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Abstract 
Recent advances have demonstrated the potential for success in developing ever more general, 
intelligent and reliable classification and predictive technologies. We aim to explore and investigate 
the feasibility of designing and implementing robust classification and predictive systems that can 
deliver high quality predictions at the same time as human-understandable explanations for those 
predictions. A robust machine learning technique, known as a Learning Classifier System (LCS), 
can yield robust, accurate predictions, with the explanatory power (in essence, potential for a human 
to understand machine-learned concepts) not available in other methods. 

The focus of this thesis is to develop novel methodologies to design representations and operators 
for the LCS that will draw on Cascade Correlation Neural Networks (CCNNs) and Information 
Theory. The integration of these techniques become a new variety of Learning Classifier System, 
called MILCS (Mutual Information based Learning Classifier System), which utilises mutual 
information as fitness feedback. Unlike most LCSs, MILCS is specifically designed for supervised 
learning as traditional LCSs originate from reinforcement learning.  

In this thesis, classic data mining/classification problem as well as sophisticated protein structure 
prediction problems make up the experimentation process. Experimental results of the system along 
with results from other machine learning systems called XCS, UCS, GAssist, BioHEL, C4.5 and 
Naïve Bayes, are studied and analysed. The explanatory power of the resulting rule sets is 
discussed, and a new technique for visualising explanatory power is introduced since explanatory 
power is an abstract concept. MILCS is also shown to encourage Default Hierarchies (DHs), an 
important advantage of LCS. Final comments include future directions for this research, including 
investigations in neural networks and other systems. 
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Chapter 1 

1 Introduction 

As a broad subfield of artificial intelligence (AI), machine learning (ML) is concerned with the 
development of algorithms and techniques which allow computers to “learn” and extract 
information from data automatically. In recent years more and more problems have been handled 
with techniques belonging to this discipline. Examples of these tasks are prediction, decision-
support system, scheduling, automatic classification, etc. This thesis concentrates on one of the sub-
categories of ML, supervised learning, which is defined as the learning process where there is a 
“teacher” that gives “the learner” direct feedback about its performance. Moreover, this thesis is 
focused on a paradigm of supervised ML called evolutionary learning, or genetics-based machine 
learning (GBML). This paradigm involves any learning technique which uses evolutionary 
computation (EC). EC uses iterative progress, such as growth or development in a population. This 
population is then selected in a guided random search to achieve a desired goal. Such processes are 
inspired by biological mechanisms of evolution. To be more precise, the focus of this thesis is on an 
evolutionary algorithm (EA) technique, called a learning classifier system (LCS), which is a subset 
of EC. First described by John Holland [50], a LCS consists of a population of general rules1 with a 
genetic algorithm (GA [47] [53]) searching for better rules in response to environmental feedback. 

However, LCSs were originally constructed for reinforcement learning [107], which feedback acts 
more subtly than that in the supervised learning. Unlike supervised learning, a direct feedback of 
“correct” or “incorrect” is not given by the “teacher”, instead, a feedback on how well the system 
has performed is given. It is particularly useful when the knowledge of problem domain is unknown 
or limited. However, when applying LCSs to supervised learning problems, this additional 
knowledge is typically not exploited. 

This thesis also draws close connections to cascade correlation network (CCN [34] an artificial 
neural network (ANN or simply NN) architecture for supervised learning, and information theory. 
The literature shows that artificial neurons from CCNs have similarities with rules from LCSs [101] 
(For a detailed description, see Chapter 3). 

                                                        
1 Rules are also often called classifiers in the LCS literature 
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1.1 Test problems in protein structure prediction 

As this thesis is part of a larger Engineering and Physical Sciences Research Council (EPSRC) 
funded project, it is necessary to motivate the related use of protein structure prediction (PSP) 
problems as tests for the system that is developed. PSP is one of the most significant technologies 
pursued by computational biology. Its aim is to determine 3D structure of proteins from their amino 
acid (AA) sequences. One approach to this problem is to predict some attributes of a protein, such 
as secondary structure prediction, the relative solvent accessibility (RSA), coordination number 
(CN) and the disulfide bonding states of cysteines. This attributes have been studied with various 
methods including neural networks [91], Bayesian methods [108], approaches based on information 
theory [81], protein descriptors based on logistic functions [80], multiple sequence alignments [25], 
decision trees [94] and combination of more than one method [23]. However, these methods, in the 
particular problems the author is concerned with, produce results with only moderate accuracy, and 
very limited explanatory power. The advanced machine learning methodology developed in this 
thesis is used to produce better explanatory power and accuracy, and the PSP problems serve as a 
powerful real-world test set. 

1.2 Objectives and contributions 

This thesis yields a new form of learning classifier system that uses mutual information (MI [97] 
[98]) as its primary fitness feedback, in supervised learning settings. This system is called the 
mutual information learning classifier system (MILCS [103], pronounced “my LCS”). In addition 
to drawing on current LCS research and information theoretic concerns, the system draws on an 
analogy to CCNs in its design. 

1.3 Road map 

This thesis is split into 7 chapters. Chapter 2 describes the background knowledge on ML, GBML, 
LCS, ANNs, and information theory. Chapters 3 to 7 contain the main contributions of this thesis. 
Chapter 3 is driven by the motivations behind the methodology being developed, and reviews 
appropriate literature along the way. The analogy between artificial neurons from CCN and rules 
from LCS are analysed, and the innovative idea of their integration, along with how MI is used as 
the fitness function in the proposed system, is explained in detail. Chapter 4 introduces a 
visualisation method developed for explanatory power analysis. The experimentation process is 
shown in Chapter 5 to 7, and results are studied with comparison to other machine learning systems. 
Final conclusions and future work are discussed in Chapter 8 followed by the Appendix. 
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Chapter 2 

2 Background 

 

2.1 Machine learning 

The aim of this section is to provide a sufficient overview of ML to place the contribution of the 
thesis in context. For this reason, it emphasises supervised learning problems, classification 
problems and rule-based knowledge representations. 

The section is structured as follows. Subsection 2.1.1 and 2.1.2 seeks to categorise the machine 
learning paradigms in two different ways, each emphasising on a different aspect. Subsection 2.1.3 
shows what a classification problem is and describes the protein structure prediction problems. 
Subsection 2.1.4 focuses on the knowledge representation of different machine learning approaches 
and draws attention on the learning classifier system for the underlying structural learning. 
Subsection 2.1.5 provides two main rule induction algorithms for learning rules. 

2.1.1 Machine learning by algorithmic type 

ML involves developing computer systems that automatically improve their performance measure P 
over task T through experience E. Here is an example, 

Example: Learn to play checkers 

T:  Play checkers 

P:  Percentage of games won in the world tournament 

E:  Opportunity to play against itself 

There are many ways to classify the machine learning paradigms. Langley [66] classifies the 
learning paradigms depending on how they learn, defining five categories: 

 Inductive learning 

This paradigm employs condition-action rules, decision trees or similar logical knowledge 
structures. Information about classes or predictions is stored in the rule actions sides of the rules or 
the leaves of the tree. Learning algorithms in the rule-induction framework usually carry out a 
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greedy search through the space of decision trees or rule sets, using statistical evaluation functions 
to select attributes to incorporate into the knowledge structure. 

 Instance-based or case-based learning 

This paradigm represents knowledge in terms of specific cases or experiences and relies on flexible 
matching methods to retrieve and these cases to new situations. One common approach simply finds 
the stored case nearest (according to some distance metric) to the current situation, and then uses it 
for classification or prediction. 

 Analytic learning 

This paradigm also represents knowledge as rules in logical form but typically employs a 
performance system that uses search to solve multi-step problems. A common technique is to 
represent knowledge as inference rules, then to phrase problems as theorems and to search for 
proofs. Learning mechanisms in this framework use background knowledge to construct proofs or 
explanations of experience, then compile the proofs into more complex rules that can solve similar 
problems either with less search or in a single step. 

 Connectionist learning 

This paradigm, also called neural networks, represents knowledge as a multi-layer network of 
threshold units that spreads activation from input nodes through internal units to output nodes. 
Weights on the links determine how much activation is passed on in each case. The activations of 
output nodes can be translated into numeric predictions or discrete decision about the class of the 
input. 

 Evolutionary learning 

This paradigm, as stated in Chapter 1 , is defined as any kind of learning task which employs as its 
search engine a technique belonging to the evolutionary computation field [76]. Evolutionary 
computation techniques are optimisation tools inspired loosely by natural evolution. Typically, a 
population of candidate solutions (individuals) are transformed (evolved) through a certain number 
of iterations of a cycle, containing an almost blind recombination of the information contained in 
the individuals and a selection stage that directs the search towards the individuals considered good 
by a given evaluation function. A broader description of evolutionary computation and evolutionary 
learning (or GBML) can be found later in Section 2.2. 

2.1.2 Machine learning by problem type 

The above distinct classifications of these paradigms are more historical than scientific. However, 
recent experimental comparisons between different learning methods have helped break these 
boundaries. Hybrid methods that cross paradigm boundaries are increasingly common. These 
include algorithms for inducting decision trees that contain linear threshold units and techniques for 
transforming rules into neural networks and back again. These convergences are the signs of a 
balanced and maturing field.  Thus a better classification, using a more general, problem-based 
point of view suggests three main categories: 

 Supervised learning 

A learning process where there is some kind of tutor (automatic or human) that gives the learner 
direct feedback about the appropriateness of its performance. Relating this definition to the example 
given in Subsection 2.1.1, one must have the performance measure P to perform supervised 
learning. 
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 Unsupervised learning 

This kind of learning is characterised by having no performance feedback, in the previous example, 
that is, no P. In this case, the task of the learning system is to construct some kind of knowledge, 
based only on the flow of experience E, typically trying to identify the regularities existing on E. 

 Reinforcement learning [107] 

This paradigm could be considered a middle point of the two previous ones. In this case, the 
feedback acts in a subtle way, indicating the performance of the system as a kind of reward, good or 
bad, instead of informing in a specific way what is being done correctly or incorrectly. 

However, in the Bayesian network [48] perspective, machine learning approaches can be broken 
into two components, 

 Parameter learning 

The learning of continuous-valued parameters in a solution representation. In Bayesian networks, 
this is the learning of probabilities of events, conditioned on one another (the probabilities that 
reside within Bayesian network nodes).  

 Structural learning 

The learning of discrete connections between elements of the solution representation. In Bayesian 
networks, this is the learning of which events are conditioned on which (the links in the Bayesian 
network). 

It is generally acknowledged that the latter is more difficult than the former. Also, the latter has a 
profound effect on the computational complexity of the former: the number of probabilities one 
must learn goes up exponentially with the number of links. Moreover, structural learning is also 
associated with generalisation, parsimony, and explanatory power: fewer discrete connections make 
for a more understandable representation of a solution.  

As the thesis is focused on supervised learning tasks (and explanatory power is one of the targets), 
aspects other than supervised learning and structural learning are shown in minimum detail. 

2.1.3 The classification problem 

This thesis focuses on one of the supervised learning tasks called classification, which is the most 
studied data mining task (See Subsection 2.3.4). Classification is defined as the construction of a 
theory that models the concept or concepts represented by a set of examples.  

Given a set of instances I, each of them is associated with a finite set of class C, and the task of 
classification is to create a theory T based on I and C that, given an un-associated new instance, 
gives a prediction of the class of this instance (see Figure 1). 
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Figure 1: Representation of the learning process for classification tasks 

Figure 1 shows the two stages of a classification process: exploration (also called training) with 
associated instances and exploitation (also called testing) with un-associated instances. When 
developing a classifying system, the process of exploitation is typically simulated. Therefore the 
associated instances are divided into two non-overlapping sets which are called the training set and 
the test set. 

The training set allows the system to generate a theory, and the test set validates the accuracy of the 
theory (that is, how correctly the system classifies the un-associated instances). The capacity for 
generating a theory that models correctly the concept or concepts represented by the training set is 
known as generalisation capacity. Good performance on the test set is a sign of good generalisation. 

One should note that most research on machine learning, with the exception of work in the analytic 
paradigm, focuses on simple classification or prediction tasks. The most robust learning methods 
are designed for such problems. The restriction to classification is not really very severe, since one 
can usually decompose a complex process such as design, control, or planning into a sequence of 
individual steps, each of which involves simple classification or prediction. 

2.1.4 Knowledge representations 

In order to present a theory that is discovered through learning, a knowledge representation is 
required to model the theory. The objective of knowledge representations is to express knowledge 
in computer-tractable form, such that it can be used to help agents perform well [93]. The following 
are the different knowledge representations being widely used for the classification tasks. 

 Rule-based 

Rules are the simplest and most comprehensible way of expressing knowledge. Although the form 
of rules may differ, rules are commonly in the following syntax, 

if condition then action 

Usually the condition is a predicate in a certain logical system and the action is an associated class, 
meaning that if one detects the input satisfying the condition, then action is fired. However, chances 

Un-
associated 
Instance 

Learning 
Algorithm 

Instance with 
class 

Theory 

Class 
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are that many rules match, and one has to decide on which rule makes the best prediction. There are 
two main types of procedures used in literature: 

o Decision lists 

Rules are sorted based on pre-defined performance metrics. The first rule in the list that 
matches the condition is used to predict its class. Typical performance metrics include those 
based on accuracy2, and those based on experience3. 

o Voting processes 

A decision list chooses a single rule to classify an input instance. Alternatively, one can 
combine the outcome of all the rules that match an instance.  The simplest approach is to 
choose the majority class from the matched rules. Another alternative is to sum, for each class, 
the number of instances of the class matches previously by these rules, and then choose the 
class most covered.  

 Artificial neural networks (ANNs) 

ANN is an information processing paradigm that is inspired by the way biological nervous system, 
such as the brain, processes information. A biological neural network consists a large number of 
interconnected neurons. As a rough analogy, typical ANNs are built out of a densely interconnected 
set of simple units, where each unit takes a number of real-valued inputs (possibly the outputs of 
other units) and produces a single real-valued output (which may become the input to many other 
units). Although this knowledge representation is not used in the proposed system, it draws close 
analogy to rule sets (see Section 2.4). 

 Bayesian networks [48] 

Bayesian networks are directed acyclic graphs whose nodes represent variables, and whose links 
encode conditional probabilistic independencies between the variables.  

 Decision trees 

Decision trees classify instances by sorting them down the tree from the root to some leaf node, 
which provides the classification of the instance. Each node in the tree specifies a test of some 
attribute of the instance, and each branch descending from that node corresponds to one of the 
possible values or range of values for this attribute [78]. 

 Case-based 

This knowledge representation is used when a system solves new problems based on the solution of 
similar past problems. Thus, it consists of storing sets of instances. 

Table 1 is a summary of the learning stages of various machine learning approaches [86]: 

 

                                                        
2 The degree to which the rule predicts the correct class on training examples 
3 The number of times the rule fires, for instance 
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Approach Structural 
Elements Parameters Parameter 

Update 
Structural 
Update 

Neural Networks Nodes and 
Connections Weights Back-propagation Pruning 

Bayesian 
Networks 

Nodes and 
Connections 

Conditional 
Probabilities 

Conditional 
Probability 
Updates 

Typically None 

Rule-based 
Systems Rules Conflict Resolution 

Parameters 

Conflict 
Resolution 
Parameters 

Typically None 

Decision Trees Nodes 
Thresholds for 
Splitting on Data 
Attributes 

Threshold Update 
Greedy 
Addition of 
Nodes 

Function 
Approximation  
(kernel methods, 
etc.) 

Basis Set Coefficients Weight Update Arbitrary 
Truncation 

Learning Classifier 
Systems 

Generalized 
Rules 

Performance 
Parameters 

Performance 
Parameter Updates 

Genetic 
Learning 

Table 1: Learning stage of different approaches 

One will notice that decision trees, function approximation and learning classifier systems (see 
Subsection 2.3) employ sophisticated techniques for structural learning, whereas the others are basic 
or typically none. However, there are many notable exceptions, amongst them the technique 
employed in CCN, a neural network architecture (see Subsection 2.4.4).  

Each of the above knowledge representations also categorises the different paradigms of data 
mining algorithms, such as rule induction, decision-tree building, evolutionary algorithms, neural 
networks, instance-based learning, Bayesian learning and so on. 

2.1.5 Rule induction algorithms 

Among the paradigms of data mining algorithms, the combination of rule induction and 
evolutionary algorithms (see Subsection 2.2.2) are the focus of this thesis. Many rule induction 
algorithms have been studied in the literature. This section describes two of the most widely used 
algorithms: 

 Separate-and-conquer 

Separate-and-conquer has its origins in the AQ family of algorithms [77] under the name “covering 
strategy” and it is the most well-known rule induction algorithm. The algorithm basically searches 
for a rule that covers a part of its training instances, separates these examples, and recursively 
conquers the remaining examples by learning more rules until no examples remain. This ensures 
that each instance of the original training set is covered by at least one rule. 
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When tackling a binary classification task (positive/negative examples), the order in which the rules 
are learned or used for classification does not matter, because the rules only describe one class, the 
positive class. Negative examples, i.e. when no rule fires for a given example, will be classified as 
negative. This is equivalent to assuming a default rule for the negative class at the end of an ordered 
rule list.  

However, many real world problems are concerned with multi-valued or even continuous class 
variables. In these cases the order of the rules are very important because different predictions will 
be made. To overcome this problem a decision list [89] is used.  A good example uses this 
technique is CN2 [24]. 

 Learning all rules at the same time 

Although separate-and-conquer is popular for rule induction systems such as CN2, it has been 
pointed out that the ever decreasing number of examples being available for learning successive 
rules will adversely affect the system performance. A suggested alternative is to evolve all rules 
simultaneously, using the entire training instances for each, i.e. if the induction algorithm “conquers 
without separating.” An example of this strategy is the RISE system [30]. One can also see 
evolutionary computation (the subject of Section 2.2) as this kind of rule induction. 

2.2 Genetics-based machine learning (GBML) 

This section gives a detailed overview of a specific paradigm of machine learning, evolutionary 
learning, also known as GBML. The section focuses on LCSs, the most common form of GBML, 
and the one used in this thesis. 

The section is structured as follows. Subsection 2.2.1 gives an introduction on EC and its biological 
inspiration. Subsection 2.2.2 provides a type of EC, EA, and its general scheme. Subsection 2.2.3 
focuses on the different types of EA paradigms. Subsection 2.2.4 shows details of one particular EA 
paradigm, GAs. 

2.2.1 Evolutionary computation (EC) 

EC techniques are optimisation tools that solve problems using procedures inspired by biological 
mechanisms of evolution. They use an iterative progress, such as growth or development in a 
population 4  to transform them in a manner inspired by natural evolution. Selection and 
recombination produce an implicit, directed exploration of the search space, robustly converging to 
the regions of the space where the best solutions are placed.  

2.2.2 Evolutionary algorithms (EA) 

EA is the collective name for a range of problem-solving techniques based on principles of 
biological evolution. There are many different EAs. However, the common underlying idea behind 
all these techniques is the same: given a population of individuals, some environmental pressure 
                                                        
4 Candidate solutions to a problem 
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causes selection (survival of the fittest) and some set of operators cause genetic variation. The 
combination of these two effects causes a rise in the fitness of the population. 

Given a quality (fitness) function to be maximised one can randomly create a set of candidate 
solutions, i.e., elements of the function’s domain, and apply the quality function as selection. 
Higher-fitness candidates are chosen to seed the next generation. They do so through the application 
of recombination and mutation operators. 

Recombination is an operator applied to two or more selected candidates (parents) and results in 
one or more new candidates (offspring). Mutation behaves like a mistake in copying genes, thus it is 
applied to candidates with a certain probability to create new candidates. Executing recombination 
and mutation leads to a set of new candidates that compete, based on their fitness (and possibly age 
or other metrics), with the old candidates for a place in the next generation. This process can be 
iterated until candidates with sufficient quality are found or a previously set computational limit is 
reached (See Figure 2). 

 

Figure 2: The general scheme of an EA in pseudo-code 

The various types of EA all follow this general outline, and differ only in technical details. For 
instance, the representation of a candidate solution is often used to characterise different EA types. 
Typically, the candidates are represented by strings over a finite alphabet in GAs, real-valued 
vectors in evolution strategies (ES), finite state machines in classical evolutionary programming 
(EP) and trees in genetic programming (GP). These differences have mainly historical origins [32]. 

2.2.3 Paradigms of evolutionary algorithms 

Using a classical classification, four main EA paradigms [39] can be categorised, 

 Evolution strategies (ES) [87] 

These techniques typically use an individual representation consisting of a real-valued vector. Early 
ES emphasised mutation as the main exploratory search operator, but currently both mutation and 

BEGIN 
 INITIALISE population with random candidate 
solutions; 
 EVALUTATE each candidate; 
 REPEAT UNTIL (TERMINATION CONDITION is satisfied) 
DO 
  1. SELECT parents; 
  2. RECOMBINE parents; 
  3. MUTATE the resulting offspring; 
  4. EVALUATE new candidates; 
  5. SELECT individuals for the next generation; 
 OD 
END 
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recombination are used. An individual often represents not only real-valued variables of the 
problem but also parameters controlling the mutation distribution, characterising a self-adaptation 
of mutation parameters. The mutation operator usually modifies individuals according to a 
multivariate normal distribution, where small mutations are more likely than large mutations. 

 Evolutionary programming (EP) [37] 

Originally developed to evolve finite-state machines, but it is now often used to evolve individuals 
consisting of a real-valued vector. Unlike ES, in general it does not use recombination. Similar to 
ES, it also uses normally distributed mutations and self-adaptation of mutation parameters. 

 Genetic algorithms (GAs) [47] [53] 

This is the most popular paradigm of EA. GAs emphasise recombination as the main exploratory 
search operator, and consider mutation as a minor (but necessary) operator. Mutation is typically 
applied with a very low probability. In early (“classic”) GAs individuals were represented by binary 
strings, but nowadays more elaborate representations, such as real-valued strings, are also used. 

 Genetic Programming (GP) [65] 

This paradigm is often described as a variation of GA rather than a mainstream EA paradigm itself. 
Individuals being evolved in this paradigm are various kinds of computer programs, consisting not 
only of data structures but also of functions (or operations) applied to those data structures. These 
programs are usually represented using trees. 

 Estimation of distribution algorithms (EDAs) [71] 

In the previous EA techniques, individuals are generated by combining and modifying existing ones 
in a stochastic way and the underlying probability distribution of new individual over the space of 
possible individuals is not explicitly specified. In EDAs, the distribution is explicit, and is used to 
generate new candidate solutions directly. The distribution is directly modified as a part of the 
evolutionary process. 

As the thesis mainly focuses on GAs (which is the underlining search function for LCS), the rest of 
this section focuses on this particular EA type. 

2.2.4 Genetic algorithms (GAs) 

GAs are adaptive heuristic search algorithms based on the evolutionary ideas of natural selection 
and genetics. As such they represent an intelligent exploitation of a random search used to solve 
optimisation problems. Although randomised, GAs are by no means random, instead they exploit 
historical information to direct the search into the region of better performance within the search 
space. 

GAs simulate the survival of the fittest among individuals over consecutive generation for solving a 
problem. Each generation consists of a population of character strings that are analogous to 
biological chromosome in DNA. Each individual represents a point in a search space and a possible 
solution. The individuals in the population are then made to go through a process of evolution: 

 Individuals in a population compete for resources and mates. 

 Those individuals that are most successful in each competition will produce more offspring 
than those individuals that perform poorly. 

 Genes from “good” individuals propagate throughout the population. 
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In order to understand GAs, it is necessary to understand all three GAs operators, 

 Selection 

Fitness is used to determine the selection of individuals that are used to produce new solutions. 

 Recombination 

Once the parents are selected, they are recombined to generate offspring. There are a large number 
of recombination methods in the GAs literature. A typical one is one-point crossover, which 
operates as shown in Figure 3. By extension, two-point crossover is shown in Figure 4. 

 

Figure 3: One-point crossover 

 

Figure 4: Two-point crossover 

These figures show the typical crossover types used in GAs where strings are swapped between cut-
off points. Other techniques, such as uniform crossover, where random bits are selected from each 
parent individual, are also frequently used. In this case, the operator decides (with probability 
typically set to 0.5) which parent contributes each of the string bits. 

 Mutation 

Mutation takes place with some low probability. Each new individual will have some of their 
variables randomly altered. In a binary-encoded GA, bits are flipped5. This maintains diversity 
within the population and inhibits premature convergence of the population to a single individual. 
Along with selection but without crossover, mutation creates a parallel, noise-tolerant, hill-climbing 
algorithm as is often used in other evolutionary computation paradigms.  

The following flowchart shows the general scheme of GAs, 

                                                        
5 If one bit is 0 then it becomes 1 and vice versa 

Before crossover:   After crossover: 
Parent A 0000|0000  Offspring A 0000|1111 
Parent B 1111|1111  Offspring B 1111|0000 
 

Before crossover:   After crossover: 
Parent A 000|000|00  Offspring A 000|111|00 
Parent B 111|111|11  Offspring B 111|000|11 
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Figure 5: GAs process 

2.3 GBML models (Learning Classifier Systems) 

LCSs, first introduced by John Holland [50], are machine learning techniques which combine 
reinforcement learning [107], evolutionary computing and other heuristics to produce adaptive 
systems. They are rule-based systems, where the rules are usually in the traditional production 
system form of: 

If condition Then action 

Evolutionary computing techniques and heuristics are used to search the space of possible rules, 
whilst reinforcement learning techniques are used to assign utilities to existing rules, guiding the 
search for better rules. Depending on how GA acts, there are usually two types of models in the 
literature depending on how GA acts. Hybrid methods, such as the iterative rule learning 
approaches have also rise to surface. In general, the main motivation for using GAs in the discovery 
of high-level prediction rules is that they perform a global search and cope better with attribute 
interaction than the greedy rule induction algorithms often used in data mining [36]. 

The section is structured as follows. Subsection 2.3.1.1, 2.3.1.2 and 2.3.1.3 overviews three 
Michigan-style LCSs. Subsection 2.3.1.4 draws attention to the difference lying between UCS and 
the previous two LCSs. Subsection 2.3.2.1 and 2.3.2.2 introduces two Pitt-style LCSs. Subsection 
2.3.3.1 describes a system using the iterative learning approach. Subsection 2.3.5 shows the concept 
of default hierarchies (DHs) and its potential importance to LCSs. 

Population 

Population 

Population 

Parent selection 

Survivor selection 

Recombination 

Mutation 

Initialisation 

Termination 

Fitness 
Evaluation 
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2.3.1 Michigan approach 

Holland and Reitman introduced the first LCS [51] based on Holland’s well-known GA in 1978 but 
revised it twice in the next decade. Although it was a standard system at the time, it was found that 
the system was complex and hard to be applied to real world applications. To overcome these 
disadvantages, Wilson came up with ZCS [112] (his Zeroth-level Classifier System) which, in his 
words, kept much of Holland’s original framework but simplified it to increase understandability 
and performance. Since the original LCS is complicated and only its descendants are the focus of 
this thesis, its description is not included in the thesis. 

2.3.1.1 ZCS 

 
Figure 6: work cycle of ZCS 

 Rule sets 

o [P] Population set, contains the classifier population 

o [M] Match set, contains the classifiers that match the input training case 

o [A] Action set, contains the classifiers from match set [M] advocating the chosen action 

o [A]-1 Action set of the previous time step 

 Classifier representation 
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Each rule is formed by a condition string and an action string. In the most typical LCS encoding, the 
condition string is formed by alphabet {0, 1, #}. The “#” symbol indicates “don’t care” so it 
matches either 0 or 1. The action string is the associated action or class. Thus in Figure 6, a rule’s 
condition and action is separated by a colon and followed by its strength (fitness). 

 The parameters used in  ZCS are: 

o N Population size 

o P# Probability of a # at an allele position in the condition of a classifier created 
through covering, and in the conditions of classifiers in the initial randomly 
generated population 

o S0 Strength assigned to each classifier in the initial population 

o β Learning rate for strength updates under the bucket brigade 

o γ Discount factor for the bucket brigade 

o τ Fraction of strength deducted from classifiers in [M] - [A] 

o χ Probability of crossover per invocation of the GA 

o μ Probability of mutation per allele in an offspring. Mutation takes 0, 1, # 
equiprobably into one of the other allowed alleles 

o ρ Average number of new classifiers generated by the GA per time-step of the 
performance cycle 

o φ If the total strength of [M] is less than φ times the mean strength of [P], covering 
occurs 

2.3.1.1.1 Performance component 

Each rule’s condition in [P] is compared with the string provided by detectors6. If the bit at every 
non-# position of a rule matches the corresponding bit of the detector string, it is placed in the 
match set [M]. A roulette wheel with sectors sized according to the strengths of members of [M] is 
used for the action selection (conflict resolution or CR). Thus a particular action a is selected with 
probability equal to the sum of the strengths of the classifiers in [M] which advocate that action, 
divided by the total strength of classifiers in [M]. Next, an action set [A] is formed, consisting of all 
members of [M] which advocated a. Finally, a is sent to the effectors 7  interface, and the 
corresponding action is fired. 
In the case that [M] is empty, i.e. no classifier in [P] matches the input, or when the total strength in 
[M], S[M], is less than a fraction φ of the population mean strength, the covering operation is 
triggered. It creates a new classifier whose condition matches the input and contains a 
probabilistically determined number of #s. The classifier’s action is chosen randomly and the 
strength is set to the population average. It is believed to be a relatively crude operation resembling 
rote learning or imprinting; it does not build on knowledge already in the population. However, it is 
not unusual to have an empty [M] in most systems. Acting randomly is one solution but covering 
also allows the testing of a hypothesis of the created classifier at the same time. 

