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”Computer Science is no more about computers
than astronomy is about telescopes”

- Edsger Wybe Dijkstra
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Laburpena

Memoria honetan deskribatutako doktoretza tesiak bi sailkapen algoritmo
ulergarri mota ezberdinen emaitzen hobekuntzan egin ditu ekarpenak: erabaki
zuhaitz kontsolidatuen algoritmoetan eta PART tipoko erregela indukzio algo-
ritmoetan.

Erabaki zuhaitz kontsolidatuen algoritmoei egindako ekarpenei dagokienez,
lehenik berlaginketarako estrategia berri bat proposatu da, non azpilagin kop-
urua azpilagin hauen klase banaketaren aldaketara doitzen den informazioa ez
galtzeko. Estrategia hau erabiliz, C4.5 algoritmoaren bertsio kontsolidatuak
(CTC) algoritmo genetikoetan oinarritutako hainbat algoritmo eta beste hain-
bat sailkapen algoritmo ulergarri klasikok baino emaitz hobeagoak lortzen ditu.
Hiru algoritmo berri kontsolidatu dira: CHAID en bariante bat (CHAID*) eta
C4.5 eta CHAID* en Probability Estimation Tree bertsioak (C4.4 eta CHAIC).
Algoritmo kontsolidatu guztiek beraien oinarri algoritmoek baino emaitz hobea-
goak lortzen dituzte. Azkenik, zuhaitzen inausketa prozesuak algoritmo sinple
eta kontsolidatuengan duen ondorioa analizatu da, eta tesi honetan proposatu-
tako inausketa estrategiak emaitz honenak lortzen dituela ondorioztatu da.

PART tipoko erregela indukzio algoritmoei egindako ekarpenei dagokienez,
lehen proposamen batek PART-ek zuhaitz partzialak sortu eta hauetatik er-
regelak ateratzeko egiten dituen erabaki batzuk aldatzen ditu, eta ondorioz,
PART ekin konparatuta, orokortzeko gaitasun hobea eta konplexutasun es-
truktural baxuagoa duten sailkatzaileak sortzen ditu. Bigarren proposamen
batek, zuhaitz partzialak erabili beharrean, guztiz garatutako zuhaitzak er-
abiltzen ditu, eta oraindik orokortzeko gaitasun hobeagoa eta konplexutasun
estruktural baxuagoa duten sailkatzaileak sortzen ditu. Bi proposamen hauek
eta PART algoritmo originala CHAID* algoritmoan oinarritutako bertsioekin
osatu dira, hobekuntza hauek zuhaitz algoritmo ezberdinei hedatu ahal diren
behatzeko, eta ondorioztatu da CHAID*-en oinarritutako PART tipoko algorit-
moek CHAID*-ek baino egitura sinpleago eta orokortzeko gaitasun handiagoa
duten sailkatzaileak sortzen dituztela.
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Resumen

La tesis doctoral descrita en esta memoria ha contribúıdo a la mejora de
dos tipos de algoritmos de clasificación comprensibles: algoritmos de árboles de
decisión consolidados y algoritmos de inducción de reglas tipo PART.

En cuanto a las contribuciones a la consolidación de algoritmos de árboles
de decisión, se ha propuesto una nueva estrategia de remuestreo que ajusta
el número de submuestras para permitir cambiar la distribución de clases en
las submuestras sin perder información. Utilizando esta estrategia, la versión
consolidada de C4.5 (CTC) obtiene mejores resultados que un amplio conjunto
de algoritmos comprensibles basados en algoritmos genéticos y clásicos. Tres
nuevos algoritmos han sido consolidados: una variante de CHAID (CHAID*) y
las versiones Probability Estimation Tree de C4.5 y CHAID* (C4.4 y CHAIC).
Todos los algoritmos consolidados obtienen mejores resultados que sus algorit-
mos de árboles de decisión base, con tres algoritmos consolidados clasificándose
entre los cuatro mejores en una comparativa. Finalmente, se ha analizado el
efecto de la poda en algoritmos simples y consolidados de árboles de decisión,
y se ha concluido que la estrategia de poda propuesta en esta tesis es la que
obtiene mejores resultados.

En cuanto a las contribuciones a algoritmos tipo PART de inducción de
reglas, una primera propuesta cambia varios aspectos de como PART genera
árboles parciales y extrae reglas de estos, lo cual resulta en clasificadores con
mejor capacidad de generalizar y menor complejidad estructural comparando
con los generados por PART. Una segunda propuesta utiliza árboles completa-
mente desarrollados, en vez de parcialmente desarrollados, y genera conjuntos
de reglas que obtienen aún mejores resultados de clasificación y una complejidad
estructural menor. Estas dos nuevas propuestas y el algoritmo PART original
han sido complementadas con variantes basadas en CHAID* para observar si
estos beneficios pueden ser trasladados a otros algoritmos de árboles de decisión
y se ha observado, de hecho, que los algoritmos tipo PART basados en CHAID*
también crean clasificadores más simples y con mejor capacidad de clasificar que
CHAID*.
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Abstract

The doctoral thesis described in this dissertation has contributed to the
improvement of two types of comprehensible classification systems: consolidated
decision tree algorithms and PART-like ruleset induction algorithms.

Regarding the contributions to the consolidation of decision tree algorithms,
a new resampling strategy has been proposed to automatically adjust the num-
ber of subsamples to allow changing the class distribution of subsamples without
loss of information. Using this strategy, the consolidated version of C4.5 (CTC)
performs better than a wide set of genetics-based and classical comprehensible
algorithms. Three new algorithms have been consolidated: a variant of CHAID
(CHAID*) and Probability Estimation Tree versions of C4.5 and CHAID* (C4.4
and CHAIC). All of these consolidated algorithms show better performance
than their base decision tree algorithm, with three of the consolidated algo-
rithms placing in the top four positions within the same comparison. Finally,
the effect of pruning has been analyzed on simple decision tree algorithms and
their consolidated versions, and it has been concluded that the pruning strategy
proposed in the thesis works best.

Regarding the contributions to PART-like ruleset induction algorithms, a
first proposal changes several aspects of how PART creates partial trees and
extracts ruleset from them, which results in more accurate and significantly less
complex classifiers than the original PART being generated. A second proposal
uses fully developed decision trees, instead of partial trees, and generates even
more accurate and simpler rulesets. These two new proposals and the original
PART have been complemented with CHAID*-based variants to observe if these
benefits can apply to other decision tree algorithms, and it has been observed
that, in fact, CHAID*-based PART-like algorithms also create simpler and more
accurate classifiers than CHAID*.
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Eskerrak

Lehenik eta behin, eskerrik asko nire zuzendariei, Txus eta Javi, orain dela
urte dexente aukera eman eta sortatzen zitzaizkidan zalantza guztiak argitzeko
prest egoteagatik. Zuek biok aurrez egindako lan guztiagatik ez bazen izan,
lehen urteak gogorragoak izango ziren.

Denboran zehar laborategi kideak izan zareten gutzioi Aizea, Iñigo, Ainhoa,
Otzeta eta Ugaitz. ALDAPA taldeko beste kideei Olatz, Ibai, Natxo, Agus,
Joseba eta Jodra, nolabait guztiok lagundu nauzue mugarri hontara heltzen.

ADIAN taldeko zuzendariari, Julio Abascal. Zure esfortzuak nire lana er-
reztu du urte hauetan zehar.

Jon Kepa-ri, ikerkuntzan lehen aukera eman, eta nigan interes hori esnatu
izanagatik. Nirekin hasi zinenten lagunei: Maria, Zuru, Ibai, David. . . batzuk
ni baino lehenago amaitu duzue. Batzuek gidatu egin nauzue eta beste batzuk
nik gidatu ditut.

Eskerrik asko American University-ko Nathalie Japkowicz irakasleari nire
egonaldian jasotzeagatik eta bertan lan egin genuen denboragatik.

Nire gurasoei, doktoretza beka onartzeko bikoitza ordaintzen zidan lanpostu
bat utzi behar nuela esan nienean, ez molestatzeaz gain, lagundu egin nindute-
lako.

Asierri, ezagutu ginenean jada bide hau hasita neukan baina alderdi askotan
lagundu didazu amaitzen. Alex-i, doktoretzan zehar bota genituen juergak garai
txarretan ere momentu onak izaten lagundu zuten.

Lan honi azkeneko bultzada emateko gogaitu nauzuen guztioi.
Tesian zehar erabili ditudan tresna guztien sortzaileei: nire ikerkuntza taldeari,

ALDAPA, Haritza plataformagatik, nire lanaren oinarria izan eta non algoritmo
guztiak inplementatu diren; Euskal Herriko Unibertsitateko Borka Calvo eta Na-
farroako Unibertsitate Publikoko Guzmán Santafé-ri scmamp herremintagatik;
eta Granadako Unibertsitateko Soft Computing y Sistemas de Información In-
teligentes taldeari test estatistikoak egiteko erabilitako KEEL tresnagatik.

Azkenik, nire lanarentzat oinarri gisa erabili ditudan lanen egileei. Azken
finean, denok erraldoien sorbaldetan esertzen gara.
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A todos los que no habéis dejado de molestarme para que le pusiese el lazo
a este trabajo.

A los creadores de las herramientras que he utilizado durante la tesis: mi
grupo de investigación, ALDAPA, por Haritza donde todos los algoritmos han
sido implementados y que ha sido base para mi trabajo; Borja Calvo de la
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To the rest of colleagues of the ALDAPA research group Olatz, Ibai, Natxo,
Agus, Joseba and Jodra, who in one way or another have helped me achieve
this milestone.

To Julio Abascal, director of the ADIAN research group. Your efforts have
helped my work this years.

To Jon Kepa for having given me my first opportunity in the field of research
and having awoken that motivation in me. To the colleagues that begun more
or less at the same time as I did: Maria, Zuru, Ibai, David. . . some of you have
finished faster than I have. You have guided me and I have guided others.

Thanks to Professor Nathalie Japkowicz of the American University for host-
ing me during my visit and the time we worked together.

To my parents, who when I told I was leaving my job to accept a PhD
scholarship and halving my income, not only did not bother them, but actually
supported me.

To Asier, we met when I was already half-through this journey but you have
helped me finish it in so many aspects. To Alex, all those Saturday nights during
the PhD years helped have good moments even during bad times.

To everyone who has kept bothering me to finish this work.
To the creators of the different tools I have used during the thesis: my

research group ALDAPA, for developing the Haritza platform that has served
as base for my work and where all algorithms have been implemented; Borja
Calvo of the University of the Basque Country and Guzmán Santafé from the
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Chapter 1

Introduction

In data mining, a classification problem occurs when an object needs to be
assigned to a predefined group or class based on a number of observed attributes
related to that object [159].

In some cases the reason why the classification is made is almost as important
as the accuracy of the decision, thus the classifier must be comprehensible.
This is especially true in domains where classification is used as a decision
support system for humans, like medical diagnosis or fraud detection. Some
simple classifier systems such as decision trees and rulesets have this explaining
capacity.

The thesis described in this dissertation delves into two research lines about
classifiers with explaining capacity: contributions to the consolidation of deci-
sion tree algorithms, and contributions to the improvement of ruleset algorithms
based on the PART algorithm.

The most common way of improving the results of decision trees is to cre-
ate ensemble classifiers with them. Ensembles are multiple classifier systems
(MCS, of which Bagging and Boosting are the most used examples and will be
described later) that combine the knowledge of multiple individual classifiers.
The individual classifiers can be completely different, however, it is most usual
to use the same algorithm with different samples. Ensembles achieve a greater
accuracy than individual classifiers, but the complexity of their models, and
how the final classification decision is made, mean that the comprehensibility of
the original classifier is lost.

The consolidation methodology was conceived as a middle ground of sim-
ple comprehensible classifiers and an ensemble classifier made of them. This
methodology also creates multiple samples, but applies the ensemble voting
process during the classifier building phase. This allows it to use the knowl-
edge of multiple samples, but creating a simple classifier that keeps the base
algorithm’s comprehensibility.

Consolidation was proposed to solve a problem of fraud detection in car
insurance claims. In that case, the classifier had to be comprehensible because
it was an employee of the insurance company who made the final decision about
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whether to declare the claim fraudulent or not, because insurance companies
usually prefer to let some fraudulent claims slip, than wrongly accusing an
honest customer. Also, this particular insurance problem was representative of
another issue classification algorithms face: the class imbalance problem.

Class imbalance has been considered one of the main problems in data mining
in recent years [156]. This problem occurs when at least one of the classes
(minority class or classes) is underrepresented in the original training sample
compared to the remaining classes. Class imbalance is present in several real
problems, such as medical diagnosis [106], traffic incident detection [160], DNA
sequencing [68], and fraud detection [119].

Initially, consolidation created multiple subsamples that kept the dataset’s
original class distribution. However, recent research suggests that the original
class distribution is usually not the best one. In fact, this research suggests
that subsamples with a balanced class distribution might get better results.
However, switching to a balanced subsample system requires implementing a
new resampling strategy to reduce data loss due to excessive undersampling in
heavily imbalanced datasets. This poses the following questions:

• How could information loss be avoided when greatly changing the class
distribution of subsamples?

• How could the information loss be “equally fair” between datasets with
very different class distributions?

Another pending work around consolidation is applying the methodology to
other decision tree algorithms. So:

• Can other decision tree algorithms benefit from applying consolidation?

On the other hand, PART is a widely known ruleset induction algorithm. It
is part of the WEKA platform and has been cited hundreds of times. It combines
the two most-used rule induction strategies: extracting rules from trees and the
separate-and-conquer strategy. It creates ruleset by extracting individual rules
from partially developed C4.5 decision trees.

As in all machine learning algorithms, the decisions made during the classi-
fier building process affect the performance of the generated models. One of the
most prominent decisions PART makes is that instead of fully developing deci-
sion trees, they are partially developed. In fact, the algorithm takes the name
from this feature. Partial trees are built by guiding the tree’s development using
a local search method based on the entropy of the nodes. According to PART’s
authors this is done for efficiency, expecting low entropy nodes to expand less
times, thus generating shorter, more general rules. However it is known that
global search methods can create more accurate classifiers, albeit at a higher
complexity. This leads to the questions:

• Would using a global search mechanism improve the accuracy of PART?
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• Would this significantly increase the complexity of the classifiers created
by the algorithm?

These questions led to the development, during the thesis, of a PART-like
algorithm that uses global search. This contribution also changes some other
decisions that increase the size of the partial tree, while adding a pruning process
and allowing shorter untreated leaves to be considered as rules, in order to
compensate for the bigger (less general) partial trees.

An evolution of this idea would be to use completely developed decision trees
to extract rules from. This would eliminate the need for the rest of seemingly
arbitrary decisions PART makes: no need to use a search mechanism to drive
the tree’s expansion, no need to exclude some nodes for the rule, and no need
to perform early pruning of trees. So the next question is:

• How would using fully developed decision trees affect the accuracy and
complexity of rulesets generated by PART?

Using decision trees to extract rules from, also allows to switch the base
decision tree algorithm used by PART-like algorithms (C4.5). PART usually
generates more accurate classifiers than C4.5, so:

• Could another decision tree algorithm benefit from the PART-like treat-
ment and generate better classifiers?

• Or, is this behavior only limited to C4.5?

Finally, while this thesis delves into the field of comprehensible classifiers
and proposes and compares a decent size of algorithms, they are restricted to
consolidated decision tree algorithms and different PART-like ruleset induction
algorithms. A final question would be:

• How would all of these algorithms compare to a wider set of comprehen-
sible rule and tree induction algorithms?

Luckily, a study comparing 22 genetics-based and classical rule and decision
tree algorithms was published recently, and its results were encouraged to be
used as benchmark by other members of the machine-learning research commu-
nity. So all of the proposals of this thesis are compared to that wider set of
comprehensible algorithms.

1.1 Structure of the Dissertation

This dissertation has been divided into five main parts: Introduction, Back-
ground Work, Contributions, Conclusions, and Appendices.

Part I, Introduction, describes the motivation behind the work carried out
during the thesis, and enumerates the research questions to be answered through-
out it.
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Part II, Background Work, summarizes the literature on the topics that serve
as base for the work carried out in the thesis. These topics include supervised
learning, comprehensible classifiers, the class imbalance problem, decision trees,
consolidation, the PART ruleset algorithm, and the statistical validation of the
experimental results.

Part III, Contributions, details the main contributions of this dissertation,
and describes the carried out experimental work. This is a three chapter part.
The first two chapters are dedicated to the distinct research lines: consolidation
of decision tree algorithms, and improvement of PART-like ruleset algorithms.
Chapter 3 focuses on contributions made to the consolidation of decision tree
algorithms: a new resampling strategy, an extension of the consolidated algo-
rithms, and experimental work on the effect of pruning on consolidated trees.
Chapter 4 presents two new PART-like algorithms: BFPART and UnPART.
These algorithms change how PART-like rulesets are generated and improves
their results from the points of view of the ability to generalize and structural
complexity. Chapter 5 combines the results from the previous chapters to per-
form a global analysis.

Part IV, Conclusions, is composed of a single chapter, Chapter 6. This
chapter outlines the conclusions drawn from the contributions of the thesis,
proposes some future work, and lists the publications that have resulted from
the work carried out in this thesis.

Part V consists of a series of appendices that extend the information pre-
sented in Part III.

4



Part II

Background Work

5





Chapter 2

Background Work

This chapter will provide the necessary context to understand the work car-
ried out throughout this thesis. The first two sections describe the subfields
of machine learning research this work belongs to: namely the machine learn-
ing subfield of supervised learning or classification, and the specific field of
comprehensible classifiers. The following section describes the problem of class
imbalance in machine learning, a specific problem tacked by the work presented
in this thesis. Sections 2.4 through 2.7 give an insight into the paradigms and
algorithms that serve as base for the algorithms developed in this thesis. Fi-
nally, Sections 2.8 and 2.8.3 explore different options to evaluate the proposed
work against already existing solutions.

2.1 Supervised Classification

Machine learning is a subfield of artificial intelligence that encompasses
systems capable of learning concepts from data [45]. These systems create
data-driven models (a structured representation) instead of using explicitly pro-
grammed models [124].

With the proliferation of information systems and geographically distributed
companies and institutions, almost all of their data is transmitted (and stored)
digitally. Having all of this available raw data has motivated them to squeeze as
much information as possible from it, be it from an economic, self-improvement,
social advancement, or another motivation.

Most learning algorithms use similar structures of data: arrays or vectors of
characteristics. These characteristics are also called features, attributes or vari-
ables. These variables can be dependent and independent. Learning algorithms
work under the assumption that the values of independent variables influence
the value of the dependent variables. Depending on how many values a variable
takes, it is treated differently. On the one hand, if an attribute has a finite
set of values, it is considered a discrete attribute. Within discrete variables,
another subdivision is made. If the values the variable takes have an intrinsic
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order (number of children, level of studies), they are considered ordinal values,
and if there is no order between the values (color, ethnicity, gender) the variable
is considered nominal. On the other hand, if the attribute can take an infinite
number of values, it is a numeric or continuous variable (physical measures,
age). A single vector of data represents a specific case, which can also be called
an example or instance [124] using the technical language. Multiple instances
representing the same problem form a dataset. Learning algorithms are used to
train models. A model is a representation of the underlaying patterns present in
the data. Training a model means analyzing the already available data looking
for patterns, and then creating a system that is capable of processing previously
unseen data by means of this patterns.

Learning algorithms are usually divided into two main groups: supervised
learning (also known as classification) and unsupervised learning (also known
as clustering). The difference between classification and clustering systems is
that in classification, during the training, the value of the dependent variable
is known; the input information is labeled. In clustering, the input data is
not labeled, and the algorithm works by finding similarities between instances
and grouping them in different clusters according to these similarities. Within
supervised learning, if the dependent variable is discrete, we face a classifica-
tion problem, whereas if the dependent variable is numeric, it is a regression
problem. In classification problems, the dependent variable is referred to as the
class. Depending on how many values the class can take, it is either a two-class
problem, or a multi-class problem. Models built by supervised learning algo-
rithms are also called classifiers. Both supervised and unsupervised learning
techniques have been successfully applied on a wide variety of fields such as
spam filtering [130], detection of counterfeit goods [123], software fault predic-
tion [28], suicide risk assessment [41], user behavior modeling [13], computer
vision [60], and recommendation systems [139]. Table 2.1 shows the structure
of a dataset for classification with n instances, m independent features, and the
class dependent feature which can take k values.

Instance V1 V2 V3 . . . Vm class

I1 x11 x12 x13 . . . x1m C3

I2 x21 x22 x23 . . . x2m C1

I3 x31 x32 x33 . . . x3m Ck

. . . . . . . . . . . . . . . . . . . . .

In xn1 xn2 xn3 . . . xnm C2

Table 2.1: Example of a dataset’s structure.

A dataset is considered noisy when training data seems to have the incorrect
class set [2]. This situation can be easily identified if two otherwise exact in-
stances differ in their class value. A similar situation would be when examples of
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one class are completely surrounded by examples of a different class. Noise can
affect the ability of algorithms to correctly separate classes, lead to overfitting
[155], and increase complexity of the classifiers [127]. Worst-case scenario, this
could be because the attributes present in the domain are not enough to cor-
rectly define the case. However, it is much more likely that data was incorrectly
collected or manually entered.

Sometimes, an instance does not have a set value for one or multiple vari-
ables. This is what is called a missing value. Missing values can happen for
a variety of reasons: data was not collected or entered for that instance, in-
correct data handling... This value usually needs a special treatment and most
algorithms have a way of coping with it.

2.2 Comprehensibility and Comprehensible Clas-
sifiers

Among the many uses for classifiers, an explanation of how a decision is made
is not needed. This is usually because consequences for incorrect classifications
are not very harsh, or the problem is so well validated that the system’s decision
is trusted [46].

However, in one hand, there are fields where a classifier does not make a
final decision, and is used as a decision support system for a human user. This
is prevalent in fields where decisions affect human lives, such as medicine and
finance. In these cases, the reasons why a decision is made are almost as impor-
tant as the accuracy of the decision [38, 95, 69], as these reasons will help the
human user reach a decision. On the other hand, when a new machine learning
system is being built, being able to represent the decision making mechanisms
of a model can help human users trust the machine learning model [126, 162].

In recent years, the comprehensibility of the knowledge extracted from clas-
sifiers has been an area of growing interest in the machine learning commu-
nity. Several special sessions have been held in multiple important conferences12
34567.

