las contribuciones a la consolidación de algoritmos de árboles de decisión, se hapropuesto una nueva estrategia de remuestreo que ajusta el número de submuestras para permitir cambiarla distribución de clases en las submuestras sin perder información. Utilizando esta estrategia, la versiónconsolidada de C4.5 (CTC) obtiene mejores resultados que un amplio conjunto de algoritmoscomprensibles basados en algoritmos genéticos y clásicos. Tres nuevos algoritmos han sido consolidados:una variante de CHAID (CHAID*) y las versiones Probability Estimation Tree de C4.5 y CHAID* (C4.4y CHAIC). Todos los algoritmos consolidados obtienen mejores resultados que sus algoritmos de\'arboles de decisión base, con tres algoritmos consolidados clasificándose entre los cuatro mejores en unacomparativa. Finalmente, se ha analizado el efecto de la poda en algoritmos simples y consolidados de\'arboles de decisión, y se ha concluido que la estrategia de poda propuesta en esta tesis es la que obtiene mejores resultados.En cuanto a las contribuciones a algoritmos tipo PART de inducción de reglas, una primerapropuesta cambia varios aspectos de como PART genera \'arboles parciales y extrae reglas de estos, locual resulta en clasificadores con mejor capacidad de generalizar y menor complejidad estructuralcomparando con los generados por PART. Una segunda propuesta utiliza \'arboles completamentedesarrollados, en vez de parcialmente desarrollados, y genera conjuntos de reglas que obtienen aúnmejores resultados de clasificación y una complejidad estructural menor. Estas dos nuevas propuestas y elalgoritmo PART original han sido complementadas con variantes basadas en CHAID* para observar siestos beneficios pueden ser trasladados a otros algoritmos de \'arboles de decisión y se ha observado, dehecho, que los algoritmos tipo PART basados en CHAID* también crean clasificadores más simples ycon mejor capacidad de clasificar que CHAID

    Contributions to comprehensible classification

    Get PDF
    xxx, 240 p.La tesis doctoral descrita en esta memoria ha contribuido a la mejora de dos tipos de algoritmos declasificación comprensibles: algoritmos de \'arboles de decisión consolidados y algoritmos de inducciónde reglas tipo PART.En cuanto a las contribuciones a la consolidación de algoritmos de árboles de decisión, se hapropuesto una nueva estrategia de remuestreo que ajusta el número de submuestras para permitir cambiarla distribución de clases en las submuestras sin perder información. Utilizando esta estrategia, la versiónconsolidada de C4.5 (CTC) obtiene mejores resultados que un amplio conjunto de algoritmoscomprensibles basados en algoritmos genéticos y clásicos. Tres nuevos algoritmos han sido consolidados:una variante de CHAID (CHAID*) y las versiones Probability Estimation Tree de C4.5 y CHAID* (C4.4y CHAIC). Todos los algoritmos consolidados obtienen mejores resultados que sus algoritmos de\'arboles de decisión base, con tres algoritmos consolidados clasificándose entre los cuatro mejores en unacomparativa. Finalmente, se ha analizado el efecto de la poda en algoritmos simples y consolidados de\'arboles de decisión, y se ha concluido que la estrategia de poda propuesta en esta tesis es la que obtiene mejores resultados.En cuanto a las contribuciones a algoritmos tipo PART de inducción de reglas, una primerapropuesta cambia varios aspectos de como PART genera \'arboles parciales y extrae reglas de estos, locual resulta en clasificadores con mejor capacidad de generalizar y menor complejidad estructuralcomparando con los generados por PART. Una segunda propuesta utiliza \'arboles completamentedesarrollados, en vez de parcialmente desarrollados, y genera conjuntos de reglas que obtienen aúnmejores resultados de clasificación y una complejidad estructural menor. Estas dos nuevas propuestas y elalgoritmo PART original han sido complementadas con variantes basadas en CHAID* para observar siestos beneficios pueden ser trasladados a otros algoritmos de \'arboles de decisión y se ha observado, dehecho, que los algoritmos tipo PART basados en CHAID* también crean clasificadores más simples ycon mejor capacidad de clasificar que CHAID

    Optimality-based Analysis of XCSF Compaction in Discrete Reinforcement Learning

    Full text link
    Learning classifier systems (LCSs) are population-based predictive systems that were originally envisioned as agents to act in reinforcement learning (RL) environments. These systems can suffer from population bloat and so are amenable to compaction techniques that try to strike a balance between population size and performance. A well-studied LCS architecture is XCSF, which in the RL setting acts as a Q-function approximator. We apply XCSF to a deterministic and stochastic variant of the FrozenLake8x8 environment from OpenAI Gym, with its performance compared in terms of function approximation error and policy accuracy to the optimal Q-functions and policies produced by solving the environments via dynamic programming. We then introduce a novel compaction algorithm (Greedy Niche Mass Compaction - GNMC) and study its operation on XCSF's trained populations. Results show that given a suitable parametrisation, GNMC preserves or even slightly improves function approximation error while yielding a significant reduction in population size. Reasonable preservation of policy accuracy also occurs, and we link this metric to the commonly used steps-to-goal metric in maze-like environments, illustrating how the metrics are complementary rather than competitive

    MILCS: A mutual information learning classifier system

    Get PDF
    This paper introduces a new variety of learning classifier system (LCS), called MILCS, which utilizes mutual information as fitness feedback. Unlike most LCSs, MILCS is specifically designed for supervised learning. MILCS's design draws on an analogy to the structural learning approach of cascade correlation networks. We present preliminary results, and contrast them to results from XCS. We discuss the explanatory power of the resulting rule sets, and introduce a new technique for visualizing explanatory power. Final comments include future directions for this research, including investigations in neural networks and other systems. Copyright 2007 ACM
    corecore