2.3.1.1.2 Reinforcement component 

                                                        
6 Used by the system to perceive the state of the environment 
7 Control the systems actions on and within the environment 
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Once the selected action is fired, the environment responds with a reward, which is assigned to 
members of [A]. The credit assignment (CA) procedure works as the following, 

1) A fixed fraction β (0 < β ≤ 1) of the strength of each member of [A] is deducted from the 
member’s strength and placed in an (initially empty) common “bucket” B. If S[A] is the total 
strength of members of [A], the effect is to deduct β S[A] from S[A] and place it in the bucket. 

2) If the system receives an immediate reward rimm from the environment after taking action a, a 
quantity   

| | 
 is added to the strength of each classifier in [A] (|A| is the number of classifiers 

in [A]). The effect is to increase S[A] by β rimm. 

3) Classifiers in [A]-1 (if it is non-empty) have their strengths incremented by  
| | 

, where  is a 
discount factor (0 < γ ≤ 1), B is the total amount put in the bucket in step a, and |A-1| is the 
number of classifiers in [A]-1. 

4) Finally, [A] replaces [A]-1 and the bucket is emptied. 

2.3.1.1.3 Discovery component 

ZCS employs a basic panmictic (i.e., over entire population) GA. Once some performance criteria is 
met, the GA is triggered and selects two classifiers based on their strengths, copies them to form the 
offspring, recombines or mutates them according to some fixed probabilities, before inserting them 
back to the population. Half of each parent’s strength is deducted from the parent and assigned to 
the offspring. If recombination occurs, the copy strengths are reset to the parent’s mean. In order to 
maintain [P] of fixed size, two rules are selected and deleted with probability inverse to their 
strengths. 

A covering procedure is also used when [M] is empty (i.e., no classifiers in [P] match the detector 
input) or when the total strength in [M], S[M], is less than a fraction φ of the population mean 
strength, [ ]

| |
 (|P| is the number of classifiers in [P]). The procedure creates a new classifier which 

matches the input but with randomly determined number of #s, based on parameter P#. The 
classifier’s action is chosen randomly, and the strength is set to the population average, [ ]

| |
. The 

classifier is then inserted to [P] and one of the classifiers in [P] is deleted as in the GA. 

The descendant of ZCS, XCS, shares many aspects of ZCS, such as rule representation, matching 
strategy, covering and many others, but differs in key details that have led to greatly increased 
success in the literature.  

2.3.1.2 XCS 

In many LCSs, such as LCS and ZCS, the classifier strength parameter serves as a predictor of 
future payoff, and this prediction is used as a measure of fitness in the GA. The role of strength 
parameter is to estimate the payoff the classifier system will receive, when the satisfied condition is 
met and the best action is chosen. Therefore the strength parameter is also used as the measure of 
fitness for the discovery component’s GA. However, Wilson indicates that there are several 
problems when using strength-based fitness [113]: 

1) In strength-based LCS, a set of classifiers match a set of environmental states and these states 
usually have different payoff levels. It is the nature of a LCS system to concentrate on 
classifiers with high payoff. The solution is to have a sharing technique [47] that each active 
classifier has a fraction of the available payoff rather than having a full value. It also could be 
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reinforced by implementing a non-panmictic (not over the entire population) GA, which means 
apply GA only on part of the entire population. Both techniques add generalisation pressure to 
the system to balance off the high accuracy in an implicit way. 

2) However, implementing a sharing technique alters the original meaning of “strength-based”, 
because a classifier’s fitness no longer predicts payoff; instead, the “shared” strength does. 

3) The GA cannot distinguish an accurate classifier with moderate payoff from an overly general 
classifier with the same payoff level on the average. If a non-panmictic GA is used as noted 
above, over-general classifiers are preferred in the system. 

Give the above problems, it seems necessary to reconsider the basis of classifiers fitness. Since 
Wilson pointed out that the LCS could not distinguish the difference between accurate and over-
general classifiers (as stated in problem 3), it seemed reasonable to base the fitness on classifier 
accuracy. This is the approach taken by Wilson in constructing XCS [113]. 

A further reason to confirm this move comes from reinforcement learning, which emphasises the 
formation of relatively complete mappings 푋 × 퐴 ⟹ 푃  from the product set of situations and 
actions to payoffs.  The conventional strength-based LCS attempts to discover best rule without 
knowing the payoff sequence of every possible action. With reinforcement learning, a suboptimal 
classifier could then be considered as an incomplete exploration and, the system is oriented towards 
learning relatively complete maps of the consequences of each action; then it is easy to decide the 
best action.  

While the research focus has been shifted towards accuracy based LCSs, Bull and Hurst [18] 
showed that ZCS does not necessarily suffer from over-general classifiers (which is caused by 
fitness sharing) and is able to perform optimally with the right parameter settings. 

Since the introduction of XCS in 1995, there have been several important additions and 
modifications in the literature that increased the robustness of the system [114] [62]. The 
description here is based on Butz’s report [11] which summarised the basic framework of XCS and 
its most important updates. 

The following graph shows the work cycle of XCS (for single-step problems),  
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Figure 7: Work cycle of XCS (for single-step problems) 

 Rule sets 

o [P] Population set, contains the classifier population 

o [M] Match set, contains the classifiers that match the input training case 

o [A] Action set, contains the classifiers from match set [M] advocating the chosen action 

 Parameters for classifier 

o p Expected reward of the classifier if it classifies correctly an example 

o  Estimation of the prediction error of the classifier 

o k  Accuracy of the classifier based on  

o F  Fitness of the classifier based on the inverse of accuracy k 

o exp Experience parameter of the classifier which is increased by one each time the 
classifier’s parameters are updated 

o num Numerosity of the classifier, number of copies of this classifier in the population 

o as Average size of action sets the classifier has participated 

 Parameters for XCS 

o N Maximum population size 

o β Learning rate for prediction, prediction error, and fitness updates 
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o γ Discount factor 

o θGA Do a GA in this [M] if the average number of time-steps since the last GA is greater 
than θ 

o ε0, α, ν Parameters of the accuracy function 

o χ Probability of crossover per invocation of the GA 

o μ Probability of mutation per allele in an offspring. Mutation takes 0, 1, # 
equiprobably into one of the other allowed alleles 

o θdel is the deletion threshold. If the experience of a classifier is greater than this value, 
its fitness may be considered in its probability of deletion 

o δ Specifies the fraction of the mean fitness in [P] below which the fitness of a 
classifier may be considered in its probability of deletion 

o θsub is the subsumption threshold. The experience of a classifier must be greater than 
this value in order to be able to subsume another classifier 

o θmna specifies the minimal number of actions that must be present in [M], or covering 
will occur 

o P# Probability of a # at an allele position in the condition of a classifier created 
through covering, and in the conditions of classifiers in the initial randomly 
generated population 

o pI, εI, FI Prediction, prediction error, and fitness assigned to each classifier in the initial 
population 

o Pexplr specifies the probability during action selection of choosing the action uniform 
randomly 

Similar to ZCS, XCS is also composed of three components, performance component, 
reinforcement component and discovery component. 

2.3.1.2.1 Performance component 

Given an input, [M] is formed and the covering operation is inherited from ZCS. The system then 
forms a system prediction P(a) for each action a represented in [M]. There are several reasonable 
ways to determine P(a). The typical way is a fitness-weighted average of the predictions of 
classifiers advocating a. Presumably, one wants a method that yields the system’s “best guess” as to 
the payoff—internal and/or external—to be received if a is chosen. The P(a) values are placed in a 
prediction array8, and an action is selected. 

Many action-selection methods are possible. The system may simply pick the action with the largest 
prediction and this is referred to as deterministic action selection. Alternatively, the action may be 
selected probabilistically, with the probability of selection proportional to P(a); which is called 
roulette-wheel action selection (similar to what ZCS uses for its action selection). In some cases the 
action may be selected completely at random (from actions with non-null predictions), ignoring the 
P(a). There are of course additional schemes. Once an action is selected, the system forms an [A] 
consisting of the classifiers in [M] advocating the chosen action. That action is then sent to the 
effectors and an immediate reward r may (or may not) be returned by the environment. 
                                                        
8 Some of whose slots will receive no value if there is no corresponding action in [M] as indicated 

as “nil” in Figure 7 
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2.3.1.2.2 Reinforcement component 

XCS’s reinforcement component consists updating the p,, and F parameters of classifiers in [A], 
as shown in Figure 7. Once an action is selected, the environment returns a reward r, which is used 
to adjust the parameters of the classifiers in [A]. There are five steps in this calculation.  

1) Prediction (deterministic action selection) 

푃 = 훾max 푃(푎) + 푟 

where γ (0 < γ ≤ 1) is the discount factor 

푝 = 푝 +
(푃 − 푝)

푒푥푝
,              푒푥푝 <

1
훽

푝 + 훽(푃 − 푝),       표푡ℎ푒푟푤푖푠푒 
� 

where exp is the rule’s experience and β (0 < β ≤ 1) is the learning rate 

2) Error 

휀 = 휀 +
|푃 − 푝| − 휀

푒푥푝
,              푒푥푝 <

1
훽

휀 + 훽(|푃 − 푝| − 휀),   표푡ℎ푒푟푤푖푠푒
� 

where exp is the rule’s experience, ε is the error; r is reward; p is prediction. 

3) Accuracy 

Accuracy of an inverse function of the classifier’s error: 

푘 =
1, 휀 < 휀

훼
휀
휀

, 표푡ℎ푒푟푤푖푠푒 
� 

The parameter ε0 (ε0 > 0) determines the threshold error under which a classifier is considered to 
be accurate. The parameters α (0 < α <1) and ν (ν > 0) controls the degree of decline in accuracy 
if the classifier is inaccurate [12]. 

4) Relative accuracy 

Relative accuracy is the accuracy of a classifier divided by the sum of accuracies in [A] 

푘 =
푘푛

∑ 푘 푛
, 표푣푒푟 [퐴] 

where n is the numerosity of the classifier. 

5) Fitness 

퐹 = 퐹 + 훽(푘 − 퐹) 

This is fairly straight forward that fitness update is based on relative accuracy and previous 
fitness. Note that the basing fitness on the relative accuracies provides sharing [55] among the 
classifiers belonging to the same action set. 

In summary, the goal of the fitness function is two-fold: maximising the number of covered 
examples and minimising the number of classification mistakes over the training set of the rule. 

Note that for single-step problems XCS updates reinforcement parameters on [A] because there is 
no connection between each input instances whereas for multi-step problems the credit assignment 
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is delayed by one time step so reinforcement parameters updates on the previous action set [A]-1. As 
the focus of this thesis is to explore single step problems only, it is not shown in Figure 7. 

2.3.1.2.3 Discovery component 

In contrast to ZCS, the GA in XCS is applied to the action sets, rather than panmictically (i.e., over 
the whole population). It is also called a “niche GA”. The original XCS used a Roulette-Wheel 
(proportional) Selection algorithm, which chooses a classifier for reproduction proportional to the 
fitness of the classifiers in set [A]. In later versions, tournament selection was added and it is shown 
to make XCS more independent from various parameter settings [16]. Once two parents from [A] 
are selected, they are recombined and mutated with probabilities χ and µ respectively. 

The resulting offspring are introduced into the population. First, each offspring is checked for 
subsumption [114] with its parents. If one of the parents is sufficiently experienced, accurate and 
more general than the offspring, then the offspring is not introduced and its parent's num is 
incremented. This process is called GA subsumption. If the offspring classifier cannot be subsumed, 
it is inserted in the population, deleting another classifier if the population size is at a user-specific 
maximum value N [62]. The deletion probability of a classifier is proportional to the average of the 
size of the action sets in which it has participated (stored in the parameter as). Also, if the classifier 
is sufficiently experienced and its fitness is low, its deletion probability is higher. XCS also has 
action set subsumption which allows rules of [A] to subsume each other at every GA iteration. 

Similar to ZCS, XCS employs a covering algorithm in the case that [M] is empty, i.e. none of the 
classifiers in [P] matches the given input condition. 

2.3.1.2.4 XCS, the big picture 

The strength of XCS is to evolve accurate and maximally general classifiers, and this is achieved by 
applying the right evolutionary pressure. Butz and Pelikan [13] identified five evolutionary 
pressures in XCS: 

1) Set pressure represents the general tendency due to more general classifiers are in the action set 
and the deletion algorithm takes place on the population set. 

2) Mutation pressure pushes towards an equal number of 1s, 0s and don’t cares. 
3) Deletion pressure emphasises the evolution of equally distributed classifier subsets and high-

fitness classifiers additional to the set pressure influence. Thus it becomes part of the set 
pressure. 

4) Subsumption pressure pushes towards generality and allows a fast convergence of the 
population. 

5) Fitness pressure focuses on an accurate tendency which is the pressure from inaccurate, over-
general classifiers to accurate, maximally general ones. 

These pressures are illustrated in Figure 8. It can be seen that fitness pressure and set pressure are 
the main pressures to allow a balanced evolution between accuracy and generality and this is why 
XCS is able to evolve maximally general classifiers. However, this fine balance is achieved 
“implicitly” via non-panmictic GA and a complex second order fitness function. Its pure 
mathematical origin is somehow lack of a firm theoretical background. This is one of the 
motivations of this thesis: evolving maximally general classifiers “explicitly”. 
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Figure 8: Evolutionary pressure of XCS 

2.3.1.3 UCS  

Recently, a descendant of XCS which employs a supervised learning scheme, UCS (sUpervised 
Classifier System) [8], came to surface. It is able to evolve a best action map rather than a complete 
action map of which XCS evolves. UCS keeps the principal features of XCS, a fitness based on 
accuracy and a niche GA, but changes the way in which accuracy is computed. 

 Rule sets 

o [P]  Population set, contains the classifier population 

o [M] Match set, contains the classifiers that match the input training case 

o [C] Correct set, contains the classifiers from match set [M] advocating the correct 
action 

o [!C] Incorrect set, contains the rest of the classifiers from match set [M] 

 Parameters for classifier 

o acc accuracy of the classifier 

o F fitness of the classifier based on acc 

o num numerosity, number of copies of the classifier 

o exp experience parameter of the classifier which is increased by one each time the 
classifier’s parameters are updated 

Parameters for UCS are mostly inherited from XCS thus they are not repeated here. Notice that 
because of its supervised nature, XCS’s action prediction is not inherited. 

2.3.1.3.1 Performance component 

Accuracy 

Specificity 

0 Maximally general 1 

1 

Set pressure 

Subsumption pressure 

Mutation pressure 

Fitness pressure 
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In UCS, learning is performed using a supervised learning scheme, which means that the input 
example comes along with the associated class. This differs from XCS where, according to a 
reinforcement learning scheme, the input example condition is presented, the system responds with 
an action and the environment returns a reward. 

In classification problems, UCS benefits from a supervised scheme as it is described in the 
following. During learning, an input example x with the associated class a is presented. From x, [M] 
is formed from [P] (with the same covering operation as in XCS), consisting of those classifiers 
whose condition matches x. Those classifiers in [M] which have the correct known class a form the 
correct set [C].The rest of the classifiers are placed in incorrect set [!C]. Since the correct class is 
given by the example, there is no need to generate reward from the environment for the parameter 
updates, as oppose to XCS. For the same reason, action selection is only needed during exploit/test 
mode. UCS uses a deterministic (best) action selection from votes (weighted by fitness) of 
classifiers of [M]. 

2.3.1.3.2 Parameter updates 

The classifier's parameters in UCS are updated in the following way. The classifier's accuracy is 
computed as the proportion of correct classifications with respect to the number of matches (exp): 

푎푐푐 =
푛표. 표푓 푐표푟푟푒푐푡 푐푙푎푠푠푖푓푖푐푎푡푖표푛푠

푒푥푝  

This value is updated each time a classifier belongs to [M], and thus it is an average over all the 
examples that the classifier has matched. The fitness is computed as a function of accuracy: 

퐹 = (푎푐푐)  

where ν is a constant.  

Compared to that of XCS, two key points can be highlighted. First, in UCS, the accuracy parameter 
acc directly estimates the accuracy rate of each classifier. Second, UCS does not perform any 
fitness sharing. 

2.3.1.3.3 Discovery component 

The non-panmictic GA in UCS is also inherited from XCS and it is applied to [C]. It selects two 
classifiers from [C] with probability proportional to fitness and applies crossover and mutation. The 
resulting offspring are inserted in the population. GA Subsumption is also included in UCS in the 
same way as in XCS. The only difference is that a classifier is considered to be accurate when its 
accuracy acc is greater than a threshold acc0. If [P] size if full when inserting new rules, other 
classier have to be deleted. The deletion algorithm is also borrowed from XCS. Action set 
subsumption is not implemented in [84]. 

Covering is also applied in UCS when [C] is empty. In this case, a classifier covering the current 
input is created, with the same class provided with the input.  

2.3.1.4 Comparison between UCS and other Michigan-style LCSs 

UCS maintains the same structure as XCS, but uses a different accuracy computation. It inherits the 
generalisation algorithms from XCS, which are mainly based on the fact that the GA is applied on 
niches rather than on the whole population. Niches in UCS are defined by [C], and therefore it is 
expected that UCS will generalise over the search space of correct rule sets, leaving the incorrect 
rules out of exploration. UCS also shares some features with other LCS. The way in which UCS 
divides the classifiers in [M] into the [C] and [!C] resembles NEWBOOLE [10]. The accuracy 
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computation is equivalent to Frey and Slate's classifier system [40]. Both systems were also 
designed for supervised problems. 

2.3.1.5 Other supervised XCS systems 

UCS is not the first, and certainly not the only supervised learning classifier systems in the 
literature. The introduction of XCS and its stability generated a lot of interested in the field and 
various modified versions started to appear. Wilson’s XCSF [115], is a supervised learning 
algorithm which is based on XCS for function approximation. The prediction estimation mechanism 
was used to form the approximations: given an input vector x, the value y of the function to be 
approximated was treated as a pay-off to be learned. X-NCS [19] for function approximation, a 
neural learning classifier system based on XCS, is another example. In this system, each traditional 
condition-action rule is replaced by a fully connected multi-layer perceptron (See Section 2.4.2). 
More recently the back-propagation search algorithm has been included [83] which provides local 
search on top of the traditional GA-based search. More recently, Lanzi et al. shows also that XCSF 
can be applied to the learning of Boolean functions and to typical multi-step problems involving 
delayed rewards [70]. 

2.3.2 Pittsburgh approach 

As suggested by Holland, a natural way to proceed is to represent an entire rule set as a string (an 
individual), maintain a population of candidate rule sets, and use selection and genetic operators to 
produce new generations of rule sets. Historically, this was the approach taken by Smith and his 
students while at the University of Pittsburgh [104] [105], which gave rise to the name “the Pitt 
approach”. Because of the nature of the genetic search in this approach, an advantage of such 
systems is a compact solution size, often smaller than that of a Michigan-styled system. Due to the 
fact that the best candidate rule set is searched in the GA. However, this also becomes a weakness 
because a large population will increase the computational cost dramatically. There is a large 
number of different Pitt approach LCSs in the literature [68]. In the following Subsections, those 
relevant to the comparisons are reviewed. 

2.3.2.1 GABIL (GA Batch-Incremental concept Learner)  

GABIL was developed by DeJong and Spears in 1991 [28]. 

 Knowledge representation 

o Each individual is a variable-length set of rules: 

퐼 = (푅1 ∨ 푅2 … ∨ 푅푛) 

o Each classification rule has binary representation, fixed length and codifies a predicate. 
This system performs concept learning from positive/negative examples. Rules only cover 
the positive examples, thus, there is no class associated to the rule. The semantic 
representation of the rule is: 

 ((퐴 = 푉 ∨ … ∨ 퐴 = 푉 ) ∧ … ∧ 퐴 = 푉 ∨ 퐴 = 푉 ) 

퐴 , 푖 ∈ [1. . 푛] is the attribute i of the dataset 

퐴 , 푖 ∈ [1. . 푛], 푗 ∈ [1. . 푚] is the value j that can take the attribute i 
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o These predicates can be mapped to a binary string with the following procedure: 

- Imagine one has 4 attributes: (A1, A2, A3, A4). The values of A1 are (A, B, C, D), 
the values of A2 are (E, F, G), the values of A3 and (H, I, J, K, L) and finally the 
values of A4 are (M, N). 

- The predicate “(A1 is B or C) and (A2 is E or F or G) and (A3 is H or K) and (A4 is 
M)” is represented as: 

A1 A2 A3 A4 

0110 111 10010 10 

o By looking at the examples one can see that all bits associated to the attribute A2 are set to 
1. This is the mechanism that the representation has to indicate that this attribute is 
irrelevant. (like the “don’t care” mechanism in other LCSs) 

 Fitness function. The fitness function is computed after classifying all instances of the training 
set, and consists simply of a squared accuracy function: 

푓푖푡푛푒푠푠(푖푛푑푖푣푖푑푢푎푙) =
푛표. 표푓 푖푛푠푡푛푎푐푒푠 푐표푟푟푒푐푡푙푦 푐푙푎푠푠푖푓푖푒푑

푡표푡푎푙 푛표. 표푓 푖푛푠푡푎푛푐푒푠
 

 Recombination operator. This operator needs a small restriction to guarantee that semantically 
correct offspring are created. Cut points can take place in any rule of the individual, which does 
not have to be the same for both parents, but it has to be placed in the same position inside the 
rule. 

 Process 
o The system starts learning with only one training example. A rule set is generated covering 

it. 

o After generating the initial rule set, the system tries to classify a second example with it. 

o If the new example is classified correctly, the same test is repeated with more examples. 

o If not, it is run again, using all the instances tested so far. 

2.3.2.2 GAssist 

GAssist [3] is a newly developed Pitt-style system which is based on the GABIL system. Most of its 
components are similar of GABIL’s, such as matching strategy, basic nominal presentation, fitness 
function, GA recombination and mutation operations, etc. However, it consists some novel elements 
such as integrating an explicit and static default rule in the system, the adaptive discretisation 
intervals rule representation, windowing techniques for generalisation and run-time reduction, bloat 
control and generalisation pressure methods. The system has been tested on various problems and 
benchmarked against other learning systems such as C4.5 [85], SVM and many others.  

The GAssist system was originally inspired in GABIL, thus, several of the following details are 
common in both systems: 

 Matching strategy:  

Individuals (rule sets) are treated as a decision list. Therefore, the first rule that is matched for 
an input instance is used to classify it 

 Fitness function:    
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GABIL’s squared accuracy fitness function 

 Base nominal representation:   

The GABIL representation 

 Recombination operator:    

Same as GABIL. This means selecting cut points in equivalent position inside the rule (but in 
any rule) for both parents 

 Mutation operator: 

The GABIL’s bit-flipping mutation is used for the nominal representation. 

 Missing values policy:  

When dealing with datasets with missing values a substitution policy is used. That is, by 
gathering the instances belonging to the same class as the one with missing values, one 
substitutes the missing value by either the most frequent value or the average value, depending 
on the type of attribute (nominal or real-valued). 

 Process: 

Same as GABIL 

According to the author of GAssist, the innovative features of the system are in the following four 
areas, 

1) An interesting feature of encoding the individuals of a Pitt-style LCS as a decision list is the 
emergent generation of a default rule. With a default rule one can generate more compact and 
accurate rule sets. However, the performance of the system is strongly tied to the learning 
system choosing the correct class for this default rule. For this reason, GAssist has a 
mechanism automatically decides the class of the default rule. This technique works by 
integrating in a single population individuals having all possible default classes and compete 
with each other. In order to prevent some premature individuals from competing, a niched 
tournament selection is used. 

2) GAssist has an adaptive discretisation intervals (ADI) rule representation, which evolves rules 
that can use multiple discretisation algorithms, letting the evolution choose the correct 
discretisation for each rule and attribute. Also, the intervals defined in each discretisation can 
split or merge among them through the evolution process, reduction the search space where it 
is possible. With these two characteristics, the proposed representation gains robustness and 
has an efficient exploration of the search space 

3) In order to reduce the total computational cost of the system, GAssist applied a windowing 
technique called ILAS (incremental learning with alternating strata). The objective of this 
method is to reduce the cost of fitness computations by using only a subset of the training 
examples to evaluate each individual, thus reducing the total computational cost of the system. 

4) Bloat control and generalisation pressure are very important issues in Pitt-style LCSs, in order 
to achieve simple and accurate solutions in a reasonable time.  

The first problem is a common issue in evolutionary computation techniques that use variable-
length representations: the bloat effect. It consists in a growth without control of the size of the 
individuals. GAssist controls this problem by implementing a rule deletion operator that 
eliminates rules that do not contribute to the fitness of the individual. This operator, properly 
controlled can be beneficial in two aspects: run-time reduction and introduction of diversity.  
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The second issue is related to the machine learning field: the capacity of the learning system to 
generate well generalised solutions. Usually a well generalised solution is identified as an 
accurate solution of low complexity. Thus, the explicit control of the generalisation issue is 
also closely tied to the control of the individual size. Two alternative methods have been 
proposed in GAssist to apply generalisation pressure in the system, which are the hierarchical 
selection operator, and the more complex, MDL (Minimum Description Length) based fitness 
function 

2.3.3 Iterative rule learning approach 

2.3.3.1 BioHEL (Bioinformatics-oriented Hierarchical Evolutionary Learning)  

BioHEL [5] [6] is a GBML system following the separate-and-conquer approach (see Subsection 
2.1.5) from the same author of GAssist. It is strongly influenced from GAssist therefore several of 
its features have been inherited. 

 Knowledge representation:  same as GAssist and GABIL 

 Fitness function: 
퐹푖푡푛푒푠푠 = 푇퐿 × 푊 + 퐸퐿 

where TL is the theory length, underlining the complexity of the solution, and EL is exceptions 
length, indicating the accuracy of the solution. This fitness function has to be minimised. 

W is a weight that adjusts the relation between TL and EL. BioHEL uses the automatic weight 
adjustment heuristic proposed for GAssist. 

TL is defined as: 

푇퐿(푅) =
∑ 푁푢푚푍푒푟표푠(푅 )/퐶푎푟푑

푁퐴
 

where R is a rule, NA is the number of attributes of the domain, Ri is the predicate of rule R 
associated to attribute i, NumZeros counts the number of bits set to zero for a given predicate in 
GABIL representation and Cardi is the cardinality of attribute i. 

It is said that 0 < 푇퐿 < 1 is always true. It is designed in this way to simplify the tuning of W. 
The NumZeros in the GABIL predicates are a measure of specify. Therefore, promoting the 
minimisation of zeros means promoting general and thus less complex rules. 

EL is designed to achieve the balance between accuracy and coverage (number of examples 
matched). Therefore it is biased towards covering a certain minimum of examples and once a 
given coverage threshold has been reached the bias is reduced. 

It is defined as:  

퐸퐿(푅) = 2 − 퐴퐶퐶(푅) − 퐶푂푉(푅) 

퐴퐶퐶(푅) =
푐표푟푟(푅)

푚푎푡푐ℎ푒푑(푅)
 

퐶푂푉 =
푀퐶푅 ×

푅퐶
퐶퐵

퐼푓 푅퐶 < 퐶퐵

푀퐶 � + (1 − 푀퐶푅) ×
푅퐶 − 퐶퐵
1 − 푅퐶

퐼푓 푅퐶 ≥ 퐶퐵
� 
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푅퐶 =
푚푎푡푐ℎ푒푑(푅)

|푇|  

where COV is the adjusted coverage metric that promotes the coverage of at least a certain 
minimum number of examples, RC is the raw coverage of the rule. ACC is the accuracy of the 
rule, corr(R) is the number of examples correctly classified by R, matched(R) is the number of 
examples matched by R, MCR is the weight given in the coverage formula to achieve the 
minimum overage, CB is the minimum coverage threshold and |푇| is the total number of 
training examples. 

 Process: 

BioHEL has two general stages. In the main level there is a separate-and-conquer style 
algorithm. Once each rule is obtained, the training examples that are covered by this rule are 
removed from the training set, to force the GA of the next iteration to explore other areas of the 
search space. By using an explicit default rule covering the majority class, each evolved rule 
aim to cover the other classes. 

In the inner level, the GA is run repeatedly with the same set of instances and the best offspring 
from all the GA runs are added to the population (and covered examples are removed from the 
training set). The GA operators are similar to the ones of GAssist. 

2.3.4 LCS and data mining 

As mentioned in Subsection 2.1.3, on classification problems, one of the most studied data mining 
tasks, is the focus of this thesis. Since the introduction of Holland’s LCS, learning classifier systems 
have been successfully applied to many domains, especially data mining. Data mining is a process 
of extracting hidden pattern from data. With the ever-increasing data gathered in the world, it 
becomes an important tool of transforming large amount of data into useful information. To be 
precise, data mining can be categorised into six procedures [21]:  

 Data extraction – the collation of data from one or more sources. 
 Data cleansing – the identification and treatment of erroneous or missing data 
 Data reduction – the removal of features which are insufficiently correlated to the given task. 
 Data modelling – the discovery of patterns in the data 
 Model interpretation – identification of the discovered patterns. 
 Model application – use of the identified patterns, e.g., for future predictions. 

The strength of LCSs lies in data reduction and modelling. Early applications include the use of 
various versions Holland’s LCS on gas pipe line control [46], two-class discrimination task [88], 
MONKS problem [95], letter recognition [40] and letter sequence prediction tasks [90]. Wilson’s 
Boole LCS implementation [110] for classification problems and later adapted to Newboole [10] by 
Bonelli and Parodi with a modified reinforcement update. Other systems such as COGIN [45], 
GABIL and a hybrid system called REGAL [44], have shown competitive performances against 
other machine learning techniques on a number of well-known datasets. 