1Towards interpretable ML applications in biomedicine and health at IEEE-EMBS Inter-
national Conference on Biomedical and Health Informatics (BHI 2014)

2Interpretable systems in machine learning, data analysis, and visualization at IEEE Sym-
posium on Computational Intelligence and Data Mining (CIDM 2013) within the IEEE Sym-
posium Series on Computational Intelligence (SSCI 2013)

3Workshop on machine learning and interpretation in neuroimaging at Neural Information
Processing Systems (NIPS 2011, 2013, 2014)

4Interpretable models in machine learning at the 20th European Symposium on Artificial
Neural Networks, Computational Intelligence and Machine Learning (ESANN 2012)

5 Interpretability in Computational Intelligence Systems at IEEE World Congress on Com-
putational Intelligence (WCCI 2012)

6Interactive Data Analysis and Visualization at IEEE International Joint Conference on
Neural Networks (IJCNN 2012)

7The importance of visualization in real-world machine learning applications at the 19th
European Symposium on Artificial Neural Networks, Computational Intelligence and Machine
Learning (ESANN 2011)
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The “Special Issue on Interpretable Fuzzy Systems” editorial [10] was re-
cently published on the Information Sciences journal, where besides defining
interpretability, the authors emphasized on its importance on a wide variety of
scientific fields (beyond fuzzy systems). This editorial also quantified the num-
ber of articles published in this area in recent years by looking up keywords that
begin with interpretab*, understandab*, comprehensib*, intelligib*, etc. on the
Thompson Corporation’s ISI Web of Knowledge, and found a total of 59,484
records, of which only 262 related to fuzzy systems. Finally, they highlighted
the computed h-index (21), the number of quotes (2095), and the average cites
per item (8), were quite high.

On the one hand, some of the most widely used and best performing classifi-
cation algorithms do not produce comprehensible classifiers. Algorithms such as
artificial neural networks (ANN), statistical classifiers, support vector machines
(SVM), and ensembles are opaque (non-comprehensible) because, either due to
their structure or complexity, work like black boxes. There is a trade-off between
the performance and the comprehensibility of classifiers [47]. Even so, effort has
been made to give explaining capacity to opaque algorithms, and there are sev-
eral approaches to extract knowledge from non-comprehensible classifiers. This
is referred to as post hoc explainability. Post hoc explainability can either be
model-agnostic or model-specific. Model-agnostic approaches are more widely
used because they are not restricted to the machine learning models they can
extract knowledge from. Some of the simplest post hoc approaches work by
producing a relevance of features instead of offering full explainability, and rank
or measure the influence each input feature has in the prediction. SHAP [102]
(SHapley Additive exPlanations) is one of the most widely used examples of
explanation by feature relevance. Another approach of model-agnostic post hoc
explainability is the explanation by simplification. These approaches create sim-
pler models based on the outcome of the model. These surrogate models have
a similar classification behavior as the black-box classifier they are based on,
but are usually created using a comprehensible classifier algorithm. Domingos,
the author of one such approach [43], favored simple comprehensible classifiers
over multiple classifier systems by stating that “while a single decision tree can
easily be understood by a human as long as it is not too large, fifty such trees,
even if individually simple, exceed the capacity of even the most patient user”.

On the other hand, in the literature, several machine learning algorithms are
considered to produce transparent models. Transparent models are understand-
able by themselves. Decision tree and ruleset induction algorithms, for example,
are considered to produce transparent models. These algorithms generate com-
prehensible classifiers because their models are successions of conditions related
to the variables and their values, easily interpreted by a human [80].

Even though several decision tree algorithms (ID3 [127], CART [22], CHAID
[98], etc.) have been designed (a review can be found on [110]), the C4.5 al-
gorithm designed by Ross Quinlan is probably the most widely used algorithm
with explaining capacity, and it was selected as one of the top 10 data mining
algorithms at the IEEE International Conference on Data Mining held in 2006
[154]. This algorithm will be described in greater detail later in this chapter as
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it the base algorithm for some algorithms proposed in this thesis.
Regarding ruleset induction algorithms Quinlan himself proposed a strat-

egy (C4.5rules) [128] that extracts rules from C4.5 trees to make them even
more comprehensible. Apart from the strategy of extracting rulesets from deci-
sion trees, there is another ruleset induction paradigm known as separate-and-
conquer [61], where sequentially, rules are built to cover a subset of the training
set, the subset already covered by existing rules is removed, and more rules are
created using the remaining training set. Following this strategy, Cohen pro-
posed RIPPER [36], an algorithm that achieved competitive results in regards
of generalization, but being more computationally efficient than C4.5rules. The
PART ruleset algorithm [55] combines both strategies: it extracts rules from
decision trees and performs separate-and-conquer. This algorithm also serves
as base for others developed in this thesis and will be described in more detail
later in this chapter.

The most straightforward way of improving the performance of decision trees
and rulesets is to use them in ensemble classifiers. Ensembles, however, lose
their transparency. One approach to improving the performance of decision
tree and ruleset induction algorithms while keeping their transparency is to
use evolutionary algorithms to induce them. In [53], the authors proposed a
taxonomy for Genetics-Based algorithms for Machine Learning (GBML) for rule
induction, and carried out an extensive study. Moreover, in [62], the authors
carried out a review of interpretability measures used in linguistic fuzzy rule-
based systems.

In [62], the authors stated that interpretability is a subjective property, and
that the choice of adequate metrics is still an unresolved issue. Decision trees
and rulesets share a similar representation and can be represented as a set of
conditions and a class assignation for instances covered by these conditions. The
complexity of the models generated by these algorithms can be measured as the
number of conditions in the ruleset or the decision tree, the number of condi-
tions in each rule or tree branch, the number of rules or branches, etc. Rulesets
with more antecedents and decision trees with more nodes might perform bet-
ter, but at some point, if a model grows too much, while staying theoretically
comprehensible, it becomes too complex for a human user to understand.

2.3 The problem of class imbalance

The class imbalance problem occurs when one of the classes (minority class)
is under represented in the original training sample compared to the rest of the
classes (majority class). When the imbalance is directly related to the nature of
the data, this imbalance is considered intrinsic, and extrinsic when it is not. An
example of intrinsic imbalance is the diagnosis of rare diseases where the positive
cases (minority class) are overwhelmingly exceeded by the amount of negative
cases (majority class). Extrinsic imbalance can be caused by limitations in the
data collection process [33]. Class imbalance is present in several real problems,
such as medical diagnosis [106], insurance fraud detection [119], customer churn
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prevention [24], traffic incident detection [160] and DNA sequencing [68]. This
problem has been considered one of the main problems in data mining in recent
years [156, 79, 63, 144, 18].

When using classifiers with imbalanced data sets, the constructed model
offers a high accuracy for the majority class but a really small accuracy for the
minority class [79]. A classification model should have a balanced accuracy rate
for all classes, or even skewed in favor of the minority class since some domains,
such as the diagnosis of rare diseases, where a false negative can have worse
consequences than a false positive.

Relative imbalance occurs when the examples of the minority class are
greatly outnumbered by the majority class but the minority class still is fairly
represented. For example a dataset with 500,000 examples and a 1:100 contains
5,000 positive examples. According to some studies, in some cases of relative im-
balance the minority class is accurately learned [79, 16, 91, 150]. This suggests
that imbalance is not the main deteriorating factor, but it amplifies the effect of
other factors such as dataset complexity [79], small disjuncts [94], minority hubs
[144], and noisy datasets [133]. A study by Japkowicz [90] indicates that the
effect of class imbalance on classifiers is augmented by the concept complexity.
The less complex domains, those linearly separable, do not seem to be affected
by class imbalance. However, as concept complexity increases, so does the effect
of the imbalance.

The class imbalance problem can seriously hamper the results of classical
classifier systems. For example, a study by Chawla [30] showed that the pruning
process of C4.5, aimed at removing branches that are too specialized in order to
avoid overfitting, can remove branches that are key on identifying the minority
class. The small size problem, where small sample size and high dimensionality
occur, combined with imbalance in the dataset poses a new challenge [79].

The approaches taken to solve class imbalance can be divided in two main
groups, data approaches [33, 63] and algorithmic approaches. Data approaches
consist of undersampling or oversampling methods in order to balance the class
distribution of the training sample. Algorithmic approaches, on the other hand,
propose changes to already existing algorithms.

2.3.1 Data Approaches

Research shows that usually there is a class distribution other than the one
originally found in the data sample that yields better results [150, 4]. This
section describes some of the most widely used data approaches to solve the
class imbalance problem. These approaches either undersample or oversample
the data change the class distributions and reduce or completely remove the
class imbalance.

The simplest resampling algorithms are random undersampling and random
oversampling.

Random undersampling (also known as Random Subsampling) simply re-
moves instances of a class or classes to change the class distribution in favor of
other classes. In order to solve class imbalance problems instances of the ma-

12



jority class or classes are removed to achieve a class distribution with a higher
percentage of minority class examples. Its key advantage over most of other
undersampling methods is the low computational cost.

On the other hand, random oversampling randomly duplicates instances of
one or more classes to also achieve a class distribution that is more balanced.
For class imbalance problems this means duplicating instances of the minority
class. While this approach does improve a classifier’s results in some cases, it
is not a widely used method because it does not generate any new information
for the classification algorithm to use.

The random approaches discussed in the paragraphs above have the advan-
tage of being fast and simple because they process instances individually with-
out looking at the relationships between the processed instance and the rest.
However, new intelligent approaches exist that, at a higher computational cost,
oversample or undersample by looking at the relationships of different instances.

SMOTE or Synthetic Minority Over-sampling Technique [31] is an oversam-
pling technique where, based on already existing minority class examples, new
synthetic minority class examples are created. To achieve this, a minority class
example (the reference example) and one or more of its nearest minority class
neighbors are selected (five neighbors by default). For each of the continuous
feature a random value between the reference instance and one of the neighbors
is used. For nominal values either the reference instance’s or the neighbor’s
value is assigned to the synthetic example. This process creates a new exam-
ple within the space formed the minority class example and its neighbors. The
number of minority class examples and the number of neighbors used depends
on the amount of oversampling needed. SMOTE is one of the most widely
used techniques to tackle class imbalance and this has resulted in several vari-
ants [76, 100, 67, 129] and combinations with other resampling techniques [16].
SMOTE has also been integrated within machine learning algorithms [29, 48].

EUS [66] or Evolutionary UnderSampling approaches use genetic algorithms
to guide the search for the optimal subsample. These approaches do not seek
to reach a specific class distribution, but can be configured so that only the
majority class or classes are undersampled while the minority class or classes
are left intact. These approaches have shown to achieve great results [101], but
as it is customary for genetics-based systems, at the cost of a much greater
computational cost.

2.3.2 Algorithm Approaches

This section discusses some learning algorithm approaches exclusively de-
signed to solve the class imbalance problem.

Joshi et al. [96] proposed Modifications to Boosting algorithm, changing the
weight adjusting scheme to, in case of misclassification, increase the weight of
minority class examples more than the weight of majority class examples.

One-Class Learning methods use mainly, even exclusively, instances from the
minority class rather than using several classes and having to learn the bound-
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aries between them. Examples of one-class learning include Kernel-based One-
Class classifiers [163] and One-Class classification via Neural Networks [105].

Other algorithm approaches include modifications to Support Vector Ma-
chines [153] and Evolutionary Rule-Based Systems [111].

The following subsections describe two subsets of algorithm approaches. The
first subsection mentions some approaches that incorporate resampling into the
algorithm, whereas the second subsection describes algorithms that work fol-
lowing the notion of cost.

2.3.2.1 Combination of algorithm and data approaches

The approaches described in this section combine a Multiple Classifier Sys-
tem (MCS) and a data approach. The most widely known data approaches,
which will be more deeply described in a later section, are Bagging and Boost-
ing. These combination approaches use one of these two MCS systems, which
use multiple samples, and incorporate a resampling technique into the sam-
ple creation mechanism. SMOTEBoost [29] is a combination of the SMOTE
procedure and the Boosting algorithm. It proposes a modification to Boosting
where SMOTE is used on each round to create new minority class examples
before applying the base algorithm. RUSBoost [136] follows the same idea but
applies random undersampling between boosting iterations. SMOTEBagging
[148] creates samples for Bagging using SMOTE instead of creating bootstrap
samples.

2.3.2.2 Cost-Sensitive Learning

Most classification algorithms implicitly assume all classification errors have
equal cost, but as it has been explained in the introduction chapter of this thesis,
depending on the domain, some types of error can have worse consequences.
Cost-sensitive learning takes into account the different costs of each type of
misclassification and adjusts its classification criteria accordingly [50].

While it is possible to modify regular classification algorithms to make them
cost sensitive, Domingos [44] proposed a procedure, MetaCost, to turn a variety
of error based classifiers into cost-sensitive ones. MetaCost works by relabeling
examples from the training set, based on the classification probabilities given
by a classifier, to their optimal value to minimize the total cost.

Zadrozny et al. [157] extended Domingos’ idea. The first modification was
the removal of the assumption that the same type of misclassification carries
the same cost for each example. Also, decision trees were used to estimate
probabilities instead of the Bagging variation used by Domingos.

2.4 Decision Trees

Decision tree algorithms are perhaps one of the simplest supervised learning
paradigms. The simplicity of the models, the availability of different imple-
mentations, the ability to explain how the classification is performed, and the
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possibility of naturally being represented graphically are factors that have con-
tributed to their popularity [142]. Most decision tree algorithms follow the foun-
dations set by Hunt et al. [84] when they proposed Concept Learning Systems
(CLS), described in Algorithm 2.1.

Input:
S: training data set
Function expand(S):

if S is empty then
turn node into leaf
/* assign label to node. dependent of the agorithm.

*/

return

end
if all instances on S are members of class Cj then

turn node into leaf
label with class Cj

return

end
select test T with mutually exclusive outcomes O1, O2, O3, . . . , On

partition S into subsets S1, S2, S3, . . . , Sn, where Si contains
instances of S that have outcome Oi for the test T

foreach Si in S do
expand (Si)

end
return

Algorithm 2.1: Basic algorithm to build decision trees.

Decision trees work by first putting the entire training set into an initial root
node, and recursively splitting it into subsets according to the best possible split
based on one of the independent attributes until any of the stopping criteria is
met. Terminal nodes are called leaf nodes and any node between the root and
a leaf node is called an internal node. Non-leaf nodes split the dataset into
their children node according to a variable and the values this variable can take.
The classes of training instances falling on each leaf node determine the class
probabilities assigned to unseen examples falling on that leaf. Figure 2.1 shows
an example of decision tree graphically represented. When a new example is to
be classified, the classifier will check the values of the independent variables of
the example, traveling along the tree from a node to one of its children, until
a leaf node is reached, and the example is labeled as the majority class of the
instances in a leaf.

The most obvious stopping criterion for decision trees is reaching an homo-
geneous node, where all instances belong to the same class. However, reaching
a tree with purely homogeneous leaves is not necessarily optimal. This kind
of tree usually fits so well to the training set, that in fact, it overfits and fails
to correctly classify new unseen examples [142]. Thus, it is preferred to build
parsimonious decision trees, simpler models that can competitively classify the
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Figure 2.1: An example of a decision tree.

training set and keep the ability to generalize and correctly classify new exam-
ples. In decision trees, this is achieved by pruning the trees, either by stopping
the decision tree building process early (pre-pruning), or by doing it after the
tree is built (post-pruning). Pre-pruning has the advantage of saving time by
avoiding to unnecessarily build a large tree that will later be pruned. However,
the right thresholds for pre-pruning are difficult to achieve: a threshold that is
too high will stop divisions too early before beneficial splits are found, and a
value that is too low will result in little to no benefit. When any kind of prun-
ing is applied, this most usually results in heterogeneous leaves where not all
instances are of the same class. This in turn results in class probabilities being
assigned to leaves, instead of class labels. These class probabilities indicate the
chance of an unseen instance belonging to each class.

The following sections describe two of the most widely known and used
decision tree algorithms: C4.5 and CHAID.

2.4.1 The C4.5 algorithm

C4.5 [128] is one of the most widely known decision tree induction algorithms.
It is based on ID3 [127], an earlier algorithm by the same author, Ross Quinlan.

This algorithm uses the gain ratio, detailed in Section 2.4.1.1, as the split
criterion, by testing all possible splits on each node and using that with the
highest gain ratio. It is able to handle both discrete and continuous variables.
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For discrete variables, by default, it creates a child node for each value the
variable can take, although it is possible to configure the algorithm to look for
the best subsets of values and group multiple values in the same branch. For
continuous variables, it creates a binary split by looking for the best cutting
value (split point), among all the values the analyzed variable takes in the
training sample, and putting instances with a value smaller or equal on one
branch, and those with a greater value in the other.

The C4.5 algorithm is able to handle missing values in the data. When
a value for a variable is missing, C4.5 first computes the split without taking
instances with a missing value into account, and if that variable is chosen for the
split, the instances with missing value are put on all children’s subset, adjusting
their weight with the proportion of known-value instances on each branch.

C4.5 does not build trees until the training error is zero. It has two pre-
pruning conditions and if any of them is met, the node is no longer split. The
first of it is the node’s size. For a node to be considered for a split, the sum
of the instance’s weights has to be equal or greater than 2 times the minimum
size of a node (2 by default). The second stop condition is the value of the
gain ratio. When the split with the greatest gain ratio is found, for this split
to be valid, its information gain (the change in entropy) must be greater than
the average information gain of all valid splits. The algorithm for C4.5 can be
found on Algorithm 2.2. This algorithm uses several functions:

• threshold finds the best splitting threshold for continuous variables. All
possible values are taken into account

• new test creates possible splits for each node. For discrete variables it
creates one branch per value. For continuous variables with instances
with a value lower or equal to t falling into the first branch, and those
with a greater value in the seonc branch.

• average gain ratio computes the average gain ratio achieved by all pos-
sible tests in T

• best finds the best split (greatest gain ratio) among all possible tests in
T

• gain ratio extracts the gain ratio value of the best split Tb

While not a stop criterion, C4.5 also possesses a pruning technique integrated
in the tree building process. Once all of an internal node’s children have been
processed, if all children are leaves, it is tested whether replacing this internal
node with a leaf would, based on training instances, increase the error more
than a pre-established amount. If the error does not increase, the subtree is
replaced with a leaf. This operation is called subtree replacement. Once the
tree is built, C4.5 puts the recently built tree through a post-pruning process
described in Section 2.4.1.2.
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Input:
S: training data set
V: independent variables
Function expand C4.5(S,V ):

if S is empty then
turn node into leaf
assign S same label as parent
return

end
if S meets stop criteria then

turn node into leaf
assign S label of most common label of instances in S
return

end
if all instances on S are members of class Cj then

turn node into leaf
assign label Cj to S
return

end
foreach Vi in V do

if Vi is discrete then
Ti = new test(Vi)

end
if Vi is continuous then

threshold = best split(Vi)
Ti = new test(Vi, threshold)

end
T = T ∪ Ti

end
gravg = average gain ratio(T )
Tb = best(T )
if gain ratio(Tb) < gravg then

turn node into leaf
assign S label of most common label of instances in S
return

end
foreach instance Ij in S do

foreach outcome Oi in Tb do
if Oi == Iji then

Si = Si ∪ Ij
end

end

end
foreach Si subsets in S do

expand C4.5(Si, X)
end
return

Algorithm 2.2: C4.5 decision tree construction algorithm.

18



C4.5 has been widely used in the machine learning community, both as a
standalone algorithm or as base classifier for Multiple Classifier Systems [56, 21].
It has been used to extract knowledge from classifiers without explaining capac-
ity [43], to handle data with uncertain information [145], and in combination
with new intelligent resampling methods designed to tackle the class imbalance
problem [16, 101].

In [65], Garcia and Herrera proposed very powerful statistical tests to ana-
lyze the significance of the differences in results, and comparing the results of five
widely used algorithms (C4.5, Naive-Bayes, CN2, 1-NN, and a Kernel Classifier)
over 30 datasets. Results showed that C4.5 was the most effective algorithm,
followed by Naive-Bayes without significant differences, but performing signifi-
cantly better than the rest of algorithms. Moreover, C4.5 was also included in
an extensive study [53] detailed in Section 2.10, where it placed in the top four
positions, never performing significantly worse than the best classifier.

2.4.1.1 Gain ratio

The ID3 algorithm C4.5 is based on used a criterion based on information
theory: information gain.

Let freq(Cj , S) be the number of instances found in the set S that belong
to the class Cj , and |S| be the size of the set, so that the following

freq(Cj , S)

|S|

represents the probability of a randomly selected instance belonging to class
Cj . According to information theory, the information carried by a message can
be measured in bits as

− log2

(
freq(Cj , S)

|S|

)
.

So, in order to measure the information needed to identify the class of an
instance in the training set S (the entropy of S), we sum the information for
each class by their weight on training set S

info(S) = −
k∑

j=1

[
freq(Cj , S)

|S|
× log2

(
freq(Cj , S)

|S|

)]
.

To measure the information after subset S is divided into n subsets accord-
ing to the split T , the weighted sum for the entropy of each subset has to be
calculated as

infoT (S) =

n∑
i=1

[
|Si|
|S|
× info(Si)

]
.
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The gain measures the information gained by partitioning a set S according
to a specific split T .

gain(S) = info(S)− infoT (S)

An algorithm that uses gain aims to split the set in a way that maximizes the
information gain. However, Quinlan noted that this criterion has a bias in favor
of splits with many subsets. If a node splits a training set using a unique identi-
fier for each instance, this will result in as many subsets as instances. This split
achieves the maximum possible information gain. However, from a classifica-
tion point of view, this split is useless. The gain ratio criterion normalizes the
information gain using the split info. The split info is calculated in the same
way as the entropy, but instead of measuring it from the point of view of class
membership, from a point of view of membership to the subsets generated by
the split.

split info(T ) = −
n∑

i=1

[
|Si]

|S|
× log2

(
|Si]

|S|

)]
,

so that the resulting criterion

gain ratio(T ) =
gain(T )

split info(T )

measures the information relevant to the classification gained by the split. C4.5
decides the variable (and value if necessary) of the split on a node by selecting
the split with the highest gain ratio.

2.4.1.2 Pruning

Once the decision tree has been built, the C4.5 algorithm performs a prun-
ing operation on the tree. While building the tree, C4.5 already performs a
collapsing operation based on the training data. However, the error on training
data is not a useful measure as any pruning will result on an increase in error on
training data. So the key here is to try and predict errors on unseen data. Older
pruning techniques such as cost-complexity pruning and reduced-error pruning
held part of the data from the training set so that it could be used to assess
these error dates.