Due to the complexness of Holland’s LCS paradigm, research in data mining using learning 
classifier systems faced difficulties. Wilson’s XCS, improved from his ZCS, the first simplified 
LCS model, has shown to overcome the difficulty and produced competitive or better performances 
than other machine learning algorithms. Since then, XCS has captured the researchers’ attention and 
been used for mining protein structure prediction data, breast cancer and image processing data [21], 
etc. See Chapter 6 for an elaborated discussion of the process of data mining. 
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2.3.5 Default hierarchies (DHs) 

The concept of DHs was introduced by Holland et al. [54]. He pointed out that the rules that 
constitute a category do not provide a definition of the category. Instead a set of expectations 
(which are taken to be true) are provided only so long as more specific information do not 
contradict them. These “default” expectations, in the absence of additional information, provide the 
best guess of the current situation. Therefore rules can be organised into default hierarchies, that is, 
hierarchies ordered by default expectations based on subordinate/super-ordinate relations among 
concepts. For instance, one has some default expectations about a vehicle but it can be overridden 
by more specific expectations produced by evidence that the vehicle is a car. These expectations, in 
turn, can be overridden by more specific expectations, such as evidence that the car is a BMW. 
Early on, the classifier system has reliable information only about parts in very simple contexts. It 
can exploit this information, but more complex contents will provide frequent surprises, departures, 
and exceptions. The system gathers more complicated contexts as the system gaining experiences so 
that is can bias its choices accordingly. As a result, the system builds a hierarchical structure that 
grow from early “defaults”, bases on simple contexts, to layers of exceptions based on more 
detailed contexts. 

Both Goldberg [46] and Smith [99] demonstrated the existence of DHs. Smith described it as the 
following: 

“Default hierarchies are sets of rules where the utilities of partially correct, but broadly applicable 
rules (defaults) are augmented by additional rules (exceptions). By forming default hierarchies, an 
LCS can store knowledge in parsimonious rule sets that can be incrementally refined. To do this, an 
LCS must have conflict resolution mechanisms that cause exceptions to consistently override 
defaults.” 

Here is an example, 

Non-default hierarchical rule set Default hierarchical rule set 

100000  0 

100101  0 

100001  1 

100100  0 

100#0#  0 (default rule) 

100001  1 (exception rule) 

Table 2: Comparison between non-default hierarchical and default hierarchical rule set 

DHs are an important potential advantage of LCSs. However, encouraging the development of DHs 
in a designing LCS is difficult [99]. What is more, XCS does not support DHs because they involve 
inherently inaccurate classifiers [63]. For the same reason, UCS does not encourage them either. 
However, the proposed system may solve this problem. The DHs results are shown in Subsection 
6.2.2.4 and Chapter 7. 
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2.4 Artificial neural network (ANN) and cascade correlation (CC) 

The last section is about training rule-based systems and this section is focused on training neural 
networks.  A brief description of ANNs is outlined in Subsection 2.1.4. The theory this thesis 
presents draws a close analogy between neurons and classifiers and puts that theory into practise. 
Thus it is necessary to understand the fundamentals behind ANN. As supervised classification 
problem is the main interest of this thesis, two of the most popular supervised learning algorithms 
for neural networks are studied in detail. 

The section is structured as follows. Subsection 2.4.1 gives an introduction on biological neural 
network, the inspiration of ANN. Subsection 2.4.2 shows the three basic components when 
constructing an ANN. Subsection 2.4.3 and 2.4.4 focuses on two of the most widely used 
supervised learning algorithms for ANN. 

2.4.1 Biological neural network 

The biological neuron, in a nut shell, is the cell that living organisms use to detect both the internal 
and external environment of their bodies, to formulate behavioural responses to those signals and to 
control their bodies based on these responses. A vast network of neurons are either physically 
connected or functionally related in the central nervous system and the peripheral nervous system.  
Following graph shows the simplified structure of a neuron: 

 
Figure 9: Structure of a neuron 

A neuron consists of a body (the soma), a set of input lines (the dendrites) and a single output line 
(the axon).  The dendrites are branching structures which connect with the axons of other neurons 
through terminals (the synapses). The great number of connections between dendrites and axons 
form a gigantic neural network. 

The state of a neuron is described as either of inhibited or excited. When it is in an inhibited state, or 
resting potential, the inside of the neuron is negatively charged relative to the outside. This is 
caused by the semi-permeable membrane which lets the potassium ions (K+) cross in freely (in 
other words, potassium channels) but a “pump” pumps out every three sodium ions (Na+) for every 
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two K+ ions it puts in. Along with the rest of the negatively charged ions in the neuron, it reaches -
70mV at equilibrium. 

Signals between neurons are sent electrochemically. Electrochemical signals (stimulus) are sent 
from synapses of one neuron to another it is connected to, causing the latter’s resting potential to 
move towards 0mV. The receiving neuron adds it to the rest of its input signals and only if it 
exceeds an internal-defined threshold (usually -55mV) it will fire an action potential.  First the 
sodium channels will open to cause Na+ ions rushing into the neuron (because of the neuron’s 
negative charge). Thus the neuron becomes more and more positive until the potassium channels 
start to open and K+ ions rush out. Meanwhile the sodium channels start to close. This causes the 
action potential to go back towards -70mV. The potassium channels stay open until it goes past -
70mV and eventually it will once again reach the balance of -70mV. The following graph illustrates 
the action potential of a neuron, 

 
Figure 10: Action potential 

The human brain contains roughly 100 billion neurons, linked with up to 10,000 connections each. 
It works very differently from conventional digital computer. The brain is a highly complex, non-
linear, and parallel computer. It can perform certain computations (such as pattern recognition, 
perception, and motor control) many times faster than the fastest digital computer in existence 
today. This is the motivation of ANNs. 

2.4.2 Artificial neural network (ANN) 

ANNs attempt to use machines to solve tasks that human brains do well through abstract low-level 
brain function, based on biological neural network. However, modern software implementations 
using ANNs do not strictly follow biological inspiration due to practical reasons.  

There are typically three things that need to be defined when constructing an ANN. 
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2.4.2.1 Architecture 

This concerns the topology of the network. Let us start with simplest form of a neural network, a 
single-layer feed-forward neural network (single-layer perceptron or simply perceptron), used for 
the classification of patterns that are linearly separable, i.e. patterns that lie on opposite sides of a 
hyperplane. It consists of a single neuron with adjustable synaptic weights (parameters) and bias. 

Figure 11: A perceptron 

The inputs of an artificial neuron act as dendrites whereas the output as axon. In ANN terminology, 
neurons are normally referred to as “nodes” or “units”.  The reason it is called “feed-forward” is 
because the input layer of source nodes project onto an output layer of neurons, but not vice versa. 
There are no cycles or loops in the network. 

When many nodes connect to each other they are structured in “layers”. Outputs of nodes in one 
layer are the inputs to another layer. When the perceptron has one or more hidden layer that is not 
part of the input layer or output layer, it becomes a multi-layer perceptron, 

w
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Figure 12: A fully connected multi-layer perceptron 

One other distinctive feature of this network is that each neuron should have a non-linear activation 
function (or cost function) which will be explained in detail in the upcoming Subsections. This 
network in Figure 12 is said to be fully connected in the sense that every node in each layer of the 
network is connected to every other node in the adjacent forward layer. If some connections are 
missing, it is then said to be partially connected. 

There are many other topologies of network architecture but it is worth to mention a fundamentally 
different architecture from the previous two: recurrent networks. This type of network distinguishes 
itself from the feed-forward network by having at least one feedback loop. For example, the output 
signals could be sent back to the input layer of neurons. However, this type of network is outside 
the scope of this thesis. 

2.4.2.2 Activation function 

As a biological neuron, the activities of each artificial neuron change in response to each other. 
Typically the activities are based on the weights (parameters, w1, w2, w3, as shown in Figure 11) in 
the network. There are two steps to define an activation rule.  

First, activation potential of a neuron is calculated as the following,  

휈 =  푤 푥  

where i = 1, …, I. 

Second, the output y in Figure 11 is set as function 휑(휈) of the activation. There are many possible 
functions here, but the followings are the most popular, 

 Linear:    푦 = 휈 

Output layer 

Hidden layer 

Input layer 
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 Sigmoid:    푦 =  휑(휈) =  

 Threshold function:   푦 =  휑(휈) ≡ 1 휈 > 0
−1 휈 ≤ 0  

The activation function usually depends on the tasks one wishes to perform with the neural network. 
Thus it is closely related to the learning algorithm. 

2.4.2.3 Learning algorithm 

So how does neural network solve a problem? The typical answer is that the network is “trained” to 
some existing input-output behaviour of one wishes to model (supervised learning). The weights are 
adjusted by some learning algorithms so that the network models the generalised behaviour 
suggested by the examples given. ANNs can use many learning paradigms, but given the intent of 
this thesis, the most typical supervised parameter learning algorithms are the focus of the next 
Subsections. 

2.4.3 Back-propagation 

Back-propagation [92], developed by Rumelhart and McLennan, it is a computational 
implementation of the generalised Delta rule9. The algorithm is based on gradient descent, and is 
certainly the most popular algorithm for the supervised parameter learning in multi-layer 
perceptrons. Here is a summary of this algorithm: 

To start, weights of all neurons are initialised to some random number between 0 and 1, and then 
the following steps are repeated: 

1) Pass the training data (풙(푛), 풅(푛)) to the network. The input vector x(n) applied to the input 
layer of sensory nodes and the desired response vector d(n) are presented  to be the output layer 
of computation nodes at iteration n. (from this step onwards, the notation (n) indicates “at 
iteration n”, (n-1) indicated “at previous iteration before n” and (n+1) indicates “at next 
iteration after n”) 

2) Compute the output as follows, 

a) The action potential for neuron j in layer l is computed as, 

( )(푛) = 푤( ) (푛)푦( )(푛) 

where 푦( )(푛) is the output (function) signal of neuron i in the previous layer l-1 and 
푤( )(푛) is the synaptic weight of neuron j in layer l that is fed from neuron i  in layer l-1. 

b) Assuming the use of a sigmoid function, the output signal of neuron j in layer l is, 

푦( ) = 휑( (푛)) 

If neuron is in the first hidden layer (i.e. l=1), set 

                                                        
9 It is named for the Delta-rule weight updating method used in early singe-layer perceptrons 
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푦( )(푛) = 푥 (푛) 

where 푥 (푛) is the jth element of the input vector x(n). 

If neuron is in the output layer (i.e. l=L), where L is referred to the depth of the network), 
set 

푦( )(푛) = 표 (푛) 

3) Compare the resulting output with the desired output for the given input to find the “error”. The 
error signal is then computed as, 

푒 (푛) = 푑 (푛) − 표 (푛) 

where 푑 (푛) is the jth element of the desired response vector d(n). 

4) Compute the “local error” of all neurons according to this “error” found in step 3 in a back-
propagating manner from the output layer, 

훿( )(푛) =

⎣
⎢
⎢
⎡ 푒( )(푛)휑′ ( )(푛) 푓표푟 푛푒푢푟표푛 푗 푖푛 표푢푡푝푢푡 푙푎푦푒푟 퐿

휑′ ( )(푛) 훿( )(푛)푤( )(푛) 푓표푟 푛푒푢푟표푛 푗 푖푛 ℎ푖푑푑푒푛 푙푎푦푒푟 푙
� 

where the prime in 휑′() denotes differentiation with respect to the argument. 

5) Adjust the weights for all neurons to lower the “local error”, 

푤( )(푛 + 1) = 푤( )(푛) + 훼[푤( )(푛 − 1)] + 훿( )(푛)푦( )(푛) 

where  is the learning rate parameter and  is the momentum constant 

6) Repeat the process until the “error” reaches a threshold. 

Although widely used, back-propagation has several problems. It can often be slow [34]. What is 
more, as noted earlier in this thesis, back-propagation is a type of parameter learning algorithm. It 
lacks a technique for structural learning, that is, there is no structure update in the network. Since 
structure directly affects computational efficiency, this is a definite difficulty. 

It is also interesting to note that, in the field of protein structure prediction, the back-propagation 
neural network algorithm is a commonly used method for predicting the secondary structure of 
proteins. Whilst popular, this method can be slow to learn so Wood and Hirst compared it with an 
alternative: the cascade correlation (CC). Using a constructive algorithm, CC achieves predictive 
accuracies comparable to those obtained by back-propagation, in shorter time [117].  

For all of these reasons, CC is the focus of the next Subsection. 

2.4.4 Cascade correlation (CC) 

CC is a supervised, structural learning algorithm for artificial ANNs proposed by Fahlman [34]. 
Instead of just adjusting the weights in a fixed network, the algorithm starts with a minimum 
network and gradually trains and adds hidden nodes one by one, creating a multiple-layer network.  

There are two main concepts in this algorithm, “Cascade” and “Correlation”. “Cascade” refers to 
the architecture, which means the hidden nodes are added to the network one at a time in a cascaded 
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connection pattern: all new nodes take all old nodes as inputs. “Correlation” refers to the learning 
algorithm, which creates and installs the new hidden units. For each new hidden unit, the algorithm 
tries to maximise the magnitude of the correlation between the new unit's output and the residual 
error signal of the network. 

Here is the CC learning algorithm,  

Begin with a single layer neural network (i.e., only input layer and output layer, there is no hidden 
layer). Repeat until a measure of convergence is achieved: 

1) Train existing output layer connection weights (parameter learning), typically a variation of 
back-prop, called “quick-prop [33]”, to reduce error on the training patterns (supervised 
learning). It has the following steps, 

a) Calculate the sum squared error of all output nodes for all training patterns using, 

퐸 =
1
2

(푑 , − 푦 , )  

where o ranges over output nodes and p ranges over the training patterns, 푑 ,  is the desired 
output and 푦 ,  is the observed output of the output node o for a training pattern p. 

b) Residual error of output node o for pattern p is, 

푒 , = (푑 , − 푦 , )휑 ,
′  

where 휑 ,
′  is the derivative of an activation function of an output node o for a training 

pattern p. 

Partial derivative of E with respect to each of the weight between input node or hidden node 
i and output node o, wi,o, is computed in order to minimise E 

휕퐸
휕푤 ,

= 푒 , 퐼 ,  

where 퐼 ,  is the activation potential of an input node or hidden node i for a pattern p. 

c) Perform gradient decent using 
,

 

2) Insert a new hidden layer node, with inputs from all existing inputs and hidden layer nodes in 
the network. Note that the output of this node is not yet connected to the output layer nodes of 
the network. 

3) Train the input weights of this new node to maximise the absolute correlation of the node’s 
output to the error of the existing network’s output on the training pattern (supervised learning) 
using quick-prop. It is done in the following steps, 

a) Calculate the sum over all output nodes o of the magnitude of the correlation (strictly 
speaking, covariance) between y, the new node’s output, and eo, the residual output error 
observed at node o, 

푆 = 푦 − 푦 푒 , − 푒  

where o ranges over output nodes and p ranges over the training patterns, the quantities 푦 
and 푒  are averaged over all training patterns. 
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b) Partial derivative of S with respect to each of the new node’s incoming weights, wi, is  
computed in order to maximise S, 

휕푆
휕푤

= 휎 푒 , − 푒
,

휑′퐼 ,  

where 휎  is the sign of the correlation between the new node’s output and the residue error 
at output o, 휑′ is the derivative of the new node’s activation function with respect to its 
activation potential for training pattern p, and 퐼 ,  is the input the new node receives from 
node i for pattern p. 

c) Perform gradient ascent using  to maximise S. 

4) Connect the output of the new node to all output layer nodes and freeze its input weights. 

 
Figure 13: Cascade correlation 

Because of the absolute value in the formula for S, a new node only cares about the magnitude of its 
correlation with the error at a given output, and not about the sign of the correlation.  In this case, if 
a node correlates positively with the error at an output node, it will develop a negative weight to 
that node, and vice versa. Since a node’s weights to different outputs can have mixed sign, it can 
serve two purposes by developing a positive correlation with the error at one output and negative 
correlation with the error at another output. 

From Figure 13, one can see that CC is a relatively straightforward algorithm, with the exception 
of the somewhat mysterious element of step 3). One must consider why maximise the absolute 
correlation between a node’s output and existing error signal. Upon consideration, it becomes clear 
that this step will allow one to cancel out that existing error with the new node, through the weight 
adjustments in step 1). This is a key concept: it suggests that new neurons should have input weights 
(and, in effect, connectivity) that maximises the relationship between their output (over the input 
space) and the error of the existing network they are to be added to, so that this output can be used 
to cancel out that error. 
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As one might also notice, each hidden node’s input weights are frozen at the time it is added to the 
net and only its output weights are trained. Thus leads to the creation of very powerful “feature 
detectors” and available for producing outputs and more complex features. One could think that 
each hidden node solves its own part of the network error and will never solve the rest. This makes 
the network very sensitive to errors: whenever there’s an error, a new hidden node is created trying 
to “cover” the error. 

At first, CC may not seem to meet the discrete-optimisation criteria for structural learning discussed 
before in Subsection 2.1.4. However, note that input layer node weights are often adjusted to values 
near zero in step 3) of the algorithm. In effect, this “turns off” the connection between a hidden 
layer node and a particular input (or another hidden layer node). Moreover, rather than using a 
single candidate node it is possible for CC to employ a population of randomly-initialised nodes in 
step 2) and 3), culling this population to one node in step 4). If these nodes are initialised with less-
than-full input connectivity, the discrete optimisation of structural learning is clear. 

2.4.5 Receptive fields 

At this point of the exposition, it is useful to introduce the concept of “receptive fields”. As a 
general concept, a node’s receptive field is the area of some abstract input space to which that node 
responds. In this abstract space, nodes with centres near the current inputs are involved in output, 
and the area around the nodes centre which gives non-zero output is that node’s “receptive field”. In 
terms of CC, the goal is to create a map of receptive fields that allow adequate responses to the 
range of inputs. By correlating new nodes to existing error, their receptive fields are aligned with 
the area that is causing the most error. Adjustment of this particular node will correct that error. 

2.5 Information theory, entropy and mutual information 

This thesis is mainly inspired by CC’s powerful “feature detectors” and structural learning ability. 
However, the core component of CC, “encoding” network error to a hidden node, leads one to think 
about Shannon’s work. Could that provide more theoretically well-founded inspiration? This 
section gives a brief insight of Shannon’s information theory and especially, mutual information. 

The section is structured as follows. Subsection 2.5.1 gives an introduction on information theory 
and its motivation. Subsection 2.5.2 shows the measurement of information content, entropy, and 
most importantly, mutual information. Subsection 2.5.3 focuses on the measurement of noisy 
channel capacity. Subsection 2.5.4 provides recent applications of mutual information. 

2.5.1 Information theory  

When communicating over an imperfect channel, the message sent is often not identical to the 
message received at the other end. It is desirable to minimise the probability of these errors. The 
typical method is to employ an encoder and a decoder, to compress the messages, and possibly 
include error correcting information. 
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Figure 14: Transmitting message through noisy channel with encoder and decoder 

An encoder is a device to change a signal or data into a code. There are two kinds of encoding. One 
approach is to compress data for storage, transmission or encryption. So after encoding ideally the 
data should be of a smaller size. The other approach is completely the opposite. It is to add 
redundancy code to the data for encryption and error-checking after transmission purposes. Thus the 
data size is larger after encoding. A decoder, on the other hand, is a device that coverts encoded 
data to its original form. 

As shown in Figure 14, a message s is first passed through an encoder and the encoder encodes s to 
transmitted message t with different size and added redundancy data. Noise is then added to t and it 
becomes received message r. The decoder uses the known redundancy previously added by encoder 
to decode r to its original form, separating from the added noise. If well designed, this approach can 
turn a noisy channel into a reliable channel. The designer of such systems is concerned with 
limitations and potentials of the computations involved. Information theory, introduced by Claude 
Shannon [97] [98], is a discipline in applied mathematics involving the quantification of data with 
the goal of enabling as much data as possible to be reliably stored on a medium and/or 
communicated over a channel.  

2.5.2 Entropy and mutual information 

In order to study information theory, it is necessary to understand how information content is 
measured. Shannon gave the following, 

ℎ(푥) = log
1

푃(푥)
 

It is a measurement of the information content of a symbol x. P(x) is the probability of x. Typically, 
the base of logarithm is 2, so the information content is measured in bits. 

Based on information content, Shannon introduced the concept of information entropy. The entropy 
of a discrete symbol space X is a measure of the amount of uncertainty one has about which symbol 
will be chosen. It is defined as the average self-information of a symbol x from that symbol space X, 
in bits (base 2 of the logarithm is omitted throughout the rest of the section), 

퐻(푋) = 푝(푥)
∈

log
1

푝(푥)
= − 푝(푥) log 푝(푥)

∈
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In other words, information content of symbol x times its probability, and summed over all of the 
symbols from X, is the entropy of symbol space X. It is a measure of average amount of information 
per symbol has, in bits. H(X) is also called the marginal entropy of X. 

It is also worth to know some other information measures, such as, 

Joint entropy of two random variables, 

퐻(푋, 푌) = − 푝(푥, 푦) log 푝(푥, 푦)
∈∈

 

Conditional entropy of two random variables, 

퐻(푌|푋) = − 푝(푥, 푦) log 푝(푦|푥)
∈∈

 

This measures the average uncertainty that remains about Y when X is known. 

Chain rule and a summary of the above formulae, 

퐻(푋, 푌) = 퐻(푌|푋) + 퐻(푋) = 퐻(푋|푌) + 퐻(푌) 

In words, this says that the uncertainty of X and Y is the uncertainty of X plus the uncertainty of Y 
given X, the uncertainty of Y plus the uncertainty of X given Y. 

The mutual information of two random variables, 

퐼(푋; 푌) = 퐻(푋) − 퐻(푋|푌) = 퐻(푌) − 퐻(푌|푋) = 푝(푥|푦)푝(푦) log
푝(푥|푦)

푝(푥)
∈∈

 

This is the mutual information between X and Y. It shows the average amount of information that X 
conveys about Y, and vice versa. In other words, this is a measure of how much, on the average, the 
probability distribution on X will change if the value of Y is given. Note that the mutual information 
between X and Y is symmetric, that is, 

퐼(푌; 푋) = 퐼(푋; 푌) 

And always non-negative, 

퐼(푋; 푌) ≥ 0 

There is also an interesting interpretation of mutual information I(X;Y) in terms of the Kullback-
Leibler divergence. 

The Kullback-Leibler divergence, or relative entropy between two probability distributions, is, 

퐷 푝(푋) ∥ 푞(푋) = 푝(푥) log
푝(푥)
푞(푥)

∈

 

It measures the “distance” from q(X) to p(X) but it is not a true metric due to its not being 
symmetric. Note that the relative entropy plays an important role in pattern recognition, neural 
networks and information theory. 

In probability, if X and Y are independent then, 

푃(푋, 푌) = 푝(푋)푝(푌) 

In other words, actual joint distribution is the same as the product of the marginal distributions. So 
one could take the Kullback-Leibler distance between these two as a measure of the dependence of 
X and Y, 
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퐷 푝(푋, 푌) ∥ 푝(푋)푝(푌) = 푝(푥, 푦) log
푝(푥, 푦)

푝(푥)푝(푦)
∈∈

 

Thus, the dependence between X and Y can be computed by calculating the relative entropy of P(X, 
Y), P(X) and P(Y).  

One also knows that a joint probability of X and Y, p(X,Y), is the product of marginal probability of 
Y, p(Y), and conditional probability p(X|Y), thus, 

푝(푋|푌) =
푝(푋, 푌)

푝(푌)
 

One could also immediately deduct the following, 

퐼(푋; 푌) = 퐷 푝(푋, 푌) ∥ 푝(푋)푝(푌)  

In words, the mutual information I(X;Y) between X and Y is equal to the Kullback-Leibler 
divergence between the joint probability p(X,Y), and the product of marginal distributions p(X) and 
p(Y). 

The following graph summarises the relationships, 

 

Figure 15: Relationships between entropies 

2.5.3 Channel capacity 

Shannon’s fundamental work in information theory addresses the following concern: given an input 
signal to a communication channel, how does one maximise the rate of communication, while 
minimising error in that communication?  

H(X,Y) 

H(X) 

H(Y) 

H(X|Y) H(Y|X) H(X;Y) 
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Figure 16: Communicating over a noisy channel, the big picture 

Figure 16 shows the big picture when communicating over a noisy channel. Previously it was noted 
that an encoder is a device to either remove redundancy from source signal or add error-correcting 
data to the source signal. In this figure, two different devices are assigned to do those tasks. The 
reason for this is because that Shannon’s source coding theorem deals with data compression, a 
single probability distribution, whereas Shannon’s noisy channel coding theorem is to do with two 
joint dependent probability distributions, input x and output y. However, calculating information 
entropies for both cases are outside the scope of this thesis, details of these theorems are not 
discussed. 

In order to maximise the rate of communication, one must first find out such noisy channel’s 
maximum possible transfer rate.  How is this measured? 

The capacity of a noisy channel is defined by, 

퐶(푄) = max 퐼(푋; 푌) 

where Q is a noisy channel and the distribution Px that achieves the maximum mutual information 
is called the optimal input distribution. This result, Shannon’s Noisy Channel Coding Theorem, is a 
central contribution in information theory. 

The formula, in other words, is saying that the maximum mutual information between input X and 
output Y is the maximum amount of error-free information that can be transmitted over the channel 
per unit time. It is the amount of discrete information that can be reliably transmitted over a 
channel. 

Encoder Decoder 

Noisy channel 
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2.5.4 Applications of information theory 

The first prominent application in machine learning using information theory was ID3, a decision 
tree induction algorithm, Later the same author implemented C4.5 [85] and it became one of the 
most commonly used algorithms in the machine learning and data mining communities. 

The last years have seen a surge in highly successful application of information theory to complex 
systems, including artificial life systems [1] [60] [96] [109]. In the field of machine learning, 
Friedman et al, also talked about using mutual information for learning the structure of Bayesian 
network [41]. In the domain of protein structure prediction, an Extended Compact Genetic 
Algorithm (ECGA) has been used to find an alphabet reduction policy and it is guided by fitness 
function based on mutual information metric [6]. 

2.6 Summary of chapter 

The aim of this chapter is to provide necessary background for the primary subject of this thesis.  

Section 2.1 provides an introductory understanding of machine learning, by categorising its 
paradigms in two different ways. The concentration of this thesis is supervised learning, especially 
classification. After reviewing the most widely-used knowledge representations in the literature, a 
comparison is drawn, showing that the rule-based learning classifier system has a significant asset 
in its advanced structural learning via evolutionary computation. Such learning is associated with 
generalisation, parsimony and explanatory power, which is another contribution the thesis seeks to 
provide. 

Section 2.2 gives an overview of the area in which this thesis is placed, GBML. GA, paradigm of 
EA and a search technique from EC, is described in detail.  

Section 2.3 draws close attention to three types of GBML learning systems, Michigan-style, Pitt-
style and iterative rule learning LCSs, based on how GAs behave in each system. Six LCSs have 
been reviewed along with applications of LCSs in data mining. An important feature of LCS, 
named default hierarchies, has also been discussed. 

Section 2.4 briefly outlines biological neural network, which inspired ANNs. The different types of 
architecture, activation functions and learning algorithms of ANN are studied. Most of the section 
draws close attention to the supervised learning algorithms: back-propagation and CC. It is shown 
that CC is a very sensitive algorithm to the network error due to its powerful, focused “feature 
detectors”. What is more, unlike back-propagation, CC features structural learning as previously 
mentioned in Subsection 2.1.4.  

Section 2.5 gives a brief introduction to Shannon’s information theory. “Entropy”, the average 
information content of random variable, and its joint and conditional properties are described. Most 
importantly, mutual information between two random variables shows the amount of information 
one coveys about the other. What is more, maximising mutual information between inputs and 
outputs of a noisy channel (provably) maximises that channel’s information carrying capacity. This 
is a central contribution of information theory and it plays a vital part in the learning system this 
thesis presents. Some machine learning systems based entropy have been discussed. 

With all necessary materials covered, the background chapter ends with this section. The central 
contribution of this thesis proceeds in the next chapter.  
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Chapter 3 

3 Mutual information-based learning 
classifier system (MILCS) 

In this chapter, a novel learning classifier system called MILCS [103], is presented. It is a 
Michigan-style learning classifier system which means each GA individual is a single rule. MILCS 
was originally inspired by XCS, thus many of its basic components (match strategy, GA operators, 
etc.) share similar properties. These components along with the novel contributions of MILCS, are 
described in this Chapter. 

The chapter is structured as follows. Section 3.1 compares XCS to CCN and draws analogies in 
several different ways. Section 3.2 shows the motivation to use mutual information rather 
correlation as fitness in the proposed system. Section 3.3 provides a detailed overview of the 
proposed system. Section 3.4 outlines the pseudo-code for re-creating MILCS. 

3.1 Comparing XCS and CCN 

3.1.1 XCS and CCN: an analogy 

Comparing learning classifier systems and neural networks has been a recurring theme in the 
literature. Mapping a LCS to a back-propagation network has been studied both conceptually [35] 
and functionally [27]. A concise analogy between the two is also offered by Smith and Cribbs [101] 
and a LCS/NN mapping was presented and tested. This analogy is related to work presented by 
Wilson [111] where a perceptron-building GA was shown. More recently neural paradigms have 
been incorporated into LCSs, with either each individual rule replaced by a neural network [19] 
[83], or a rule’s prediction calculated using neural network [82] [74], or a rule’s action is 
represented using neural network [26]. One might notice that the back-propagation network has 
often been used when developing these models, either as a substitute or as a supplement for GA. 

As described in Subsection 2.4.4, the CCN architecture simultaneously evolves both neural network 
topology and connection weights. The quick-propagation algorithm for weights update makes it a 
very fast learning algorithm compared to back-propagation. Perhaps more important is the structural 
learning aspect of CCN. By starting off with a single layer (or minimum multi-layer) network, and 
adding one hidden node at a time, it determines its own size and topology. Once a hidden unit is 



 
56 

 

added, its input weights do not change for the remainder of the training; i.e., the unit becomes a 
permanent feature detector. This makes CCN very sensitive to any new unit added.  