The approach used by C4.5 only uses training data but errors are estimated
statistically. Quinlan refers to this estimation as very pessimistic. Each leaf
covers N examples, and E of them, those not belonging to the majority class
on that leaf, are classified incorrectly. Using these two values, and a preset
confidence level (CF, 25% by default), the errors are predicted using only the
upper limit (thus, the pessimistic nature of this estimation) for the binomial
distribution as UCF (E,W ) where E is the weight of instances by the node and
W is the total weight of the nodes. The upper and lower limits for the binomial
distribution are symmetrical, so the probability of the actual error value being
above this estimate is CF/2.
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When pruning a tree, the whole tree is processed subtree by subtree. The
algorithm first lowers down to the smallest possible subtree (internal node).
Once a subtree is selected two different operations are considered:

1. Just like in the collapsing procedure. The possibility of replacing the
current node with a leaf is considered. If this replacement increases the
estimated errors in less than 0.1, the subtree is replaced with a leaf.

2. If the first operation fails, the algorithm considers replacing the subtree
with the most populous branch. So the algorithm first computes what
the error for that branch would be if the entire set of the internal node
(instances falling on the most populous branch and its siblings) was put
on that branch. Again, if the error in the most populous branch surpasses
the error of the subtree in less than 0.1, the subtree is replaced with the
biggest branch. This operation is called subtree raising.

The pruning algorithm is explained in Algorithm 2.3. This algorithm uses
the method largest branch to determine which of its children receives the most
instances after the split.
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Input:
N: node to be pruned
raising: whether subtree raising is enabled
Function prune(N, raising):

if N is not leaf then
for all Ni subnodes of N do

prune(Ni)
end
E = weight of instances incorrectly labeled by N
W = weight of all instances in N
errorleaf = W × UCF (E,W )
errortree = 0
for all Ni subsets of N do

Ei = weight of instances incorrectly labeled by Ni

Wi = weight of all instances in Ni

errortree += |Wi| × UCF (Ei,Wi)

end
if errorleaf < errortree + 0.1 then

turn node into leaf
return

end
j = largest branch(N)

errorbranch = W × U j
CF (E,W )

if errorbranch < errortree + 0.1 and raising == true then
assign subnodes of Nj as subnodes of N
prune (N ,raising)
return

end

end
return

Algorithm 2.3: C4.5’s pruning process.
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2.4.2 The CHAID algorithm

The CHAID (Chi-squared Automatic Interaction Detector) algorithm [98]
was the final result of several works carried out separately at different times
and by different authors [108, 97]. It is currently widely used because it is
available in extensively used analytical software packages such as SPSS [103]
and KnowledgeSEEKER [11].

This algorithm only handles discrete variables. Unlike C4.5, this algorithm,
by default, does not create a branch for each value a variable can take, and
instead attempts to group multiple values on each branch. For each variable,
on each node, it first creates a contingency table with the relationships between
the values the variable takes and the class membership numbers. One such
example is shown on Table 2.2. In this example the variable can take n values
and there are k classes in domain. In this table, o21 would represent how many
of the examples belonging to C2 have the value x1 for this variable. This table
is passed on to Kass’ algorithm [97]. This algorithm finds the most significant
split for a variable according to Pearson’s chi-squared test [113]. Once the most
significant split for every one of variables has been found, the p-value is adjusted
using the Bonferroni coefficient. The splits for all variables are compared looking
for the most significant, which is used as split on that node, as long as this split
is significant enough (p-value < 0.05). CHAID’s algorithm can be found on
Algorithm 2.4.

The algorithm developed by Kass, identified in Algorithm 2.4 by kass, at-
tempts to combine values by first making the least significant binary groupings.
This algorithm receives a contingency table like the one shown in Table 2.2,
specific for that node, created by the function contingency table. A grouping
is not significant if the class distributions of the variable values (columns in
the contingency table) are not significantly different (p-value > 0.05 by default)
according to the χ2 test. When combining values, it first checks the significance
of every possible pair. Once groups of three or more values have been found,
it tries to find the most significant binary splits (p-value ≤ 0.05 by default) by
taking one of the possible values from the merge. This process iterates, while
updating the contingency table with each change, until it converges in the best
split for that variable, if any. Once the best split for a variable has been found,
the p-value of Pearson’s test is adjusted using Bonferroni coefficient. This is
done for every variable. The adjusted p-values for each variable are compared

x1 x2 . . . xn

C1 o11 o12 . . . o1n

C1 o21 o22 . . . o2n

. . . . . . . . . . . . . . .

Ck ok1 ok1 . . . okn

Table 2.2: Example of a contingency table.
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Input:
S: training data set
V: independent variables
Function expand CHAID(S,V ):

if S is empty then
turn node into leaf
assign S same label as parent
return

end
if S meets stop criteria then

turn node into leaf
assign S label of most common label of instances in S
return

end
if all cases on S are members of class Cj then

turn node into leaf
assign label Cj to S
return

end
foreach Vi in V do

tablei = contigency table(S, Vi)
Ti = kass(tablei, Vi)

end
T = best(Ti)
if pval(T ) > 0.05 then

turn node into leaf
assign S label of most common label of instances in S
return

end
foreach instance Ij in S do

foreach outcome Oi in T do
if Oi = IIji then

Si = Si ∪ Iji
end

end

end
foreach Si in S do

expand CHAID (Si)
end
return
Algorithm 2.4: CHAID decision tree construction algorithm.
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and if the split with the lowest p-value is significant and does not meet any pre-
pruning criteria, the node is split and the process is repeated with each child
node. The method best selects the best of the proposed T splits, the one with
the lowest p-value, and the method pval simply returns the p-value of a split.

Unlike C4.5, CHAID makes a distinction between discrete variables where
the values follow an established order (ordinal variables, e.g. age ranges) and
variables where there is no order (nominal variables, e.g. colors). When ordinal
variables are processed, only groupings that comply to this order are taken into
consideration.

When looking for a split using a specific variable, if examples are found
with a missing value for that variable, these examples are not used to find the
best split. Once the best split is found, missing is considered another value
the variable can take, and the algorithm attempts to merge this value with an
already existing value (or value grouping). It attempts to merge the missing
values with every group of the best split. The least significant merge (p-value
> 0.05) will be performed, but only if it does not make the merge significant
(p-value ≤ 0.05). If it is not possible to merge the missing value with others,
examples with missing value are put on a branch of their own.

Regarding the pruning procedures found on CHAID, this algorithm only
applies pre-pruning strategies: two strategies related to the size of the nodes
and one related to the significance of the split.

• If a node has less than a certain number of instances, the algorithm does
not attempt to split the node.

• If a split creates nodes with less than a certain number of instances the
split is not considered valid.

• If the most significant split (split with the lowest p-value) is not significant
enough (p-value < 0.05 by default) no split is performed in that node.

2.5 Ensembles classifiers

Ensemble classifiers are one of the improvements to classifiers, decision trees
among others, and work by combining the decisions of several individual clas-
sifiers. Ensembles make use of data resampling, multiple feature subsets, non-
deterministic algorithms and different base algorithms. Ensemble classifiers usu-
ally give better results than the classifiers they are made of [42] as long as the
individual classifiers that compose the ensemble disagree with each other [77].

One of the weaknesses of decision trees, is that they are very sensitive to their
training sample. A small change in the training sample can lead to the construc-
tion of a completely different tree using the same algorithm. This property is
called instability [32] and unstable classifiers are referred to as weak classifiers
in the context of MCS. In the case of decision trees, ensembles improve the
accuracy and stability of individual trees at the cost of losing their explaining
capacity. Figure 2.2 shows how an ensemble works. It shows a two class problem
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Classifier2 Classifier3Classifier1

Figure 2.2: An ensemble classifier.

where a single classifier is unable to create a clean boundary between classes
and can only isolate part of C1 or C2. Combining the votes of three different
classifiers trained using the same sample, the ensemble classifier can perfectly
fit to the training data.

The following sections present the most widely used ensemble classifiers.

2.5.1 Bagging

Bagging or Bootstrap Aggregating [21] is the process of aggregating mul-
tiple models (classification trees, linear regression models...) and producing a
final outcome by averaging the outcome of the individual models in the case of
numerical outcomes or by voting when predicting classes.

Usually the same learning algorithm is used to create the multiple models,
albeit built with different training samples. These different samples will be
bootstrap samples, thus the name: Bootstrap Aggregating. Bootstrap samples
are of the same size as the original samples and they are created by randomly
selecting instances of the original sample, with replacement, meaning the same
instance can be selected more than once for the same sample, and sometimes
not even once. Although not common, it is also possible to use different learning
algorithms. Figure 2.3 shows a basic Bagging structure. From each bootstrap
sample an individual model is built independently of the rest of models. During
the testing phase, the class of each unseen instance is predicted by all individual
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Figure 2.3: Training and test phases of Bagging.
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models. The class voted by the majority is assigned to the instance. The weight
of each vote from each individual classifier is inversely proportional to its error
rate during the training phase.

This procedure offers better accuracy and more stability against changes in
the training sample. The greater the instability of the base algorithm, the better
the improvement. Tests run by Breiman show misclassification rates reducing
in the ranges from 20% to 47% [21].

Because of these significant improvement, different variants of Bagging have
been created since. Sub-Bagging [23], for example, uses subsamples instead of
bootstrap samples.

2.5.2 Boosting

Boosting [135] aims to answer a question posed by Kearns [99] asking if a
set of weak learning algorithms can create a stronger learning algorithm.

Boosting creates a series of classifiers sequentially. All instances start with
the same weight, but from one iteration to the next, the training sample is
reweighted. Samples misclassified by the last iteration gain weight for the next.
In case the base algorithm cannot work with instance weights it is also be
possible to resample the training sample where misclassified examples have a
greater probability of being in the resampled data.

The final decision is made with weighted voting of individual classifiers where
the weight of each classifier depends on its misclassification rate: the lower is the
error, the bigger is the weight. Figure 2.4 shows a basic example of a Boosting
algorithm.
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Figure 2.4: Taining and test phases of Boosting.

2.5.3 Random Subspace Method

Another type of ensemble algorithm are the Random Subspace Methods.
They were initially proposed as the Random Forests algorithm [81] that creates
an ensemble of decision trees. These methods work in a way similar to Bagging,
but instead of creating new samples by picking instances at random, the new
samples are created by picking features at random without replacement, so that
each new sample has less features than the original sample.

From each one of these samples, a classifier is built. In the test phase, the
class probabilities predicted by each individual model are combined to get the
average class distributions, and the class with the greatest probability is assigned
to the unseen instance. Figure 2.5 shows how these ensembles work.

2.5.4 CMM

CMM or Combined Multiple Models [43] is a meta-learner that tries to
harness the accuracy gains of ensemble classifiers while retaining the explaining
capability of single classifiers.

CMM uses Bagging as the ensemble classifier methodology. First the indi-
vidual classifier is trained several times using bootstrap samples created from
the original sample. Then, a new set of examples is randomly generated and
classified according to the ensemble model. A new training sample is created
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Figure 2.5: Training and test phases of a Random Subspace Methods.

combining the original training sample and the new generated examples. Fi-
nally, the learning algorithm is trained using this new sample and the obtained
model used as the final model.

Using C4.5rules as the individual classifier, CMM retains on average 60%
of the accuracy gains obtained from applying Bagging to C4.5rules while still
generating a single, comprehensible, and more stable model [43].

CMM follows the explanation by simplification post hoc approach explained
in Section 2.2.

2.6 Consolidation

The consolidation of decision tree algorithms is an approach that uses the
ensemble voting process during the base classifier algorithm’s building process to
create a single classifier that keeps the explaining capacity of the base classifier
algorithm [114, 121, 122].

The first consolidated algorithm was C4.5, which resulted in the Consoli-
dated Tree Construction (CTC) algorithm. CTC was originally conceived to
tackle a car insurance claim fraud problem where class imbalance was present,
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and where the comprehensibility of the models was required.
Consolidation works by first creating multiple samples like other ensembles

do. Bagging, for example, creates bootstrap samples: samples with the same
size as the original but selecting examples using replacement. CTC can use
different types of samples, but originally used bootstrap and stratified samples:
subsamples that keep the original dataset’s class distribution. Stratified samples
had a size relative to the original dataset.

For understandability, CTC could be regarded as a Bagging of C4.5 decision
trees that are built concurrently, not independently as in Bagging. From each
subsample, a C4.5 (sub)tree begins to grow, but instead of splitting the subset
according to its own split, each subtree casts a vote of the best split for its
particular sample, but all subtrees comply to the majority vote and split their
samples accordingly, even if it is not what they originally voted for. If the most
voted variable is a discrete variable, a child is created for each possible value, like
in the C4.5 algorithm. If the most voted variable is continuous, the algorithm
collects all of the proposed split points and selects the median value among
them. Originally, the average value was considered, but results showed that the
median yielded better results. The process continues until the majority decides
not to split anymore. When a consolidated tree has to classify new examples, the
average of class membership probabilities of that leaf node on each subtree are
assigned and the class with greatest probability is assigned to the instance like
in the C4.5 algorithm. Figure 2.6 shows this process graphically and Algorithm
2.5 displays the pseudocode.

The visual example shows that from the original dataset several samples are
created and from each sample a C4.5 tree begins to be built. At the root node
two of the shown C4.5 trees vote to split the node using the discrete gender
variable. All trees split their sample by that variable, even tough, for example
the second tree proposes splitting by the age variable using 33 as the threshold.
At that point the root node is consolidated. In the second node two trees
propose cutting by the age variable but they propose different cut points (28
and 30). The median among the proposed should be used. In this case there
are two possible values and the median should be the average of the two, but
since C4.5 uses actual variable values for the split, the median’s immediately
higher value (30) is used as the consolidated cut point. This continues until the
majority of trees vote not to split anymore.

In essence, a CTC classifier could be seen as a Bagging of C4.5, without the
restriction of limiting to bootstrap samples, where all of the individual decision
trees share the same structure and node conditions, with each subtree having
different class probabilities on their leaves. From an implementation point of
view, however, it is not necessary to actually build all of the subtrees. Since
all of the subtrees have the same structure, the actual output model of the
algorithm is a decision tree with the subtree’s identical structure, and leaf class
probabilities computed from the probabilities of the subtrees. Thus, as the
base algorithm consolidation is applied to (C4.5) is comprehensible, CTC is
also comprehensible, even if it combines the knowledge of multiple samples like
full-fledged black-box ensembles do.
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Input:
S: training data set
N S : number of samples
R M: resampling method
Function consolidate(S, N S, R M ):

resample S into NextS = {S1, S2, S3, . . . , SN S} using R M
expand consolidated(NextS, N S)
return

Function expand consolidated(S,N S):
for i=1 to N S do

find best split (V, t)i with variable V and threshold t based on Si

end
Compute consolidated split (Vc, tc) based on all (V, t)i

if (Vc, tc) == No Split then
turn node into leaf
consolidate label based on Si where i ≤ 1 ≤ N§
return

end
for i=1 to N S do

split Si into S1
i , S

2
i , . . . , S

m
i based on (Vc, tc) where m is

determined by the values Vc can take

end
for j=1 to m do

NextS = {Sj
1, S

j
2, . . . , S

j
N S}

expand consolidated(NextS,N S)
end
return

Algorithm 2.5: Consolidation process.
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Figure 2.6: Visual representation of the CTC algorithm’s construction process.
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Abbasian, Drummond, Japkowicz, and Matwin [1] coined the term “Inner-
Ensembles” to encompass approaches such as this, where the ensemble process
is applied in the training phase instead of the testing, or classification, phase.
In [1] they applied the procedure to the K-means clustering algorithm and to
the network-building phase of the Bayesian Network classification algorithm.
They also mentioned consolidation, which had been presented years prior, as en
example of Inner Ensemble.

2.6.1 Previous Research on Consolidation

Since was first presented [117] there has been plenty of research on con-
solidation. The initial studies revolved around comparing it with CTC’s base
classifier, C4,5. Using the error rate as the performance measure over standard
datasets, although using enough samples (>10) CTC always got better average
results than C4.5, initially, statistically significant differences were only found
for some datasets, not globally. Measuring the similarity of trees trained with
different samples, however, CTC always shows better stability, in some cases
even reaching full convergence of consolidated trees built using different sets of
samples [117, 116, 118, 121, 120]. The differences in the stability between CTC
and C4.5 are statistically significant. The complexity of the models, calculated
counting the amount of internal nodes of a tree, is smaller in the case of CTC,
making consolidated trees easier to understand. This is important because as
Turney and Domingos separately pointed out “the engineers are disturbed when
different batches of data from the same process result in radically different de-
cision trees. The engineers lose confidence in the decision trees, even when we
can demonstrate that the trees have high predictive accuracy.” [146] and “a
single decision tree can easily be understood by a human as long as it is not too
large” [43].

Once the benefits of CTC over C4.5 were clear, continuing research focused
on comparing CTC with algorithms that work in a similar manner, specifically
Bagging and CMM. Bagging does not offer a comprehensible explanation since
its decision is a combination of the votes of several classifiers. Although Bagging
obtains, on average, better results than CTC (without statistically significant
differences) [115], CTC has a better discriminating ability than CMM, with sta-
tistically significant differences regarding the stability of trees built with similar
subsamples and creating simpler, more understandable models [74, 115].

Another aspect that has been a main focus on research about consolidation is
how samples are created. Consolidation requires resampling, which makes CTC
ideal for problems where the resampling of the original sample is necessary, such
as the class imbalance problem. A comparison between CTC and C4.5 using
subsampling achieved a statistically significant improvement on the error rate in
favor CTC while maintaining stability and keeping the explaining capacity [73].
As explained later in Section 2.8.1.1, the class imbalance problem requires the
use of better suited performance metrics such as the Area Under the ROC Curve
(AUC, explained later in Section 2.8.1.1). Comparing the AUC measure of CTC
and C4.5 over imbalanced datasets, CTC achieves better average results. In
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general, the use of intelligent resampling methods such as SMOTE is beneficial
for CTC [7]. While obtaining better results than C4.5 and SMOTE combined
[6], CTC’s results are improved even more with the use of intelligent resampling
methods. For the analyzed datasets, in general CTC works best with class
distributions close to the balanced distribution (40-60%). Because of this CTC
can benefit from the modification of the original class distribution of the problem
[122].

Several resampling strategies have been tested, and results have been dissim-
ilar depending on the datasets. However, from a global point of view, stratified
subsamples with a size of 75% of the training sample’s size proved to obtain the
best results, with 10 subsamples being enough to beat the error rate of C4.5
while achieving a lower complexity. On average the accuracy of CTC improves
as the number of samples used increases, reaching a stability in accuracy and
tree structure from 50-70 subsamples onward. Using bootstrap samples only
benefits CTC in some cases [73], so the use of bootstrap samples is not rec-
ommended for CTC. The optimal class distribution for CTC does not always
coincide with the optimal class distribution for C4.5, its base classifier [5].

The latest study regarding CTC [12] prior to this thesis, tested the algorithm
with highly imbalanced datasets, extracting balanced datasets with a subsample
size proportional to the amount of minority class examples. This study defined
a first notion of coverage in order to determine the number of subsamples to use
for each dataset and subsample size instead of fixed subsample numbers as it
was done previously. However that notion differs from the one proposed in this
dissertation on the fact that it does not ensure the representation of examples of
all classes equally. This study shed some promising results, with CTC ranking
second against 22 evolutionary and non-evolutionary classic algorithms in a
context of 33 imbalanced datasets.

2.7 The PART ruleset algorithm

The PART ruleset induction algorithm combines the two most-common
approaches for rule induction: extracting rules from decision trees and the
separate-and-conquer approach. It was proposed by Eibe and Witten in “Gen-
erating Accurate Rule Sets Without Global Optimization” [55].

C4.5rules [128] was proposed along with the C4.5 decision tree algorithm
and follows the first approach by transforming an unpruned tree into a ruleset
by creating a rule for each leaf with the decisions between the tree’s root node
and the leaf. Then each rule is simplified by greedily removing conditions to
minimize the rule’s estimated error. Then, a subset of rules is selected using
a criterion based on the minimum description length [131]. Finally, rules are
removed from the ruleset as long as the removal reduces the error rate on training
data. However, this optimization process is lengthy and complex.

Separate-and-conquer approaches create a rule, remove the examples cov-
ered by the rule, and repeat the process until the whole training set is covered.
Fürkranz [61] showed that it is most effective to prune each rule immediately
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after creating it and using a separate stopping criteria to decide when to stop
creating new rules. RIPPER follows the separate-and-conquer strategy by or-
dering classes from least to most populous in the training sample, leaving the
most-populous class as the default class, and creating rulesets for each class
sequentially. Pruning a rule immediately after creating it can lead to a very
aggressive pruning.

Both approaches (C4.5rules’ and RIPPER’s) follow a two-step process: first
an initial model is created and then a heuristic improves its discriminating ca-
pacity. Even though this post-induction process generally increases the accuracy
and decreases the complexity of the model, the process is rather complex and
heuristic.

PART “avoids global optimization but nevertheless produces accurate, com-
pact rule sets” [55]. This lack of global optimization aims to avoid the issues of
C4.5rules and RIPPER. It adopts the separate-and-conquer strategy by build-
ing a partial decision tree, extracting a rule, removing the instances covered by
this rule, and repeating the process until the entire training sample is covered.

Unlike C4.5rules, PART only uses a portion of the tree to create the rule. The
idea of repeatedly creating decision trees only to use part of it is not far fetched.
Using a pruned tree to extract a rule instead of incrementally adding conditions
to a rule avoids the overfitting of pure separate-and-conquer strategies. Com-
bining separate-and-conquer strategies with decision trees adds flexibility and
speed.

The waste of time generated by repeatedly creating decision trees only to use
part of it can be accelerated by using partially developed trees instead of fully
explored trees. Partial decision trees do not expand the tree in the same order as
the original algorithm does. First, the root node is expanded as the decision tree
algorithm would. PART uses C4.5 for the decision trees so the node is expanded
using the variable with the highest gain ratio, and instances (even those with
missing values) are divided into subsets just like C4.5 does. Among the newly
created child nodes, the one with the lowest entropy is selected to be expanded
next. According to the authors, this is because nodes with lower entropy values
are more likely to produce smaller subtrees and, thus, a shorter and more general
rule. If a node cannot be expanded its sibling nodes are considered. If at some
point all nodes of a subtree have been treated and left as leaves pruning is
attempted. Only half of C4.5’s pruning process is applied (subtree raising).
If the subtree is not pruned, the partial tree construction process stops. If
the subtree replacement does happen, then the process continues by analyzing
the newly replaced node’s untreated siblings. If no replacement fails the final
decision tree will be a single root node covering the entire (remaining) sample.