XCS, perhaps the most popular LCS paradigm, has a notable similarity to CCN. These common 
features are summarised in Table 3. 

XCS CCN 

 Rules define a set of generalisations (rules’ 
conditions) over (usually binary) input 
variables, and map them to outputs. 

 Hidden layer neurons parameterise receptive 
fields over input variables, usually with a 
threshold function, which effectively define 
a range of activation 

 The XCS conflict resolution scheme uses 
parameters to mediate between all the rules 
whose conditions are matched 

 Output nodes are parameterised reactions to 
nodes whose receptive fields are stimulated 

 The use of (inverse of) of accuracy (which is 
related to the inverse of variance of 
prediction), a second order statistics, as 
fitness, for the creation of new rules in the 
GA 

 The use of maximisation of absolute 
correlation, a second order statistics, in its 
creation of hidden layer nodes 

Table 3: Comparison of XCS and CCN 

If one imagines an analogy where XCS rules are like hidden layer nodes and condition of a rule is 
like the receptive field of a node, there is a clear correspondence. 

However, it is not an exact correspondence, leading one to ask why a difference exists. Recall that 
in step 3) of the CCN algorithm (Subsection 2.4.4), correlation to existing error is justified by 
supervised learning training of the output layer weights, to cancel out that error. However, no such 
“cancellation” exists in XCS, since a rule’s output (action) is not tuned via supervised learning. 
XCS, like many other LCSs, is a reinforcement learning system. 

3.1.2 Supervised versus reinforcement learning 

In XCS, rules maintain a reward prediction which is used for conflict resolution. Rules also 
maintain an accuracy value based on variance of its prediction value. This value is then used in the 
GA for rule condition determination. However, it also determines the rule’s action. The inverse of 
variance is used for fitness, and reward prediction cannot mediate the value of these outputs. 
Instead, actions are searched for via the GA, or various covering operations. XCS grows out of the 
LCS tradition of reinforcement learning. Reinforcement learning is defined by the lack of 
supervisory feedback that indicates the correct action the system should take. Instead, only 
“reward” or “punishment” type feedback is available. Thus LCSs generally do not employ 
supervised update of actions. Some newly developed systems, named XCSF [115] and UCS [8] 
(which has been reviewed in Subsection 2.3.1.3), both based on XCS, do use supervised learning to 
train their outputs to reduce errors. 

However, in CCN, one can update towards the correct output directly. CCN exploits this 
supervision in its update of output layer weights, which justifies its use of correlation to existing 
error in hidden layer weights. 
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At the beginning of this thesis, it is pointed out that PSP problems, are supervised learning 
problems. Given that CCN has such similarities with XCS and having many advantages over back-
propagation, why not integrate the concepts from CCN into XCS for supervised learning? 

3.2 Mutual information rather than correlation 

In CCN, absolute correlation between the output of the hidden node and the active network error is 
calculated. The reason for that is the weight adjusted receptive field of the node is aligned with area 
of input space which is causing the most error in the network, so that the error can be corrected 
later. In other words, the error is “encoded” in the hidden node in the best possible way. This is 
clearly related to information theory. Smith and Behzadan [100] state that: 

“Correlation tends to find the co-movement of two random variables based on their co-placement 
above or under their expected values. Hence, it is quite likely that the calculated correlation tends to 
be zero while in reality a tense interrelationship between the variables exists. This is stated more 
mathematically by (Freund & Walpole, 1986, p. 452): “if two random variables are uncorrelated 
they are not necessarily independent”.  

MI has significant advantages over conventional correlation. MI, in contrast to correlation, tends to 
calculate the interdependence of two variables by using the conditional probability. MI is able to 
measure the general dependence of two variables, while correlation can only measure their existing 
linear relations (Li, 1990; Dionísio, Mendes, & Menezes, 2003). Since MI deals with probabilities, 
it is applicable on both symbolic and numerical sequences (Li, 1990), in contrast to correlation, 
which is based on simple algebraic operations, restricting its application to numerical random 
events. MI also shows more sensitivity, making it desirable when high precision is required. 
Moreover, since it is defined by a logarithmic term, it is convenient for many mathematical 
manipulations.” 

Therefore, correlation does not have a firm theoretical foundation whereas information theory has 
wide array of ramifications into different fields, and is backed by a more powerful mathematical 
arsenal. It is preferred to have such theoretical foundation in MILCS. 

3.2.1 Data compression and noisy channel coding: an analogy 

Shannon’s coding theorem on lossless data compression is to maximise compression ratio for 
lossless representation of data so that the compressed data has the same information content as the 
source data. However, his work on noisy channel coding theorem is also to do with maximising the 
rate of communication so that the signal received is identical (i.e. same information content) to the 
signal sent. The analogy between lossless data compression and noisy channel coding is clear. 

Shannon showed that the zero-error maximum communication rate for a channel is given by 
maximising the mutual information between the channel’s input and output. Maximisation of 
mutual information is accomplished by manipulation of the probabilities of various inputs to the 
channel, or through the manipulation of the coding of input signals. Since coding is similar to 
compression, the channel capacity can be seen as the maximisation of compression ratio for lossless 
representation of data. 

Imagine that the existing error in step 3) of the CCN procedure is an input signal to be encoded. In 
this case, the hidden layer node plays the role of an encoder for signal. The maximisation of the 
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mutual information between network error and the node’s receptive field enables the best encoding 
(closest to lossless) of the network error to the node’s receptive field, so that the error is optimally 
“covered” (encoded) in the system. 

3.2.2 Sensor placement and channel communication: another analogy 

Another useful analogy is sensor placement. Imagine that the task of placing temperature sensors in 
a large space with a temperature distribution. The sensors have known receptive fields, based on 
their positioning.  Ultimately the task is to place the sensors so that the maximum amount of 
information about temperature distribution is “communicated” through the sensors. This is 
analogical to channel communication in some sense, if one considers the temperature distribution as 
the input signal (the existing network error) and the sensors as communication channel. The 
similarity to the placement of conditions of classifiers or the receptive fields of nodes can be seen. 
Therefore, in accordance with Shannon’s noisy channel coding theorem, it is theoretically sound to 
place the available sensors such that they maximise mutual information between the temperature 
distribution and the receptive fields distributions. 

In summary, a firm theoretical foundation for using the mutual information has been found to 
position the receptive fields of hidden nodes (rules’ conditions) so that each of them covers the 
existing error of the rest of the system. By adjusting the output layer weights of the hidden node (or 
rules’ actions) through supervised learning the existing error can be cancelled. Essentially, this 
process builds up a hierarchical structure of rules set by creating exception rules that cover the error 
(See Subsection 2.3.5). 

3.2.3 The role of mutual information 

In MILCS, for the reasons motivated above, mutual information between a rule’s “output” and the 
existing system’s error is used as the fitness for each rule so that higher fitness encourages rules to 
be selected by the GA. Thus their offspring (which captures a generalisation of their parents) 
“cover” the existing system error. As this fitness measure is the core of the system, it is necessary to 
explore this first before going any further. 

The fitness is the mutual information between the system’s error (over the input messages presented 
to the LCS) and a rule’s response (over the input messages). Thus let X be the distribution of the 
error in the existing system (a function of the inputs), and Y be the distribution of a rule’s responses 
(a function of the inputs that gives a binary value, depending on whether a rule matches the given 
input or not), 

퐼(푋; 푌) = 푝(푥|푦)푝(푦) log
푝(푥|푦)

푝(푥)
∈∈

 

It is useful to examine the elements of this expression, in terms that are common to LCSs: 

 Accuracy term: 푝(푥|푦). This term associates the relevance of the rule’s responses to existing 
error. 

 Generalisation term: 푝(푦). It is the distribution of the rule’s responses. This term associates 
with how often the rule matches, or how often the rule does not match. 
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 Specificity term: ( | )
( )

. This term compares the rule’s existing error to the overall system error. 

Thus, the mutual information expression offers a balance of accuracy, generalisation, and 
specificity, in an optimal fashion indicated by Shannon’s theorems. 

Let one assume that the distribution of X has two values, “there is an error” and “there is no error”. 
Similarly, the distribution of Y also has two values, “matched” and “not matched”. So there exist 
four combinations, which are, 

 there is no error and the rule does not match the input 

 there is no error and the rule matches the input 

 there is error and the rule does not match the input 

 there is error and the rule matches the input 

The mutual information of these two distributions is the sum of all four terms. However, if there 
exists more than two payoff levels (thus, more than two actions), the distribution of X would have a 
corresponding number of values. This is because the extra payoff levels refer to different levels of 
“error”. Therefore, there will be more than four terms in the MI expression. Note that the 
distribution of Y always contains two values because a classifier either “matches” or “does not 
match”. 

However, if one recalls in CCN that when a hidden node is added to a network it is only connected 
to the input nodes and existing hidden nodes. This hidden node is not fully connected to the network 
because its output has not connected to the output nodes yet. This prevents the network error being 
affected by the newly added hidden node. When this applies to LCSs, however, it means the GA 
selected rules, which are to generate the offspring rules to fix the error, should not be connected to 
the system. How does one achieve such with MILCS? The answer is simple; each rule has to be 
temporally removed from the system one-by-one. Once it is removed, its mutual information 
between system error and its generalisation can then be calculated before it is added back into the 
system. The fitness of the rule is the MI between its matching, and the error of the rest of the system 
with that rule removed. Because such evaluation between a rule and all other rules takes place in the 
fitness calculation, the DHs (See Subsection 2.3.5.) are encouraged. 

3.2.4 The need for two actions per rule 

In a conventional LCS, each classifier has a condition and an action. Once the condition is matched 
then its action can fire.  

If one recalls the CCN algorithm in Subsection 2.4.4, it is the absolute correlation being calculated. 
A new node only cares about the magnitude of its correlation with the error at a given output, and 
not about the sign of the correlation.  In this case, if a node correlates positively with the error at an 
output node, it will develop a negative weight to that node, and vice versa. As mutual information is 
known to be non-negative, rules, like nodes, also need to have a “positive” and a “negative” output. 
Therefore, to conform to the CCN analogy, and articulate all the terms in the sums of the mentioned 
four combinations, two actions are given to each MILCS rule: one for when the rule matches, and 
one for when the rule does not match. Both are updated via simple supervised learning. Similarly, 
there also exist two predictions for each corresponding action. 

Covering operation is an important mechanism in XCS and UCS although it is needed at the 
beginning of a run when alternative rules are not yet available in the population. It allows the test of 
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a hypothesis of a condition-action mapping and a way of escaping if the system is stuff in a loop 
[113]. However, MILCS does not require a coving operation because the entire input space is 
covered by the matched-not-matched feature of MILCS. Because of this, initialling population at 
the beginning of a run is a must for MILCS. The initialisation size will be highly depended on the 
test problem. 
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3.3 Description of MILCS 

 
Figure 17: Work cycle of MILCS 

Note: dotted arrows indicate iterative process of mutual information metrics update 

001001  1    Environment 

Detectors Effectors 

 A ~A Pre ~Pre Fit 
#1011# 1 1 500 655 0.003658 
00#1#1 1 1 666 640 0.003152 
###01# 1 1 625 651 0.003649 
#00##0 1 1 750 627 0.009967 
###100 0 1 500 650 0 
####0# 1 1 538 707 0.001881 
00#001 1 1 1000 636 0 
   .etc. 

Nil 1000 500 707 

Nil 1000 500 707 

 A ~A Pre ~Pre Fit 
00#001 1 1 1000 636 0 

 A ~A Pre ~Pre Fit 
#1011# 1 1 500 655 0.003658 
00#1#1 1 1 666 640 0.003152 
###01# 1 1 625 651 0.003649 
#00##0 1 1 750 627 0.009967 
###100 0 1 500 650 0 
####0# 1 1 538 707 0.001881 
 

 A ~A Pre ~Pre Fit 
00#001 1 1 1000 636 0 
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match / not match 

Match Set [M] Not Match Set [~M]

Prediction Array 

Prediction Array 

Action Set [A] 
Action Selection 

Action Selection 

Reward 
(Updates MI metrics) 

GA 

Updates fitness based on 
MI metrics 

Adjust actions and predictions 
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 Rule sets 

o [P] Population set, contains the classifier population 

o  [M] Match set, contains the classifiers that match the input training case 

o [~M] Not-matched set, contains the classifiers that do not match the input training case 

o [A] Action set, contains the classifiers from match set [M] or not-matched set [~M] 
advocating the chosen action 

 Parameters for classifier 

o Pre Expected reward of the classifier if it classifies correctly an example with matched 
action 

o ~Pre Expected reward of the classifier if it classifies correctly an example with not 
matched action 

o MI Metrics for calculating the fitness 

o F Mutual information fitness 

o exp Experience parameter of the classifier, which is increased by one each time the 
classifier’s fitness is updated 

o num Numerosity of the classifier, number of copies of this classifier in the population 

o mat Maturity of the classifier, number of examples the rule has exposed to 

o freq Frequency of the classifier fires in the last delrange number of iterations 

o Ts Last iteration time when it participated in the tournament selection GA 

o noOfWins Number of times its action has successfully fired 

 Parameters for MILCS 

o N Population size 

o NI Initial number of randomly generated classifiers in [P]  

o θGA Do a non-panmictic GA in this [A] if the average number of time-steps since the 
last GA is greater than θ 

o θSub is the subsumption threshold. The experience of a classifier must be greater than 
this value in order to be able to subsume another classifier 

o χ Probability of crossover per invocation of the GA 

o μ Probability of mutation per allele in an offspring. Mutation takes 0, 1, # 
equiprobably into one of the other allowed alleles 

o P# Probability of a # at an allele position in the condition of a classifier created 
through covering, and in the conditions of classifiers in the initial randomly 
generated population 

o PI, FI Prediction and fitness assigned to each classifier in the initial population 

o αP, αF Average smoothing factors for prediction and fitness update 

o matact Maturity required for a classifier to participate in the action selection process 

o matsub Maturity required for a classifier to participate in the subsumption process 
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o matdel Maturity required before a classifier can be deleted 

o delrange  Deletion window range 

o freqdel Lowest freq of a classifier before it is deleted if batch rule deletion is triggered 

o freqinc freqdel is incremented by this value if batch rule deletion is triggered and freqmax is 
not reached 

o freqmax  Maximum value of freqdel 

o θperf Performance threshold for triggering batch deletion 

o tournamentSize, selectTolerance  Parameters for tournament selection GA 

More parameters are added to MILCS in Section 7.1. 

3.3.1 Conventional learning classifier aspects 

MILCS inherits most of the basic aspects from conventional LCSs such as XCS. Features like rule 
representations, population sets, matching algorithm, conflict resolution on action selection, 
subsumption and GA operators, have a similar resemblance of XCS. 

Each rule is formed by a condition string and an action string. The condition string is formed by 
alphabet {0, 1, #}. The “#” symbol indicates “don’t know” so it could be either 0 or 1. The action 
string is the associated class. 

The typical rule representation is,  

 
This particular has 3 bits of # so the generalisation of this rule (input instances this rule will match) 
is, 

00010110010 

00010110110 

00010111010 

00010111110 

01010110010 

01010110110 

01010111010 

01010111110 

Any other input instances are the ones it will not match. Note that other representations are possible 
in MILCS (the representation above is not a vital aspect of the system), but this is the representation 
used throughout this thesis. 

Condition  Action Not_Matched_Action 
0#01011##10  1  0 
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3.3.2 Mutual information update 

This is the first step of the MILCS process. As is mentioned earlier, each rule has to be temporarily 
removed from the system for fitness update before it is added back in, in order to conform to the 
CCN analogy. However, it is not exactly the case, mutual information fitness is only updated for 
rules in [A] because this system employs a non-panmictic GA (not over entire population). 
Therefore only the counters (for probability distribution calculation) which are necessary for mutual 
information fitness computation are updated in this step.  

The following counters are kept for each rule, to mirror the four terms in the MI expression 
discussed in Subsection 3.2.3. 

 e0m0: is incremented if system has no error and the rule does not match the input 

 e0m1: is incremented if system has no error and the rule matches the input 

 e1m0: is incremented if system has an error and the rule does not match the input 

 e1m1: is incremented if system has an error and the rule matches the input 

The process starts by initialising the population [P] and removing one classifier from it to form [P’]. 
Each rule’s condition in [P’]10 is compared with the detector string. If the bit at every non-# position 
of a rule matches the corresponding bit of the detector string, it is placed in match set [M’]. 
Otherwise, it is placed in not match set [~M’]. To calculate the system output, the system has to 
form a system prediction P(a) for each action a represented in [M’] and [~M’]. Recall that each 
MILCS rule has two actions therefore there exist two predictions, one for the matched action and 
the other for the not matched action. The P(a) values are placed in a prediction array.  Some of the 
slots in this array will receive no values, if there is no corresponding action in [M’] or [~M’]. The 
P(a), best “guess” of a payoff to be received if a is chosen, however, it is calculated differently 
from XCS. Whereas XCS and UCS use a fitness-weighted average of the predictions of classifiers 
advocating a, MILCS simply selects the highest prediction of a classifier advocating a. The 
maximum-reward-prediction action is always selected in MILCS. Note that this has significant 
implications for DHs, discussed in Subsection 6.2.2.4. 

However, in MILCS, rules have mat, which is maturity, i.e., the number of input instances the rule 
has exposed to. Only rules with their maturity higher than matact can participate in the prediction 
array. 

An action is selected deterministically, which means ai with the largest prediction is selected. It is 
then sent to the effectors and an immediate reward r may (or may not) be returned by the 
environment. The MI counters of the removed rule are updated based on this output and its match 
status to the given input before it is added back to [P’]. The entire process is repeated on the next 
rule of [P] until all rules in [P] have been updated. 

3.3.3 Supervised learning component 

Because the correct 푋 ⇒ 푌  mapping is available in supervised problems, MILCS uses this 
knowledge to adjust all rules’ actions to be consistent with the pattern. However, each rule has 

                                                        
10 The prime of [P’] indicates the population set with one particular rule removed. Same applies to 

[M’] and [~M’]. However these sets are not shown in Figure 17. 
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generalisation which could “cover” more than one input instance. Therefore, its actions are adjusted 
to the majority class. Each rule keeps track of class of the input instances it has exposed to so far 
and keeps its actions updated to the majority class. 

Similarly, each rule’s predictions are adjusted to the averaged reward sum of its corresponding 
actions. A pre-defined average smoothing factor 훼  is added to the prediction calculation to 
eliminate input noise for certain problems, therefore, 

푃푟푒 = (1 − 훼 )푃푟푒 + 훼 푟  

where ∑ 푟  is the averaged reward sum of its corresponding action a, and 0 ≤ 훼 ≤ 1 

freq, i.e. frequency of firings, of each rule in the set is also updated. Each rule keeps track of the 
iteration time when it is fired and the system sums up the successful firings in a pre-defined deletion 
window range delrange and computes the freq. It is later used in the deletion algorithm. 

3.3.4 Fitness update 

After the supervised learning actions and predictions update, given the same input signal, [M] and 
[~M] are formed from [P] (the entire population, with no rules removed). Once again, P(a) is 
formed from “mature” classifiers for each action a represented in [M] and [~M]. The action a with 
the highest prediction value is selected and the system forms an action set [A] consisting of the 
classifiers in [M] or [~M] advocating the chosen action. 

The fitness of rules in [A] are calculated and updated based on the MI metrics. From the four MI 
counters specified earlier, one could find, 

No. of input instances = e0m0 + e0m1 + e1m0 + e1m1 

No. of matches  = e0m1 + e1m1 

No. of no-matches = e0m0 + e1m0 

No. of errors  = e1m0 + e1m1 

No. of no-errors  = e0m0 + e0m1 

Probability of no error in the system is, 

푝(푥) =
푛표. 표푓 푡푖푚푒푠 표푓 푛표 푒푟푟표푟

푛표. 표푓 푖푛푝푢푡푠
=

푒0푚0 + 푒0푚1
푒0푚0 + 푒0푚1 + 푒1푚0 + 푒1푚1

 

Probability of no match in the system is, 

푝(푦) =
푛표. 표푓 푡푖푚푒푠  푟푢푙푒 푑표푒푠 푛표푡 푚푎푡푐ℎ

푛표. 표푓 푖푛푝푢푡푠
=  

푒0푚0 + 푒1푚0
푒0푚0 + 푒0푚1 + 푒1푚0 + 푒1푚1

 

Probability of no error in the system given that the rule does not match is, 

푃(푥|푦) =
푛표. 표푓 푡푖푚푒푠 표푓 푛표 푒푟푟표푟 푎푛푑 푟푢푙푒 푑표푒푠 푛표푡 푚푎푡푐ℎ

푛표. 표푓 푡푖푚푒푠 푟푢푙푒 푑표푒푠 푛표푡 푚푎푡푐ℎ
=

푒0푚0
푒0푚0 + 푒1푚0

 

Thus put these terms in the following mutual informal formula, 

푝(푥|푦)푃(푦) log
푝(푥|푦)
푝(푥)  
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It gives the partial fitness value for the term e0m0. Repeat the above with the rest three terms and 
sum up to give the fitness of this particular rule. Similar to the prediction update, an average 
smoothing factor 훼  is introduced when updating rule’s fitness, 

퐹 = (1 − 훼 )퐹′ + 훼 퐹 

where F’ is the rule’s previous fitness, and 0 ≤ 훼 ≤ 1. 

As previously mention in Subsection 3.2.3, when there is more than two payoff levels, e.g., three 
payoff levels (thus, three actions), there will be six terms in the MI expression. 

3.3.5 Discovery component 

Recall a process called “subsumption” from XCS and UCS. This process is also used in MILCS. 
The goal of subsumption is to remove rules whose receptive fields are “covered” by other rules’ 
receptive fields, but with certain criteria such as rule experience and so on. Here is a simple 
example, 

C1  0#01011##10 

C2  0#010110110 

Because C1 covers all input instances that rule C2 covers, plus others, C1 is said to be more 
“general” than C2. If C1 also meets both experience and accuracy requirement (it is at least as 
accurate as C2), and both C1 and C2 have the same action. C2 is deleted and the numerosity of C1 is 
incremented. There are two types of subsumption in XCS and UCS. GA subsumption is to subsume 
newly generated offspring rules to its parents and action set subsumption is to subsume each rule in 
[A] to the rest of the rules in [A] one-by-one. 

In MILCS, only action set subsumption is applied but it works differently from XCS. In XCS, the 
most general rule of [A] is searched for and then this particular rule is used to subsume the others in 
[A] one by one. However, the subsumption in MILCS simply let each rule subsume each other. It is 
even more powerful than the action set subsumption in XCS in turns of population size reduction. 
The criteria for action set subsumption in MILCS are from XCS and UCS. It is stricter in some 
sense. C1 not only has to be experienced enough and more “general” than C2 but both rules have to 
meet the following requirements as well. 

 Both C1 and C2 have the same act and ~act. 

 Both C1 and C2 have to be mature enough. In other words, both rules have to be exposed to at 
least matsub number of input instances. 

 Either C1 has an equal or higher Pre than that of C2, and C1 has a higher Pre than C2’s ~Pre, or 
C1 has an equal or higher ~Pre than that of C2, and C1 has a higher ~Pre than C2’s Pre 

If both rules meet the above requirements then C2 is said to be “subsumed” by C1. It is removed 
from the population and C1’s numerosity is incremented.  

Like in XCS, once the action set subsumption is finished, MILCS applies the GA non-panmictically 
over [A]. To be more precise, GA is not applied over the entire [A]. Instead, only rules of [A] that 
mature matsub enough can participate in the GA. This is to ensure GA candidates having stable 
fitness and unfit rules to be subsumed away. Tournament selection is used and a pair of rules is 
selected from [A]. Then, the parents are recombined and mutated with probabilities χ and µ 
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respectively, as borrowed from XCS. Note that a second subsumption algorithm has been added to 
MILCS and it can found in Section 7.1. 

The offspring rules are introduced to the system and no GA subsumption is applied here (new rules 
are not mature enough). As in XCS, the population size is the sum of numerosity of all rules in the 
system. If, however, the population size exceeds N, a deletion algorithm will start operating. Similar 
to the prediction array calculation and subsumption, a rule has to be “matured” before it is entitled 
to deletion. The deletion method has two modes: single deletion and batch deletion. 

 Single rule deletion mode  

The classifier with the lowest freq below freqdel is selected to be deleted. freqdel is calculated by 
noOfWins / delrange 

 Batch deletion 

In most cases when the population is reaching its limit, single rule deletion is triggered. However, if 
the system performance (MILCS monitors its performance in the exploit mode) is greater than 
휃 × 푚푎푥푖푚푢푚 푟푒푤푎푟푑, all rules having their freq below freqdel, and mat greater than matdel, 
are deleted. What is more, freqdel is incremented by freqinc, each time the batch deletion is triggered, 
up to freqmax. 

If it happens to be that none of the “mature” rules meet the above criteria then a rule’s (randomly 
chosen) numerosity, num, is decremented if it is greater than one. One should consider increasing 
the maximum population size, N, or increasing the freqdel (if deletion by acting is used) if all rules’ 
num are one and all “mature” rules have high freq at some point of an experiment, to avoid 
population overgrowth. 

The offspring rules inherit certain properties from its parents, such as (averaged) fitness, (averaged) 
freq, etc. Once they are inserted to the population, all MI metric counters of rules from [A] are reset 
to 0. 

The batch deletion mode is a crude way of compacting the population. If freqdel is not carefully set 
before a run, certain fit classifiers still face the chance of being deleted. It is more likely to happen 
to newly discovered classifier in the early stage of a run at which point their freq can be relatively 
low. On the other hand, the overall classifiers’ freq in the population are relatively high towards the 
end of the run and freqdel is raised little by little in order to keep only the fit members in the final 
population. 

However, due to the nature of frequency-based deletion algorithm, the system is likely to suffer 
from class imbalance. Class imbalance problems have been seen as a challenge to learning systems 
because they tend to be biased towards the majority class and leave a poor generalisation for the 
minority class. To overcome this problem, a second deletion algorithm is added to MILCS and it is 
covered in Section 7.1.  
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3.4 The MILCS Process 

Given the above considerations, the details of MILCS are summarised in the following four tables 
and pseudo-code process: 

Properties Explanation Initial value 

act Action when matched Randomly 
selected 

actNotMatched Action when not matched Randomly 
selected 

pre Prediction value when matched 0.0 

preNotMatched Prediction value when it is not matched 0.0 

fit Fitness value 0.01 

noOfTrainingCases Maturity, number of training cases exposed to 0 

noOfMatches Number of times the classifier matches to the input 0 

noOfWins Number of times the classifier successfully fires its 
action 0 

actionCounter Action counters used for adjusting actions 0 (2x2 array) 

rewardSum Reward sum, used for adjusting predictions 0 (2x2 array) 

exp Number of times the fitness is updated 0 

gaIterationTime The iteration time when last participated in the GA 0 

num Numerosity (number of the same classifier) 1 

MI 

Mutual Information counters for modelling an 
empirical probability distribution over the 
matched/not-matched condition of the removed rule, 
and the error of the remaining rules. Fitness is 
calculated from this bivariate probability distribution 

0 (2x2 array) 

winningFrequency Frequency of the classifier fires 1 

Table 4: Properties of MILCS classifier 
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Parameters Explanation 

MAX_POP_SIZE Maximum pop size 

THETA_GA Threshold for running GA to generate new classifiers. Once the 
average gaIterationTime of all classifiers in the action set is >= 
THETA_GA, GA is triggered 

INIT_POP_SIZE Initial population size 

INIT_FIT Initial fitness 

INIT_PRE Initial prediction 

ALPHA_FIT Average smoothing factor for fitness calculation 

ALPHA_PRE Average smoothing factor for prediction calculation 

MATURITY_ACT_SELECT noOfTrainingCases required to participate in action selection 

MATURITY_SUB noOfTrainingCases required to participate in subsumption 

THETA_SUB If a classifier’s exp is > THETA_SUB, it can be a “subsumer” 

MATURITY_DEL noOfTrainingCases required for a classifier to be deleted 

DEL_RANGE Iteration range for deletion. Number of iterations the system 
should look back in the history 

THETA_PERFORMANCE If the system performance accuracy reaches this threshold, and the 
population size is larger than the maximum size, batch rule 
deletion is triggered next time 

DONT_CARE_PROB The probability for having #s in the newly generated classifiers 

WIN_FREQ A deletion threshold: if a classifier’s freq falls below this value, it 
can be deleted. If the system performance is above 
THETA_PERFORMANCE, a group of classifiers which fall 
below this value are deleted 

WIN_FREQ_INC If batch rule deletion is triggered, WIN_FREQ is incremented by 
this value 

MAX_WIN_FREQ Maximum value of the WIN_FREQ 

CROSSOVER_TYPE One point, two point or uniform crossover 

CHI_GA The probability to do recombination/crossover 

MU_GA Probability of mutating one bit 

TOURNAMENT_SIZE Percentage of action set that takes part in tournament 

SELECT_TOLERANCE The tolerance with which classifier fitness is considered similar 

Table 5: MILCS parameters 
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Rule sets Explanation 

pop Population set. Population of classifiers 

mset Match set. A sub-set of pop which contains classifiers that match the 
given training case 

nmset Not matched set. A sub-set of pop which contains classifiers that do not 
match the given training case 

aset Action set. A sub-set of mset or nmset which contains classifiers that 
has the corresponding actions 

Table 6: MILCS rule sets 
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Syntax Explanation 

initialise (classifierSet set, 
integer i) 

Initialise the classifierSet set with i number of randomly 
generated rules 

removeClassifier 
(classifierSet set) 

Remove the least active classifier from the classifierSet set 

addClassifier (classifier i, 
classifierSet set) 

Add a classifier i to the classifierSet set 

action act = actionSelection 
(classifierSet set ) 

Select action act based on pre and preNotMatched of the 
classifiers of set. Only classifiers with noOfTrainingCases 
> MATURITY_ACT_SELECT are taken into account 

reward r = doAction (action 
act, trainingCase t) 

Calculate the reward r based on the selected action act and 
the given training case t 

classifierSet newSet = 
createSet (classifierSet set, 
trainingCase t) 

Create match set or not matched newSet based on the given 
trainingCase t and classifierSet set 

classifierSet newSet = 
createActionSet (classifierSet 
set, action act) 

Create action set newest based on the selected action act 
and chosen classifierSet set 

updateMI (classifier i, reward 
r, trainingCase t) 

Update the MI counters of classifier i based on its reward r 
and if it matches the trainingCase t or not 

updateWinningFequency( 

classifier i) 

Update the winningFrequency of classifier i if its 
noOfTrainingCases > MATURITY_DEL 

adjustActions (classifier i, 
trainingCase t) 

Adjust the actions of classifier i using supervised learning 

updatePredictions (classifier 
i, trainingCase t) 

Adjust the predictions of classifier i using supervised 
learning  

updateFitness (classifier i) Update the fit of classifier i based on its MI metrics 

moreGeneral (classifier i, 
classifier j) 

Returns true if each bit of the condition of classifier i is 
either the same as that bit of the condition of classifier j, or 
a “don’t care” symbol # 

subsumes (classifier i, 
classifier j) 

If classifier i subsumes classifier j then j is removed and 
num of classifier i is incremented 

doGA (classifierSet set1, 
THETA_GA, classifierSet 
set2) 

If the average of gaIterationTime of classifier i of classifier 
set1 >= THETA_GA, run a non-panmictic GA on set1 and 
two offspring classifiers are added to classifierSet set2  

resetMI (classifierSet set) Reset the MI array to 0s for all classifiers of set  

Table 7: MILCS main methods 
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Figure 18: Pseudo-code of MILCS process 

For a more detailed algorithmic description of MILCS, please refer to the Appendix. The 
algorithmic description is written in a way that MILCS with multiple actions (multiple payoff 
levels) can be implemented. 

  

initialise(pop, INIT_POP_SIZE) 
for each random trainingCase t: 
  for each classifier i from pop   
    removeClassifier(i,pop) 
    action act = actionSelection(pop) 
    reward r = doAction(act,t) 
    updateMI(i, r, t)    //update MI counters 

addClassifier(i,pop) 
  for each classifier i from pop 

updateWinningFrequency(i) 
    adjustActions(i,t)   //supervised learning 
    updatePredictions(i,t) 
    i.noOfTrainingCases++ 
  classifierSet mset = createSet(pop,t) 
  classifierSet nmset = createSet(pop,t) 
  action act = actionSelection(pop) 
  if act is from mset 
    classifierSet aset = createActionSet(mset, act) 
  else 
    classifierSet aset = createActionSet(nmset, act) 
  for each classifier i from aset 

updateFitness(i)    //update fitness 
    i.exp ++ 
    for each rule j from the aset 

subsumes(i,j) if criterion are met 
  doGA(aset, THETA_GA, pop)   //GA 
  if pop.size > MAX_POP_SIZE  //batch rule deletion 
    if systemPerformance > THETA_PERFORMANCE  
      while(removeClassifier(pop)){} 
      if WIN_FREQ < MAX_WIN_FREQ 
        WIN_FREQ += WIN_FREQ_INC 
    else            //single rule deletion 
        removeClassifier(pop) 
  resetMI(aset) 
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3.5 MILCS vs. XCS 

Compared to XCS, MILCS has the following advantages, 

1) MILCS deals directly with supervised learning rather than reinforcement learning. It has the 
ability to adjust the output directly. When applied to supervised learning problems, XCS is not 
using existing knowledge to improve its output. 

2) MILCS does not require the complete “model building” approach of XCS. “Model building” is  
the way XCS maintains its rule set. It contains both “good” and “bad” rules (as long as their 
predictions, low or high, are accurate). MILCS is aimed at maintaining only “good” rules. 

3) MILCS promises to naturally exploits default hierarchical structure [53] [54]. It is encouraged 
due to evaluation focusing on the comparison of classifiers to all other classifiers in the 
population takes place in the fitness calculation and deterministic action selection, and the lack 
of prediction “voting”. 

4) MILCS is explicit about accuracy and generalisation. MI is used to achieve this, while XCS is 
achieving it only implicitly, through a complex balance of fitness-based accuracy and the non-
panmictic GA. 

5) MILCS is based on firm information theory, which is believed to show improved performance 
and avenues for future development. 

However, the main drawback of MILCS is its computational cost of mutual information update and 
subsumption. The cost is proportional to the population size. 

3.6 Summary of chapter 

This chapter presents the main contribution of this thesis.  

Section 3.1 starts by drawing analogy between XCS and CCN. It is known that such comparison 
between LCSs and ANNs has appeared frequently in the literature. However, main difference lies in 
the origin of LCS: reinforcement learning. Since CCN also has structural learning ability, the 
motivation for an integration of the two is clear. 

Section 3.2 reveals the weakness of correlation in CCN and uncovers a theoretically well-founded 
metrics: mutual information. Shannon’s theorem shows that maximum mutual information between 
a system error and a rule’s receptive field “encodes” the error to the rule the best thus adjusting the 
output of the rule through supervised learning can “cancel” the error. Therefore, mutual information 
is used as the fitness function for MILCS. Additionally, in order to conform to the CCN analogy, 
each rule is assigned a second action which is fired when it is “negatively stimulated”. 

Section 3.3 gives a detailed description of MILCS and its four stages of learning processes. Firstly, 
each rule updates its mutual information metrics. Secondly, each rule adjusts its actions using 
supervised learning. Thirdly, rules of the action set update their fitness and finally a non-panmictic 
GA is carried out to generate more offspring classifiers. 

Section 3.4 aims to provide all the necessary components in tables and pseudo-code to allow the 
recreation of MILCS. 

Section 3.5 lists the possible advantages of MILCS over XCS and its weakness. 
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Now this innovative system is built. However, before starting the experiments, it is necessary to 
introduce a tool developed for visualising classifiers. It will help analysing the explanatory power of 
the results yielded from different learning systems. 
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Chapter 4 

4 Explanatory Power 

This chapter is structures as follows. Section 4.1 defines what explanatory power is. Section 4.2 
reviews the rule compaction and condensation algorithms used in LCSs. Section 4.3 explains the 
method for visualising classifiers. Section 4.4 introduces a quantitative measure for the visualisation 
results. Section 4.5 gives a brief but helpful manual of the visualisation tool. 

4.1 Definition of explanatory power 

While accuracy and computation time are important metrics for machine learning systems, it is also 
important to consider their explanatory power [102]. While this term has no formal definition, it is 
considered to be the subjective human understandability of the representation of the knowledge 
learned by the system. As a subjective quality, it is somewhat difficult to present, particularly when 
the knowledge representation exists in a highly multi-dimensional space. It is also important to 
avoid using pre-existing knowledge of a problem’s structure in evaluating the explanatory power of 
resulting knowledge representations. 

This Chapter presents a novel and reproducible method of visualising explanatory power in two-
dimensional figures. The author believes this method is adaptable to many other knowledge 
representations, and is therefore a unique contribution of this thesis (though not its primary one). 
Therefore, its details are discussed in this chapter. 

4.2 Rule compaction and condensation 

Because XCS is dealing with a complete map of input/action space, it suffers from a large 
population, which is considered to be a cause of poor explanatory power. Wilson was aware of this, 
and discussed the use of condensation in [113]. It consists of running the system with the mutation 
and crossover rates set to zero. This suspends the genetic search as no new classifiers conditions can 
be generated, but allows the classifier selection/deletion dynamics in the GA to continue to operate. 
The result is a gradual shift in numerosity from less fit/less general classifiers to more fit/more 
general classifiers.  Once a classifier reaches zero numerosity it is removed from the system. The 
end result is a condensation of the population to its fittest members. Kovacs [61] discovered this 
method needed a pre-defined delay for the trigger and there is no precise estimate of this delay. This 
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approach also scales poorly. His second method, subset extraction algorithm, showed a better 
performance.  

Wilson introduced the Compact Ruleset Algorithm (CRA) in [115]. This method involves three 
stages. After first ordering the classifiers based on a selected property, say numerosity or 
experience. Stage 1 involves finding the smallest subset of classifiers which achieve 100% 
performance. Stage 2 is the elimination of classifiers which, are added to subset, but do not advance 
performance. Finally, in Stage 3 classifiers are ordered by the number of inputs matched and 
processed until all inputs have been matched, at which point the remaining unmatched classifiers 
are discarded.  

On the Wisconsin Breast Cancer dataset problem [115], these procedures produced compact 
rulesets substantially smaller than the evolved populations, yet performance on new data was nearly 
unchanged. However, Fu & Davis pointed out this approach requires highly trained general and 
accurate classifiers, and it cannot be applied to less well-trained classifier systems [42]. This 
algorithm is also said to have very high time complexity and it must run off-line. Dixon, et al. [29] 
presented a new ruleset reduction algorithm which was reported to be similarly effective to 
Wilson’s CRA but with considerably more favourable time complexity. Gao et al. [43] also 
implemented a modified CRA (to reduce time complexity) for their Ensemble Learning Classifier 
System. A new compaction mechanism based on closest classifier matching (CCM) plus 
condensation was implemented to XCSF [15], where “closest” is defined by the distance measure of 
each classifier itself. It prevents the generation of holes in the function approximation surface 
during compaction while condensing the population. An additional greedy compaction algorithm is 
used to iteratively delete classifiers that overlap with low-error classifiers. 

Apart from condensation, the methods discussed above are not feasible for on-line learning and 
(including condensation) a size/performance tradeoff cannot be avoided. MILCS does not require 
explicit off-line rule compaction. The lack of “voting” in action selection and the promotion of DHs 
naturally compacts the population evolved.  

4.3 Visualising explanatory power 

In an attempt to visualise the relative explanatory power of knowledge representations, the 
following procedure has been developed. Consider a structural element of the knowledge 
representation (in particular, a rule). This rule is represented as a circle, where the diameter reflects 
the element’s generalisation. The overlap of the receptive fields (conditions) of these elements are 
characterised by the overlap of the circles. The colour of the circles will represent their output 
(actions). If rules do not overlap, the distance between them represents some measures of their 
difference. 

The area size of a circle is defined by: 

퐴 =
푛푢푚푏푒푟푂푓#푠 × 퐴푚 + 1 푙표푔푎푟푖푡ℎ푚 푠푖푧푖푛푔

2 # × 퐴푚 푎푐푡푢푎푙 푠푖푧푖푛푔
� 

where numberOf#s is the number of the “don’t care” symbol #s in the classifier, Am is a multiplier 
factor used to adjust the size.  There are two formulae to suit different knowledge representations. 

If two rules’ receptive fields overlap, the overlap area of circles i and j is defined by: 



 
77 

 

퐷푂 , =

⎩
⎨

⎧
1

퐷푖푓푓1 ,
× 퐴 푙표푔푎푟푖푡ℎ푚 푠푖푧푖푛푔

1
2 ,

× 퐴 푎푐푡푢푎푙 푠푖푧푖푛푔

� 

where Diff1i,j is the number of positions of the “don’t care” symbol #s that exists in i but not in j. 
Note that the formula used here must correspond to the circle size calculation. 

When two rules’ receptive fields do not overlap, the distance of the two circles i and j is defined by: 

퐷퐷 , = 퐷푖푓푓2 , × 퐷푚 

where Diff2i,j is the number of different bits (which does not include the “don’t care” symbol #) 
between rule i and j, Dm is a multiplier factor used to adjust the distance. 

Note that DDij is the distance shown in Figure 19. The distance between two circles’ origins is: 

퐷퐷 , + 푟 + 푟  

푟 =
퐴
휋

 

where ri, rj is the radius of Ai, Aj, and Ai, Aj is the area of circle i and j respectively. 

 

 
Figure 19: Distance between two circles 

Also note that two circles are either overlapped or distant, but cannot be both. That is: 

⎩
⎪
⎨

⎪
⎧푖푓 퐷푂 , > 0 푡ℎ푒푛 퐷퐷 , = 0

푖푓 퐷퐷 , > 0 푡ℎ푒푛 퐷푂 , = 0
푖푓 퐷푂 , = 0 푡ℎ푒푛 퐷퐷 , > 0
푖푓 퐷퐷 , = 0 푡ℎ푒푛 퐷푂 , > 0

� 

The above is always true. 

Clearly, presenting a set of rules as overlapping circles cannot, in general, conform to all the 
implicit constraints of overlap and distance implied by the description above. Any projection of a 
high-dimensional knowledge representation onto a two-dimensional figure will suffer from similar 
limitations. Therefore, the following procedure has been used, to evolve a compromise visualisation 
of knowledge representations. 

ri rj 
DDij 
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Imagine that each circle acts as a simulated mass, connected to any other circles via a spring, whose 
spring force is zero when the desired overlap or distance is obtained. Dampers between the circles 
are added (to ensure convergence). Figure 20 shows a simple mass-spring-damper system with two 
circles. 

 
Figure 20: Mass-spring-damper system 

Given this, one can use a simple dynamic systems simulation that iterates to an equilibrium, which 
will represent the nature of the knowledge in the system in a simple, two-dimensional space. 
However, similar techniques have appeared in the literature. In the field of information 
visualisation, there is a class of methods called multidimensional scaling to reduce a high-
dimensional space to 2-3 dimensions for visualisation purposes. Within, there is a family of graph 
visualisation technique called spring-embedder algorithms [31]. 

To model such simulation, the following differential equation is solved using Runge-Kutta method: 

푦′ = 푓(푡, 푦), 푤푖푡ℎ 푖푛푖푡푖푎푙 푐표푛푑푖푡푖표푛 푦(푡 ) = 푦  

Suppose yn is a vector of all circles’ coordinates and their velocity at time tn. The Runge-Kutta 
formula takes yn and tn and calculates an approximation for yn+1 at a brief time later, tn+h. It uses a 
weighted average of approximated values of f(t,y) at several times within the interval (tn, tn+h). The 
formula is given by: 

푦 = 푦 +
ℎ
6

(푎 + 2푏 + 2푐 + 푑) 

푡 = 푡 + ℎ 

푎 = 푓(푡 , 푦 ) 

푏 = 푓 푡 +
ℎ
2

, 푦 +
ℎ
2

푎  

푐 = 푓 푡 +
ℎ
2

, 푦 +
ℎ
2

푏  

푑 = 푓(푡 + ℎ, 푦 + ℎ푐) 

 

To run the simulation, it starts with y0 and finds y1 using the above formula, then y1 to find y2 and so 
on. In a mass-spring-damper system, the spring force is expressed as: 

퐹 = −푘푥 

where k is the spring constant and x is displacement (position in a coordinate system). However, in 
this particular dynamic system, the spring force is a bit more complicated: 

Mass Mass 

Spring 

Damper 
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퐹 , = 퐹 ( , ) +  퐹 ( , ) = 푘 퐷푂 , − 퐴푂 , + −푘 퐷퐷 , + 푟 + 푟 − 퐴퐷 ,  

where DOi,j is the desired overlap, AOi,j is the actual overlap, DDi,j is the desired distance, and ADi,j 
is the actual distance between circle i and j, ri, rj is the radius of circle i and  j respectively. 

Figure 21 shows the overlap circle i and j: 

 
Figure 21: Circle-circle intersection 

The actual distance between circle i and j is given by: 

퐴퐷 , = 푥 − 푥 + 푦 − 푦  

where xi, yi, xj, yj are the coordinates of circle i and j respectively. 

From Figure 21, one knows: 

푑 +
푐
2

= 푟  

퐴퐷 , − 푑 +
푐
2

= 푟  

Combining the two gives: 

퐴퐷 , − 푑 + (푟 − 푑 ) = 푟  

Multiplying through and rearranging the above equation gives: 

푑 =
퐴퐷 , − 푟 + 푟

2퐴퐷 ,
 

One knows the area of the sector (RPS) can be calculated using: 

퐴 ( ) = 푟 cos
푑
푟

 

And the area of the segment (RTS) is: 

ri rj 

ADi,j 

c 

d 

(xi,yi) (xj,yj) P Q 

R 

S 

T 
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퐴 ( ) = 퐴 ( ) − 퐴 ( ) = 푟 cos
푑
푟

− 푑 푟 − 푑  

By using the above formula twice, one for each half of the overlapped segment, the actual 
overlapped area of circle i and j is: 

퐴푂 ,

= 푟 cos
퐴퐷 , + 푟 − 푟

2퐴퐷 , 푟
+ 푟 cos

퐴퐷 , + 푟 − 푟
2퐴퐷 , 푟

−
1
2

−퐴퐷 , + 푟 + 푟 퐴퐷 , + 푟 − 푟 퐴퐷 , − 푟 + 푟 퐴퐷 , + 푟 + 퐴퐷 , − 푟 + 푟  

With all the above calculated, Fi,j can be found. However, in the case that when two circles are 
desirably distanced but currently overlapped, the following is used to make the repelling force 
stronger: 

퐹 , = 퐹 ( , ) +  퐹 ( , ) × 푂푚 

where Om is the overlap multiplier. 

To find the x component force of Fi,j:  

퐹  , =
퐹 , 푥 − 푥

푥 − 푥 + 푦 − 푦
 

And the y component force of Fi,j: 

퐹푦 , =
퐹 , 푦 − 푦

푥 − 푥 + 푦 − 푦
 

Repeat the above steps to find spring force to circle i from all the other circles and sum up its x 
component and y component forces. Same procedure is used to find component spring forces for 
circle j, and so on. 

The damping force is expressed as: 

퐹 = −푐푣 = −푐푥̇ = −푐
푑푥
푑푡

 

where c is the damping coefficient and v is the velocity, which is the derivative of x with respect to 
t. 

Newton’s second law gives: 

퐹 = 푚푎 = 푚푥̈ = 푚
푑 푥
푑푡

 

where m is the mass, a is the acceleration of the m, which is the derivative of v with respect to t.  

The above spring force, damping force equations and Newton’s second law combine to form a 
second-order differential equation for displacement x as a function of time t: 

푚푥̈ + 푐푥̇ + 푘푥 = 0 

Rearrange to get: 
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푥̈ = −
푐
푚

푥̇ −
푘
푚

푥 

Recall the previously mentioned differential equation 푦′ = 푓(푡, 푦), if 푦 = 푥
푥̇ , then 푦′ = 푥̇

푥̈ . 
With the above equations and an initialised y0, a dynamic system can be constructed with the 
Runge-Kutta method. 

The visualisation tool uses MATLAB’S ode45 function for the dynamic system simulation. An 
example of this tool’s interface is shown in Figure 22. 

 

Figure 22: Explanatory power visualisation tool 

4.4 Quantitative measurement 

When visualising the explanatory power, a better diagram (i.e., one that indicates greater 
explanatory power) has in order of priority: 

1) Fewer circles (regardless of whether they are red/solid-lined or blue/dotted-lined), and 
2) Only if a default hierarchical structure exists, fewer clusters, and 
3) Preferably an obvious decision surface that separates the red/solid-lined circles from the 

blue/dotted-lined circles, and 
4) Only if the problem has a balanced class, greater symmetry, and 
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5) Fewer overlapping between circles of the same colour, and 
6) If a default hierarchical structure does not exist, fewer clusters 

The above list can be quantified using the following methods: 

1) Counting the number of circles 
2) Using the Quality Threshold (QT) clustering algorithm [49]. Clustering algorithms are used to 

group similar data into clusters. Unlike the traditional K-means clustering algorithm [75], QT 
clustering does not require specifying the number of clusters and always returns the same result 
when run several times. 

3) Using a common algorithm that determines linear separability 
4) Using various algorithms that measure degrees of symmetry (e.g. reflectional symmetry) 
5) Counting the percentage of circles with no overlaps 
6) Using the QT clustering algorithm 

It is beyond the scope of this thesis to implement all of these different quantifications; however, the 
counting of circles and the counting of clusters has been implemented and is demonstrated in 
Section 5.1.5. The author believes these are sufficient measurement other than observers’ subjective 
view. 

4.5 Brief manual for Explanatory Power Visualisation Tool v1.0 

4.5.1 Prepare the input file 

In order to visualise explanatory power, the used knowledge representation (rules, for example) has 
to be interfaced to the visualisation tool in the following way: 

 First row of the input file should contain the names of each attribute of the rule, such as 
condition, action, fitness, etc., and separated by tabs. 

 The corresponding attributes of the first rule should be printed to the second row, and separated 
by tabs. 

 The second rule starts from the third row and same applies to rest of the rules with each rule 
starting from a new row. 

4.5.2 Parameters pane 

The following settings must be specified, 

 Mass constant m (the tool uses 5 by default). Greater value gives greater node inertia. The 
“Log sizing” box should be checked if one wishes to use logarithm sizing for the nodes. 

 Spring constant k (4 by default). A greater value gives greater spring force between nodes. 

 Damping constant c (4 by default). The greater the value the sooner all nodes reach 
equilibrium, but may also trap the system in local minima configurations. 

 Distance multiplier Dm (10 by default). It is a factor used in the desired distance calculation. It 
adjusts the distance between two nodes when they are desirably distant. One should increase 
this value if nodes are clustered together and vice versa. 
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 Overlap multiplier Om (5 by default). It is a factor used in the spring force calculation. Increase 
this value to increase the repelling force when two nodes are currently overlapped but desirably 
distant. 

 Area multiplier Am (10 by default). It is a factor used in the node’s receptive field area 
calculation. One should increase this value if nodes appear too small on the plotting area and 
vice versa. 

4.5.3 Plot pane and information pane 

Figure 22 is the visualisation of classifiers with matched and not-matched actions. Classifiers with 
matched action 0 are red solid nodes and rules with matched action 1 are blue dotted nodes. The 
areas of these circles are the generality of rules whereas everywhere outside a circle should be 
considered as its not-matched receptive field.  

One can click on a node (on the edge) to view its characteristics displayed on the top right 
information pane. Note that because each classifier has two actions, there are two values for entries 
such as actions, predictions, no. of matches and DH factors for each corresponding action. The 
default hierarchy factors indicate possible hierarchical relationships, which is previously described 
in Subsection 2.3.5 and some DHs results are discussed in Subsection 6.2.2.4. 

Extensive results from the primary experiments using this tool are given throughout the remaining 
chapters of this thesis. 

4.6 Summary of chapter 

This chapter introduces a new method to visualising classifier for exploring their explanatory 
power. 

Section 4.1 states the importance of explanatory power for machine learning systems. 

Section 4.2 gives a brief review of rule compaction and condensation algorithms in the GBML 
literature. 

Section 4.3 shows the dynamic spring-damper system used to visualising rules. The difference 
between rules indicates their “overlapping” and “distance”. 

Section 4.4 suggests several quantitative measuring techniques for the graphs generated using the 
visualisation tool. 

Section 4.5 provides a brief manual when using the visualising tool. 

With the end of this chapter, it is time to experiment with MILCS with different test problems and 
benchmark the results against other systems. Additionally, with the help of this visualising tool; one 
is able to see how they perform in terms of explanatory power. 

  



 
84 

 

 
 

 

 

Chapter 5 

5 Experimental Results 

This chapter presents the basic experimental results of the thesis. 

This chapter is structured as follows. In Section 5.1, a basic test problem called multiplexer problem 
is used to compare the scale-up of MILCS to the other LCSs. In Section 5.2, another benchmark 
problem named even parity is tested on MILCS and other LCSs to further study their performances 
and explanatory power. 

5.1 Multiplexer problem experiments 

5.1.1 Problem description 

The multiplexer problems have been subject of study for long time in learning classifier system 
research. They are particularly useful in the examining the scale-up of a system, since multiplexer 
problems of increasing size can be easily specified. 

Multiplexing is a term used to refer to a process where multiple signals or digital data streams are 
combined into one signal over a shared medium. The aim is to share an expensive bandwidth 
resource. A digital multiplexer is a device to select one of many digital input signals and outputs 
that into a single line. For example, a 3 multiplexer is shown in Figure 23. 
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Figure 23: Semantics of a 3 multiplexer 

If selector has a value of 0 would connect Input 0 to the output and value of 1 would connect Input 
1 to the output. Table 7 contains the truth table for this multiplexer. 

Selector Input 0 Input 1 Output 

0 0 0 0 

0 0 1 0 

0 1 0 1 

0 1 1 1 

1 0 0 0 

1 0 1 1 

1 1 0 0 

1 1 1 1 

Table 8: Truth table of 3 multiplexer 

One can tell from the table that the output value is the selected input value. Since the number of bits 
in a multiplexer is the number of inputs plus the base 2 log of that number, there are also 6 
multiplexers, 11 multiplexers, 20 multiplexers and so on. For any number N greater than one there 
is a  (log 푁 + 푁) multiplexer. When used in a learning classifier system, selectors are referred as 
address bits whereas inputs are referred as data bits. For instance, an 11 multiplexer rule, 

Input 0 Input 1 

Output 

Selector 
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Figure 24: An 11 multiplexer rule explained 

As one can see that 3 bits are required to address 8 bits of data, the address bits 010 indicate the 
third input (data bits) which is 1, thus the output is 1. 

The multiplexer task for a learning classifier system is: given a number of training instances with 
the correct output (such as the one above), the system should eventually evolve a set of rules that 
gives the correct output by given any input. Side goals of this main goal are to do so quickly, scale 
up well for larger multiplexers, and yield rule sets that are compact, and have good explanatory 
power. In order to show the scalability of MILCS with respect to the problem complexity, a test set 
of 6-bit, 11-bit and 20-bit multiplexer problems are used. The performance of MILCS is compared 
to other state-of-the-art LCSs. XCS, as described in Subsection 2.3.1.2, is the most widely used 
LCS and regarded as the main standard. Mentioned in Subsection 2.3.1.3, UCS is an adaption of the 
standard to supervised learning. Therefore, such comparison can show a good performance 
overview of MILCS. 

5.1.2 Parameter settings 

The version of XCS used throughout the rest of the thesis is Martin’s C implementation [14] and 
UCS Java source code was kindly provided by Orriols-Puig [84]. MILCS parameter settings are 
shown in Table 9 whereas XCS and UCS parameters are shown in Table 10. 

Data bits 

Output bit 

(Rule action) 

Rule condition 

010 10110110  1 

Address bits 
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Problem size 6 11 20 

N 600 1500 2000 

NI 500 500 500 

P# 0.33 0.33 0.33 

θGA 25 25 25 

θsub 70 70 70 

matact 32 128 1024 

matdel 64 256 2048 

matsub 64 256 2048 

delrange  128 2048 5012 

freqdel 0.0156 0.0005 0.00039 

freqinc 0.00001 0.00001 0.00003 

freqmax 0.02 0.02 0.02 

αF 1.0 1.0 1.0 

αP 1.0 1.0 1.0 

PI 0.0 0.0 0.0 

FI 0.01 0.01 0.01 

χ 1.0 1.0 1.0 

µ 0.01 0.01 0.01 

crossoverType uniform uniform uniform 

θperf 1.0 1.0 1.0 

tournamentSize 0.4 0.4 0.4 

selectTolerance 0.001 0.001 0.001 

Table 9: MILCS parameters for the multiplexer problems 
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System XCS UCS 

N 400/800/1500 400/800/1500 

β 0.2 0.2 

 0.1 0.1 

ε0 0.01 N/A 

 5 10 

  0.71 N/A 

θGA  25 25 

χ 0.8 0.8 

µ 0.04 0.04 

θdel 20 20 

δ 0.1 0.1 

θsub 20 20 

P# 0.33 0.33 

PI 10.0 N/A 

εI 0.0 N/A 

FI 10.0 0.01 

Pexplr 0 N/A 

θmna 2 2 

crossoverType uniform uniform 

tournamentSize 0.4 0.4 

selectTolerance 0.001 N/A 

doGASubsumption Yes Yes 

doActionSetSubsumption Yes N/A 

acc0 N/A 0.99 

initializePopulation no N/A 

Table 10: XCS and UCS parameters for the multiplexer problems 

5.1.3 Results and analysis 

Figure 25, Figure 26 and Figure 27 show results from XCS, UCS and MILCS applied to the 6 
multiplexer. In these (and subsequent figures) three lines appear on each plot: the percentage correct 
over the past 50 training cases (square markers), the difference between reward and predicated 
reward over the past 50 training cases (triangle markers), and the number of macro-classifiers 
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(unique classifiers) in the population (circle markers) divided by 1000. Graphs reflect the average of 
10 runs. 

Note that MILCS converges more rapidly than both XCS and UCS. Both MILCS and UCS produce 
a smaller final population of unique classifiers than XCS. 

 
Figure 25: Results from XCS applied to the 6 multiplexer 
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Figure 26: Results from UCS applied to the 6 multiplexer 

 
Figure 27: Results from MILCS applied to the 6 multiplexer 
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Figure 28, Figure 29 and Figure 30 show results from XCS, UCS and MILCS applied to the 11 
multiplexer. UCS converges the fastest and to the smallest final population of unique classifiers 
among all three. While convergence times for both XCS and MILCS are similar, MILCS still 
manages to converge to a smaller final population. 

 
Figure 28: Results from XCS applied to the 11 multiplexer 
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Figure 29: Results from UCS applied to the 11 multiplexer 

 
Figure 30: Results from MILCS applied to the 11 multiplexer 
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Figure 31, Figure 32 and Figure 33 show results from XCS, UCS and MILCS applied to the 20 
multiplexer. In this case, both convergence times and final population of unique classifiers of XCS 
and MILCS are similar. UCS converges the fastest and achieves the smallest final population. The 
“unstable” population size for MILCS in the first 30,000 instances is mainly caused by its rule 
deletion algorithm. Each decline corresponds to the matdel and delrange parameters. 