Algorithm 2.6 shows PART’s main procedure. This procedure uses the
expand PART function from Algorithm 2.7 and the function get rule which
first identified the biggest treated leaf, and then discards any tree branch not
leading to said leaf node. Algorithm 2.7 shows the partial tree construction pro-
cedure. The functions new test, best, gain ratio and average gain ratio

found in that algorithm work the same as they did in Algorithm 2.2. The
sort by entropy function sorts the subsets created from the split by their en-

36



tropy, from lowest to greatest. Figure 2.7 shows an example of a partial decision
tree being built, and a rule is extracted. The following steps happen in the fig-
ure:

1. In this step the root node has been split into three nodes. These three
nodes (2, 3, 4) are untreated for now.

2. The node with the lowest entropy (Node 3) has been expanded further
into two nodes. Node 3 is now treated.

3. In this step two nodes have been treated. Node 6 had an entropy of 0,
meaning all instances were of the same class and cannot be split further.
Next Node 5 has been treated, and it cannot be split further.

4. All children of Node 3 have been treated so a subtree replacement is at-
tempted and it succeeds. Node 5 and Node 6 are pruned and Node 3
becomes a leaf, and the algorithm backtracks.

5. Back at the same level as Node 3, the next untreated node with the lowest
entropy is treated (Node 4).

6. In this step both Node 7 and Node 8 are treated. Node 7 is already class-
homogeneous and cannot be split. Node 8 has examples of different classes
but cannot be split either.

7. In this case the replacement of Node 4 fails and the partial process is
stopped. Node 2 is left untreated. Among the treated leaves (3, 7 and, 8)
the one with the biggest size (Node 3) is chosen to extract the rule.

Once the partial tree is built the leaf covering most examples is used to
extract a rule. This rule contains the decisions between the root node and the
selected leaf. This is the most general rule. The author’s experimented using
the most accurate rule but this did not increase the ruleset’s accuracy. Instances
covered by this rule are removed from the training sample and if there are still
uncovered instances the process is repeated.

The authors claim that this procedure ensures that the aggressive pruning
issues found in RIPPER do not happen.

When using the ruleset to classify new instances, the instance is tested using
all rules. Each rule will return a positive weight (if the rule covers the instance)
and the class probabilities according to that rule. The final classification is
achieved by combining the outcome of each rule, the same way C4.5 does.

An empirical study by PART’s authors compared the algorithm to C4.5,
C5.0 and RIPPER, and concluded that the main advantage of PART is not
performance but simplicity. Even if the results of that study could not conclude
that PART performed significantly better (or worse) than any of the other
algorithms, PART has become a widely used rulesets algorithm. At the time of
writing it has been cited over 1200 times according to Google Scholar.
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Figure 2.7: Example of the process of building a partial tree and extracting a
rule.
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Input:
S: training data set
Function PART ruleset(S):

ruleset = ∅
while S 6= ∅ do

partial tree = expand PART(S)
R = get rule(partial tree)
foreach instance I in S do

if R covers I then
S = S \ I

end

end
ruleset = ruleset ∪ R

end
Algorithm 2.6: PART’s ruleset construction algorithm.
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Input:
S: training data set
Function expand PART(S):

mark S as treated
if S is empty then

turn node into leaf
assign S same label as parent
return

end
if S meets stop criteria then

turn node into leaf
assign S label of most common label of instances in S
return

end
if all cases on S are members of class Cj then

turn node into leaf
assign label Cj to S
return

end
foreach Vi in V do

if Vi is discrete then
Ti = new test(Vi)

end
if Vi is continuous then

threshold = best split(Vi)
Ti = new test(Vi, threshold)

end
T = T ∪ Ti

end
gravg = average gain ratio(T )
Tb = best(T )
if gain ratio(Tb) < gravg then

turn node into leaf
assign S label of most common label of instances in S
return

end
foreach instance Ij in S do

foreach outcome Oi in T do
if oi == Iji then

Si = Si ∪ Ij
end

end

end
sort by entropy(S1, S2, S3, . . .)
foreach Si in S do

expand PART (Si)
attempt subtree replacement on S1

if replacement failed then
return

end

end
return

Algorithm 2.7: PART’s partial C4.5 tree construction algorithm.
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2.8 Evaluation of Supervised Classification Al-
gorithms

With so many classification algorithms in existence, metrics have been de-
veloped to compare the performance of multiple classifiers. However, achieving
a better average value for a metric or measure is not enough to prove that the
performance of a classifier is better than another. The differences in perfor-
mance between classifiers need to be tested for statistical significance to ensure
that the differences are not due to chance.

The following sections will first, lay out a set of metrics to evaluate and
compare classifiers, and a set of statistical tests the significance of differences
between two or multiple classifiers.

2.8.1 Metrics to Evaluate Classifiers

The most straightforward way to measure how effective classifiers are is to
measure how well they classify examples unseen during the training stage. This
is also called their ability to generalize or discriminate.

When the models created by the algorithm posses the ability to explain how
a decision is made, their structure takes importance. Another way to compare
explainable models is to measure the complexity of the models.

2.8.1.1 Metrics to Evaluate a Classifier’s Discriminating Capacity

The discriminating capacity of a classifier is usually measured from the point
of view of accuracy, i.e. the ability to correctly classify examples that were
not used during training. This ability is also called discriminating capacity or
capacity of generalization.

In a real world problem, when new instances are classified, it is the goal
of the classifier to correctly assign a class to the instance, so the class is not
known, and thus, the classifier’s accuracy cannot be assessed. However, when
an algorithm is created or multiple algorithms are compared, their accuracy is
calculated by holding part of the training set apart. This test set is not used
during the training phase, and during the testing set, the algorithms do not
know or use the value of the class, but it is used to check whether the classifiers
output is correct or not.

The most straightforward way of measuring how accurate a classifier is, is
to measure the overall accuracy of the classification:

overall accuracy =
correct classifications

total classifications

However, this is a measure that does not take any characteristic of the
dataset into account, and in a lot of cases, is considered an inadequate mea-
sure. In a two-class problem where one of the classes has much fewer examples
than the other (a problem with class imbalance), for example 10 instances of
the minority class out of a total of 1000 instances, a model that simply classifies
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any example as the majority class, regardless of its attribute values, achieves
an overall accuracy of 99% which, at least at first glance, looks great, but has
no real classification value, as the class of interest is usually the minority class,
and this model fails completely at identifying it.

Most accuracy measures are based on what is called a confusion matrix.
Such a matrix shows the relationships between the actual class of the instances,
and the predictions made by the classifier. Table 2.3 shows a confusion matrix
for a two-class problem. In two-class problems, usually one of the classes is the
concept of interest (e.g. the ‘sick’ class in a ‘healthy/sick’ domain), and this
class is referred to as the positive class, whereas the other class is called the
negative class.

actual class

+ -

cl
as

si
fi

ed
as

+ TP a FP b

- FN c TN d

a True Positives
b False Positives
c False Negatives
d True Negatives

Table 2.3: A confusion matrix.

Using a confusion matrix, the above mentioned overall accuracy can be rep-
resented in the following way:

overall accuracy =
TP + TN

TP + FP + TN + FN

When looking at class-specific measures, the simplest are the true positive
rate (referred to as TPrate and also called sensitivity or recall), and its coun-
terpart, the true negative rate (referred to TNrate and also called specificity).
These rates measure how much of each class is classified correctly.

TPrate =
TP

total positive class
=

TP

TP + FN

TNrate =
TN

total negative class
=

TN

TN + FP
.

These two measures are commonly combined by computing the geometric
mean (GM) of the two:
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GM =
√
TPrate× TNrate

From the matrix above, similar metrics can be extracted for the incorrect
class predictions:

FPrate =
FP

total negative class
=

FP

TP + FP

FNrate =
FN

total positive class
=

FN

TN + FN
.

In the class imbalance problem given above, if a model classified all examples
as majority class, no positive class examples would be classified correctly. This
would mean that the value for TP would be zero, which in turn would result in
a TPrate of zero, which in turn would result in a GM of zero. A problem with
99% overall accuracy would get a zero for another measure. This shows how
measures that work class-by-class are much better suited. Specially in cases
where class imbalance is present.

Similar to the recall, precision measures how many of the instances classified
as positive, are actually positive:

precision =
TP

TP + FP
.

Combining both recall and precision, another metric that covers the entire
confusion matrix can be derived. The F1-Score (also called the F-Score or F-
Value).

F1 = 2× precision× recall
precision+ recall

Another interesting measure is Cohen’s kappa statistic [35]. This metric
determines how much the assessed classifier differs from a random or trivial
classifier: that is, a classifier that simply bases its output on the apriori class
distributions of the problem.

kappa =
TP + TN − E(TP + TN)

TP + TN + FP + FN − E(TP + TN)
,

where E(TP + TN) represents the chance of classifying correctly by random
chance.

E(TP + TN) =
(TP + FP )(TP + FN) + (TN + FN)(TN + FP )

|S|2

where |S| is the number of examples.
Finally, a widely used metric is the Area Under the Receiver-Operating

Curve (AUC) [52]. The ROC curve can be represented in a two-axis chart
and is used to represent the relationship between the TPrate and the FPrate.
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On models that only the class label for unseen examples is given, this only
allows for a single point. In this case, the curve starts from the (0,0) point,
goes through the (TPrate,FPrate) point, and ends up in the (1,1) point. When
the classifier, instead of assigning a single class to unseen instances, gives class
membership probabilities as the output, each probability value in the model
can be used as threshold to determine if an instance is positive (instead of the
usual 0.5 threshold). The lower this threshold, more instances are classified as
positive (more true and false positives). Using the TPrate and FPrates for each
threshold, an actual curve can be drawn. The area below the ROC curve is used
to assess the performance of classifiers. An ideal ROC curve would pass as close
to the (0,1) point as possible to maximize the area under the curve. Figure 2.8
shows different ROC curves.

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Random
Label-based
Ideal
Probability-based

FPrate

T
P
ra

te

Figure 2.8: Multiple ROC curves displaying different scenarios.

AUC evaluates the classifier in multiple contexts of the classification space
without assuming any misclassification costs or prior probabilities [137]. It is a
robust metric [92] and it has been suggested that machine-learning algorithms
should focus on optimizing their AUC rather than their overall accuracy [83].

When facing a multi-class problem, some measures have a specific imple-
mentation for this case. However, the most widely used approach is to compute
k (where k is the number of classes) one vs. all values using a different class as
base each time and averaging the results of all iterations weighted by the class’
size:

Multi− class metric =

∑k
j=1 nj ·metric(Cj , all classes \ Cj)

n

where n the size of the sample, nj is the size of the j-th class (Cj) and k
is the number of classes. Cj is the positive class of an iteration, and all other
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classes combined make up for the negative class.

However, in this thesis, the following implementation has been used to com-
pute the multi-class kappa statistic:

Multi− class kappa =
n
∑k

i=1 hii −
∑k

j=1 TrjTcj

n2 −
∑k

j=1 TrjTcj

where n is the number of examples, k is the number of classes, and Trj and
Tcj are row and column sums for the j-th class in the confusion matrix, and hii
is the number of correctly classified examples for the i-th class.

2.8.1.2 Metrics to Evaluate a Classifier’s Structural Complexity

When a classifier is comprehensible, there is another way how an algorithm
can be evaluated: by measuring the structural complexity of the generated
models.

If the comprehensibility of the classifier is desired, it is because a human
operator will make use of the knowledge extracted by the classifier. The less
complex, or in other words, the simpler a classifier it is, the easier it is for a
human to be understood; so lower structural complexity equals greater com-
prehensibility. The classifiers accuracy should prevail over the simplicity of the
models. However, with equally accurate classifiers, the Occam’s Razor principle
should be followed, and the simplest should be chosen.

It is not easy to select correct criteria to measure the complexity of a classifier
[62]. However, in this dissertation, the only classifiers measured from this point
of view are decision trees and rulesets (extracted from decision trees). This
makes the choice of metrics much easier.

From a macro point of view, the easiest way of assessing the complexity of
a ruleset is how many rules it contains. This can be translated into decision
trees by how many leaf nodes it has; as the path from the root node to one of
the leaves is the equivalent of a rule. In order to assess the real complexity of a
ruleset, looking at the number of rules is not enough, as each rule could contain
as few as one condition, but this number could grow to the dozens or hundreds
in more complex rules. The number of rules is one of the metrics used in this
thesis to measure the complexity of classifiers. Looking on a micro level, the
complexity of the rules within a ruleset can be assessed by looking at the length
of the rules, measured in the number of conditions they contain. Throughout
this dissertation, this measure is referred to as Length. Length measures the
average number of decisions in a rule (or the average number of nodes between
the root of the tree and the leaves in a tree). This metric is tightly related
to the decision support system nature of comprehensible classifiers. Most of
the time, even in a massive ruleset or decision tree, an example will only be
covered by a single rule or branch. Because of this, Length is an adequate way
to measure how easy to use the classifier will be for a human user (e.g. How
many conditions will a doctor have to check to diagnose a patient?).
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These two metrics, Number of Rules and Length give a value to the two
dimensions in which the classifiers built by ruleset and decision tree induction
algorithms can be measured from the point of view of structural complexity.

2.8.2 Validation of Supervised Classification Systems

When the performance of a classifier has to be evaluated, the technique used
to do so should be as “real” as possible. However, “real” test data is not labeled,
as it is the classifier’s job to assign that label. This means that in order to assess
the discriminating capacity of a classifier, labeled data meant for training has to
be used. Using part or the whole training set, the same one used to create the
model, is not adequate because virtually any algorithm can create a complex
enough model capable of correctly classifying the entire dataset. This accuracy
might not, and probably will not, be achieved with examples not used in the
training phase. Learning algorithms need to be able to generalize beyond the
training set and be able to correctly identify previously unseen examples.

Usually part of the dataset is left out of the training process and used during
testing to validate the performance. The easiest way to do this is to randomly
exclude part of the training set. However, doing this once is not enough, because
the classifier’s good or bad performance could be attributed to chance when
creating the partitions.

The most common way of doing this is to perform cross-validation. In cross
validation the dataset is randomly divided into k folds. k−1 of the folds are used
for training, and the last fold is used for testing. This process is repeated k times
using a different fold for testing each time. This ensures that all instances are
used for the test part. The results are obtained by averaging the performance
of the k classifiers. Usually k is a small number like five or ten. However, this
can be taken to the extreme, where the fold size is just one instance, so only
one instance is tested each time, and the rest of the dataset is used for training.
This is called leave one out and it has to be repeated for each instance in the
training set, which makes it much more expensive computationally compared to
regular cross validation. Figure 2.9 shows an example of cross-validation where
the folds are stratified, meaning each fold keeps the same class distribution as
the original dataset. In that Figure, the lighter shade of each box represents
one class (majority class), and the darker shade the other class (minority class).

Usually cross-validation is repeated several times in order to reduce the effect
of chance even more, with 5-run 5-fold cross-validation (5x5cv) and 10-run 10-
fold cross validation (10x10cv) being very common examples.
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Figure 2.9: Example of cross validation for classification.
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2.8.3 Tests for Statistical Significance

When a new machine learning system is proposed, a hypothesis is made that
this new contribution yields an improvement over already existing competing
systems. In recent years, the machine learning community has become aware
of the need to statistically validate their results. In consequence, researches ad-
dressed the problem of comparing two classifiers on a single datasets. However,
there is a more common situation, comparing multiple classifiers over multiple
datasets. Until recently, there was no theoretical background on how the results
of this kind of study should be tested for statistical significance, and researchers
often resorted to methods tailored to the problem that either lacked a good sta-
tistical foundation or used the methods inappropriately. Demšar [39] analyzed
the proceedings of the International Conferences on Machine Learning (ICML)
between 1999 and 2003, and observed that many of the studies simply used an
n × n matrix of McNemar’s 5x2 cross-validation tests comparing all pairs of
classifiers.

In [39], Demšar proposed multiple tests to validate the results of studies
comparing classifiers over multiple datasets. These statistical tests compute
the probability of the null-hypothesis being correct, where the null-hypothesis
is that all compared algorithms perform equally and the observed differences
can be attributed to chance. A clear distinction was made between systems to
compare two classifiers, and systems to compare multiple (i.e. more than two)
classifiers.

2.8.3.1 Tests to compare two classifiers

Looking at the papers of the International Conferences on Machine Learning,
Demšar noted that some authors simply averaged the results of the classifiers
over all datasets. However, as Webb stated [149], it is debatable whether the
errors of different datasets are comparable and if averaging the errors of very
different datasets is meaningful. Averages are very susceptible to outliers, which
allows the extraordinary performance in a few datasets to completely skew the
average value. For example, let’s look at Table 2.4. This example shows values
for two classifiers over four datasets, where classifier1 achieves the best results
in three out of four datasets, but classifier2 achieves an exceptionally better
performance in the last dataset. On average, classifier2 achieves a better per-
formance but it only performs best in one out of four problems. It is possible
that this behavior might be desirable in some situations, however it is usually
preferred for an algorithm to perform best in most possible situations.

In order to compare two classifiers over multiple datasets, Demšar recom-
mended using the Wilcoxon signed-ranks test [151], which is a non-parametric
version of the paired t-test. Non-parametric tests make no assumptions about
the probability distributions of the variables, in this case, the differences be-
tween classifiers.

This tests ranks the differences between the two classifiers for each dataset
by their absolute value, without taking their sign into account. The biggest
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dataset classifier1 classifier2

d1 70 65

d2 75 70

d3 65 55

d4 75 100

average 71.25 72.5

Table 2.4: Example of outliers distorting the average value.

difference is given the highest rank, and the smallest difference is given the lowest
rank, and the rest of differences are given the corresponding ranks. Then, the
ranks of positive differences (where one classifier wins) are added on one side,
and negative differences (where the other classifier wins) are added on the other
side. If both algorithms perform equally for a dataset, half of the rank is added
to each sum. If the difference between the sums is big enough, the differences
in the performance of the classifiers are considered significant.

Demšar uses the following example. Consider the performance values (based
on AUC) and differences shown in Table 2.5 and the ranks assigned to the
differences. Let diffi be the difference of the i-th dataset, and rank(diffi)
the rank assigned to the difference for that dataset. The ranks for positive
differences (where classifier2 wins) are summed into R+, and ranks for negative
differences (where classifier1 wins) are summed into R−.

R+ =
∑

diffi>0

rank(diffi) +
1

2

∑
diffi=0

rank(diffi)

R− =
∑

diffi<0

rank(diffi) +
1

2

∑
diffi=0

rank(diffi)

Let T be the smallest between R+ and R−. The test statistic z is computed
in the following way,

z =
T − 1

4n(n+ 1)√
1
24n(n+ 1)(2n+ 1)

where n is the number of datasets and z is distributed normally for large
numbers of datasets. For smaller numbers of datasets the critical value of T is
fixed and can be found in the literature [39].

If the assumptions made by the paired t-test are met, it is more powerful than
the Wilcoxon Signed ranks test. More powerful tests are able to find significant
differences not found by less powerful tests. However, when comparing two
classifiers over datasets there is no way to assure these assumptions are met.
The Wilcoxon Signed ranks test is also very robust against outliers, as the
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dataset classifier1 classifier2 difference rank

d1 .763 .768 .005 3

d2 .599 .591 -.008 7

d3 .954 .971 .017 9

d4 .628 .661 .033 12

d5 .882 .888 .006 5

d6 .936 .931 -.005 4

d7 .661 .668 .007 6

d8 .583 .583 .000 1

d9 .775 .838 .063 14

d10 1.000 1.000 .000 2

d11 .940 .962 .022 11

d12 .619 .666 .047 13

d13 .972 .981 .009 8

d14 .957 .978 .021 10

Table 2.5: Example differences between two classifiers.

most exceptional performances only sum a little more than than the next best
performance.

A final way to compare two algorithms is counting the number of wins, losses
and ties for each algorithm, and using the sign test, where, simply put, a dataset
performs significantly better if its number of wins is greater than N/2 +

√
N .

Even though this test does not make any of the assumptions the t-test makes,
it is much less powerful than the Wilcoxon signed-ranks test.

In summary, Demšar recommended the use of the Wilcoxon signed-ranks
test when comparing two classifiers over multiple datasets. This is the test used
throughout this thesis when such comparisons are made.

2.8.3.2 Tests to compare more than two classifiers

Even though the tests proposed to compare two classifiers were not designed
to compare multiple classifiers, in the past a lot of authors used them for such
purpose, usually by creating a matrix of pairwise comparisons comparing all
possible pairs and then extracting conclusions from this matrix. In the formulas
in this section, n denotes the number of datasets, while in this section k refers
to the number of compared classifiers.

A test suitable to compare the differences between more than two systems
over the same datasets, is the repeated measures ANOVA test [54]. Unfortu-
nately, the same way the paired t-test does for two classifier comparisons, the
ANOVA test also makes assumptions. ANOVA assumes that the differences
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between algorithms follow a normal distribution, and also sphericity, where it
is required for the differences to have an equal variance. When comparing ma-
chine learning algorithms it is not possible to assure the differences meet these
assumptions.

The same way the Wilcoxon signed-ranks test is the non-parametric version
of the t-test, the Friedman test [58, 59] is the non-parametric version of the
repeated-measures ANOVA test.

The Friedman test ranks the algorithm for each dataset, so that the algo-
rithm performing best gets a rank of 1 and the algorithm performing worst gets
a rank of k, where k is the number of compared algorithms. The average ranks
over all datasets are used to test whether differences exist among all compared
algorithms.

Let rji be the rank of the j-th algorithm over the i-th dataset, so that the

average rank Rj is computed Rj = 1
n

∑
i r

j
i . Using these average ranks the χ2

F

statistic is computed the following way.

χ2
F =

12n

k(k + 1)

[∑
j

R2
j −

k(k + 1)2

4

]
.

The χ2
F test statistic is distributed according to the chi-squared distribution

with k − 1 degrees of freedom when the number of datasets and algorithms are
big enough. For smaller k and n numbers the critical numbers can be found on
[158, 140].