However, the plots do not reveal a complete story. Complete tests on all possible inputs for each of 
the multiplexer problems were carried out on all three algorithms. Each system passed this “full 
test” in each situation, with the exception of XCS applied to the 20 multiplexer, which failed on a 
small number of cases at the end of some runs portrayed in the average of 10 shown in Figure 31. 
While this difficulty could not be overcome with the code provided in [14], it was able to reproduce 
perfect behaviour in approximately 75,000 iterations using [69]. This is consistent with the results 
on XCS scaling for the multiplexer problems provided in [114]. 

 
Figure 31: Results from XCS applied to the 20 multiplexer 
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Figure 32: Results from UCS applied to the 20 multiplexer 

 
Figure 33: Results from MILCS applied to the 20 multiplexer 
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While an exhaustive evaluation of the MILCS parameter space has not been done, the scale-up 
trends for the parameters are shown as follows: N is approximately 30  number of optimal rules11 
(which is calculated as 2position bits+2 ), matact is roughly 10  previous matact, matsub is 2  matact, 
matdel is normally the same as matsub, delrange is 2  previous delrange, freqdel is usually a number 
between 1 and 10 (the desired number of firings at the beginning of an experiment) divided by 
delrange, freqmax is the maximum freqdel can reach towards the end of an experiment, freqinc is the 
difference between freqdel and freqmax divided by the average number of GA runs per experiment, 
and the rest of the parameters could stay the same. Because MILCS uses “maturity” to decide if a 
classifier can act, subsume or be removed, the settings for these maturity-related parameters require 
changing if the number of optimal rules are growing exponential with the increasing problem sizes 
(i.e., the multiplexer problem). In other cases, these parameters could most often remain the same. 
Usually the freqdel alone w give MILCS sufficient deletion pressure for a compact final population. 
However, due to a relatively large amount of “buffer” rules in exist in the final population; it is 
possible to further reduce its size by experimenting the use of freqinc and freqmax. 

5.1.4 Scalability 

Log-log graph is used to show the scalability of all three algorithms. Log-log graphs are widely 
used to represent data that are expected to be scale-invariant. Such graphs are described by two 
variables as a scatter graph. The two axes display the logarithm of values of the variables, not the 
values themselves. In Figure 34, x-axis represents the logarithm of final rule set size and y-axis 
represents the logarithm of number of evolutions before convergence. The straight lines on these 
graphs imply polynomial scale up and the slope indicates the order of the polynomial. 

The results reveal MILCS scaling up slightly worse than XCS and UCS (see Figure 34), 

                                                        
11 A solution rule set that is complete, accurate, non-overlapping and minimal [64]. 
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Figure 34: Log-log plot of polynomial scaling of XCS, UCS and MILCS on the multiplexer 

problems 

However, all three are scaling as low-order polynomials. Both XCS and UCS have almost the same 
scalability whereas there is an apparent difference between them and MILCS. However, it is not of 
significant order. Moreover, the previous results indicate that MILCS is ending with a substantially 
smaller set of unique classifiers. Hand examination of rule sets has revealed that almost all of the 
mature rules at the end of MILCS runs are best-possible-generalised rules for the multiplexers. 
However, this examination relies on the knowledge of the underlying problem. In the following 
section, the visualisation is used to show the comparative explanatory power of the final rule sets. 

5.1.5 Visualisation of explanatory power 

To make a valid comparison that is not built on pre-existing knowledge of the problem at hand, the 
visualisation will include all elements (rules) that play a role in the output determination of the final 
system. In XCS exploitation mode (the mode in which final results are evaluated), the following 
factor is computed: 

∑(푝푟푒푑푖푐푡푖표푛 × 푓푖푡푛푒푠푠)
∑ 푓푖푡푛푒푠푠

 

Over all matching rules, for all actions, and the action with the highest factor is selected. Therefore, 
since all the rules participate in action selection, all these rules are included in the visualisation. 
Note that one could employ additional steps to “prune” out rules that make negligible contributions 
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to this factor in particular input cases. However, this generally non-trivial step is not included in the 
XCS or UCS algorithms, therefore it is not included in the comparisons presented below. 

However, in MILCS on an “exploitation” trial, only the rules with action-selection maturity above a 
threshold are employed. The rule, either matched or not matched, with the maximum predicted 
reward is always selected as the rule that acts. Therefore, only these rules are used in the 
visualisation.  

Figure 35, Figure 36 and Figure 37 show visualisations of the final rule sets from XCS, UCS and 
MILCS (respectively) applied to the 6 multiplexer. The smaller, final MILCS rule set, and its 
inclusion of only perfect generalisations is clear. Based on the indicators outlined in Section 4.4, it 
is possible for a human viewer to determine (either qualitatively or quantitatively) the relative 
explanatory powers of XCS, UCS and MILCS without requiring a detailed understanding of the 
rule-form of a correct final solution for this particular problem. 
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Figure 35: Visualisation of the final rule set developed by XCS on the 6 multiplexer 
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Figure 36: Visualisation of the final rule set developed by UCS on the 6 multiplexer 
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Figure 37: Visualisation of the final rule set developed by MILCS on the 6 multiplexer 

Figure 38, Figure 39 and Figure 40 show visualisations of the final rule sets from XCS, UCS and 
MILCS (respectively) applied to the 11 multiplexer. Once again, the superior explanatory power of 
the MILCS rule set is apparent. As in the 6 multiplexer, a decision surface between the two actions 
is apparent, even after the projection of the rule set to a two-dimensional space. 
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Figure 38: Visualisation of the final rule set developed by XCS on the 11 multiplexer 
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Figure 39: Visualisation of the final rule set developed by UCS on the 11 multiplexer 



 
103 

 

 
Figure 40: Visualisation of the final rule set developed by MILCS on the 11 multiplexer 

Figure 41, Figure 42 and Figure 43 show visualisations of the final rule sets from XCS, UCS and 
MILCS (respectively) applied to the 20 multiplexer. While a linear decision surface is no longer 
apparent in the MILCS result, the less complex structure of the MILCS rule set when compared to 
the XCS and UCS rule sets is apparent. 
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Figure 41: Visualisation of the final rule set developed by XCS on the 20 multiplexer 



 
105 

 

 
Figure 42: Visualisation of the final rule set developed by UCS on the 20 multiplexer 
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Figure 43: Visualisation of the final rule set developed by MILCS on the 20 multiplexer 

The Java implementation of QT clustering algorithm [49] is used on the above graphs. Final 
positions of all nodes are imported to the algorithm and the threshold parameter is set to 20. 
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Problems System Number of circles Number of clusters 

6 multiplexer XCS 46 6 

 UCS 21 4 

 MILCS 13 3 

11 multiplexer XCS 180 27 

 UCS 53 13 

 MILCS 47 10 

20 multiplexer XCS 484 85 

 UCS 142 34 

 MILCS 102 25 

Table 11: QT clustering results of XCS, UCS and MILCS 

It can be seen from Table 11 that MILCS has the smallest number of circles and clusters of all while 
XCS has the largest. Note that while only some small portion of the final XCS and UCS rule sets 
are perfect generalisations, and a human could detect these with knowledge of the multiplexer, that 
would not be the case in a problem of unknown structure. Since the goal is to relate an uninformed 
comparison of explanatory power, the author believes these figures and numbers are sufficient. 

5.1.6 Effect of deletion parameters 

Effective settings for the deletion parameters freqdel, freqinc, freqmax, and delrange are highly problem 
dependent. First of all, delrange should be decided. It is dependent on the problem length and input 
space and should be large enough for a classifier to fire at least once. The freqdel should then be set 
to something between 0 and 1 over delrange so that any classifiers do not fire at least once within the 
specified deletion range gets deleted. A few runs and manual examination of the results are 
recommended to adjust the best setting for delrange. Freqdel can also be raised higher if the problem is 
not suffered from severe class imbalance. Usually these two parameters allow a compact solution 
for most problems. However, when the final solution size requires further reduction, freqdel can be 
lowered for batch deletion. Also note that towards the end of a run, the optimal solution might have 
already been discovered but new rules are still being generated, which might result a final 
population consisting of both optimal solution and others. This is especially noticeable when the 
difference between matdel and matact is big. To overcome this problem, freqinc and freqmax can be 
used to gradually raise the deletion threshold so that unfit rules get deleted more and more quickly 
once the system performance is high enough (which possibly indicates the existence of optimal 
solution). 

Figure 44 shows the effect the delrange on the 11 multiplexer problem. Only performance and 
population size is shown in this graph for a better observation. The square markers indicate the 
original performance (white filled square marker) and population size (black filled square marker) 
in Subsection 5.1.3. The round markers show the performance and population size of a decreased 
studying parameter and triangle markers show an increase. This applies to the rest of this subsection 
unless otherwise stated.  
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Figure 44: delrange effect on the 11 multiplexer problem 

This parameter has some small impact on the final population size (up to 8.5%). However, it does 
influence the learning curve and performance convergence time. There is a noticeable dip in the 
population at the beginning of the experiment which corresponds to the its delrange. The dip also 
indicates where the deletion starts to act (before which point subsumption is the only cause for 
population decrease). In this case, delrange = 1024 has the steepest learning curve but with the largest 
final population size. However, it is not always the case that a small delrange will speed up 
performance convergence. If it is set to too small, classifiers will fail to act within the given range 
and the system will fall apart. On the other hand, larger delrange slows down the performance 
convergence but results a relatively smaller final population size. 
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Figure 45: freqinc effect on the 11 multiplexer problem 

It can be seen from Figure 45 that freqinc only starts to take effect once the performance has reached 
1 which corresponds to θperf. Therefore, it does not influence performance learning curve. A larger 
freqinc results a more compact final solution size. In this case, freqinc = 0.00003 results a final 
population of only half the size of freqinc = 0. Larger freqinc can be dangerous because fit rules, 
especially with low matching occurrence, might get deleted by mistake. In the case of freqinc = 
0.00006, the final size is only slightly reduced but it fails to reach 100% performance (휃 ×
푚푎푥푖푚푢푚 푟푒푤푎푟푑) 
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Figure 46: freqdel effect on the 11 multiplexer problem 

Since setting freqdel = 0 turns off the deletion completely, the two settings studied here are both 
larger than the original. The sharp decrease right after 2000 iterations corresponds to delrange (2048) 
and freqdel immediately has an effect on the population size. A smaller freqdel usually makes the 
performance converge faster but with the compensation of a larger final population size. However, 
in this case freqdel = 0.0005 has a steeper population convergence curve which also allows a similar 
final population size to the others. This is caused by the early act of freqinc once its performance 
reaches 100% and freqinc does not take effect until much later for the others two. 

5.2 Even parity problem 

5.2.1 Problem description 

To further investigate the performance of MILCS, the parity problem is next to test. It has been 
widely used as another benchmark for learning classifier systems [64] [8]. The parity problem is 
defined as follows: given a binary string of fixed length, the output is one if the number of ones in 
the string is odd, otherwise the output is zero. The problem does not allow any generalisation at all, 
unless some irrelevant bits12 are added in the input example. This problem is an extreme example of 

                                                        
12 An irrelevant bit has no influence on the output class. Therefore, in the ternary alphabet, the rules 

can generalise it with the “don’t care” symbol “#”. 
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specificity. A single “don’t care” symbol “#” in the condition makes the rule over-general. If the 
length of a parity string is l then the optimal final rule set should contain 2l number of non-# rules. 
A test set of parity problems ranging from 5 to 7 bits (with no irrelevant bits) are used to test the 
performance of MILCS against XCS and UCS. 

5.2.2 Parameter settings 

The parameter settings for MILCS are shown in Table 12 whereas XCS and UCS parameters are 
shown in Table 13. freqinc and freqmax  is set to 0.0 because it is believed freqdel alone is sufficient for 
this problem. 

Problem size 5 6 7 

N 800 1500 2000 

NI 600 1000 1500 

P# 0.33 0.33 0.33 

θGA 5 5 5 

θsub 70 70 70 

matact 128 256 512 

matdel 256 512 1024 

matsub 256 512 1024 

delrange  512 1024 2048 

freqdel 0.00195 0.00097 0.00097 

freqinc 0.0 0.0 0.0 

freqmax 0.0 0.0 0.0 

αF 1.0 1.0 1.0 

αP 1.0 1.0 1.0 

PI 0.0 0.0 0.0 

FI 0.01 0.01 0.01 

χ 0.8 0.8 0.8 

µ 0.04 0.04 0.04 

crossoverType uniform uniform uniform 

θperf 1.0 1.0 1.0 

tournamentSize 0.4 0.4 0.4 

selectTolerance 0.001 0.001 0.001 

Table 12: MILCS parameters for the even parity problems 
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System XCS UCS 

N 800/1600/3200 800/1600/3200 

β 0.2 0.2 

 0.1 0.1 

ε0 0.01 N/A 

 5 10 

  0.71 N/A 

θGA  25 25 

χ 0.8 0.8 

µ 0.04 0.04 

θdel 20 20 

δ 0.1 0.1 

θsub 20 20 

P# 0.33 0.33 

PI 10.0 N/A 

εI 0.0 N/A 

FI 0.01 0.01 

Pexplr 0 N/A 

θmna 2 2 

crossoverType uniform uniform 

tournamentSize 0.4 0.4 

selectTolerance 0.001 N/A 

doGASubsumption Yes Yes 

doActionSetSubsumption Yes N/A 

acc0 N/A 0.99 

initializePopulation no N/A 

Table 13: XCS and UCS parameters for the even parity problems 

5.2.3 Results and analysis 

Figure 47, Figure 48 and Figure 49 show results from XCS, UCS and MILCS applied to the 5 bit 
even parity. Graphs reflect the average of 10 runs. 

Note that MILCS converges more rapidly than both XCS and UCS and it also converges to a 
smaller final rule set. XCS is able to converge slightly fast than UCS but the latter manages to 
achieve a compacter final rule set. 
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Figure 47: Results from XCS applied to the 5 bit even parity 

 
Figure 48: Results from UCS applied to the 5 bit even parity 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25

Pe
rf

or
m

an
ce

, E
rr

or
, P

op
 s

iz
e 

(1
0 

ru
ns

)

Number of Instances (x1000)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25

Pe
rf

or
m

an
ce

, E
rr

or
, P

op
 s

iz
e 

(1
0 

ru
ns

)

Number of Instances (x1000)



 
114 

 

 
Figure 49: Results from MILCS applied to the 5 bit even parity 

Figure 50, Figure 51 and Figure 52 show results from XCS, UCS and MILCS applied to the 6 bit 
even parity. In this case, UCS has the fastest convergence speed but MILCS still manages to 
converge to the smallest final population of all. XCS converges faster than MILCS but has the 
largest final rule set. 
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Figure 50: Results from XCS applied to the 6 bit parity 

 
Figure 51: Results from UCS applied to the 6 bit parity 
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Figure 52: Results from MILCS applied to the 6 bit even parity 

Figure 53, Figure 54 and Figure 55 show results from XCS, UCS and MILCS applied to the 7 bit 
even parity. Once again UCS converges the fastest in terms of performance while MILCS 
converges to the smallest final rule set size. XCS converges faster than MILCS but has the largest 
final population size. 
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Figure 53: Results from XCS applied to the 7 bit parity 

 
Figure 54: Results from UCS applied to the 7 bit parity 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 10 20 30 40 50 60 70 80 90 100

Pe
rf

or
m

an
ce

, E
rr

or
, P

op
 s

iz
e 

(1
0 

ru
ns

)

Number of Instances (x1000)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 10 20 30 40 50 60 70 80 90 100

Pe
rf

or
m

an
ce

, E
rr

or
, P

op
 s

iz
e 

(1
0 

ru
ns

)

Number of Instances (x1000)



 
118 

 

 
Figure 55: Results from MILCS applied to the 7 bit parity 

Overall, the performances between UCS and XCS are similar and the former has a smaller rule set 
than the latter due to learning the best action map rather than the complete action map. This is 
consistent with the results reported in [8]. Although MILCS only converges the fastest at the 5 bit 
parity, it has the most compact final population size of all. This is expected because of the lack of 
“voting” in the action selection in MILCS and the concept of “structural learning” embedded in this 
system. 

5.3 Summary of chapter 

This chapter presents the first part of the experimental results of the thesis. 

Section 5.1 reveals the scale-up of MILCS and compares it to XCS and UCS. The multiplexer 
problems are tested and the explanatory power of the final rule set are visualised using the tool 
introduced in Chapter 4. The benchmark results suggest that the scale-up of MILCS is slightly 
worse than that of XCS and UCS. However, MILCS manages to evolve a parsimonious rule set 
with strong explanatory power. This is visualised and measured using the tool introduced in Chapter 
4. The effect of deletion parameters has also been studied. 

Section 5.2 studies another benchmark problem: parity. Three tests with increasing problem length 
have been tested on MILCS, XCS and UCS, and MILCS is shown to converge to the most compact 
final population of all. 
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Chapter 6 

6 Knowledge Discovery in Protein 
Structure Prediction 

In this chapter, the task of data mining is further elaborated in terms of a process of knowledge 
discovery. The basic knowledge discovery process is studied followed by its development in the 
field of machine learning and GBML. Protein structure prediction, the chosen real-world knowledge 
discovery application, is tested on MILCS along with other machine learning techniques. 

The section is structured as follows. Section 6.1 gives the necessary background on knowledge 
discovery through machine learning. Section 6.2 introduces the domain of protein structure 
prediction and describes the chosen experiment suite, followed by a results analysis. Section 6.3 
provides a summary of this chapter. 

6.1 Knowledge discovery and machine learning 

Subsection 2.3.4 describes the urgent need for data mining is to extract useful information from the 
ever increasing accumulated data collected across a wide variety of fields. However the definition 
of data mining is often overloaded. Knowledge discovery, also known as knowledge discovery in 
databases (KDD), on the other hand, refers to the overall process of discovering useful knowledge 
from data whereas data mining is a particular step of the process [36]. In addition to the data mining 
step itself, KDD also includes several other steps. To simply the entire process, it can be roughly 
categorised into data pre-processing and discovered-knowledge post-processing. The KDD process 
is inherently iterative, as illustrated in Figure 56. 
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Figure 56: Knowledge discovery process 

Data pre-processing involves the following basic steps (among others): 

1) Data integration – A necessary step if the data comes from several different sources. It removes 
inconsistencies in the attribution names throughout the entire data sets. 

2) Data cleaning – Basic operations include removing noise if appropriate, collecting the necessary 
information to model or account for noise, filling in missing values, etc. This step has a strong 
overlap with data integration. It is often common to bring in external domain knowledge from a 
user to achieve maximum accuracy of the source data. 

3) Discretisation – A process to transform continuous attributes into nominal attributes, taking on 
only a few discrete values. It is an essential step for data mining algorithms that cannot cope 
with real-valued attributes. 

4) Attribute selection – This consists of selecting, among all the attributes of the data set, a subset 
of attributes relevant for the target data mining task. The motivation for this step is the fact that 
irrelevant attributes can somehow “confuse” the data mining algorithm, leading to the discovery 
of inaccurate or useless knowledge. 

Although several high-level knowledge representations, among which is the prediction rules, can 
express discovered knowledge to a level that it is comprehensible for the user (explanatory power, 
see Chapter 4), knowledge “interestingness” is often difficult to define and quantify due to its 
subjective nature. This is the motivation for discovered-knowledge post-processing. There are two 
mainly step in post-processing prediction rules discovered by LCSs. 

1) Rule compaction – This is covered in Subsection 4.2. 
2) Interesting-rules extraction – As mentioned early, many data mining algorithms have been 

designed to discover accurate, comprehensible rules but they were not designed to discover 
interesting rules, which is a rather more difficult and ambitious goal. However, it can still be 
achieved by the involvement of a user, i.e., the subjective way. By contrast, an objective way is 
data-driven and domain-independent. The basic idea is that the interestingness of a rule depends 

Data Pre-processing Data mining Post-processing 

Knowledge 
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not only on the quality of the rule itself, but also on its similarity to other rules. By comparing 
one rule against others is believed to yield some measurement in its interestingness [39]. 

The discovery of accurate knowledge has long been the goal of machine learning. Data mining has 
been particularly popular among the LCSs community.  A first empirical comparison between LCSs 
and other machine learning techniques were made in 2001 and some competitiveness of LCSs was 
shown when applying to real-world classification tasks [9]. Similar results were obtained in [4]. 
Llora et al. implemented NAX, a LCS specialist in diagnosis of prostate cancer. The system has an 
overall performance similar to human examination, the current gold standard of care [73]. Recall 
Section 4.2, although several approaches have been attempted to develop an effective compaction 
algorithm for LCSs, it is believed the resulting rule set might suffer from over-fitting13. This is 
caused by extracting a minimal set of rules that covers the original dataset and ignores a large part 
the discovered domain knowledge achieved by LCSs. To overcome this, a new rule-driven 
approach has been introduced for better knowledge extraction and it was shown to highlight many 
potentially interesting rules that describe the problem space efficiently [58]. 

6.2 Protein structure prediction (PSP) 

Proteins are heteropolymer molecules constructed as a chain of amino acids. There are 20 possible 
types of amino-acids that appear in nature, so one can see a protein as a string drawn from a 20-
letter alphabet. The chain, however, does not have a linear structure. While being constructed, this 
chain folds to create a complex 3-D structure. This structure is very difficult to determine 
experimentally. Therefore, it needs to be predicted. This is the aim of the protein structure 
prediction field. 

Protein structure prediction is a classification problem of significant, current scientific interest. 
While the thrust of this thesis is in developing a new machine learning methodology, it is a part of a 
larger EPSRC-funded project on such problems. Moreover, such problems are significantly 
complex, noisy, real-world tests for any classification algorithm. This section provides the 
necessary overview of the problem. For a more in-depth overview of protein structure prediction, 
see [79]. 

The prediction of the 3D structure of proteins remains a fundamental and difficult problem in 
computational biology after several decades of research. One of the ways in which this problem can 
be solved is by dividing it into several, easier but by no means trivial, sub-problems. A popular 
approach is to predict some specific attributes of a protein, such as the secondary structure, the 
solvent accessibility or the coordination number. 

 Secondary structure: Proteins are heteropolymer molecules constructed as a chain of 
residues, which are amino acids of 20 different types. This string of amino acids is known as 
primary sequence. In a native state, the chain folds to create a 3-D structure. It is thought that 
this folding process has several steps. The first step, called secondary structure, consists of 
local structures such as alpha helixes, beta strands and coiled coils. These local structures can 
group in several conformations or domains, forming a tertiary structure. 

                                                        
13 The trained rules that only perform well on the given dataset but fail to discover the domain 

knowledge 
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 Coordination number: For a given residue, CN is the number of residues from the same 
protein that are in contact. Two residues are said to be in contact when the distance between the 
two is below a certain threshold. Prediction of CN has been widely studied, since it can 
potentially constrain the search space to be explored using de novo approaches to protein 
structure prediction. A simplified protein model, the HP model, has been used to understand 
protein structure prediction. This model represents the sequence of a protein using two residue 
types: hydrophobic (H) and polar (P), based on its physico-chemical characteristics. 

 Relative solvent accessibility: RSA, i.e., the exposure of residues to the solvent where the 
protein chain is located, is another important topological feature of a protein’s native state. The 
hydrophobic effect has long been recognized as one of the principal effects that influence the 
ultimate structure of a protein. It is commonly assumed that the more hydrophobic residues will 
tend to be segregated in the inside of the structure and consequently will be less accessible to 
the solvent [72]. 

6.2.1 Coordination number prediction (CN) 

6.2.1.1 Problem description 

In order to convert real-valued CN definitions into a set of discrete states, so that they can be used 
as a classification dataset, Kinjo et al. [59] proposed a method to convert them into N class dataset. 
Because the current implementation of MILCS can only deal with two-class problems, source data 
of a two-state CN problem of real proteins using HP representation (ten pairs of training and test 
set, called Real-HP dataset, provided by Stout et al. in [106]) were used. As mentioned in 
Subsection 5.2, each residue is assigned a value of either hydrophobic (H) or polar (P). Windows 
were generated for one, two, and three residues at each side of a target residue and the CN class of 
the target residue assigned as the class of the instance. The dataset uses a WEKA format, ARFF 
[116]. A typical 3-window training set of the dataset is shown as follows, 
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Figure 57: Sample data of a two-state three-window Real-HP dataset 

In Figure 57, the first few lines (starts with @) describe each attribute of the data representation and 
the actual data starts after “@data”. “x” indicates “end of protein chain”, “h” is hydrophobic and 
“p” is polar. Since it is a three-window representation, there are three residues at each side of the 
target residue, resulting a seven residue peptide. The dataset contains a balanced classification task. 
That is, the total numbers of antecedents belonging to each class are the same. However, being a 
real-world problem, the proportions of the two classes for each antecedent (determined by the class 
of the target residue) are different. The distribution of the target residue classes are shown in Figure 
58. 

@relation HP+CN_Q2 
@attribute AA_-3 {h,p,x} 
@attribute AA_-2 {h,p,x} 
@attribute AA_-1 {h,p,x} 
@attribute AA {h,p} 
@attribute AA_1 {h,p,x} 
@attribute AA_2 {h,p,x} 
@attribute AA_3 {h,p,x} 
@attribute class {0,1} 
@data 
x,x,x,h,p,h,h,1 
x,x,h,p,h,h,p,0 
x,h,p,h,h,p,p,1 
h,p,h,h,p,p,h,1 
p,h,h,p,p,h,h,0 
h,h,p,p,h,h,h,0 
… 
… 
h,p,p,h,p,h,p,0 
p,p,h,p,h,p,h,0 
p,h,p,h,p,h,x,0 
h,p,h,p,h,x,x,0 
p,h,p,h,x,x,x,0 
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Figure 58: Distribution of hydrophobic/polar target residues classes in the Real-HP dataset: 

h=hydrophobic, p=polar 

 

6.2.1.2 Parameter setting 

This experiment has been tested on MILCS, XCS and UCS, along with published results from 
GAssist [106]. The GAssist results are used here because these published results were yielded from 
a very well tuned system for this type of prediction problem.  

Three different window sizes for two-state predictions have been tested on all three systems. 

MILCS parameter settings are shown in Table 14 and XCS and UCS parameters are shown in Table 
15. The deletion for MILCS is again solely relied on freqdel. 
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Window size 1 2 3 

N 100 200 300 

NI 50 50 50 

P# 0.66 0.66 0.66 

θGA 25 25 25 

θsub 20 20 20 

matact 150 150 150 

matdel 300 300 300 

matsub 300 300 300 

delrange  2500 2500 2500 

freqdel 0.0004 0.0004 0.0004 

freqinc 0.0 0.0 0.0 

freqmax 1.0 1.0 1.0 

αF 1.0 1.0 1.0 

αP 1.0 1.0 1.0 

PI 0.0 0.0 0.0 

FI 0.01 0.01 0.01 

χ 1.0 1.0 1.0 

µ 0.01 0.01 0.01 

crossoverType two-point two-point two-point 

θperf 1.0 1.0 1.0 

tournamentSize 0.4 0.4 0.4 

selectTolerance 0.001 0.001 0.001 

Table 14: MILCS parameters for the CN problem 

With the increasing window size, only maximum population size is increased whereas the other 
parameters stay the same. This is somewhat different from the scale-up of the multiplexer problems. 
The CN problem using HP representation can be seen as a 3, 5 or 7 bit problem (for three different 
window sizes). Comparing to the 6, 11 and 20 bit multiplexer problems, the scale-up of the CN 
problem with HP representations does not have a major impact on the parameters. 
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System XCS UCS 

N 100/200/300 100/200/300 

β 0.2 0.2 

 0.1 0.1 

ε0 0.01 N/A 

 5 10 

  0.71 N/A 

θGA  25 25 

χ 0.8 0.8 

µ 0.04 0.04 

θdel 20 20 

δ 0.1 0.1 

θsub 20 20 

P# 0.33 0.33 

PI 10.0 N/A 

εI 0.0 N/A 

FI 0.01 0.01 

Pexplr 0 N/A 

θmna 2 2 

crossoverType two-point two-point 

tournamentSize 0.4 0.4 

selectTolerance 0.001 N/A 

doGASubsumption Yes Yes 

doActionSetSubsumption Yes N/A 

acc0 N/A 0.99 

initializePopulation no N/A 

Table 15: XCS and UCS parameters for the CN problem 

In order to be consistent with the GAssist rule presentation, a sparse encoding of rules have been 
implemented.  

In XCS, UCS and MILCS, the representation is designed to be three condition bits each for the “H”, 
“P”, and “end of chain” conditions of the neighbouring residues, and two bits each for the “H” and 
“P” conditions of the target residue. The following table summarises the encoding, 
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 Neighbouring residues Target residue 

h 100 10 

p 010 01 

x (end of chain) 001 N/A 

Table 16: HP problem rule translation 

For instance, a typical window size 1 (1 neighbouring residue on each side of the target residue) 
input instance, 

h,p,h,1 

Using the above encoding gives, 

10001100 1 

It is a 7-bit condition, given that there are two neighbouring residues (3 bits each), and the target 
residue (2 bits). However, the weakness of this encoding lies on the subsumption algorithm. For 
example, consider the following two rule conditions: 

1##01100 

10#01100 

These two rules conditions do not subsume each other if one uses the traditional subsumption 
algorithm. However, in this case, either of them could subsume the other, because both 1## and 10# 
can only match one residue, which is h. For this reason, a representation-specific subsumption 
algorithm has been implemented in XCS, UCS and MILCS, for the best results and fair comparison 
to the similar rule representation in GAssist. 

Also, in order to show a fair comparison, UCS has been modified to use ‘Tertiary Representation” 
rather than the default “Real-valued Representation” when learning with datasets. In this way, the 
subsumption algorithm and the human readability of final rule sets is the same as in XCS, MILCS 
and GAssist. 