Iman and Davenport [88] later proposed an extension after showing the
Friedman statistic is too conservative. Their FF statistic follows the F-distribution
with k− 1 and (k− 1)(n− 1) degrees of freedom and is computed the following
way.

FF =
(n− 1)χ2

F

n(k − 1)− χ2
F

Demšar proposed the Iman-Davenport extension of the Friedman tests to
compare multiple classifiers. Later, Garćıa et al. [64] proposed a set of advanced
non-parametric tests that can be used in the same situations where the Friedman
test can be used, and specially recommended these tests in specific situations.

One such test is the Friedman Aligned ranks test. This test is very similar
to the original Friedman test, but instead of creating independent ranks for
each dataset, a global ranking is computed, ranking all classifier-dataset com-
binations from 1 to kn. In order to do this, differences are calculated between
the performance of an algorithm for a dataset and the average of all classifiers
for that dataset. The differences between the performance for a classifier for a
dataset, and the average of all classifiers for that particular dataset are called
aligned observations, and the ranks assigned to these observations are called
aligned ranks. Table 2.6 shows a simple example with four classifiers and five
datasets showing how Friedman Aligned ranks are calculated.
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The test statistic for this test can be computed the following way, where R̂2
i

is the square of the sum of ranks for the i-th dataset and R̂2
j is the square of

the sum of ranks for the j-th classifier.

T =
(k − 1)[

∑k
j=1 R̂

2
j − (kn2/4)(kn+ 1)2]

{[kn(kn+ 1)(2kn+ 1)]/6} − (1/k)
∑n

i=1 R̂
2
i

.

The Friedman Aligned ranks test can be used to replace the Friedman test in
any situation where the Friedman test is valid, and it is specially recommended
when the number of compared algorithms is low (less than five). The origi-
nal Friedman test does not allow inter-dataset comparisons, only intra-dataset
ones. However, when the number of compared algorithms is low this may be a
disadvantage, and the use of inter-dataset comparisons is desirable.

Some of the experiments in this thesis compare only four algorithms. As the
Friedman Aligned ranks is recommended over the Friedman test in this situation,
and the Aligned ranks test can also be used instead of the original Friedman
test in the rest of multiple classifier comparisons, the Friedman Aligned ranks
test has been used throughout this thesis when comparing multiple algorithms.

If the Friedman Aligned ranks test determines that there are significant dif-
ferences between the compared algorithms, a post hoc test has to be performed
in order to find out between which pairs of algorithms differences exist.

Demšar initially proposed the Nemenyi [109] and Bonferroni-Dunn [49] tests,
recommending the Nemenyi test to compare all algorithms against each other
and the Bonferroni-Dunn test only when comparing one control algorithm (a
new proposal, for example) against the rest of competitors, as the power of
Bonferroni-Dunn test is greater on 1 × n tests than n × n tests. The benefit
of these two tests lies in that they are one-step tests and they use fixed critical
distances (CD) based on the number of competitors, so the significant differences
can be graphically represented in a very simple manner using CD-diagrams as
proposed by Demšar [39]. However, these tests are not considered adequate
anymore.

Other procedures adjust the significance level (α) dynamically and are clas-
sified into step-up, step-down, and two-step procedures. These procedures first
require to compute the p-value of all pairwise comparisons to be made. When
the Friedman Aligned ranks test is used to determine the differences, the test
statistic can be computed in the following way

z = (R̂i − R̂j)/

√
k(n+ 1)

6

where R̂i and R̂j are the average Friedman Aligned ranks achieved by the
i-th and j-th algorithm.

Demšar proposed, and later Derrac et. al. [40] confirmed, that the Holm
post hoc procedure [82] should be used for 1× n tests due to its simplicity and
high power. For n× n tests, Derrac et. al. determined the Bergmann-Hommel
[19] test to be the best performing. These are the two post hoc tests used
throughout the thesis.
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The Holm procedure is a step-down test. This procedure first orders the p-
values for all pairwise comparisons with most significant (smallest) values first.
Each p-value related to a pairwise null hypothesis. Holm’s procedure tests
hypotheses sequentially. If one hypothesis is rejected (meaning it cannot be
determined that classifier performance is unequal), the next one is tested. But
if a hypothesis cannot be rejected when pi > α/(k−i), the remaining hypotheses
(those with a greater computed p-value) are retained.

The Bergmann-Hommel procedure is a very computer-intensive method.
This method first creates a set of accepted hypotheses consisting of all pair-
wise comparisons where p > α/k. If the entire set of hypotheses is exhaustive
(i.e. all hypotheses could be true), all exhaustive subsets of hypotheses will be
computed (hence the high computational cost), and the subsets not present in
the accepted hypothesis set are rejected.

Finally, Garćıa and Herrera [65] noted that when multiple pairwise compar-
isons are performed, a p-value reflects the probability error of one comparison,
but it does not take into account the remaining comparisons of the same fam-
ily. They suggested adjusting the p-values accordingly instead of dynamically
changing the α, as having a single significance threshold allows to compare the
probabilities of different hypothesis tests. For the Holm test the adjusted p-
value (APV) is computed like APVi = min{v; i}, where v = max{(k − j)pj :
1 ≤ j ≤ i} and k is the number of hypotheses. In order to compute the APV
for the Bergmann-Hommel procedure, Algorithm 2.8 has to be followed.

2.9 Previously developed software

In this thesis, several pieces of software developed by other researchers have
been used.

Every new contribution of this thesis has been developed using the research
group’s Haritza (Oak in Basque) platform. This platform is dedicated to deci-
sion tree and decision tree based algorithms. The original CTC algorithm and
the C4.5 implementation used in this theses also belong to that platform.

The statistical tests for significance used in Chapter 3 and Chapter 5 have
been using the Non-Parametric Statistical Analysis module of the KEEL tool
[9, 8].

The results of the statistical tests are displayed in figures found on Section
4 such as Figure 4.1 created using the R package scmamp [25].

Finally, public implementations for the contributions of this thesis have been
made available for the WEKA platform.[75]

2.10 Work used as reference for the experiments
in the thesis

This section describes an article heavily referenced throughout the thesis.
This work, titled ‘Genetics-Based Machine Learning for Rule Induction: State
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Input:
p: p-values for all pairwise hypotheses
k: number of compared classifiers
Function bergman hommel(p,k):

for all i do
APVi = pi

end
foreach j = k-1,k-2,...,2 do

B = ∅
foreach i, where i > (k-1-j) do

ci = (j · pi)/(j + i− k + 1)
B = B ∪ ci

end
cmin = min(B)
if APVi < cmin then

APVi = cmin

end
foreach i, where i ≤ (k-1-j) do

ci = min(cmin, j · pi)
if APVi < ci then

APVi = ci
end

end

end
Algorithm 2.8: APV computation for the Bergman-Hommel approach.
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of the Art, Taxonomy, and Comparative Study ’ by Fernández, Garćıa, Luengo,
Bernadó-Mansilla, and Herrera [53] stated that while there is a huge set of al-
gorithms proposed under the genetics-based ruleset algorithm umbrella, there
was no explicit framework where all of these algorithms could be categorized,
and no exhaustive comparisons of the performance of these algorithms. The
authors’ motivation was to provide a state of the art of genetics-based machine
learning (GBML) algorithms for rule induction, proposing a taxonomy that de-
fined a general framework where the algorithms could be placed. The author’s
of that work treated decision tree algorithms as rule induction algorithms. As
already seen in previous sections of this chapters, rule-sets and decision trees are
close both in how they are built, sometimes trees being an early step in the rule
induction algorithm, they are similarly represented, and both algorithm types
have explaining capacity. The experiments in this thesis follow the same experi-
mental methodology, using the same datasets, the same train and test partitions
and, comparing the results of the contributions to the results published by that
article.

Classically, evolutionary rule-based algorithms were classified the Michigan-
style and the Pittsburgh-style groups, but many algorithms could not be easily
classified in any of the two. Thus, this article proposed a taxonomy based on the
representation of the chromosome of the associated evolutionary algorithm. The
taxonomy preserves the classical Michigan and Pittsburgh categories and defines
new categories to encompass all evolutionary rule-based approaches. Michigan
approaches encode each rule as individuals, whereas Pittsburgh style algorithms
encode whole rulesets as individuals [134].

The article proposed a hierarchical comparison to focus on algorithms with
better performance, by first selecting the best performing algorithm on each
category to act as representative, and the performing a cross-category compari-
son of the representatives and some well-known non-evolutionary algorithms for
rule induction.

All GBML algorithms for rule induction codify the rule or ruleset in a chro-
mosome and use an evolutionary algorithm as the search mechanism. However
there are many differences among these algorithms such as the type of learn-
ing scheme, the ruleset representation, the representation of each rule, and the
design of the evolutionary algorithm that guides the search.

The taxonomy proposed by this article divides algorithms in three categories
based on the chromosome codification, further dividing one of the categories into
three subcategories for a total of five families.

1. The algorithms in the first category encode each rule in a single chromo-
some and the population evolves to find the best ruleset. This category is
formed by three subcategories.

(a) The first subcategory includes the algorithms following the Michi-
gan approach, where a ruleset is increasingly updated through the
sequential observation of training examples and their classification.
The ruleset is improved by the action of the evolutionary algorithm.
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The algorithms used in the empirical study that belong to this family
are XCS [152] and UCS [20].

(b) The second subcategory includes algorithms following the iterative
rule learning (IRL) approach, where the evolutionary algorithm learns
rule by rule iteratively, and removes the examples covered by the rule-
set from the training sample by following the separate-and-conquer
rule induction paradigm. The algorithms used in the empirical study
that belong to this family are SIA [147] and HIDER [3].

(c) The third subcategory includes algorithms following the genetic co-
operative learning (GCCL) approach, where all rules/chromosomes
are evolved together in the genetic algorithm. The chromosomes co-
operate with each other to perform the classification task but the
final ruleset does not need to include all rules. The rules compete
with each other to be present at the final ruleset. The algorithms
used in the empirical study that belong to this family are CORE
[143], OCEC [93] and COGIN [71].

2. The algorithms in the second category encode a ruleset in a chromosome.
These algorithms maintain a set of rulesets and in the end, the ruleset
with the best discriminating capacity is kept. This category is also known
as the Pittsburgh approach. The algorithms used in the empirical study
that belong to this family are GIL [89], Pitts-GIRLA [37], DMEL [14],
GAssist [15], OIGA [161], and ILGA [72].

3. The algorithms in the third category encode a decision tree or tree rule on
a chromosome. The idea is to use the genetic algorithm to search a highly
accurate tree. Decision trees can be interpreted as ruleset by looking the
decisions on each branch of the tree as the decisions that make up a rule.
The author’s defined these approaches ad hybrid evolutionary decision
trees (HEDT). The algorithms used in the empirical study that belong to
this family are DT-GA [27], Oblique-DT [26], and TARGET [70].

Table 2.7 summarizes the GBML algorithms used in the empirical study.
The classical non-evolutionary algorithms compared to the genetics-based

algorithm were CART [22], AQ [107], CN2 [34], C4.5 [128], C4.5rules [128] and
RIPPER [36].

1. Classification And Regression Tree or CART: This algorithm creates bi-
nary trees by recursively partitioning nodes into two subnodes. It uses the
Gini-index as the split criterion.

2. Automatic Qualifier or AQ: This algorithm follows the separate-and-conquer
strategy that implements the START method of inductive learning.

3. CN2: induces an ordered list of rules using entropy as the search heuristic.
It also works in a separate-and-conquer fashion by iteratively creating
rules that cover large amounts of examples from a single class and as few
as possible from others.
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4. C4.5: a decision tree algorithm that creates trees from the top down by
selecting the attribute with the best gain ratio: a normalized information
gain which in turn is the difference in entropy between the node and the
possible split. This algorithm has already been discussed in depth in
Section 2.4.

5. C4.5rules: Rule induction algorithm based on C4.5. Rules are extracted
from the C4.5 tree and a Hill-Climbing search algorithm is used to find
the best subset of rules according to their minimum description length
(MDL).

6. RIPPER: This rule induction algorithm also uses the separate-and-conquer
strategy by sequentially creating rulesets targeting one class at a time, and
pruning each rule right after creating it.

Table 2.8 summarizes the parameters for GBML algorithms whereas Table
2.9 does the same for the classical non-evolutionary algorithms.

The empirical study used 96 datasets divided into three contexts. The first
context consists of 30 standard datasets with a wide range of characteristics
(dataset size, number of classes, class distribution) that represent all types of
classification problems. The second context is concerned with the class im-
balance problem, a challenge in classification already discussed on Section 2.3.
Most of these datasets were obtained processing multi-class datasets by group-
ing one or more classes into the minority class and the rest into the majority
class. The third context consists of the same datasets as the second context but
oversampling the minority class using SMOTE until the training sample was
balanced. These datasets are described at length at the beginning of Part III.

In this article, different performance metrics were used to compare the algo-
rithms over different classification contexts.

For the standard dataset classification context two performance metrics were
used. The classification rate or overall accuracy, and Cohen’s kappa. These
metrics were used because their simplicity, low computational cost and successful
application to two-class and multi-class problems.

For the second and third classification contexts a metric suited for class-
imbalance was used as the accuracy does not take into account the class distri-
bution of the dataset. This metric was geometric mean (GM) of true-positive
(TP) and true-negative (TP) rates.

The results of this study are found in Appendix B. In order to support
the results of the experiments, the article used statistical tests for significance.
Specifically, it used the Wilcoxon signed rank test [151] for pairwise comparisons
and the Friedman test with the Iman-Davenport extension [58, 59] for tests com-
paring multiple algorithms. If the Friedman test found significant differences,
the Shaffer [138] post hoc test was used to find in which of the n × n pairwise
comparisons differences were found.

Figure 2.10 shows the best ranking algorithms for each GBML subcate-
gory in the taxonomy for every classification context. When comparing against
classical non-evolutionary algorithms the best ranking algorithms were XCS,
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GBML Algorithms

Standard datasets

Michigan: XCS

IRL: SIA

GCCL OCEC:

Pittsburgh: GAssist

HEDT: Oblique-DT

Imbalanced datasets

Michigan: UCS

IRL: SIA

GCCL: OCEC

Pittsburgh: GAssist

HEDT: Oblique-DT

Imbalanced datasets (balanced with SMOTE)

Michigan: XCS

IRL: SIA

GCCL: CORE

Pittsburgh: GAssist

HEDT: DT-GA

Figure 2.10: Best ranking algorithms for each subcategory by classification con-
text.

GAssist and C4.5 for standard datasets; RIPPER, C4.5rules and Oblique-DT
for imbalanced datasets; and XCS, GAssist and C4.5 for imbalanced datasets
preprocessed with SMOTE. An extra experiment comparing the performance
of each algorithm using and not using SMOTE to preprocess the training data
showed that almost every algorithm (all except CART and RIPPER) achieved
significant improvement in their discriminating capacity in terms of GM.

The article concluded that XCS and GAssist were the two best performing
algorithms among the compared GBML algorithms. Their good performance
is due to interactions between several components and the good performance
cannot be easily attributed to a single component of the learning process. Both
algorithms achieved competitive results for standard classification in terms of ac-
curacy. XCS’s models are not very interpretable as XCS ran populations of 6400
rules. GAssist presented a good trade-off between accuracy and interpretability.
This interpretability was not, measured, reported in the article. XCS’s perfor-
mance dropped on raw imbalanced datasets (in fact, UCS ranked best for the
Michigan family on imbalanced datasets), however, the authors note that this
might be due to that particular implementation of XCS. For non-preprocessed
imbalanced datasets non-evolutionary seem to get the upper hand in contrast
to the other classification contexts where the best positions belonged to GBML
algorithms. The authors hypothesized that this could be because these algo-
rithms use the overall accuracy of the classifier as the fitness function and aim
to maximize this measure at the cost of the correct classification of the minority
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classes.
To the knowledge of the article’s authors this was the first exhaustive ex-

perimental study comparing state-of-the-art and former GBML algorithms with
non-evolutionary algorithms. At the time of writing it has been cited 152 times
according to Google Scholar, and is considered a reference work in this field
due to its scope and relevance. The authors of the article encouraged other re-
searchers to use their empirical to compare the discriminating capacity of future
proposals, and, as mentioned at the beginning of this section this article serves
as methodological base for this thesis and is heavily referenced throughout the
thesis as the “reference work”.
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Algorithm Acronym Family Reference

XCS XCS Michigan [152]

UCS UCS Michigan [20]

Supervised Inductive Algorithm SIA IRL [147]

Hierarchical Decision Rules HIDER IRL [3]

Co-evolutionary Rule Extractor CORE GCCL [143]

Organizational co-evolutionary algorithm for classification OCEC GCCL [93]

Coverage-based genetic induction COGIN GCCL [71]

Genetic-based Inductive Learning GIL Pittsburgh [89]

Pittsburgh Genetic Interval Rule Learning Algorithm Pitts-GIRLA Pittsburgh [37]

Data Mining for Evolutionary Learning DMEL Pittsburgh [14]

Genetic Algorithms based Classifier System Ordered Incremental Genetic Algorithm GAssist Pittsburgh [15]

Ordered Incremental Genetic Algorithm OIGA Pittsburgh [161]

Incremental Learning with Genetic Algorithms ILGA Pittsburgh [72]

Hybrid Decision Tree - Genetic Algorithm DT-GA HEDT [27]

Oblique Decision Tree Oblique-DT HEDT [26]

Tree Analysis with Randomly Generated and Evolved Trees TARGET HEDT [70]

Table 2.7: Genetics-based machine leaning algorithms for rule induction.
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Michigan Algorithms
Algorithm Parameters

XCS

Number of explores = 100 000, population size = 6400, α = 0.1, β = 0.2, δ = 0.1,
ν = 10.0, θmna = 2, θdel = 50.0, θsub = 50.0, ∈0 = 1, do Action Set Subsumption = false,
fitness reduction = 0.1, pI = 10.0, FI = 0.01, ∈I = 0.0, γ = 0.25, χ = 0.8, µ = 0.04,
θGA = 50.0, doGASubsumption = true, type of selection = Roulette wheel selection (RWS),
type of mutation = free, type of crossover = 2 point, P# = 0.33, r0 = 1.0, m0 = 0.1,
l0 = 0.1, doSpecify = false, nSpecify = 20.0, pSpecify = 0.5

UCS
Number of explores = 100 000, population size = 6400, δ = 0.1, acc0 = 0.99, Pcross = 0.8
Pmut = 0.04, θGA = 50.0, θdel = 50.0, θsub = 50.0, doGASubsumption = true, r0 = 0.6,
type of selection = RWS, type of mutation = free, type of crossover = 2 point, m0 = 0.1

IRL Algorithms
Algorithm Parameters
SIA Number of iterations = 200, α = 150, β = 0, threshold strength = 0

HIDER
Pop. size = 100, number of gen. = 100, mutation prob.= 0.5
percentage of crossing = 80, extreme mutation prob. = 0.05,
Prune examples factor = 0.05, penalty factor = 1, error coefficient = 0

GCCL Algorithms
Algorithm Parameters

CORE
Pop. size = 100, co-population size = 50, gen. limit = 100, number of co-populations = 15,
crossover rate = 1.0, mutation prob. = 0.1, regeneration prob. = 0.5

OCEC Number of total generations = 500, number of migrating/exchanging members = 1
COGIN Misclassification error level = 2, gen. limit = 1000, crossover rate = 0.9, negation bit = yes

Pittsburgh Algorithms
Algorithm Parameters

GIL

Pop. size = 40, number of gen. = 1000, w1 = 0.5, w2 = 0.5, w3 = 0.01, rules exchange = 0.2,
rule exchange selection = 0.2, rules copy = 0.1, new event = 0.4, rules generalization = 0.5,
rules drop = 0.5, rules specialization = 0.5, rule split = 0.005,
nominal rule split = 0.1, linear rule split = 0.7, condition drop = 0.1
conjunction to disjunction = 0.02, introduce condition = 0.1, rule directed split = 0.03,
reference change = 0.02, reference extension = 0.03, reference restriction = 0.03,
condition level prob. = 0.5, lower threshold = 0.2, upper threshold = 0.8

Pitts-GIRLA
Number of rules: 30, number of generations: 10 000,
population size: 61 chromosomes, crossover probability: 0.7, mutation probability: 0.5

DMEL Pop. size = 30, crossover prob. = 0.5, mutation prob. = 0.0001, number of gen. = 1000

GAssist

Threshold in hierarchical selection = 0,
iteration of activation for rule deletion operator = 5,
iteration of activation for hierarchical selection = 24,
minimum number of rules before disabling the deletion operator = 12,
minimum number of rules before disabling the size penalty operator = 4,
number of iterations = 750, initial number of rules = 20, population size = 400,
crossover probability = 0.6, probability of individual mutation = 0.6,
probability of value 1 in initialization = 0.90, tournament size = 3,
possible size in micro-intervals of an attribute = 4, 5, 6, 7, 8, 10, 15, 20, 25,
maximum number of intervals per attribute = 5, psplit = 0.05, pmerge = 0.05,
probability of reinitialize begin = 0.03, probability of reinitialize end = 0,
Use MDL = true, iteration MDL = 25, initial theory length ratio = 0.075,
weight relaxation factor = 0.90, class initialization method = cwinit, default class = auto

OIGA
Crossover prob. = 1.0, mutation prob. = 0.01, pop. size = 200, number of rules = 30,
stagnation = 30, generations = 200, survivors percent = 0.5, attribute order = descendent

ILGA
Crossover prob. = 1.0, mutation prob. = 0.01, pop. size = 200, number of rules = 30,
stagnation = 30, generations = 200, survivors percent = 0.5, attribute order = descendant,
crossover reduction rate = 0.5, mutation reduction rate = 0.5, incremental strategy = 1

Hybrid Evolutionary Decision Trees
Algorithm Parameters

DT-GA
Confidence = 0.25, instances per leaf = 2, threshold S to consider a small disjunct = 10,
number of gen. = 50, crossover prob. = 0.8, mutation prob. = 0.01, examples threshold = 5

Oblique-DT Number of total generations for the GA = 25, population size = 20
√
d (d = dimensionality)

TARGET
Split prob. = 0.5, number of gen. = 100, number of trees = 50, number of crossovers = 30,
number of mutations = 10, number of clones = 5, number of transplants = 5

Table 2.8: Parameter specification for the genetics-based algorithms.
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Algorithm Parameters
CART Max depth of the tree = 90
AQ Star size = 5
CN2 Star size = 5
C4.5rules Prune = true, confidence level = 0.25, minimum number of item-sets per leaf = 2
C4.5 Prune = true, confidence level = 0.25, minimum number of item-sets per leaf = 2
RIPPER Size of growing subset = 66%, Repetitions of the optimization stage = 2

Table 2.9: Parameter specification for the classical algorithms.
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Part III

Contributions
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In this Part, the contributions of the thesis are presented. A section ded-
icated to the description of the used datasets is followed by the two chapters
grouping the distinct contributions of the thesis: contributions to the consolida-
tion of decision tree algorithms and contributions to PART-like ruleset induction
algorithms. A final section will compare the performance of both contribution
groups.

KEEL Datasets

With the exception of a study found in Appendix H, the entire thesis used
the same datasets. These are the same datasets used by the reference work were
taken from the KEEL repository [8]. The 96 datasets used in this thesis were
divided into three classification contexts.

The first classification context is standard classification. It is composed
of 30 standard datasets that present a broad range of characteristics: two-
class and multi-class datasets (up to 22 classes for abalone), small and big
datasets, balanced and very imbalanced datasets, different attributes, etc. The
characteristics of these datasets are described on Table Datasets.1, ordered by
the proportion of the minority class in ascending order.

The second context is the context of imbalanced classification and is com-
posed of 33 datasets that represent a specific problem within classification, the
problem of class imbalance in two-class datasets. Some of these datasets are
two-class versions of the datasets from the first context. The characteristics of
these datasets are described on Table Datasets.2. The datasets in these tables
are ordered by the relative size of the minority classes.

Finally, the third classification context consists of the same datasets of the
second context, but oversampling the minority class in the training sample using
SMOTE [31] until the two classes are balanced.
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#features

#discrete

dataset #examples #nominals #ordinals #continuous #total #classes
%min. %maj. size of size of

class class min. class maj. class

nursery 1296 8 0 0 8 5 0.08% 33.34% 1 432

abalone 418 1 0 7 8 22 0.24% 16.51% 1 69

ecoli 336 0 0 7 7 8 0.6% 42.56% 2 143

lymphography 148 15 0 3 18 4 1.36% 54.73% 2 81

car 1728 0 6 0 6 4 3.77% 70.03% 65 1210

zoo 101 16 0 0 16 7 3.97% 40.6% 4 41

flare 1066 9 2 0 11 6 4.04% 31.06% 43 331

glass 214 0 0 9 9 6 4.21% 35.52% 9 76

cleveland 297 0 0 13 13 5 4.38% 53.88% 13 160

dermatology 358 3 30 0 33 6 5.59% 31.01% 20 111

balance 625 0 0 4 4 3 7.84% 46.08% 49 288

penbased 1100 0 0 16 16 10 9.55% 10.46% 105 115

newthyroid 215 0 0 5 5 3 13.96% 69.77% 30 150

hepatitis 80 13 0 6 19 2 16.25% 83.75% 13 67

contraceptive 1473 3 0 6 9 3 22.61% 42.71% 333 629

vehicle 846 0 0 18 18 4 23.53% 25.77% 199 218

haberman 306 0 0 3 3 2 26.48% 73.53% 81 225

wine 178 0 0 13 13 3 26.97% 39.89% 48 71

breast 277 5 4 0 9 2 29.25% 70.76% 81 196

german 1000 11 4 5 20 2 30% 70% 300 700

iris 150 0 0 4 4 3 33.34% 33.34% 50 50

wisconsin 630 9 0 0 9 2 34.61% 65.4% 218 412

tictactoe 958 9 0 0 9 2 34.66% 65.35% 332 626

pima 768 0 0 8 8 2 34.9% 65.11% 268 500

magic 1902 0 0 10 10 2 35.13% 64.88% 668 1234

bupa 345 0 0 6 6 2 42.03% 57.98% 145 200

heart 270 5 2 6 13 2 44.45% 55.56% 120 150

australian 690 6 0 8 14 2 44.5% 55.51% 307 383

crx 653 9 0 6 15 2 45.33% 54.68% 296 357

ring 740 0 0 20 20 2 49.6% 50.41% 367 373

Mean 638.93 4.07 1.6 6.1 11.77 4.27 21% 50% 139 319.93

Median 521.5 0.5 0 6 9.5 3 23% 54% 73 209

Table Datasets.1: KEEL datasets for standard classification (first context).
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#features second context third context

#discrete

dataset #nominals #ordinals #continuous #total #examples
% min. size of size of

#examples
size per

class min. class maj. class class

abalone19 1 0 7 8 4174 0.77% 32 4142 8284 4142

yeast6 0 0 8 8 1484 2.49% 37 1447 2894 1447

yeast5 0 0 8 8 1484 2.96% 44 1440 2880 1440

yeast4 0 0 8 8 1484 3.43% 51 1433 2866 1433

yeast2 vs 8 0 0 8 8 482 4.15% 20 462 924 462

glass5 0 0 9 9 214 4.2% 9 205 410 205

abalone9 vs 18 1 0 7 8 731 5.65% 41 690 1380 690

glass4 0 0 9 9 214 6.07% 13 201 402 201

ecoli4 0 0 7 7 336 6.74% 23 313 626 313

glass2 0 0 9 9 214 8.78% 19 195 390 195

vowel0 2 0 11 13 988 9.01% 89 899 1798 899

page-blocks0 0 0 10 10 5472 10.23% 560 4912 9824 4912

ecoli3 0 0 7 7 336 10.88% 37 299 598 299

yeast3 0 0 8 8 1484 10.98% 163 1321 2642 1321

glass6 0 0 9 9 214 13.55% 29 185 370 185

segment0 0 0 19 19 2308 14.26% 329 1979 3958 1979

ecoli2 0 0 7 7 336 15.48% 52 284 568 284

new-thyroid1 0 0 5 5 215 16.28% 35 180 360 180

new-thyroid2 0 0 5 5 215 16.89% 36 179 358 179

ecoli1 0 0 7 7 336 22.92% 77 259 518 259

vehicle0 0 0 18 18 846 23.64% 200 646 1292 646

glass0-1-2-3 vs 4-5-6 0 0 9 9 214 23.83% 51 163 326 163

haberman 0 0 3 3 306 27.42% 84 222 444 222

vehicle1 0 0 18 18 846 28.37% 240 606 1212 606

vehicle2 0 0 18 18 846 28.37% 240 606 1212 606

vehicle3 0 0 18 18 846 28.37% 240 606 1212 606

yeast1 0 0 8 8 1484 28.91% 429 1055 2110 1055

glass0 0 0 9 9 214 32.71% 70 144 288 144

iris0 0 0 4 4 150 33.33% 50 100 200 100

pima 0 0 8 8 768 34.84% 268 500 1000 500

ecoli0 vs 1 0 0 7 7 220 35% 77 143 286 143

wisconsin 9 0 0 9 683 35% 239 444 888 444

glass1 0 0 9 9 214 35.51% 76 138 276 138

Mean 0.39 0 9 9.39 919.94 17.61% 120 799.94 1599.88 799.94

Median 0 0 8 8 482 15.48% 52 444 888 444

Table Datasets.2: KEEL datasets for imbalanced classification (second and third
contexts).
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Chapter 3

Contributions to the
consolidation of decision
tree algorithms

3.1 Introduction

This chapter focuses on the contributions made during this thesis to the
consolidation methodology applied to decision tree algorithms.

On the one hand, as described in Section 2.6, the consolidation methodology
has been successfully applied to the C4.5 decision tree algorithm. This method-
ology could be applied to other classification algorithms, and especially, to other
decision tree induction algorithms. One such candidate is the C4.4 algorithm
[125], a Probability Estimation Tree (PET) variant of the C4.5 algorithm where
no collapsing or pruning is performed, and the a posteriori probabilities of the
leaves are corrected. Another possible candidate for consolidation is CHAID, a
widely-known decision tree algorithm. However, CHAID has a notable limita-
tion compared to C4.5: the inability to handle continuous variables. Thus, this
chapter introduces a new variant of the CHAID algorithm, named CHAID*,
that can handle continuous variables. Also, mirroring the C4.4 algorithm, the
CHAIC algorithm is also proposed, by modifying CHAID* the same way C4.5
was modified to create the C4.4 algorithm. These three algorithms have also
been consolidated.

On the other hand, until recently, the CTC algorithm had two parameters
(apart from the ones used by the base algorithm), the number of subsamples
and the type of resampling used. Previous research mostly used stratified sub-
samples, keeping the original class distribution of the sample, and a set of fixed
values for the number of samples, ranging between three and two hundred. Re-
cent research suggests that changing the class distribution of the samples is
beneficial, with balanced class distributions garnering the best results. How-
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ever, unlike with stratified samples that represent the same percentage of each
class, changing the class distribution means that a subsample represents each
class to a different degree. In consequence, this means that when using balanced
samples, whereas a specific number of samples might be enough for a dataset
with a not too imbalanced distribution, it might fall short of representing all
classes properly in cases where the imbalance is greater. This chapter proposes
a new strategy that replaces the fixed number of subsamples strategy.

Finally, it is known that in presence of the class imbalance problem, where
the consolidation methodology was born, the performance of some classification
algorithms is detrimented. In the case of C4.5, and by extension CTC, the
pruning process can be greatly affected. The pruning process of decision trees
is meant to avoid overfitting by removing the most specialized branches of the
tree. However, in the presence of class imbalance, this could mean branches
that identify the minority class. It is not uncommon for decision trees to end up
fully pruned into just the root node. These root-trees, even though they have a
relatively high accuracy, simply classify all examples as the majority class, and
thus, offer no explanation. This chapter proposes and analyzes the use of the
Not Root Tree (NRT) strategy, using pruning only when it does not fully prune
the tree, and compares the performance of base and consoldidated decision trees
with different pruning strategies in the presence of class imbalance.

The structure of this chapter is as follows, Section 3.2, Section 3.3 and
Section 3.4 describe the contributions presented in this chapter. Section 3.5
outlines the experimental setup for the experiments in this chapter, Section 3.6
analyzes the results of the experiment and, finally, Section 3.7 makes a brief
summary.

3.2 New base algorithms

This section covers the two new decision tree algorithms proposed in this
thesis that also serve as base algorithms for consolidation.

3.2.1 CHAID*

The CHAID (Chi-squared Automatic Interaction Detector) is a decision tree
algorithm described in Section 2.4. This decision tree algorithm can only handle
discrete variables, and, since all but one datasets used in this thesis contain
continuous or numeric values, this algorithm could not have been used. CHAID*
is a variation of CHAID developed to cope with that constraint.

When a split is to be made, CHAID* calculates the best split for each
variable. Discrete variables are treated in the same way they are treated in
CHAID. The best split is found by merging variable values into groups using
the chi-squared as the split criterion. Continuous variables are handled with a
hybrid between how CHAID handles discrete variables and how C4.5 handles
continuous variables. The split criterion is also used for splits on continuous
variables, and these variables are split into two branches. The values the variable
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can take are taken into consideration as potential split points and each potential
split is tested using the chi-squared test to look for the most significant split,
if any. The p-value of the potential continuous splits is also adjusted using the
same Bonferroni Coefficient in order to make fair decisions.

In C4.5 missing values are assigned to all branches of a node, readjusting
their weight to the weight of each branch. In CHAID*, the split is first decided
without taking the missing values into account. If the split is on a discrete
variable, examples with missing values are placed in a single branch following
the procedure explained in Section 2.4.2. If the split is on a continuous variables,
the algorithm will attempt to put the missing values into one of the two branches
using the chi-squared test in the same way it is used with discrete variables. If
this is not possible they will be placed in a third branch of their own.

CHAID has mechanisms to stop the tree construction phase even if the leaf
nodes are not fully homogeneous. These are referred to pre-pruning strategies,
but it does not have mechanisms to reduce the final tree size. Initial experiments
showed that decision trees built by CHAID were significantly more complex than
those built by other decision tree algorithms, and specifically C4.5. Too complex
decision trees tend to overfit to the training data. Also in this thesis, one of
the aspects of how algorithms are compared against each other is the structural
complexity of the models they create, so it was decided to add a pruning process
to CHAID*. CHAID* uses the same pruning mechanisms used by C4.5 and
explained in Section 2.4.1.2. Since this pruning process is related to the node’s
and subtree’s error rate and not to the split criterion of the algorithm. It does
not need a special adaptation to this algorithm.

3.2.2 CHAIC

CHAIC is to CHAID* what C4.4 is to C4.5. The aim of proposing this
algorithm is to test if same changes from C4.5 to C4.4 could also help improve
the results of CHAID* decision trees. The name of this new proposal is a play
on words in line with C4.4.

The tree construction phase is the same on as in CHAID*. The split criterion
is the chi-squared test, variables are treated in the same way as in CHAID* and
the same pre-pruning criteria are used.

The differences appear on how the tree is treated once it is built. CHAID*
prunes the trees using the same pruning procedure as C4.5. CHAIC treats trees
the same way C4.4 does. There is no pruning of the tree, so the size and, in
consequence, the structural complexity stay the same as unpruned CHAID*
trees. However, the class distribution probabilities on leaf nodes are adjusted
using the Laplace correction.

3.3 Coverage-based resampling

Creating balanced subsamples without oversampling the minority class re-
quires undersampling the majority class. As a consequence, resampling imbal-
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anced datasets results in subsamples where the majority class is only represented
in a small proportion. Previously used number of samples (N S ) values, rang-
ing from 3 to 200, might not be enough to cover a significant portion of the
majority class in imbalanced datasets, while the highest values are completely
unnecessary and time consuming for the most balanced problems. Coverage-
based resampling is a strategy that adapts to the class distribution present in
the dataset and computes a particular N S for a dataset and coverage value.

Coverage represents the probability of any example in the training sample
being in at least one subsample; in other words, probability of the entire training
sample being represented by the randomly undersampled subsamples. When
subsamples have a different class distribution from the original training sample
each class is represented to a different degree in a subsample. This degree
depends on the use of replacement when creating subsamples and the ratio
between the number of examples from a class in the subsamples and the number
of examples from the same class in the original sample. Depending on this ratio,
the subsampling process favors some classes more than others. The least favored
class is defined as the one with the lowest ratio of instances in the subsamples
to instances in the training sample. Since the goal of coverage is to ensure a
minimum representation for all classes, the probability of an example from the
least favored class being present in a given subsample will be used as a basis.
The probability for examples from any other class will be higher than that.

For example, let us consider the datasets used in this thesis, specifically the
context regarding imbalanced two-class datasets. For the experiments in this
chapter the subsamples are fully balanced by randomly undersampling the ma-
jority class without replacement. One of the used subsample sizes is the double
of the number of minority class examples in the original training sample. This
means that each of these subsamples fully covers the minority class. However,
each subsample is not able to cover the majority class entirely, and the greater
the class imbalance present in the original training sample the greater number of
subsamples that will be needed to cover a specific percentage of examples. Fig-
ure 3.1 shows how different subsample numbers translate into different coverage
values. In this figure, balanced subsamples are created by randomly under-
sampling the majority class from a training sample with 33% of minority class
(2:1 Imbalance Ratio, meaning there are two instances of the majority class per
instance of the minority class) examples.

Let tlfc be the probability of an example of the least favored class (lfc)
being present in a subsample. As mentioned, this probability is influenced
by the type of subsampling. The subsamples used in this chapter modify the
class distribution, do not use replacement, and the probability is calculated by
dividing the number of examples of the least favored class in a subsample by
the number of examples of the least favored class in the training sample.

tlfc =
lfClassExamplesOnSubsample

lfClassExamplesOnOriginalSample

Then, the probability of an example of the lfc not being present in a sub-
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Figure 3.1: Example of the coverage achieved with multiple balanced subsamples
generated by randomly undersampling a dataset with a 2:1 Imbalance Ratio.

sample is:
1− tlfc

The generation of each subsample is an independent event, so the probability
of an example not being in any of the N S subsamples is:

(1− tlfc)N S

Thus, the probability of an example being in at least one of N S subsamples or
the coverage is:

coverage = 1− (1− tlfc)N S

Since the goal is to work with fixed coverage values and the number of subsam-
ples N S for a specific coverage has to be computed, the following has to be
solved:

N S = dlog1−tlfc
(1− coverage)e

As an example, the abalone19 imbalanced two-class dataset has 4174 exam-
ples. The experiments use a 5-fold cross validation, meaning that 4/5 of the
sample go into the training sample and the other 1/5 of the sample is used as the
test sample each time. For this dataset the training sample has 3340 examples.
The class distribution for the minority class is 0.77% in this case, meaning that
26 examples in the training sample belong to the minority class while the other
3314 belong to the majority class. A subsample type used in this chapter has
the same number of examples for each class, which is the size of the minority
class in the training sample. Thus, in this case the subsamples have 52 exam-
ples (26 from each class), so a subsample has all the minority class examples
but only a few of the majority class examples. That makes the majority class
the least favored class. Thus, in this case lfClassExamplesOnSubsample is 26
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while lfClassExamplesOnOriginalSample is 3314. From this tlfc is calculated to
be 0.0078. Thus, for a coverage of 99% (i.e. 0.99), for the abalone19 dataset
585 subsamples would be required.

The use of coverage is not only limited to balanced samples. Coverage-based
resampling can be used with any type of sample to determine the number of
samples needed.

One such type would be bootstrap samples used by Bagging. Bootstrap
samples are the same size as the original sample but with replacement. Meaning
that each type an instance from the original sample is selected, it is ’replaced’,
and can be drawn again. When creating this type of sample the dataset’s class
distribution is not taken into account. Bauer and Kohavi [17] already published
the equivalent for tlfc for bootstrap samples.

Each example of the original sample has a probability of 1/n of being selected
each time an instance is picked, n being the size of the sample. Thus, the
probability of an example not being picked each time an instance is selected is
1− 1/n. For a single bootstrap sample, the probability an instance has of being
selected for a bootstrap sample is 1 − (1 − 1/n)n. For large n values this is
approximately 1 − 1/e or 63.2%. As the goal of coverage is to determine the
probability of an example being present in a group of N S samples, we get the
following equation:

coverage = 1− 1/eN S = 1− e−N S

In order to solve for N S, the equation has to be transformed into:

N S = d− ln(1− coverage)e

Table 3.1 shows some examples of N S values for all coverage values calcu-
lated for some of the most imbalanced and some of the most balanced datasets
from Table Datasets.2.

Even though the notion of coverage and coverage-based resampling arise
from the need to address the changes in class distribution, stratified samples
CTC used until now could also make use of coverage-based resampling. These
samples keep the sample’s class distribution and do not use replacement, which
means that no class is favored over others when undersampling. This results

% min.
class

Coverage
Dataset 10% 20% 30% 40% 50% 75% 90% 95% 99% 99.9%
abalone19 0.77% 14 29 46 65 89 177 293 381 585 878
yeast6 2.49% 5 9 14 20 27 53 88 115 176 264
yeast5 2.96% 4 8 12 17 22 44 73 95 146 218
yeast1 28.91% 3 3 3 3 3 3 5 6 9 14
iris0 33.33% 3 3 3 3 3 3 4 5 7 11
glass1 35.51% 3 3 3 3 3 3 3 4 6 9

Table 3.1: Examples of coverage-based N S values for some datasets using max-
Size subsamples.
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in all classes being equally represented in a subsample and the probability of
an example being selected for a subsample is equal for all classes and only
dependent on the r size ratio between a subsample and the original sample. In
order to calculate a N S value for a stratified sample of certain size the following
has to be solved:

N S = dlog1−r(1− coverage)e

In previous research [12] it has been observed that CTC works best when
most of the information of the original sample is covered by the set of subsam-
ples. Therefore, this chapter hypothesizes that CTC will work best with high
coverage values that minimize the loss of information when resampling.

3.4 New consolidated algorithms

This section describes how consolidation has been applied to the C4.4 algo-
rithm and the newly proposed algorithms: CHAID* and CHAIC. As all of these
algorithms are decision tree algorithms, the consolidation is applied on each of
the decision tree nodes. The process has already been described in Section
2.6.1.As all four algorithms are similar, the consolidation of these algorithms is
also similar.

Originally, the CTC name referred to the consolidation of the C4.5 algo-
rithm. But, as all four consolidated algorithm could share the CTC (Consoli-
dated Tree Construction) name, from now CTC45 will be used to refer to the
original CTC algorithm, and CTC44, CTCHAID (without the * from CHAID*’s
name) and CTCHAIC to refer to the new consolidated algorithms.

3.4.1 Consolidation of continuous variables in CTC45, CTC44,
CTCHAID and CTCHAIC

If the most voted variable is continuous, the median value of all proposed
cut-point values is used as the consolidated cut-point. The examples with a
value lower or equal to the cut-point are placed on one branch, and examples
with a value greater than the cut-point are placed in another. In CTC45 and
CTC44, the examples with missing values on continuous variables are treated in
the same way C4.5 does, whereas in CTCHAID and CTCHAID they are treated
as CHAID* does.

3.4.2 Consolidation of discrete variables in CTC45 and
CTC44

If the most voted variable in CTC45 or CTC44 is discrete, the behavior is
the same as in C4.5 and C4.4: a branch is created for every possible value the
variable can take. The examples with missing values on discrete variables are
treated in the same way C4.5 does.
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3.4.3 Consolidation of discrete variables in CTCHAID and
CTCHAIC

Before the work presented in this thesis, consolidation was only applied to
C4.5. By default, C4.5 creates a branch for any value a discrete variable can
take. However CHAID and CHAID* group different values on the same branch
by using the algorithm developed by Kass and mentioned in Section 3.2.1. This
thesis proposes a way to consolidate the stratification of discrete variables. If the
most voted variable in CTCHAID or CTCHAIC is discrete, each of the samples
passes on the contingency table for that variable. An average table is created,
and this table is passed on to the algorithm developed by Kass to find the most
significant value groupings for that variable. The examples with missing values
on discrete variables are treated in the same way CHAID and CHAID* do.

3.5 Experimental Setup

The three experiments in this chapter follow a very similar structure to the
reference work as the results of the contributions are compared to the results of
the reference work.

The reference work used the same 96 datasets, described at the beginning of
Part III, divided into the same three classification contexts and the same train
and test partitions for the cross validation, and the same performance metrics
are used. The results published by the reference work can be found on Appendix
B.

This chapter contains the results of three different experiments. The first
experiment compares the performance of the original CTC45 algorithm using
two different balanced subsample sizes and a number of coverage values.