6.2.1.3 Results and analysis 

Performance results presented here use the same training and testing procedures as those in [106]. A 
ten-fold cross validation has been carried out on each algorithm. Averaged results are shown in 
Table 17. The GAssist results were generously provided by the authors of [106]. 
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Window size Method Performance  Solution size Max evals 

1 XCS 58.0% ±5.4%  58.1±3.1 300000 

1 UCS 62.1% ±1.8%  47.6±7.0 300000 

1 MILCS 63.4% ±0.7%  4.4±2.1 300000 

1 GAssist 63.6% ±0.6%  4.0±0.0 8000000 

1 C4.5 63.6%±0.6%  12.0±0.0 N/A 

1 Naïve Bayes 63.6%±0.6%  N/A N/A 

2 XCS 60.1% ±2.9%  151.2±5.3 300000 

2 UCS 60.6% ±3.9%  139.6±8.5 300000 

2 MILCS 63.8% ±0.6%  8.8±2.1 300000 

2 GAssist 63.9% ±0.6%  4.0±0.0 8000000 

2 C4.5 63.9%±0.6%  12.0±0.0 N/A 

2 Naïve Bayes 63.9%±0.6%  N/A N/A 

3 XCS 61.9% ±2.6%  255.2±6.4 300000 

3 UCS 60.3% ±3.3%  248.6±5.9 300000 

3 MILCS 63.9% ±0.8%  17.3±5.9 300000 

3 GAssist 64.4% ±0.5%  5.1±1.0 8000000 

3 C4.5 64.4%±0.5%  24.9±4.5 N/A 

3 Naïve Bayes 64.3%±0.5%  N/A N/A 

Table 17: Results of XCS, MILCS, UCS, GAssist, C4.5 and Naïve Bayes on the two-state CN 
problem using HP representation of various window sizes. A  means that MILCS is 

statistically better than the algorithm to the left. Student T-test with 95% confidence level 
have been applied 

Note that for each algorithm, “Max Evals” is the number of evaluations in a run, and this most 
likely represents a high upper bound on the number of evaluations required to get results of the 
indicated quality. However, these numbers do indicate the relative order of magnitudes of 
convergence times for results shown. Rule set size reflects the number of rules participating in 
action selection at the end of each run.  The performance accuracy is shown along with its standard 
deviation followed by “±”.  

As shown in Table 17, the performance accuracy difference of window size 1 between XCS and 
MILCS is significant. For window size 2, the accuracy of MILCS is significantly better than that of 
XCS and UCS. UCS performs significantly worse than MILCS for window size 3. What is more, 
for all three window sizes, MILCS statically ties with GAssist, C4.5 and Naïve Bayes in terms of 
performance accuracy and the difference between the latter three and the other algorithms are 
statically significant for all three window sizes. In terms of final rule set size (of learning classifier 
systems), the difference between MILCS and GAssist for window size 1 is not significant. 
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However, for the other two window sizes, MILCS tends to have larger rule sets than GAssist, but 
converges an order of magnitude faster14. Final rule set sizes from XCS and UCS are much larger 
than those of MILCS and GAssist’s. This is expected, as the prediction error of maximally accurate 
classifiers no longer reaches the threshold, so that the strong distinction between accurate and 
inaccurate classifiers does not apply. This means that subsumption does not apply, so the population 
size stays larger, even if the problem is successfully learned [16]. Overall, MILCS performance is 
statistically similar to GAssist, which provides the statistically best results, but with far greater 
learning steps. 

For both MILCS and GAssist, it can be observed that the performance accuracy increases with the 
increasing window size. This can be explained by Table 18. The redundancy rate indicates the 
proportion of copies of the same instance in the test set and the inconsistency rate shows the 
proportion of instances with the same attributes (antecedent) but different class. Therefore, with the 
decreasing redundancy and inconsistency rate when the window size increases, larger window size 
yields better performance accuracy. Note that the systems still can learn even with 100% 
inconsistency rate for window size 1 is because of the different proportion of the two classes for 
each antecedent (See Figure 58).  

Window size Redundancy Inconsistency 

1 99.99% 100.00% 

2 99.94% 92.50% 

3 99.75% 81.71% 

Table 18: Redundancy and inconsistency rate of the test set of Real-HP dataset 

6.2.2 Relative solvent accessibility prediction (RSA) 

6.2.2.1 Problem description 

The RSA dataset is provided by Bacardit [7]. For each residue, the actual solvent accessibility is 
computed using the DSSP program [57] and it is normalised by dividing the value by the maximal 
accessibly of the residue’s AA type [91], creating the RSA values. Afterwards, the RSA domain is 
divided into two states by placing a threshold at 25% relative accessibility, effectively converting 
the RSA prediction into a classification problem. ECGA is used to reduce the twenty-letter AA 
alphabets to a binary alphabet using the same procedure reported in [6]. Figure 59 shows some 
sample data from the RSA dataset (also in the WEKA ARRF format): 

                                                        
14 However, it is worth mentioning that GAssist works in a different way from the Michigan LCSs. 
Thus it is a rough approximation of translated performance level.  
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Figure 59: Sample data of binary attributes window size four AlphaRed_SA dataset 

The data is organised in the same structure as in the CN dataset. Window size four is used which 
means there are four neighbouring residues at each side of the targeting residue, resulting a nine-
residue peptide. Target residue with attribute value 0 is AA alphabet group of ACFILMVWY and 1 
is GHNRSTDEKPQ. Neighbouring residues with attribute value 0 indicates 
ACFILMVWYGHNRST and 1 indicates DEKPQX. Approximately 57% of the instances are class 
0 and the rest are class 1, resulting a slight class imbalance. Class imbalance problems have been 
seen as a challenge to learning systems because they tend to be biased towards the majority class 
and leave a poor generalisation for the minority class. However, only mild class imbalance exists in 
this problem; therefore it is not significant. Similar to the CN dataset, the proportions of the two 
classes for each antecedent are different. The distribution of the target residue classes are shown in 
Figure 58.  

@relation AA+SA_Q2 
@attribute AA_-4 {0,1} 
@attribute AA_-3 {0,1} 
@attribute AA_-2 {0,1} 
@attribute AA_-1 {0,1} 
@attribute AA {0,1} 
@attribute AA_1 {0,1} 
@attribute AA_2 {0,1} 
@attribute AA_3 {0,1} 
@attribute AA_4 {0,1} 
@attribute class {0,1} 
@data 
1,1,1,1,1,1,0,0,1,1 
1,1,1,0,1,0,0,1,0,1 
1,1,0,1,0,0,1,0,0,0 
… 
… 
1,1,0,1,1,1,0,1,1,1 
1,0,1,0,1,0,1,1,1,1 
0,1,0,1,0,1,1,1,1,1 
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Figure 60: Distribution of two-letter alphabets target residues classes in the AlphaRed_SA 

dataset 

6.2.2.2 Parameter setting 

MILCS parameter settings are shown in Table 19 and XCS and UCS parameters are shown in Table 
20. 
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Window size 4 

N 2000 

NI 500 

P# 0.1 

θGA 60000 

θsub 20 

matact 450 

matdel 850 

matsub 450 

delrange  512000 

freqdel 0.00001953 

freqinc 0.000001 

freqmax 0.02 

αF 0.001 

αP 0.1 

PI 0.0 

FI 0.01 

χ 1.0 

µ 0.01 

crossoverType two-point 

θperf 1.0 

tournamentSize 0.4 

selectTolerance 0.001 

Table 19: MILCS parameters for the RSA problem 

When compared to the CN problem (Section 6.2.1), the RSA problem is more difficult to learn, due 
to the fact that it is impossible to capture all the information needed for a proper RSA prediction in 
only two letters. Therefore the transformation into a binary alphabet (from a twenty-letter alphabet) 
makes the problem extremely noisy because too much information is lost in the process. While an 
exhaustive evaluation of the MILCS parameter space for this problem has not been studied, for 
learning such problems, θGA should be set to a large number for the mutual information fitness to 
stabilise first. The high delrange and low freqdel settings are used to avoid immature deletion. 
However, it is not the case with the new subsumption and deletion algorithms (see Chapter 7). 
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System XCS UCS 

N 2000 2000 

β 0.2 0.2 

 0.1 0.1 

ε0 0.01 N/A 

 5 10 

  0.71 N/A 

θGA  25 25 

χ 0.8 0.8 

µ 0.04 0.04 

θdel 20 20 

δ 0.1 0.1 

θsub 20 20 

P# 0.33 0.33 

PI 0.01 N/A 

εI 0.0 N/A 

FI 0.01 0.01 

Pexplr 0 N/A 

Θmna 2 2 

crossoverType two-point two-point 

tournamentSize 0.4 0.4 

selectTolerance 0.001 N/A 

doGASubsumption Yes Yes 

doActionSetSubsumption Yes N/A 

acc0 N/A 0.99 

initializePopulation no N/A 

Table 20: XCS and UCS parameters for the RSA problem 

6.2.2.3 Results and analysis 

BioHEL results were given by Bacardit [7] and the results are shown in Table 21. Once again UCS 
was modified to force using “Tertiary Representation” for a fairer comparison (See Subsection 
6.2.1.2). 
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Method Performance Solution size Max evals 

XCS 66.1% ±1.6% 1094.6±44.0 1600000 

UCS 67.1% ±6.6% 566.7±28.7 1600000 

MILCS 65.6% ±1.2% 74.7±12.7 1600000 

BioHEL 66.6% ±0.4% 33.4±4.8 125950000 

C4.5 67.4%±0.2% 61.2±8.6 N/A 

Naïve Bayes 67.2%±0.2% N/A N/A 

Table 21: Results of XCS, UCS, MILCS, BioHEL, C4.5 and Naïve Bayes on a two-state RSA 
problem 

It is interesting to see a similar performance among all six algorithms. The performance accuracy 
differences between MILCS and both non-learning classifier systems are statistically significant. 
There are noticeable differences in the final rule set size (of the learning classifier systems). Both 
BioHEL and MILCS have much smaller final rule set sizes, compared to the XCS and UCS. The 
high standard deviation of UCS performance accuracy indicates that the system is not stable enough 
to solve this problem reliably. Perhaps some fine tuning to the parameters would improve the 
stability, but that is not within the scope of this thesis. “Max evals” for BioHEL is an approximation 
of converge time translated from the iterative learning approach. 

6.2.2.4 Default hierarchies 

DHs (see Subsection 2.3.5) have been observed in this problem using the explanatory power 
visualisation tool. However, because the hierarchical structure of not-matched condition 
(everywhere outside a circle) and not-matched action is difficult to define, default hierarchies of 
matched condition (area of a circle) and action is considered. Figure 61 is the visualisation of final 
rule set derived from one run: 
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Figure 61: Default hierarchies of MILCS rules for the RSA problem 

The overlaps of red and blue circles are highly likely to be DHs. However, this is not certain unless 
the classifiers really form hierarchical structures. For this reason, DH factors of each classifier are 
calculated for both the matched action and not-matched action. 

퐷퐻 푓푎푐푡표푟(+) = %퐶표푟푟(퐹푖푟푒푑)(+) − %퐶표푟푟(푀푎푡푐ℎ푒푑) 
퐷퐻 푓푎푐푡표푟(−) = %퐶표푟푟(퐹푖푟푒푑)(−) − %퐶표푟푟(푁표푡푀푎푡푐ℎ푒푑) 

where (+) indicates a positive firing and (-) indicates a negative firing. 

If either DH factor of a classifier is a large positive value, it indicates a hierarchical structure. By 
using the visualisation tool, it is found that the default rule ######111 has a high DH factor (+19%) 

Exception rules 

Default rule 
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and the red overlapping circles are the exception rules. The conditions and actions of these rules are 
shown in the following table: 

 Cond Act Pre DH factor(+) DH factor(-) 

Default rule ######111 1 600 0.1917 0.04790 

Exception rules ##1#0##1# 0 707 -0.1911 -0.0516 

11#00#1## 0 662 -0.1780 -0.4282 

##0#0##1# 0 727 -0.1342 never fired 

01##011## 0 735 -0.1095 never fired 

#10#0###1 0 685.5846 -0.0918 never fired 

###001### 0 770 -0.0701 never fired 

0#0#0#### 0 795 -0.0448 never fired 

0#100#1## 0 804 -0.0438 never fired 

#0##0#### 0 793 -0.0386 never fired 

Table 22: Default hierarchies of MILCS rules for the RSA problem 

According to the conflict resolution used in MILCS, the action of the highest prediction value is 
used. As one can see the default rule has the lowest prediction of all. Therefore, whenever both the 
default rule and the exception rule match the same instance, the action of the exception rule is fired. 
This demonstrates the expected default hierarchical structure encouragement in MILCS, which is a 
unique contribution this system. However, this is also expected because each rule is evaluated for 
mutual information against all other rules, thus encouraging the development of DHs. 

However, DHs have not been observed in the multiplexor because non-hierarchical rule sets are 
easily derived and problems like the multiplexers probably are most likely too simple to test the DH 
capacity of the system. This is further confirmed in Chapter 7 and the chapter also shows that DHs 
can be discovered in CN. 

6.3 Summary of chapter 

This chapter briefly reviews knowledge discovery through machine learning and reveals the ability 
of MILCS and other machine learning techniques to handle a couple of real-world applications. 

Section 6.1 further extends Subsection 2.1.3 about classification and 2.3.4 on data mining. The 
process of KDD is covered in a simplified form and literature on KDD through machine learning 
has been reviewed. 

Section 6.2.1 shows the performance of MILCS on a real-world protein structure prediction 
problem and compares it against XCS, UCS and GAssist. There is no significant statistical 
difference among MILCS, GAssist, C4.5 and Naïve Bayes in terms of performance accuracy. 
However, results of MILCS are statistically better than those of XCS and/or UCS. In terms of final 
solution size, MILCS is similar to GAssist, which is the most compact, but achieved in far greater 
number of learning steps. 
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Section 6.2.2 introduces a tougher PSP problem called RSA. Although there is no statistically 
significant difference between MILCS and the other LCSs, both C4.5 and Naïve Bayes performs 
significantly better than MILCS. What is more, MILCS manages to evolve a second most compact 
rule set after BioHEL. It can also be seen that the convergence time difference between MILCS and 
BioHEL is large. MILCS also shows some signs of hierarchical structures in the final rule set using 
the visualisation tool. 
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Chapter 7 

7 Encouraging DHs in MILCS 

To further investigate MILCS’s DHs ability, a few simple test problems have been designed for 
MILCS. Since the discovery of the hierarchical RSA results, new subsumption and deletion 
algorithms have been included in MILCS for promoting DHs. Previous experiments have been re-
run for performance comparison. 

7.1 New subsumption and deletion algorithms 

In addition to the subsumption and deletion algorithms described in Subsection 3.3.5, a couple of 
new algorithms have been included in MILCS. These algorithms are believed to further encourage 
hierarchical rule sets. In order to avoid confusion, the old subsumption is now named subsumption 
by prediction due to its use of a classifier’s Pre and ~Pre. Similarly, the old deletion method is 
named deletion by acting because the least active classifier is the first one to be deleted. The 
following sections describe the new algorithms: 

7.1.1 Subsumption by acting 

A couple of classifier parameters and a MILCS parameter have also been added for this algorithm. 

Classifier parameters: 

o Perf, ~Perf Performance metrics used for “subsumption by acting” 

MILCS parameter: 

o αdel Maximum reward multiplier for “deletion by prediction” and “subsumption by 
acting” 

Perf is calculated by, 

푃푒푟푓 =
푛푢푚푏푒푟 표푓 푒푟푟표푟푠 푤ℎ푒푛 푚푎푡푐ℎ푒푑

푛푢푚푏푒푟 표푓 푚푎푡푐ℎ푒푠
 

Similarly, 
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~푃푒푟푓 =
푛푢푚푏푒푟 표푓 푒푟푟표푟푠 푤ℎ푒푛 푛표푡 푚푎푡푐ℎ푒푑

푛푢푚푏푒푟 표푓 푛표푡 푚푎푡푐ℎ푒푠
 

Both Perf and ~Perf are updated at the end of the supervised learning component and reset to 0 
once the classifier has participated in the GA (at the same time when MI metrics are being reset). 

Imagine C1 is subsuming C2; the following criteria are shared by both old and new subsumption 
algorithms: 

 Both C1 and C2 have the same act and ~act 

 Both C1 and C2 have to be mature enough. In other words, both rules have to be exposed to at 
least matsub number of input instances. 

Here is the new part: 

 Both C1 and C2 have Pred and ~Pred greater than 훼 × 푚푎푥푖푚푢푚 푟푒푤푎푟푑 

 Either C1 has an equal or higher Perf than both Perf and ~Perf of C2, or C1 has an equal or 
higher ~Perf than both ~Perf and Perf of C2 

7.1.2 Deletion by prediction 

Similar to deletion by acting, this method also has two modes and only applied on rules with mat 
greater than matdel. 

 Single rule deletion 

The algorithm searches for classifiers with both Pre and ~Pre less than 훼 × 푚푎푥푖푚푢푚 푟푒푤푎푟푑. 
The classifier with the lowest of all is selected to be deleted. 

 Batch rule deletion 

Once the system performance reaches 휃  × 푚푎푥푖푚푢푚 푟푒푤푎푟푑, all rules with both Pre and 
~Pre less than 훼 × 푚푎푥푖푚푢푚 푟푒푤푎푟푑 are removed from the population. 

One will notice that the parameter αdel has a crucial influence on the performance of the new 
algorithms. It is highly problem dependant and a high setting will dramatically increase the chance 
of deletion but reduces the chance of subsumption. Therefore, it is recommended to perform several 
runs of experiments with different settings. 

7.2 Default hierarchy test problems 

As mentioned in Subsection 2.3.5, default hierarchy structure is a very import advantage of LCS. 
Previous studies have shown that DHs is very difficult to encourage in a LCS. While the core of 
MILCS is mutual information based fitness, it is built in a way to potentially encourage hierarchical 
structures. To further investigate MILCS’s DHs ability, a few simple test problems have been 
designed. 
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7.2.1 Problem description 

Imagine the following situation: where a small box is within a bigger box. The area of the bigger 
box is of class 0 except the area inside the smaller box which is of class 1. Another set of boxes 
(which are mirror image of the former) are placed next to them. Figure 62 is the graphical 
description of the problem,  

 
Figure 62: Default hierarchy test problem 

To encode the problem into 6 bit binary problem, 

condition class 

top small box  000000  1 

top big box  0#####  0 

bottom small box 100000  0 

bottom big box  1#####  1 

The small boxes act as exception rules and the big boxes act as default rules. If a LCS is able to 
derive hierarchical structure, the final solution should only consist the above four rules. More small 
boxes, i.e., exception rules can be added to the problem to test the DHs ability further. Therefore, 
MILCS is tested on 6 bit DHs with 2, 4 and 6 exception rules. 

7.2.2 Parameter settings 

The parameter settings for MILCS are shown in Table 23 whereas the XCS and UCS parameter 
settings are in Table 24. Note that the initializePopulation parameter is set to yes here for the first 
time. Without initialising population, XCS is not able to achieve the results shown in Table 25 even 
after millions of runs. 

Class 1 

Class 0 

Class 0 

Class 1 
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System MILCS 

N 1600 

NI 1500 

P# 0.33 

θGA 25 

θsub 20 

matact 256 

matdel 320 

matsub 320 

delrange  1024 

freqdel 0.0068 

freqinc 0.0 

freqmax 0.0 

αF 1.0 

αP 1.0 

PI 0.0 

FI 0.01 

χ 0.8 

µ 0.04 

crossoverType uniform 

deletionType prediction 

subsumptionType acting 

αdel 0.9 

θperf 1.0 

tournamentSize 0.4 

selectTolerance 0.001 

Table 23: MILCS parameters for the DHs problems 
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System XCS UCS 

N 1600 1600 

β 0.2 0.2 

 0.1 0.1 

ε0 0.01 N/A 

 5 10 

  0.71 N/A 

θGA  25 25 

χ 0.8 0.8 

µ 0.04 0.04 

θdel 20 20 

δ 0.1 0.1 

θsub 20 20 

P# 0.33 0.33 

PI 10.0 N/A 

εI 0.0 N/A 

FI 0.01 0.01 

Pexplr 0 N/A 

Θmna 2 2 

crossoverType uniform uniform 

tournamentSize 0.4 0.4 

selectTolerance 0.001 N/A 

doGASubsumption Yes Yes 

doActionSetSubsumption Yes N/A 

acc0 N/A 0.99 

initializePopulation yes N/A 

Table 24: XCS and UCS parameters for the DHs problems 
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7.2.3 Results and analysis 

Number of exceptional rules Methods Final rule set size Max evals 

2 XCS 161.2±10.3 20000 

2 UCS 78.7±11.6 20000 

2 MILCS 7.6±1.6 20000 

4 XCS 143.0±8.7 20000 

4 UCS 83.0±13.2 20000 

4 MILCS 7.6±1.8 20000 

6 XCS 134.6±9.7 20000 

6 UCS 89.7±16.9 20000 

6 MILCS 13.5±2.5 20000 

Table 25: Results of XCS, UCS and MILCS on the DHs problems 

As mentioned in Subsection 7.2.2, XCS has difficulties learning this problem without 
initializePopulation turned on. A possible explanation for this is that XCS finds the exceptional 
cases difficult to capture with the only help of covering algorithm. Covering a small input space 
with lower “hit rate”, i.e., exceptional conditions, can be quite tricky. Therefore, initialising the 
population provides XCS with a better view of the overall input space. While UCS is performing 
better than XCS, MILCS is the only LCS achieving a hierarchical final population with the smallest 
size. Note that MILCS has not achieved the optimal rule set sizes which are 4, 6 and 8 respectively. 
This is expected due to the difference between matact and matdel. Rules with mat ranging between 
these two values always remain in the system along with the optimal solution. They can be regarded 
as “buffer rules”. 

Another test for investigating the DHs complexity further was also proposed. Imagine in Figure 62, 
there is a third box of the same class of the outer box but inside the inner box. In other words, it is a 
layered default hierarchical structure. Unfortunately, MILCS failed to capture the inner most boxes 
thus its ability is limited to the current level. 

7.3 Default hierarchies in the PSP problems 

Although MILCS is able to solve both CN and RSA problems with competitive results, human 
observation of the evolved rules reveals that it does not discover the entire input space. In the case 
of the CN problem, there exist some “end of chain” conditions which are of very small proportion 
of the training and test data. The new deletion and subsumption algorithms have been used to test 
the system once again to compare the difference. Note that both multiplexer and parity problems 
have also been tested but there was no noticeable difference. This can further confirm that these 
problems are too “flat” to form hierarchical structures. 
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7.3.1 Default hierarchies in the CN problem 

The new parameters are shown in Table 26. 

Window size 1 2 3 

N 100 200 1000 

NI 90 190 900 

P# 0.66 0.66 0.66 

θGA 25 25 25 

θsub 20 20 20 

matact 128 150 300 

matdel 192 300 450 

matsub 192 300 300 

delrange  2500 2500 2500 

freqdel 0.0004 0.0004 0.0004 

freqinc 0.0 0.0 0.0 

freqmax 1.0 1.0 1.0 

αF 1.0 1.0 1.0 

αP 1.0 1.0 1.0 

PI 0.0 0.0 0.0 

FI 0.01 0.01 0.01 

χ 1.0 1.0 1.0 

µ 0.01 0.01 0.01 

crossoverType two-point two-point two-point 

deletionType prediction prediction prediction 

subsumptionType acting acting acting 

αdel 0.6 0.6 0.6 

θperf 1.0 1.0 1.0 

tournamentSize 0.4 0.4 0.4 

selectTolerance 0.001 0.001 0.001 

Table 26: MILCS DHs parameters for the CN problem 

This set of parameter uses “deletion by acting” and “subsumption by acting”, which are potentially 
encouraging the hierarchical structure. With this set of parameters, MILCS is able to discover rules 
of the entire input space, and achieve even better performance, but with a slightly larger solution 
size. The new performance and solution size are shown in Table 27. Note that the larger final rule 
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set size is expected, because of all the exception conditions missed by the previous runs have been 
discovered. 

Window size Method Performance  Solution size Max evals 

1 XCS 58.0% ±5.4%  58.1±3.1 300000 

1 UCS 62.1% ±1.8%  47.6±7.0 300000 

1 MILCS 63.4% ±0.7%  4.4±2.1 300000 

1 GAssist 63.6% ±0.6%  4.0±0.0 8000000 

1 C4.5 63.6%±0.6%  12.0±0.0 N/A 

1 Naïve Bayes 63.6%±0.6%  N/A N/A 

1 DHs_MILCS 63.6%±0.6%  7.2±1.6 300000 

2 XCS 60.1% ±2.9%  151.2±5.3 300000 

2 UCS 60.6% ±3.9%  139.6±8.5 300000 

2 MILCS 63.8% ±0.6%  8.8±2.1 300000 

2 GAssist 63.9% ±0.6%  4.0±0.0 8000000 

2 C4.5 63.9%±0.6%  12.0±0.0 N/A 

2 Naïve Bayes 63.9%±0.6%  N/A N/A 

2 DHs_MILCS 63.9%±0.6%  16.3±3.1 300000 

3 XCS 61.9% ±2.6%  255.2±6.4 300000 

3 UCS 60.3% ±3.3%  248.6±5.9 300000 

3 MILCS 63.9% ±0.8%  17.3±5.9 300000 

3 GAssist 64.4% ±0.5%  5.1±1.0 8000000 

3 C4.5 64.4%±0.5%  24.9±4.5 N/A 

3 Naïve Bayes 64.3%±0.5%  N/A N/A 

3 DHs_MILCS 64.1%±0.5%  24.3±6.0 300000 

Table 27: DHs results of MILCS on the two-state CN problem comparing to previous results 

7.3.2 Default hierarchies in the RSA problem 

The new parameters are shown in Table 28. However, these settings are quite different from Table 
19. It is suggested that there was a sign of over-learning judging by the results in Table 29. Using 
the new algorithms, MILCS is able to learn more accurately, much faster and to a smaller solution 
size. It is now out-performed BioHEL in terms of accuracy and achieved the smallest solution size 
of all. 
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Window size 4 

N 100 

NI 50 

P# 0.66 

θGA 25 

θsub 20 

matact 128 

matdel 135 

matsub 135 

delrange  2500 

freqdel 0.0004 

freqinc 0.0 

freqmax 1.0 

αF 1.0 

αP 1.0 

PI 0.0 

FI 0.01 

χ 1.0 

µ 0.01 

crossoverType two-point 

deletionType prediction 

subsumptionType acting 

αdel 0.7 

θperf 1.0 

tournamentSize 0.4 

selectTolerance 0.001 

Table 28: MILCS DHs parameters for the RSA problem 
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Method Performance Solution size Max evals 

XCS 66.1% ±1.6% 1094.6±44.0 1600000 

UCS 67.1% ±6.6% 566.7±28.7 1600000 

MILCS 65.6% ±1.2% 74.7±12.7 1600000 

BioHEL 66.6% ±0.4% 33.4±4.8 125950000 

C4.5 67.4%±0.2% 61.2±8.6 N/A 

Naïve Bayes 67.2%±0.2% N/A N/A 

DHs_MILCS 66.7%±0.4% 10.2 100000 

Table 29: DHs results of MILCS on the RSA problem comparing to previous results 

7.4 Summary of chapter 

This chapter investigates the default hierarchy ability of MILCS. The new subsumption and deletion 
algorithms have been very successful and the potential of MILCS’s DHs ability has been further 
released. 

Section 7.1 gives details of the new algorithms included in MILCS for encouraging DHs. 

Section 7.2 describes a series of designed DHs test problems. They have been run on MILCS and 
the results are compared to XCS and UCS. While evolving the most compact final rule set, MILCS 
is able to form hierarchical structure. However, its complexity (in terms of “box within box”) is 
limited to the current level. 

Section 7.3 shows how the new algorithms have affected the performance of MILCS on the PSP 
problems. Performances of both CN and RSA have been improved comparing to the previous 
results. MILCS has even out-performed BioHEL in terms of both accuracy and solution size. 

This section concludes the contribution of this thesis. A global conclusion and further work is 
discussed in the next chapter. 
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Chapter 8 

8 Conclusions and Further Work 

8.1 Global conclusions of the thesis 

Before extracting conclusions from the research, it is necessary to summarise the work done so far. 

Chapter 2 contains all the necessary background material of the primary subject of this thesis. It has 
five sections covering machine learning, GA, GBML, ANN and Shannon’s information theory 
respectively. In this chapter, it is revealed that the focus of this thesis is supervised learning, 
especially classification, a data mining task. After reviewing the most widely-used knowledge 
representations in the literature, a comparison is drawn, showing that the rule-based learning 
classifier system has a significant asset in its advanced structural learning via evolutionary 
computation. The associated generalisation, parsimony and explanatory power, is another 
contribution the thesis seeks to provide. Several state-of-the-art LCSs from different approaches 
have been studied and their applications in the field of data mining have been reviewed. Default 
hierarchies, an important feature of LCSs, has also been discussed. What is more, an ANN 
architecture and learning algorithm called CC is also studied as a structural learning algorithm. 
Mutual information, which is central to the contributions of Shannon’s information theory, also 
plays a vital part in the learning system this thesis presents. Several entropy-based machine learning 
systems have also been covered. 

The main contribution of this thesis is presented in Chapter 3. After drawing an analogy between 
XCS and CCN, it is found that the difference lies in the origin of LCS: reinforcement learning. 
Since CCN also has structural learning ability, the motivation for an integration of the two is clear. 
However, it is revealed that correlation used in CCN has certain weaknesses. Therefore, mutual 
information is suggested as a well-founded metric for dependence, and it is used as the fitness 
function in the suggested system. By integrating CC and LCS, and using MI as fitness, this thesis 
presents an innovative GBML system called MILCS. All four stages of its learning processes are 
described in detail and an algorithmic description of the system can be found in Appendix. 