The used coverage values are 10%, 20%, 30%, 40%, 50%, 75%, 90%, 95%,
99% and 99.9%. One last value, which technically is not a coverage value, is the
static value of 3 subsamples (N S=3), which is the smallest possible number
consolidated algorithms can use. Thus, whenever the number of subsamples for
a dataset, sample size and coverage value falls below three, three samples are
used.

The first of the subsample sizes used is referred to as sizeOfMinClass where
subsamples have the size of the minority class in the original sample. This
type of sample was proposed by Weiss [150]. In this type of sample each class
has n/k examples where n is the size of the sample and k is the number of
classes. In the second type of subsample, maxSize, each class has the size of
the minority class in the original training sample. This is the biggest possible
balanced subsample without oversampling the minority class and is also the
most widely used strategy when random undersampling is applied.

For these experiments, where subsamples have a balanced class distribution,
the least favored class used to compute the number of subsamples for a coverage
is the majority class. The subsample size is that of the minority class in the
training sample for one of the subsamble sizes, and the size of the minority class
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multiplied by the number of classes for the other size of subsample. There are
two exceptions to this rule:

• The standard datasets are mostly multi-class. Sometimes the least pop-
ulous class (the minority class) has as little as one example. This makes
sizeOfMinClass subsamples impossible and maxSize subsamples too small.
Because of this, a rule has been put in place to ensure that the number
of minority class examples found in a subsample is at least equal the 1%
of the total number of examples in the dataset when creating sizeOfMin-
Class subsamples and 2% when creating maxSize subsamples. In these
cases random oversampling is applied to the minority class until this min-
imum is reached. Only three datasets out of thirty need this exception to
the general rule: abalone, car and ecoli.

• The iris standard dataset is unique because it is fully balanced. It is
composed of three classes, each with 50 examples. Using the general rule
to build maxSize subsamples, a single subsample would already contain
all of the examples of the original training sample, resulting in a coverage
of 100%. In this case, in order to obtain a set of different subsamples to
build the consolidated trees, the size of the subsamples is reduced in order
to guarantee that the subsamples will be stratified: i.e. the subsamples
will also be balanced. Thus, in the case of the iris standard dataset the
maxSize subsample size will be 55% of the training sample’s. This specific
ratio is chosen because it is the average ratio between subsamples and the
original training sample for all datasets.

Table 3.2 and Table 3.3 summarize the subsample numbers for standard and
imbalanced datasets, respectively. Columns N S 10 % and N S 99 .9 % indicate
the number of samples of that particular size needed to achieve the specified
coverage value (10% or 99%). Numbers between brackets indicate that such
number of samples would already achieve that coverage, however the number of
samples is forced up to three. For the third classification context, imbalanced
datasets preprocessed with SMOTE, the numbers of samples are derived from
the original imbalanced datasets because the preprocessed datasets are already
balanced. Tables containing specific value for each dataset, sample size and
coverage value can be found on Appendix C.

sizeOfMinClass maxSize
% Min. Class a N S 10% N S 99.9% N S 10% N S 99.9%

Min. 0.08 3(1) 10 3(1) 3(1)
Max. 45.59 8 225 3 149
Mean 21.10 3.13 69.8 3 35.46
Standard deviation 16.41 0.35 75.93 0 41.92
Median 23.06 3 30 3 14

Table 3.2: Summary figures of subsample numbers for the 30 standard datasets.
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sizeOfMinClass maxSize
% Min. Class a N S 10% N S 99.9% N S 10% N S 99.9%

Min. 0.77 3(1) 22 3(1) 9
Max. 35.51 27 1758 14 878
Mean 17.61 4.30 172.24 3.24 84
Standard deviation 11.70 4.30 313.07 1.84 156.68
Median 15.48 3 72 3 34

a Minority Class Distribution

Table 3.3: Summary figures of subsample numbers for the 33 imbalanced two-
class datasets.

3.6 Results

In this section of the chapter the results of the contributions to the con-
solidation of decision tree algorithms are presented and discussed. The results
encompass three different experiments.

The first experiment enables selecting one subsample type and coverage value
as representatives for consolidated trees, and continue into the second experi-
ment to compare the results of the different consolidated algorithms to the
results published in the reference work which can be found in Appendix B.
That work listed 16 genetics-based machine learning algorithms and classified
them into three categories and five subcategories. It performed a hierarchical
comparison by first determining the best algorithm for each subcategory, and
then comparing these five algorithms to a set of classical algorithms for rule and
tree induction (CART, AQ, CN2, C4.5, C4.5rules and RIPPER). These exper-
iments were performed separately for each of the three classifications context
independent of each other. The results of this experiment were published on
[87].

In the second experiment presented in this chapter, the losers of the intra-
subcategory experiment are not considered, and for each classification context,
the winners of each subcategory, the consolidated algorithms, and classical algo-
rithms are compared. Additionally, the classical algorithms used in the reference
work, are complemented with the base algorithms of the new consolidated al-
gorithms: CHAID*, C4.4 and CHAIC. It should be noted that the results for
C4.5 present in the reference work, are the results using the C4.5 implementa-
tion from the KEEL platform. In this dissertation, the results given for C4.5
are for the implementation used to create the consolidated version of the algo-
rithm. Even if the differences between both implementations of C4.5 are small,
this implementation is more suitable to assess the benefits of consolidation. At
the end of the experiment, the results of the three classification contexts are
combined into a single comparison in order to find out the global performance
of algorithms across all analyzed classification contexts. The results of this
experiment were published on [86].
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The third experiment compares the performance of base and consolidated
decision trees from the point of view of the pruning strategy. The pruning pro-
cess of decision trees aims to avoid overfitting to the training data by removing
the most specialized branches. In presence of class imbalance, the branches
identifying minority class examples could be these specialized branches. It is
not uncommon for decision trees to be fully pruned trees down to the root node.
Not only do these trees offer no explanation about the classification (they simply
classify all examples as majority class), but they achieve a zero for most metrics
used in the experiment. Thus, in the cases where the pruned decision trees
just consist of a root node, the unpruned tree is used. This strategy is called
the No Root Node (NRT) strategy. This experiment compares the strategies of
always pruning, never pruning, using NRT, and also considering the probability
estimation tree (PET) process as a pruning strategy, as the differences between
regular and PET trees are mostly related to pruning. In this experiment, the
same methodology as in the second experiment is used, but only focusing on
C4.5, CHAID*, CTC45 and CTCHAID using different pruning strategies. The
results of this experiment were also published on [86].

3.6.1 Results for different subsample types and coverage
values (experiment one)

In this experiment the results of the CTC45 algorithm using two balanced
subsample sizes and eleven coverage values are compared.

For each of the three classification contexts the results are analyzed from
two points of view: the type of subsample used and the coverage value.

For the context of standard classification two performance measures are used,
kappa and accuracy. Figure 3.2 shows the average kappa values for the 30
standard datasets, while Figure 3.3 shows the values for accuracy. Regardless
of subsample type, both metrics show an uptrend when the coverage value is
increased.

In order to compare the performance using different subsample sizes, the
Wilcoxon Signed ranks test is used to make pairwise comparisons of the results
for the same coverage value using different subsamples. Looking at the kappa
and accuracy values, for every coverage value the average performance of CTC45
is better using maxSize subsamples. The results of the Wilcoxon statistical test
on Table 3.4 show that for both metrics and all coverage values the performance
of CTC45 is significantly better using the bigger samples, as expected.

81



CHAPTER 3. CONTRIBUTIONS TO THE CONSOLIDATION OF
DECISION TREE ALGORITHMS

N_S=3 10% 20% 30% 40% 50% 75% 90% 95% 99% 99.9%
0.575

0.577

0.579

0.581

0.583

0.585

0.587

0.589

0.591

0.593

sizeOfMinClass
maxSize

Coverage

K
ap

pa

Figure 3.2: Performance of CTC45 for a range of coverage values with size-
OfMinClass and maxSize subsamples for standard datasets using kappa as the
performance measure.
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Figure 3.3: Performance of CTC45 for a range of coverage values with size-
OfMinClass and maxSize subsamples for standard datasets using accuracy as
the performance measure.
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Measure Coverage R− R+ p-value Hypothesis(α = 0.05)

kappa

N S=3 40 424 0.0001 Rejected in favor of maxSize
10% 40 424 0.0001 Rejected in favor of maxSize
20% 33 431 0.00004 Rejected in favor of maxSize
30% 27 437 0.00002 Rejected in favor of maxSize
40% 45 419 0.0001 Rejected in favor of maxSize
50% 68 396 0.0007 Rejected in favor of maxSize
75% 89 375 0.0032 Rejected in favor of maxSize
90% 91 374 0.0036 Rejected in favor of maxSize
95% 111 354 0.0125 Rejected in favor of maxSize
99% 126 339 0.0285 Rejected in favor of maxSize

99.9% 128 337 0.0376 Rejected in favor of maxSize

Accuracy

N S=3 40 424 0.004 Rejected in favor of maxSize
10% 40 424 0.002 Rejected in favor of maxSize
20% 33 431 0.002 Rejected in favor of maxSize
30% 27 437 0.001 Rejected in favor of maxSize
40% 45 419 0.001 Rejected in favor of maxSize
50% 68 396 0.005 Rejected in favor of maxSize
75% 89 375 0.017 Rejected in favor of maxSize
90% 91 374 0.037 Rejected in favor of maxSize
95% 111 354 0.028 Rejected in favor of maxSize
99% 126 339 0.028 Rejected in favor of maxSize

99.9% 128 337 0.049 Rejected in favor of maxSize

Table 3.4: Wilcoxon test comparing differences for kappa and accuracy for dif-
ferent subsample sizes over standard datasets.
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For the context of two-class imbalanced datasets, the reference work only
used one performance measure, the geometric mean between the true-positive
and true-negative rates (GM). The results for this metric can be seen on Figure
3.4, and in this case, show a downtrend as the coverage value increases for both
sample sizes. This is due to the true-positive rate decreasing at a higher rate
than the true-negative rate increases as shown on Appendix E.

However, even if the reference work only used one metric for imbalanced
datasets, other metrics that are well-suited for the class imbalance problem can
be used, for example the F-Value. On Figure 3.5 it can be observed that in
this case, the F-Value does increase with the coverage value, just like kappa and
accuracy do on standard datasets. In fact, the increase on F-Value (4-6%) is
noticeably greater than the decrease in GM (1.5-2%).

Similar to what happens with standard datasets, with imbalanced datasets
the performance difference between using sizeOfMinClass and maxSize subsam-
ples is also statistically significant. For the GM measure, the rank achieved by
CTC45 using maxSize subsamples is always greater, and with significant differ-
ences most of the time, as seen on Table 3.5. Using the F-Value, the differences
between subsamples are noticeably greater, with the Wilcoxon test always find-
ing significant differences in favor of maxSize subsamples, as shown on Table
3.6.
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Figure 3.4: Performance of CTC45 for a range of coverage values with size-
OfMinClass and maxSize subsamples for imbalanced datasets using GM as the
performance measure.

N_S=3 10% 20% 30% 40% 50% 75% 90% 95% 99% 99.9%
0.905

0.91

0.915

0.92

0.925

0.93

0.935

0.94

0.945

sizeOfMinClass
maxSize

Coverage

F
-V

al
ue

Figure 3.5: Performance of CTC45 for a range of coverage values with size-
OfMinClass and maxSize subsamples for imbalanced datasets using F-Value as
the performance measure.
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Measure Coverage R− R+ p-value Hypothesis(α = 0.05)

GM

N S=3 121 439 0.004 Rejected in favor of maxSize
10% 134 426 0.009 Rejected in favor of maxSize
20% 146 414 0.016 Rejected in favor of maxSize
30% 114 396 0.037 Rejected in favor of maxSize
40% 165 395 0.039 Rejected in favor of maxSize
50% 174 386 0.057 Not rejected
75% 155 405 0.025 Rejected in favor of maxSize
90% 171 389 0.05 Rejected in favor of maxSize
95% 169 391 0.046 Rejected in favor of maxSize
99% 203 357 0.166 Not rejected

99.9% 148 412 0.018 Rejected in favor of maxSize

Table 3.5: Wilcoxon test comparing differences for the GM for different sub-
sample sizes over imbalanced datasets.

Measure Coverage R− R+ p-value Hypothesis(α = 0.05)

F-Value

N S=3 39 525 0.00002 Rejected in favor of maxSize
10% 39 525 0.00002 Rejected in favor of maxSize
20% 43 521 0.00002 Rejected in favor of maxSize
30% 85 476 0.00048 Rejected in favor of maxSize
40% 79 480 0.00032 Rejected in favor of maxSize
50% 120 441 0.00413 Rejected in favor of maxSize
75% 64 497 0.00011 Rejected in favor of maxSize
90% 107 454 0.00193 Rejected in favor of maxSize
95% 164 397 0.03738 Rejected in favor of maxSize
99% 155 406 0.02493 Rejected in favor of maxSize

99.9% 103 458 0.00152 Rejected in favor of maxSize

Table 3.6: Wilcoxon test comparing differences for the F-Value for different
subsample sizes over imbalanced datasets.
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Finally, for the context of imbalanced classification with datasets prepro-
cessed with SMOTE, Figure 3.6 does not show that clear of a trend on GM
when the coverage value increases. Using maxSize samples there is a slight
downtrend with some zig-zags. On the other hand using sizeOfMinClass sub-
samples the up-and-downs on performance are noticeably greater, and while
there is a downtrend starting from a coverage of 50%, a coverage of 99% still
achieves better results than three subsamples. When using F-Value as the per-
formance measure, however, as shown on Figure 3.7 there is a clear uptrend for
both sample types when the coverage value increases.

When comparing the performance using different subsample sizes, the GM
achieved by CTC45 using maxSize samples almost always surpasses the perfor-
mance achieved using sizeOfMinClass samples. According to the Wilcoxon test
results shown on Table 3.7 differences are not found to be significant although
maxSize usually achieve a higher rank Using F-Value as the performance mea-
sure, maxSize samples achieve a better performance regardless of the coverage
value, showing statistically significantly better performance for any coverage
value as shown on Table 3.8.

It is worth noting that, if the results of CTC45 using maxSize subsamples
and a coverage value of 99% are used, the differences between using CTC45
on imbalanced datasets and on the same datasets preprocessed with SMOTE,
the results are statistically significant in favor of SMOTE+CTC45 as shown on
Table 3.9. Until now, SMOTE was able to improve the average discriminating
capacity of CTC45 classifiers, but never in a significant way.

Based on these results, maxSize subsamples combined with a high coverage
value (coverage = 99%) are chosen as default values for consolidated trees. These
values will be used in the experiments described in the following sections.
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Figure 3.6: Performance of CTC45 for a range of coverage values with size-
OfMinClass and maxSize subsamples for imbalanced preprocessed with SMOTE
datasets using GM as the performance measure.
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Figure 3.7: Performance of CTC45 for a range of coverage values with size-
OfMinClass and maxSize subsamples for imbalanced preprocessed with SMOTE
datasets using F-Value as the performance measure.
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Measure Coverage R− R+ p-value Hypothesis(α = 0.05)

GM

N S=3 197 364 0.136 Not rejected
10% 236 325 0.427 Not rejected
20% 206 355 0.183 Not rejected
30% 181 380 0.075 Not rejected
40% 228 333 0.348 Not rejected
50% 222 339 0.296 Not rejected
75% 272 289 0.879 Not rejected
90% 220 341 0.280 Not rejected
95% 310 251 0.598 Not rejected
99% 264 297 0.768 Not rejected

99.9% 361 200 0.150 Not rejected

Table 3.7: Wilcoxon test comparing differences for the GM for different sub-
sample sizes over imbalanced datasets preprocessed with SMOTE.

Measure Coverage R− R+ p-value Hypothesis(α = 0.05)

F-Values

N S=3 126 435 0.0058 Rejected in favor of maxSize
10% 155 406 0.02493 Rejected in favor of maxSize
20% 108 453 0.0021 Rejected in favor of maxSize
30% 76 485 0.0003 Rejected in favor of maxSize
40% 128 433 0.0064 Rejected in favor of maxSize
50% 137 424 0.0.0103 Rejected in favor of maxSize
75% 168 393 0.0444 Rejected in favor of maxSize
90% 122 439 0.0046 Rejected in favor of maxSize
95% 123 438 0.0049 Rejected in favor of maxSize
99% 128 433 0.0064 Rejected in favor of maxSize

99.9% 144 417 0.0147 Rejected in favor of maxSize

Table 3.8: Wilcoxon test comparing differences for the F-Value for different
subsample sizes over imbalanced datasets preprocessed with SMOTE.

Measure Comparison R+ R− p-value Hypothesis(α = 0.05)
GM CTC45 vs. SMOTE+CTC45 142 419 0.013005 Rejected for SMOTE+CTC

Table 3.9: Wilcoxon test comparing CTC45 with and without SMOTE on im-
balanced data sets.
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3.6.2 Results for consolidated tree construction algorithms
against genetics-based and classical algorithms (ex-
periment two)

This subsection describes the results of the second experiment. In this ex-
periment the four consolidated algorithms (CTC45, CTC44, CTCHAID and
CTCHAIC) are compared to their base algorithm and a wide set of genetics-
based and classical algorithms.

The results for the statistical analysis of this experiment are found on Figure
3.8. In this Figure, the results of four comparisons are shown: two lines for the
standard context, one using kappa as measure (1.Std-Kap) and another using the
accuracy (1.Std-Acc), one line for imbalanced datasets (2.Imb-GM) and one line
for imbalanced datasets using SMOTE (3.SMT-GM). Each of these lines shows
the relative distances between algorithms according to their Friedman Aligned
rank. The best algorithm for each comparison is the one on the left. Some of the
left-most algorithms are covered by thick black lines. The algorithms covered by
the thick line do not show statistically significant differences when compared to
the best ranking algorithms according to Holm’s test. An overview of all results
for this experiment can be found on Table 3.10 and the full result tables are in
Appendix F. For each experiment, algorithm, and used performance measure
the Friedman Aligned rank is given, accompanied by the ranking position of each
algorithm for a particular comparison. The first three positions of each ranking
are highlighted. Some genetics-based algorithms do not have values for some
experiments. As explained in Section 2.10 the GBML study first selected the
best performing algorithms of each GBML subcategory for each classification
context. In this experiment, for the context-by-context comparisons, the same
algorithms are used. Algorithms that are not best-ranking for that experiment
are not included in this statistical test and their cell in the table is empty.
However for the global comparison, any GBML algorithm ranking best for at
least one context is used.

As stated by the genetics-based machine learning (GBML) study [53], for
the standard classification context the best GBML algorithms for each sub-
category were XCS, GAssist, Oblique-DT, SIA and OCEC. Two performance
measures are used in this context: the overall accuracy and the kappa statistic.
In both cases CHAID* ranks first, above its consolidated version. The first six
positions of the ranking stay almost the same for both performance measures,
except for XCS and GAssist swapping the second and third positions. For the
accuracy measure the Friedman Aligned ranks test computes a test statistic of
28.25 resulting in a p-value of 0.042 indicating the presence of statistically sig-
nificant differences. Holm’s test finds significant differences (adjusted p-value
< 0.05) between CHAID* (the best ranking algorithm) and SIA, CART, RIP-
PER, CTC44, CTCHAIC, CN2, OCEC and AQ. For the kappa measure the
Friedman Aligned ranks test also finds significant differences with a p-value of
0.041 (test statistic 28.34) and Holm’s test finds differences between CHAID*
and CART, OCEC, C4.5rules, CN2 and AQ. As these are 1 × n tests, only
differences with the control algorithm (the best ranking algorithm) are tested.
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Standard Imbalanced Imb-SMOTE Global
kappa Accuracy GM GM

Algorithm Avg. Rank Avg. Rank Avg. Rank Avg. Rank Avg. Rank

G
B

M
L

CORE — — — 339.89 (15) 1522.51 (19)
DT-GA — — — 272.95 (9) 967.13 (13)

GAssist 179.40 (3) 176.62 (3) 336.59 (10) 186.74 (2) 801.26 (4)

Oblique-DT 247.87 (9) 271.25 (10) 256.77 (7) — 873.48 (9)
OCEC 362.47 (15) 392.58 (17) 354.12 (14) — 1283.78 (18)
SIA 285.65 (12) 285.92 (11) 354.21 (15) 249 (7) 1004.81 (15)
UCS — — 356.52 (16) — 1154.17 (16)

XCS 178.22 (2) 172.48 (2) — 177.53 (1) 818.44 (6)

AQ 423.47 (18) 419.87 (18) 450.21 (17) 541.05 (18) 1592.40 (20)

C
la

ss
ic

al

C4.5 189.97 (5) 188.7 (5) 277.58 (8) 267.92 (8) 811.13 (5)
C4.5rules 414.4 (17) 262.8 (9) 248.12 (6) 228.80 (5) 1003.58 (14)
CART 310.13 (14) 307.6 (12) 349 (13) 432.32 (16) 1212.48 (17)
CN2 414.4 (16) 354.87 (16) 524.14 (18) 499.83 (17) 1632.14 (21)
RIPPER 260.37 (10) 325.4 (13) 183.32 (4) 316.97 (14) 822.82 (7)

A
d

d
ed CHAID* 175.95 (1) 163.3 (1) 347.23 (12) 280.03 (10) 897.79 (11)

CHAIC 184.32 (4) 179.07 (4) 346.38 (11) 306.57 (12) 936.33 (12)
C4.4 244.3 (8) 253.28 (8) 280.18 (9) 281.30 (11) 894.77 (10)

C
on

so
li

d
at

ed CTC44 287.37 (13) 329.43 (14) 160.29 (1) 233.53 (6) 751.97 (3)

CTC45 209.8 (6) 198.68 (6) 176.39 (3) 200.52 (3) 649.46 (1)

CTCHAIC 271.87 (11) 346.32 (15) 161.83 (2) 313.89 (13) 827.88 (8)

CTCHAID 229.07 (7) 240.83 (7) 192.12 (5) 226.15 (4) 720.19 (2)

Table 3.10: Friedman Aligned ranks (and rank positions) for the three classifi-
cation contexts and the global comparison.

Although CHAID*, a base algorithm, ranks first, the differences with its con-
solidated version, CTCHAID, are not found to be significant.