As previously stated, explanatory power is important for machine learning systems. In order to 
analyse the explanatory power of the results yielded from different learning systems examined in 
this thesis, a new method to visualising classifiers is introduced in Chapter 4. A metric is suggested 
to measure the visualisation in a quantitative way. On the other hand, due the complete map 
approach used by XCS often resulting a large population, several rule compaction algorithms in the 
literature are covered in this chapter. However, most of these algorithms are able to achieve such a 
goal by sacrificing performance and possibly over-fitting to the training data. 
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A couple of basic benchmark problems are presented in Chapter 5. The scale-up of MILCS is 
compared to XCS and UCS. The multiplexer problems are tested and the explanatory power of the 
final rule set are visualised. These benchmark results suggest that the scale-up of MILCS is slightly 
worse than that of XCS and UCS. However, it is not of significant order and the tool reveals that 
MILCS manages to evolve a parsimonious rule set with strong explanatory power. This is expected 
from the concept of “structural learning” embedded in this system. A second problem, named even 
parity, is tested on MILCS, XCS and UCS to further study their performance and explanatory 
power. Once again, although MILCS converges slower than both XCS and UCS with larger 
problem sizes, it always results the most compact final population. 

Chapter 6 reveals the ability of MILCS in discovering useful knowledge from real-world data 
source. Knowledge discovery is a long goal in the machine learning field. A simplified process of 
knowledge discovery is covered in this chapter along with a literature review of such application 
using machine learning techniques. Protein structure prediction is a fundamental and difficult 
problem in computational biology and of significant, current scientific interest. A couple of 
classification tasks have been selected and tested on MILCS against other machine learning 
techniques. 

The first problem is called the CN problem. MILCS results are compared against XCS, UCS 
GAssist, C4.5 and Naïve Bayes. Results show that there is no significant statistic difference among 
MILCS, GAssist, C4.5 and Naïve Bayes, although MILCS has significantly less learning steps than 
GAssist. However, results of MILCS are statistically better than those of XCS and UCS. In terms of 
solution size, MILCS is similar to GAssist, which is the most compact. 

A tougher PSP problem, called RSA, is the next to test. Although there is no statistically significant 
differences in classification performance between MILCS and the other LCSs (XCS, UCS and 
BioHEL), the difference between MILCS and the rest (C4.5 and Naïve Bayes) is significant. Any 
comparison of accuracies alone is not an entirely fair if the final population size is not taken in 
account. One of the aims of this thesis is the demonstration of MILCS’s explanatory power. MILCS 
manages to evolve the second most compact rule set after BioHEL. It can also be seen that the 
BioHEL takes far longer to converge than MILCS. What is more, DHs can also be observed from 
the final rule set evolved by MILCS using the visualisation tool. This superior effect is expected, 
given the firm information theoretic basis of the mutual information fitness function. 

Chapter 7 further investigates the default hierarchy ability of MILCS. Modifications have been 
made to encourage DHs in MILCS. In order to explore the DHs complexity within MILCS, a suite 
of basic test problems were set up and tested on XCS, UCS and MILCS. MILCS is able to evolve 
hierarchical rule sets as expected with increasing number of exception rules. However, its 
complexity in terms of “box within box” is limited to the current level. All the previous experiments 
have been re-run and the results of both CN and RSA have been improved. However, there is no 
noticeable improvement on the multiplexer or the parity problem, possibly due to easily derived 
non-hierarchical rules. Note that the DHs is a unique contribution of MILCS, as encouraging the 
development of DHs LCS has proven difficult in past studies. 

All the experimental results suggest the research on a new, innovative, mutual-information-based 
supervised learning classifier system is positive. The performance of MILCS is very competitive 
with several of the best machine learning systems in the literature. Computational cost tends to have 
a much larger impact on Pitt-styled and iterative learning LCSs. Also, MILCS yields a final rule set 
with a very compact size and strong explanatory power. Although certain compaction algorithms 
can further reduce the population size of XCS and UCS, they typically cause overfitting and a 
performance drop. DHs, one of the most anticipated advantages of LCSs, are also observed.  

Nevertheless, these comparisons show that there is still room for possible improvement. 
Experimental run time can become an issue for the current version of MILCS when running large 
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problems, due to the rule size reduction (subsumption) algorithm and MI metrics update. MILCS 
can benefit enormously with a well designed data structure. 

8.2 Further work 

8.2.1 Multi-class problems 

So far problems with two classes (0 and 1), i.e. binary-class problems, have been experimented on 
MILCS. However, many real world problems often contain a high number of classes (e.g. pattern 
recognition). Thus, they are called multi- class problems. Although none of the multi-class 
problems has been tested on MILCS, it is able to perform such tasks with no further change to the 
system if it is designed following the algorithmic description of MILCS found in the Appendix. 

Recall that in the mutual information formula (see Subsection 3.2.3), the distribution of the error, X, 
has two values, “there is an error” or “there is no error”. This is used for binary-class problems. For 
multi-class problems, X has multiple values. Each is associated with the degree of erroneousness. 
For example, imagine a three-class problem (0, 1, 2) and for a given state, the correct action/class is 
0. The possible response of the system can be 0, 1 or 2. Thus X has three values which are “there is 
an error and it is off by 1”, “there is an error and it is off by 2” or “there is no error”. Along with the 
distribution of rule’s response (two values, “match” or “not match”), Y, there are 6 (i.e., 3  2) 
combinations and the mutual information fitness the sum of them. 

8.2.2 Beyond rule learning 

The concepts in MILCS are not specific to the particulars of a rule learning system. Exploring a 
neural network system that employs a similar structural learning paradigm is also a promising 
direction for future investigation. Mutual Information Neuro-Evolutionary System (MINES) [100] 
is one of such learning systems. This approach automatically determines the optimal quality and 
connectively of the hidden layer of a three-layer feed-forward neural network using mutual 
information. Moreover, the use of mutual information in this fashion may also have application in 
supervised learning of other knowledge representations. 

8.2.3 Reinforcement learning 

While the focus of this work has been on supervised learning, it is possible that the system may be 
adapted to reinforcement learning. Note that to some extent, XCS already adapts reinforcement 
learning to supervised learning, in its tendency to learn a complete “model” of the long term payoff 
function across the state/action space. The mapping from state/action to payoff is a supervised 
learning problem, drawing on Bellman optimality and Q-learning the appropriate target values and 
error functions. 
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8.2.4 “Cascade” of CCN 

The first ‘C’ in CCN is studied so far in this thesis, which is ‘Cascaded’. In CCN, hidden nodes are 
added to network in a cascaded manner. Could it be the same when inserting rules to the population 
in MILCS? How well does MILCS benefit from it? It will be interesting to investigate. 

8.2.5 Improving the visualisation tool for explanatory power 

Although the tool has been proved to be useful when visualising the classifiers generated from the 
multiplexer problems, for problems like CN, the technique seems incapable. This is because this 
technique is based on the diversity of the problem instances. If the problem instances have a similar 
pattern and a very subtle difference, the tool may not visualise the classifiers well and instead, all 
the classifiers are clustered together. Therefore some modification to overcome this problem is 
necessary. It will also be interesting to allow comparing explanatory power in a larger variety of 
knowledge representations other than rule-based. 
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9 Appendix 

9.1 Algorithmic description of MILCS 

This section presents the algorithms used in MILCS in addition to Section 3.3. The description 
starts from the top level. The overall execution cycle is described first and the individual parts are 
specified in more in the successive paragraphs. Each specific sub-procedure in this description is 
written in capital letters. 

9.1.1 Initialisation and main loop 

When MILCS is started, the modules must first of all be initialised. The parameters in the 
environment must be set and any input data file must be read in. Meanwhile, the supervised 
program must be initialised. Finally, MILCS itself and the population [P] must be initialised. The 
population must be filled with the initial size NI, generating each classifier with a random a 
condition and action and initial parameter values. After the initialization, the main loop is called. 

MILCS: 

1. Initialise environment env 
2. Initialise supervised program sp 
3. Initialise MILCS 
4. RUN EXPERIMENT 

The main loop RUN EXPERIMENT consists 2 parts, EXPLORATION and EXPLOITATION. The 
current situation is first sensed (received as input) and the EXPLORATION is run followed by 
EXPLOITATION. There is another loop UPDATE MI METRICS in EXPLORATION. In this loop, 
the first classifier is removed from the population [P] to form [P’]. Secondly, the prediction array 
PA’ is formed based on all the classifiers in [P’]. PA’ predicts for each possible action ai’ (both 
matched and not-matched) the resulting payoff. Based on PA’, one action is chosen for execution. 
Next, the winning action is executed and the current reward p’ is used to update the mutual 
information MI metrics of the removed classifier. Then, this classifier must be added back to the 
population. This loop UPDATE MI METRICS must be repeated on all successive classifiers in [P] 
until all rules are updated. Once this loop is finished, PA is then formed using the entire population 
[P] and one action is chosen to execute. The winning action is executed and the current reward p is 
used to adjust [P] using supervised learning. Depending on the chosen action, either the match set or 
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the not-match set [M], is set. The action set [A] is formed, which includes all classifiers of either 
[M] that propose the chosen action. Fitness of classifiers of [A] are updated and GA is applied to 
them. EXPLOITATION is for performance monitoring. It only involves forming PA to select an 
action for execution and getting the reward p. The population [P] must not be modified during this 
stage. The main loop is executed as long as the termination criterion is not met. A termination 
criterion is, e.g., a certain number of trials or a 100% performance level. It will also turn on/off 
certain deletion algorithms in the EXPLORATION depending on the EXPLOITATION 
performance. 

RUN EXPERIMENT (): 

1. do{ 
2. σ ←env: get situation 
3. EXPLORATION 
4. EXPLOITATION 
5. }while (termination criteria are not met) 

 

EXPLORATION(σ): 

1. UPDATE MI METRICS 
2. GENERATE PREDICTION ARRAY PA out of [P] 
3. act ← SELECT ACTION according to PA 
4. env: execute action act 
5. ADJUST POPULATION SET [P] 
6. if act is matched action 
7. GENERATE SET [M] out of [P] using σ 
8. GENERATE ACTION SET [A] out of [M] according to act 
9. else if act is not-matched action,  
10. GENERAET SET [M] out of [P] by using σ 
11. GENERATE ACTION SET [A] out of [~M] according to act 
12. ADJUST ACTION SET [A] and subsuming in [A] 
13. RUN GA in [A] and possibly deleting in [P] 

 

EXPLOITATION(σ): 

1. GENERATE PREDICTION ARRAY PA out of [P] 
2. act ← SELECT ACTION according to PA 
3. env: execute action act 
4. p ← sp: get reward 
5. PERFORMANCE MONITOR 

9.1.2 Sub-procedures 

This section covers all relevant processes specified in the main loop. 
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9.1.2.1 The mutual information metrics update 

The UPDATE MI METRICS procedure removes one of the classifiers of [P] to form [P’]. The 
prediction array PA’ is then formed based on all the classifiers in [P’]. PA’ predicts for each 
possible action ai’ (both matched and not-matched) the resulting payoff. Based on PA’, one action is 
chosen for execution. Next, the winning action is executed and the current reward p’ is used to 
update the mutual information MI metrics of the removed classifier. Then, this classifier must be 
added back to the population. This loop UPDATE MI METRICS must be repeated on all successive 
classifiers in [P] until all rules are updated. 

UPDATE MI METRICS([P], σ): 

1. for each classifier cl in [P] 
2. remove cl from [P] 
3. GENERATE PREDICTION ARRAY PA out of [P] using σ 
4. act ← SELECT ACTION according to PA 
5. env: execute action act 
6. p ← sp: get reward 
7. if (DOES MATCH classifier cl in situation σ) 
8. for each payoff level pol 
9. if (p = PayoffLevel( pol)) 
10. MI[pol][1]cl++ 
11. else 
12. for each payoff level pol 
13. if (p = PayoffLevel (pol)) 
14. MI[pol][0]cl++ 
15. add cl to [P] 

The sub-procedure GENERATE PREDICTION ARRAY and DOES MATCH can be found in 
Subsection 9.1.2.2. 

9.1.2.2 The prediction array 

Given an input, MILCS makes a “best guess” prediction of the payoff to be expected for each 
possible action. These system predictions are stored in a vector called the Prediction Array PA. The 
system prediction for an action is the maximum prediction of all classifiers in [P] that advocate that 
action. If no classifier in [P] advocates a certain action, its system prediction is not defined, 
symbolised by null. 

GENERAGE PREDICTION ARRAY([P], σ): 
1. initialise prediction array PA to all null 
2. for each classifier cl in [P] 
3. if (noOfTrainingscl > matact) 
4. if (DOES MATCH classifier cl in situation σ) 
5. //for matched actions 
6. for each possible action A 
7. if (PA[A][1] < Precl) 
8. PA[A][1] ← Precl 
9. else 
10. //for not-matched actions 
11. for each possible action A 
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12. if (PA[A][0] < ~Precl) 
13. PA[A][0] ← ~Precl 
14. Return PA 

DOES MATCH(cl, σ): 

1. for each attribute x in Ccl 
2. if (x ≠ # and x ≠ the corresponding attribute in σ) 
3. return false 
4. return true 

9.1.2.3 Choosing an Action 

MILCS employs a simple deterministic action selection method. The action with the highest system 
prediction is chosen. Furthermore, the current iteration time is recorded for the firing classifier for 
the winning frequency freq calculation in Subsection 9.1.2.4. Note that match type m has only two 
values, 1 for matched and 0 for not-matched. 

SELECT ACTION(PA, [P], itTime): 

1. initialise maximum system prediction max to 0.0 
2. initialise winning action act to 0 
3. initialise action type actType to 1 
4. for each match type m 
5. for each possible action A 
6. if (max < PA[A][m]) 
7. max ← PA[A][m] 
8. act ← A 
9. actType ← m 
10. else if (max = PA[A][m] and act ≠ A && actType = m) 
11. act ← RandomNumber[0,1] * number of possible actions 
12. else if (max = PA[A][m] and act ≠ A && actType ≠ m) 
13. act ← RandomNumber[0,1] * number of possible actions 
14. actType ←  RandomNumber[0,1] 
15. else if (max = PA[A][m] and act = A and actType ≠ m) 
16. actType ←  RandomNumber[0,1] 
17. for each classifier cl in [P] 
18. if (actType = 1 and Predcl = max) 
19. record itTime 
20. else if (actType = 0 and ~Predcl = max) 
21. record itTime 
22. return act 

9.1.2.4 Adjust Population Set via Supervised Learning 

Being a supervised learning system, MILCS tunes actions and action predictions of its classifiers. In 
addition, it updates the winning frequency of each classifier for deletion, which is described in . 

ADJUST POPULATION SET([P], reward, σ): 

1. initialise reward ρ to 0.0 
2. for each classifier cl in [P] 
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3. noOfTrainingscl++ 
4. //The matched action 
5. if (DOES MATCH classifier cl in situation σ) 
6. noOfMatchescl++ 
7. nomcl++ 
8. if (reward = maximum reward) 
9. nemcl++ 
10. for each possible action A 
11. ρ ← sp: get reward 
12. rewardSum[A][1]cl ← rewardSum[A][1]cl + ρ 
13. if (ρ = maximum reward) 
14. actCount[A][1]cl++ 
15. //The not-matched action 
16. else 
17. noncl++ 
18. if (reward = maximum reward) 
19. nencl++ 
20. for each possible action A 
21. ρ ← sp: get reward 
22. rewardSum[A][0]cl ← rewardSum[A][0]cl + ρ 
23. if (p = maximum reward) 
24. actCount[A][0]cl++ 
25. Acl ← highest actCount[A][1] for each action A 
26. ~Acl ← highest actCount[A][0] for each action A 
27. Precl ← (1 – αP) * Precl + αP * (rewardSum[Acl][1] / noOfMatchescl) 
28. ~Precl ← (1 – αP) * ~Precl + αP * (rewardsum[Acl][0] / (noOfTrainingscl – noOfMatchescl) 
29. Perfcl ← nemcl / nomcl 
30. ~Perfcl ← nencl / noncl 
31. noOfWinscl ← number of wins in the last delrange iterations 
32. freqcl ← noOfWinscl / delrange 

9.1.2.5 Formation of the Match Set or Not-Matched Set 

The GENERATE SET procedure gets its members from the current population [P] and under the 
current situation σ. 

GENERATE SET([P], σ, actType): 

1. initialise empty set [M] 
2. if (actType = 1) 
3. //match set 
4. for each classifier cl in [P] 
5. if (DOES MATCH classifier cl in situation σ) 
6. add classifier cl to set [M] 
7. else 
8. //not-match set 
9. for each classifier cl in [P] 
10. if (DOES not MATCH classifier cl in situation σ) 
11. add classifier cl to set [M] 
12. return [M] 
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The sub-procedure DOES MATCH can be found in Subsection 9.1.2.1. 

9.1.2.6 Formation of the Action Set 

After the match/not-match set [M] is formed and an action is chosen for execution, the GENERATE 
ACTION SET procedure forms the action set out of [M]. It includes all classifiers that propose the 
chosen action for execution. 

GENERATE ACTION SET([M], act): 

1. initialise empty set [A] 
2. for each classifier cl in [M] 
3. if (Acl = act) 
4. add classifier cl to set [A] 

9.1.2.7 Update Classifier fitness 

The update procedure is applied in action set [A]. Each time a classifier enters the set [A], its 
experience exp and fitness F is updated. In addition, the procedure calls the DO ACTION SET 
SUBSUMPTION procedure to eliminate a large number of classifiers in the action set. Note that 
[A[ then shrinks down to contain classifiers with mat greater than matsub only to allow more trained 
classifiers participate in the GA next. 

ADJUST ACTION SET([A], [P]): 

1. for each classifier cl in [A] 
2. initialise noOfTrainings to 0 
3. initialise noOfMatches[] to 0 
4. initialise noOfErrors[] to 0 
5. expcl++ 
6. for each match type m 
7. for each possible payoff level pol 
8. noOfTrainings ← noOfTrainingscl + MI[pol][m]cl 
9. noOfMatches[m] ← noOfMatches[m] + MI[pol][m]cl 
10. noOfErrors[pol] ← noOfErrors[pol] + MI[pol][m]cl 
11. for each match type m 
12. for each possible payoff level pol 
13. Fcl ← Fcl + (MI[pol][m]cl / noOfTrainings) * log2((MI[pol][m]cl / noOfMatches[m]) / 

(noOfErrors[pol] / noOfTrainings)) 
14. DO ACTION SET SUBSUMPTION in [A] updating [P] 
15. for each classifier cl in [A] 
16. if (matcl < matsub) 
17. remove cl from [A] 

9.1.2.8 The Genetic Algorithm in MILCS 

The RUN GA sub-procedure is borrowed from XCS. It first checks the action set to see if the GA 
should be applied at all. In order to apply a GA the average time period since the last GA 
application in the set must be greater than the threshold θGA. Next, two classifiers (i.e. the parents) 
are selected by tournament selection based on fitness F and maturity matGA. Then the offsprings are 
created out of them. After that, the offspring are possibly crossed and mutated. If the offsprings are 
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crossed, their fitness are set to be the average of the parents’ values. In addition, if the offsprings are 
crossed or mutated, their action counters actCount[] and winning frequency freq are set to 0. Finally, 
the offspring are inserted in the population, followed by corresponding deletion. The sub-procedure 
INSERT IN POPULATION and DELETE FROM POPULATION are defined in Subsection 9.1.2.9. 

RUN GA([A], σ, [p], itTime): 

1. if (푖푡푇푖푚푒 − ∑ 푡푠 ∗ 푛푢푚∈[ ] / ∑ 푛푢푚∈[ ] > 휃 ) 
2. for each classifier cl in [A] 
3. tscl ← itTime 
4. parent1 ← SELECT OFFSPRING in [A] 
5. parent2 ← SELECT OFFSPRING in [A] 
6. child1 ← copy classifier parent1 
7. child2 ← copy classifier parent2 
8. Prechild1 = Prechild2 ← 0 
9. ~Prechild1 = ~Prechild2 ← 0 
10. numchild1 = numchild2 ← 1 
11. expchild1 = expchild2 ← 0 
12. noOfTrainingschild1 = noOfTrainingschild2 ← 0 
13. noOfMatcheschild1 = noOfMatcheschild2 ← 0 
14. noOfWinschild1 = noOfWinschid2 ← 0 
15. nomchild1 = nomchild2 ← 0 
16. nemchild1 = nemchild2 ← 0 
17. nonchild1 = nonchild2 ← 0 
18. nenchild1 = nenchild2 ← 0 
19. Perfchild1 = Perfchild2 ← 0 
20. ~Perfchild1 = ~Perfchild2 ← 0 
21. actCount[][]child1 = actCount[][]child2 ← 0 
22. MI[][]child1 = MI[][]child2 ← 0 
23. rewardSum[][]child1 = rewardSum[][]child2 ← 0 
24. if (RandomNumber [0, 1] < χ) 
25. APPLY CROSSOVER on child1 and child2 
26. Fchild1 = Fchild2 ← (Fparent1 + Fparent2) / 2 
27. actCount[][]child1 = actCount[][]child2← 0 
28. freqchild1 = freqchild2 ← 0 
29. for both children child 
30. if (APPLY MUTATION on child) 
31. actCount[][]child1 = actCount[][]child2← 0 
32. freqchild1 = freqchild2 ← 0 
33. INSERT child IN POPULATION 
34. DELETE FROM POPULATION [P] 
35. for each classifier cl in [A] 
36. nomcl ← 0 
37. nemcl ← 0 
38. noncl ← 0 
39. nencl ← 0 
40. MI[][]cl ← 0 

Tournament Selection 

As the name implies, tournament selection refers to a GA selection process in which tournaments 
are held among a subset of individuals of a population. Individuals that take part in the tournament 
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are selected at random from the population. A fixed tournament size is used and the individuals in 
the tournament with the highest fitness wins and is reproduced. 

SELECT OFFSPRING([A]: 

1. initialise winnerSet [W] 
2. initialise fitness to -1.0 
3. initialise size to 0 
4. initialise winner to null 
5. while ([W] = null) 
6. for each classifier cl in [A] 
7. if ([W] = null or (fitness – selectTolerance) ≤ Fcl) 
8. for each copy of classifier cl 
9. if (RandomNumber[0,1] < tournamentSize) 
10. if ([W] = null) 
11. INSERT cl IN [W] 
12. fitness ← Fcl 
13. size ← 1 
14. else 
15. if (fitness + selectTolerance > Fcl) 
16. INSERT cl IN [W] 
17. size ++ 
18. else 
19. [W] ← null 
20. INSERT cl IN [W] 
21. fitness ← Fcl 
22. size ← 1 
23. break 
24. winner ← randomly select a winner from [W] 
25. return winner 

Crossover 

There are three types of crossover in MILCS, uniform, one point and two point crossover. These are 
similar to the standard crossover procedure in Gas. Thus, the two-point crossover procedure is 
shown here. Note that classifier actions are not affected by crossover. 

APPLY CROSSOVER(cl1, cl2): 

1. x ← RandomNumber [0,1] * (length of Ccl1 + 1) 
2. y ← RandomNumber [0,1] * (length of Ccl2 + 1) 
3. if (x > y) 
4. switch x and y 
5. i ← 0 
6. do { 
7. if (x ≤ i and i < y) 
8. switch Ccl1[i] and Ccl2[i] 
9. i++ 
10. } while(i < y) 

Mutation 

While crossover does not affect the action, mutation takes place in both the condition and the action. 
A mutation in the condition flips the attribute to one of the other possibilities. Mutation in action 
changes it equiprobably to one in which a die is flipped for each attribute. 
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APPLY MUTATION(cl): 

1. i ← 0 
2. changed ← 0 
3. do { 
4. if (RandomNumber [0,1] < μ) 
5. Ccl[i] ← a randomly chosen other two possibilities 
6. changed ← 1 
7. i++ 
8. } while (i < length of Ccl) 
9. if (RandomNumber [0, 1] < μ) 
10. Acl ← a randomly chosen other possible action 
11. changed ← 1 
12. return changed 

9.1.2.9 Insertion in and Deletion from the Population 

This section covers processes that handle the insertion and deletion of classifiers in the current 
population [P]. The INSERT IN POPULATION procedure checks to see if the classifier to be 
inserted is identical in condition and action with a classifier already in the population. If so, the 
latter’s numerosity is incremented; if not, the new classifier is added to the population. 

INSERT IN POPULATION(cl, [P]): 

1. for each c in [P] 
2. if (c is equal to cl in condition and action) 
3. numc++ 
4. return 
5. add cl to set [P] 

There are two types of deletion algorithms in MILCS, named DELETION BASED ON 
PREDICTION  and DELETION BASED ON ACTING. In addition, both algorithms can invoke 
single classifier deletion and batch classifiers deletion depending on the current system 
performance. Single deletion usually applies until the system performance reaches θperformance, at 
which point the batch deletion is triggered. Note that this is done in the PERFORMANCE 
MINITOR sub-procedure of EXPLOITATION. 

The DELETION BASED ON PREDICTION procedure usually looks for the classifier with the 
lowest prediction values Pre and ~Pre and once batch deletion is triggered it deletes all classifiers 
with both prediction values lower than αdel * maximum reward. The DELETION BASED ON 
ACTING procedure works by deleting the classifier with the lowest freq and batch deletion removes 
all classifier with freq lower than freqdel. However, both procedures are implemented in DELETE 
CLASSIFER and triggered by deleteType. Note that this system parameter should not be confused 
with the type parameter for DELETION FROM POPULATION. Type is for switching between 
single deletion and batch deletion of the same algorithm. Each time if the batch deletion is triggered 
but no classifier gets deleted, freqdel can be increased by freqinc until freqmax is reached. 

DELETE FROM POPULATION([P], type): 

1. flag ← 0 
2. //Batch deletion 
3. if (type = 1) 
4. while (DELETE CLASSIFIER([P]) 
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5. flag ← 1 
6. if (flag = 0 and freqdel < freqmax) 
7. freqdel ← freqdel + freqinc 
8. //Single deletion 
9. else 
10. DELETE CLASSIFIER([P]) 

DELETE CLASSIFIER([P]): 

1. initialise c 
2. deleted ← 0 
3. //Deletion based on prediction 
4. if (deleteType = 1) 
5. min ← αdel * maximum reward 
6. for each classifier cl in [P] 
7. if (Precl < min and ~Precl < min and noOfTrainingscl ≥ matdel 
8. min ← Precl 
9. if (~Precl < Precl) 
10. min ← ~Precl 
11. c ← cl 
12. deleted ← 1 
13. //Deletion based on acting 
14. else 
15. min ← freqdel 
16. for each classifier cl in [P] 
17. if (freqcl < min and noOfTrainingscl ≥ matdel 
18. min ← freqcl 
19. c ← cl 
20. deleted ← 1 
21. if (c = null) 
22. return deleted 
23. else if (numc > 1) 
24. numc -- 
25. else 
26. remove classifier c from set [P] 
27. return deleted 

PERFORMANCE MONITOR(sysPerf): 

1. print and record performance details 
2. if (sysPerf > θperf) 
3. if (freqdel < freqmax) 
4. freqdel ← freqdel + delinc 

9.1.2.10 Subsumption 

THE ACTION SET SUBSUMPTION procedure takes place in every action set [A]. The set is 
searched for the most general classifier which also meets the “subsumber” criteria. Then all other 
classifiers (which also to meet the “subsumee” criteria) are tested against the general one to see if it 
subsumes them. Any classifiers that are subsumed are eliminated from the population. There exists 
two types of subsumption algorithms in MILCS. The SUBSUMPTION BY PREDICTION has a 
focus on action prediction whereas SUBSUMPTION BY ACTING is based on each individual’s 
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performance with the rest of the classifiers in mind. Both subsumption procedures are implemented 
in SUBSUMES procedure triggered by system parameter subType. 

DO ACTION SET SUBSUMPTION([A], [P]): 

1. for each classifier cl in [A] 
2. if (cl COULD SUBSUME) 
3. for each classifier c in [A] 
4. if (cl SUBSUMES c) 
5. numcl ← numcl + numc 
6. remove classifier c from set [A] 
7. remove classifier c from set [P] 

COULD SUBSUME(cl): 

1. if (expcl > θsub) 
2. if (noOfTrainingscl > matsub) 
3. return true 
4. return false 

SUBSUMES(cl1, cl2): 

1. ret ← 0 
2. if (subType = 0) 
3. min ← αdel * maximum reward 
4. ret ← (Precl1 > min or ~Precl1 > min) and (Precl2 > min or ~Precl2 > min) and Acl1 = Acl2 

and ~Acl1 = ~Acl2 and cl1 IS MORE GENERAL than cl2 and ((Perfcl1 ≥ Perfcl2 and Perfcl1 
≥ ~Perfcl2) or (~Perfcl1 ≥ ~Perfcl2 and ~Perfcl1 ≥ Perfcl2)) and noOfTrainingscl2 > matsub) 

5. else 
6. ret ← (Acl1 = Acl2 and ~Acl1 = ~Acl2 and cl1 IS MORE GENERAL than cl2 and ((Precl1 ≥ 

Precl2 and Precl1 ≥ ~Precl2) or (~Precl1 ≥ ~Precl2 and ~Precl1 ≥ Precl2)) and noOfTrainingscl2 
> matsub) 

7. return ret 

IS MORE GENERAL(cl1, cl2): 

1. if (the number of # in Ccl1 ≤ the number of # in Ccl2) 
2. return false 
3. i ← 0 
4. do { 
5. if (Ccl1[i] ≠ # and Ccl1[i] ≠  Ccl2[i]) 
6. return false 
7. i++ 
8. } while (i < length of Ccl1) 
9. return true 
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