For the second context, imbalanced classification, the used performance met-
ric is the GM. For this context the chosen genetics-based algorithms were UCS,
GAssist, Oblique-DT, OCEC and SIA. In this case the best ranking algorithm is
CTC44, followed by CTCHAIC and CTC45. The Friedman Aligned ranks test
computes a test statistic of 30.87 (p-value 0.021) which indicates the presence of
statistically significant differences. The Holm test finds statistically significant
differences between CTC44 and C4.5, C4.4, GAssist, CHAIC, CHAID*, CART,
SIA, OCEC, CART, AQ and CN2. In summary, four out of the best five ranking
algorithms are consolidated, with the best ranking algorithm showing statisti-
cally significant differences with its base algorithm. All consolidated algorithms
perform better than their base algorithm.

For the last context, where the imbalanced datasets are preprocessed with
SMOTE, the GM is used as the performance measure. For this context the
chosen genetics-based algorithms were XCS, GAssist, DT-GA, CORE and SIA.
In this case the best ranking algorithm is XCS, followed by GAssist with CTC45
and CTCHAID ranking third and fourth, respectively. The test statistic is 30.38
and the p-value is 0.024. The algorithms performing significantly worse than
XCS according to the Holm’s test are CHAIC, CTCHAIC, RIPPER, CORE,
CART, CN2 and AQ. In summary two out of the five best ranking algorithms are
consolidated and only one consolidated algorithm, CTCHAIC, performs signif-
icantly worse than the best ranking algorithm. In this context, all consolidated
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algorithms except CTCHAIC perform better than their base algorithm.
Finally, like in the previous experiment, a global analysis combining the re-

sults of the three contexts is performed in order to determine the robustness of
algorithms across contexts. The rankings of this global analysis are found in
Figure 3.9. While the classical algorithms and the consolidated algorithms are
the same in the three previous contexts, some of the GBML algorithms only
ranked for some of the contexts. For this comparison all GBML algorithms
ranking for at least one context are used. For the standard dataset classifica-
tion, only the kappa measure is used as using both measures would shift weight
in favor of that particular context and kappa is better suited for contexts with
class imbalance, which is the case for most datasets. In this case CTC45 ranks
first followed by CTCHAID and CTC44, while CTCHAIC falls a little behind
but without showing statistically significant differences with CTC45. The Fried-
man Aligned ranks test computes a p-value of 1.34× 10−10(test statistic 90.18)
indicating a clear presence of statistically significant differences between the
performance of the algorithms. According to Holm’s test Oblique-DT, C4.4,
DT-GA, SIA, C4.5rules, UCS, CART, OCEC, CORE, AQ and CN2 perform
significantly worse than CTC45. As expected from the context by context re-
sults, all four consolidated algorithms perform better than their base decision
tree algorithm as they show a more robust performance across contexts.
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Figure 3.9: Visual representation of Friedman Aligned ranks for the three clas-
sification contexts.

3.6.3 Analysis of the effect of pruning on base and consol-
idated decision trees (experiment three)

As mentioned in the experimental setup, when pruning trees, especially in
the presence of class imbalance, there is a risk that pruning will result in a
tree being completely pruned to the root node. These trees simply represent
the a priori probability of the sample used to train them. In the case of the
simple decision trees this would be the original class distribution of the dataset,
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and in the case of consolidated trees, as the subsamples used to build them are
balanced, this would be an equal probability of 1/c for all classes, c being the
number of classes. In any case, a root tree would classify all new examples as
majority class. For two of the metrics (kappa and GM) used in this chapter,
this would result in a value of 0. Specifically for the datasets used in this thesis,
this mostly happens in the context of imbalanced two class datasets, as most of
the times, the use of SMOTE to balance the classes prevents trees from pruning
to the root.

In the presence of class imbalance, the process of pruning trees can be detri-
mental to the performance of decision trees. Thus, the following experiment
compares the results different strategies have on base and consolidated decision
trees. The considered strategies were always using pruned trees, always using
unpruned trees and NRT. Also, as the new consolidated PET decision trees,
CTC44 and CTCHAIC, mostly differ from CTC45 and CTCHAID in the re-
placement of pruning with a probability correction, for this comparison PET
trees are considered a fourth possible pruning strategy.

Two independent comparisons are performed, one for C4.5-based algorithms
and another for CHAID*-based algorithms. The full results of this experiment
are found on Appendix G.

First the results of C4.5-based algorithms are compared. Table 3.11 shows
the numeric values of the Friedman Aligned ranks (and the rank positions) for
the comparisons of C4.5-based algorithms whereas Figure 3.10 shows these rank-
ings graphically. In these diagrams, each point references a variant and can be
identified by the tree type and pruning strategy. The tree type can either be
DT for base decision trees, or CT for consolidated trees. The pruning strategy
can be one of four possibilities: unp for always unpruned trees, pru for always
pruned trees, NRT for the Not Root Tree strategy and PET for the variants
using Laplace correction instead of pruning. Looking at the first context, stan-
dard dataset classification, C4.5 trees always pruning the trees (DT-pru) and
the NRT strategy always achieve the same result, meaning NRT always selects
the pruned tree. For the second context, imbalanced dataset classification, the
best ranking strategy is using unpruned trees (unp), followed by PET trees,
the NRT strategy and finally pruned trees (pru), performing significantly worse
than unpruned trees. For the third context, SMOTE-preprocessed two-class
dataset classification, the performance of the pru and NRT strategies is the
same, regardless of tree type (base or consolidated). That is, as in the standard
classification context, in these cases, pruning never results in a single tree and
unpruned trees are never used. In the experiments made for Section 3.6.1, found
on Appendix D, it is observed that when using lower coverage values, differences
appear between the pru and NRT strategies. But as in these experiments, a
coverage value of 99% is used, differences are non-existent. This shows that
CTC45 follows the same pattern as C4.5 does [30]: pruning is detrimental when
class imbalance is present but if SMOTE is used pruning seems to help the
generalization capacity of the classifier. From a global point of view C4.5 and
CTC45 show the same pattern seen on Figure 3.11: NRT ranks first, followed
by the pruned strategy, with unpruned and PET consolidated trees performing
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Standard Imbalanced Imb-SMOTE Global
kappa Accuracy GM GM

Avg. Rank Avg. Rank Avg. Rank Avg. Rank Avg. Rank

DT-pru 85.43 (1) 76.612 (1) 173.97 (8) 146.68 (5) 410.12 (6)

DT-NRT 85.43 (2) 76.62 (2) 167.65 (6) 146.68 (6) 403.28 (5)

DT-unp 112.47 (5) 116.25 (5) 153.70 (5) 159.17 (8) 424.6 (7)
DT-PET 135.57 (6) 132.01 (6) 171.83 (7) 158.05 (7) 466.93 (8)

CT-pru 94.82 (3) 88.18 (3) 135.61 (4) 98.52 (1) 331.46 (2)

CT-NRT 94.82 (4) 88.18 (4) 97.60 (3) 98.52 (2) 291.09 (1)

CT-unp 176.97 (7) 192.9 (7) 76.94 (1) 125.67 (3) 369.86 (3)

CT-PET 178.5 (8) 193.23 (8) 82.71 (2) 126.73 (4) 378.65 (4)

Table 3.11: Friedman Aligned ranks (and rank positions) for different pruning
strategies of C4.5-based trees.

significantly worse than NRT trees.
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Figure 3.11: Global Friedman Aligned ranks for pruning variants of C4.5-based
algorithms.

By looking at the results for CHAID*-based trees on Table 3.12 and Figure
3.12, the always pruning and NRT strategies do not match as much as with C4.5.
Still, some patterns can be found. For standard dataset classification using
the kappa as the measure base and consolidated trees follow the same pattern:
pruned trees rank first, followed by trees using NRT strategy, trees that are never
pruned and finally PET trees. Using accuracy as the measure no pattern can
be found. NRT strategy works best for CHAID* and pruning for CTCHAID.
For imbalanced datasets not pruning works best while always pruning ranks
worst. Finally, for imbalanced datasets preprocessed with SMOTE variants
always pruning rank best and ranks following the PET strategy rank worst.
Looking at the global results on Figure 3.13 for consolidated trees never pruning
works best, closely followed by the NRT strategy, and always pruning and the
PET strategy work worse. For base decision trees, the NRT strategy works best,
followed by never pruning, PET trees and finally always pruning. In both cases
the best two strategies (switching first and second positions) are never pruning
and NRT.
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Standard Imbalanced Imb-SMOTE Global
kappa Accuracy GM GM

Avg. Rank Avg. Rank Avg. Rank Avg. Rank Avg. Rank

DT-pru 99.25 (1) 83.93 (3) 179.33 (8) 114.76 (4) 443.56 (8)

DT-NRT 77.98 (2) 75.03 (1) 171.52 (6) 137.18 (5) 386.86 (3)

DT-unp 87.52 (3) 84.8 (4) 164.35 (5) 153.09 (6) 403.33 (6)

DT-PET 89.12 (4) 83.6 (2) 174.26 (7) 155.06 (7) 417.82 (7)

CT-pru 145.43 (5) 118.88 (5) 143 (4) 106.94 (1) 387.49 (4)

CT-NRT 134.83 (6) 130.88 (6) 91.95 (3) 106.94 (2) 323.92 (2)

CT-unp 160.2 (7) 190.2 (7) 59.82 (1) 108.3 (3) 311.63 (1)

CT-PET 169.67 (8) 196.67 (8) 75.77 (2) 177.73 (8) 401.38 (5)

Table 3.12: Friedman Aligned ranks (and rank positions) for different pruning
strategies of CHAID*-based trees.
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Figure 3.13: Global Friedman Aligned ranks for pruning variants of CHAID*-
based algorithms.

3.7 Summary

Until recently the consolidation methodology was only applied to the C4.5
algorithm and used a range of fixed values for its two main parameters: the type
of resampling and the number of subsamples used. While originally stratified
samples that preserved the original class distribution were used, recent research
suggests that balanced subsamples achieve the best results. However, changing
the class distribution of the sample means that a subsample represents different
classes to a different degree. With each sample, the minority classes are more
represented than the majority classes. This requires a way to determine an
adequate number of samples. As each dataset has a different class distribution,
the number of samples is particular to each dataset.

This chapter proposes ‘coverage-based resampling’ as a solution this issue.
The coverage is the probability of any example of the training sample being
in at least one of the subsamples. Based on the minimum probability of any
example being present in a single subsample, the number of samples required
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to achieve a certain coverage is calculated.
This proposal is tested using two balanced subsample sizes and eleven cov-

erage values over three classification context encompassing 96 datasets. These
contexts are standard dataset classification, imbalanced classification, and im-
balanced classification with datasets preprocessed with SMOTE. Comparing the
subsample sizes, most of the time the bigger subsamples achieve a better aver-
age value for all metrics used. Also, whenever there are significant differences
between the performance using different subsample sizes, it is in favor of the
bigger subsamples. These subsamples are created by randomly undersampling
all classes but the smallest one until they all have the same size as the minority
class. This subsample type is referred to as maxSize. As for the different cov-
erage values, for most of the performance metrics used, the value of the metric
increases as the coverage value goes up. A value of 99% is selected for coverage
in subsequent experiments.

With the goal of extending the consolidation methodology to algorithms
other than C4.5, this chapter also proposes new algorithms to be consolidated.
The already existing C4.4 algorithm is suggested as one of the replacements as
base algorithms. New algorithms are also proposed. One of these algorithms
is CHAID*. CHAID* is a variant of the widely-known CHAID algorithm, but
unlike the original, CHAID* can handle continuous variables, and also performs
pruning procedures like C4.5 does. These modifications allow it to be compared
on the same problems as C4.5. Another one of the proposed algorithms is
CHAIC. This algorithm proposes modifying CHAID* in the same manner that
C4.5 was modified to create C4.4. Thus three new consolidated algorithms are
proposed CTCHAID, CTC44 and CTCHAIC.

The results of the four base and four consolidated algorithms are compared
to the results published by the reference work discussed in Section 2.10. The
base and the consolidated tree algorithms are compared to a set of 16 genetics-
based and five other classical rule and decision tree induction algorithms over
the same three classification contexts used for the coverage experiment.

Results show that the four consolidated algorithms perform competitively.
In summary, for two-class imbalanced dataset classification, four of the first five
ranking (and also the top three) positions belong to consolidated algorithms.
When SMOTE is applied to imbalanced two-class datasets almost all consoli-
dated algorithms rank in the top half and above their respective base algorithms
with the exception of CTCHAIC. For standard multi-class dataset classification,
base decision trees rank better than their consolidated counterparts but without
significant differences if kappa is used as a performance measure. The only sig-
nificant differences present between the top ranking decision tree algorithm and
two consolidated algorithms (CTC44 and CTCHAIC) appear when using the
overall accuracy as the performance measure. This stands to reason as these two
consolidated algorithms do not prune decision trees, while CHAID* trees are al-
ways pruned in this context, and the pruning procedure used, C4.5’s pessimistic
pruning, specifically aims to maximize accuracy in detriment of other measures.
When comparing all algorithms globally, taking the results of the 96 datasets
into account, CTC45 ranks first closely followed by the rest of consolidated al-
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gorithms showing no statistically significant differences. All base decision tree
algorithms rank lower than their consolidated counterpart. The global compar-
ison show the robust performance of consolidated algorithms, especially CTC45
that are able to perform competitively across all analyzed classification contexts.

This chapter also proposed a new pruning strategy. It is not uncommon for
decision trees to fully prune a tree in cases of severe class imbalance. These
trees offer no explanation of how unseen instances are classified because all new
examples are classified as majority class. As these trees are of no interest when
comprehensibility is required, it is proposed that whenever pruning results in a
single root node, the unpruned tree is used. This strategy is referred to the Not
Root Tree (NRT) strategy.

As a final experiment, this chapter compares different pruning strategies.
The newly proposed NRT strategy, always using pruned trees, always using un-
pruned trees, and the strategies applied by Probability Estimation Trees (PET)
such as C4.4 or CHAIC. This experiment is performed separately for CHAID*-
based trees, and C4.5-based trees. Results show NRT to be the recommended
strategy in most cases, as the results are usually equal or better than using
pruned trees, except for the imbalanced classification with no preprocessing,
where unpruned and PET trees rank better, at the cost of a higher complexity,
as unpruned trees, by definition, are equally complex or more complex than
pruned trees. On a global comparison NRT places better for C4.5-based trees
while unpruned trees rank better for CHAID*-based trees because unpruned
CTCHAID trees distance themselves much more from the nearest competitor
on the SMOTE-less two class classification context.
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Chapter 4

Contributions to PART-like
ruleset algorithms

4.1 Introduction

This chapter focuses on the contributions made during this thesis to PART-
like ruleset algorithms.

As described in Section 2.7, the PART rule induction algorithm creates par-
tial C4.5 decision trees, and extracts a rule from each tree. These partial trees
are built by first splitting the root node and then attempting to split (process-
ing) the processed leaf with the lowest entropy value. Then, among the recently
created nodes, the one with the lowest entropy value is processed and so on, un-
til a subtree is finished. Subtrees are finished when no more splits can be made,
either because the current node does not have enough examples, potential chil-
dren will not have enough examples, all possible splits have already been made,
or no split has enough gain ratio. Once the subtree is finished, the “subtree
replacement” process of C4.5’s pruning algorithm is applied. If the replacement
is successful and the subtree is replaced by a leaf, the algorithm continues, back-
tracking if necessary. If the replacement fails a subtree is considered stable and
the partial tree is finished. Unlike in the standard C4.5 algorithm pruning is
not applied after building the tree. A rule is extracted using the node with most
weight, and examples not covered by this rule are used to repeat the process.

PART is one of the most widely used and cited rule induction algorithms.
The paper contributing the algorithm [55], simply proposes the algorithm with-
out suggesting or comparing any variations of it. This leads to asking if it would
be possible to modify some of the decisions made during the algorithm creation
to improve its performance. At the time of writing, according to Google Scholar,
it has been cited 1486 times. However, since it was introduced, not many re-
searchers have explored the possibilities of making such modifications to the
algorithm.

First, as PART uses partial trees, making modifications to how the partial
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tree is created results in potentially vastly different partial trees. If a decision
tree is to be fully developed, the order in which the nodes are expanded does
not really matter. The end result will be the same. In order to create a partial
tree, on the other hand, a search algorithm has to be used. Changing the used
search algorithm is the logical choice if the goal is to create different partial
trees. Once the tree is built, PART only contemplates one way to select the
leaf that will determine the rule to be extracted. Changing this criterion, while
not affecting the partial tree building process at first, results in a different rule
being selected, and in consequence, in different training sets for future iterations
of partial trees.

Another possible alternative is the use of fully developed decision trees to
create rules. This possibility eliminates the need of using a search algorithm to
direct the decision tree building process as ultimately the entire tree is processed,
and also eliminates the need of a criterion to select nodes suitable for rule
extraction, as all nodes are processed.

Finally, algorithms other than C4.5 could be used to create the decision
trees used to extract rules. This thesis already proposes some other decision
tree algorithms in Chapter 3, namely, the CHAID* and CHAIC algorithms.

This chapter proposes new variants of the PART algorithm. First, four
modifications are proposed to the original algorithm. From the resulting 16
variants, the best performing variant is selected, BFPART (Best-First PART).
Another variant is proposed where instead of using partial decision trees, fully
developed decision trees are used. This variant is called UnPART (as in not
partial). Finally, CHAID*-based variants for PART, BFPART and UnPART
are proposed.

The modifications proposed in this chapter do not only affect the discrim-
inating capacity of the algorithm, but also the structural complexity of the
generated classifiers and the computational cost to build them. Thus, the ex-
periments in this chapter compare the performance of different algorithms from
the perspectives of discriminating capacity, structural complexity and compu-
tational cost.

The structure of this chapter is as follows, Section 4.2, Section 4.3 and
Section 4.4 describe the contributions presented in this chapter. Section 4.5
outlines the experimental setup for the experiments in this chapter, Section 4.6
analyzes the results of the experiment and, finally, Section 4.7 makes a brief
summary.

4.2 The BFPART algorithm

As in all machine-learning algorithms, the decisions made during the clas-
sifier building process affect the performance. This section proposes modifying
four of these criteria to improve PART’s performance.

• ‘Next Node to Develop’ criterion: The selection of the next node to be
considered for development is crucial in the partial decision tree construc-
tion process. While in the standard C4.5 process, the nodes are analyzed
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in pre-order, in PART, the node selected to continue developing the tree
is always the child with the lowest entropy value. This node is more likely
to result in a small subtree, and therefore, should produce a more general
rule [55]. However, the selection is made from the child nodes obtained
after the last split, without taking into account whether other nodes that
were not analyzed at previous levels may be more suitable. It can thus
be stated that PART uses the Hill Climbing algorithm (HC option) [132],
to determine the next node to be analyzed. As with all local search al-
gorithms, the Hill Climbing algorithm may not find a global minimum if
there are local minima in the search space.

The Hill Climbing algorithm can be replaced with another better perform-
ing local search algorithm: the Best-First (BF) method [112, 132]. Global
methods have shown to create better classifiers than local search methods.
This method explores a graph by expanding the most promising node of
the nodes that have not been explored, which are chosen according to a
specified rule. In this context, the nodes of the partial decision tree cur-
rently under construction will be analyzed according to their entropy, and
the node with the lowest value is selected, whatever its location in the
tree.

This idea was used in the Best-First decision tree (BFTree) algorithm
proposed in [141]. The author proposed two new pruning methods (based
on pre- and post-pruning) with a pre-specified fixed size for the tree. As
the node expansion order affects the final tree, and consequently the size
of the tree, the depth-first order of Quinlan [128] could not be used in
this case. These decision trees were evaluated in the context of boosting
algorithms (no pruning methods) by Friedman et al in [57]. The authors
found that building large trees decreases the error rate of each individual
model, but it increases the error rate of the final model. Therefore, their
aim was to find a set of trees to improve the accuracy while restricting
the size of each individual tree to a predetermined size. Under these
circumstances, it was necessary to define the node splitting order so that
the best performing trees of the limited size were built. An implementation
of this type of tree can be found in the WEKA site [75].

Two options for the Next Node to Develop criterion are proposed, namely
Hill Climbing (HC) and Best-First (BF).

• ‘Leaf for Next Rule’ criterion: After each of the partial decision tree has
been built, the leaf node that determines the branch used to generate
the next rule has to be selected. PART selects the leaf with the greatest
weight, but considers only the nodes that are already labeled as a leaf in
the partial decision tree, or the Treated Leaves (TL) option. These are
the nodes for which after the analysis was done, the decision made was
not to split the nodes (because all the instances belong to the same class
or any other stop criteria is met); or, after the nodes had been divided,
the “subtree replacement” operation of the pruning process was carried
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out. However, there are some non-internal (structurally leaf-like) nodes
that have not yet been analyzed, but which could be considered to build
the rule as their “sibling” nodes. These leaf-like nodes may cover a greater
number of instances. Thus, all of the nodes that are structurally leaf nodes
could be analyzed (All Leaves, AL option).

Therefore, for the Leaf for Next Rule criterion, two options are proposed:
Treated Leaves (TL) and All Leaves (AL).

• ’Pruning of Partial Trees’: The C4.5 algorithm, which is used by PART
to develop the trees, prunes trees by default once they are built. This
mechanism avoids overfitting. It ensures that trees are not too specific to
the training sample and it also reduces the structural complexity. PART
does not prune the partial trees once the building process stops. The
possibility of pruning the partial trees should be considered, in order to
determine which variants place better in the learning curve [78].

For the Pruning of Partial Trees criterion, two options are considered:
keeping partial trees unpruned (NP) and pruning partial trees (PR) using
the same pruning strategy used by C4.5 described in 2.4.1.

• ’Priorization of Pure Nodes’: Pure nodes, which contain only examples
from a single class, have the ideal entropy value of 0, and they are thus
analyzed before their sibling nodes, and turned into leaves first. When
all siblings are turned into leaves a subtree replacement is attempted.
If the replacement fails, then the construction process stops. The early
generation of leaf nodes in the process can lead to some branches of the tree
not being developed because of a failed replacement. For this criterion,
the option of the non-treatment of homogeneous nodes until the rest of
the nodes have been analyzed is considered, (in the same way to how the
PART algorithm treats small nodes) in order to further develop the partial
trees and achieve a better discriminating capacity.

For the Priorization of Pure Nodes criterion, two options are considered:
Prioritize Pure Nodes (PP) and Do Not Prioritize Pure Nodes (DP).

Table 4.1 summarizes the criteria modified in the PART algorithm and the
option proposals for each of them, and Table 4.2 presents the names of the 16
proposed variants in the last row.

Criterion Original Option New Proposal
Next Node to Develop Hill Climbing (HC) Best-First (BF)
Leaf for Next Rule Treated Leaves (TL) All Leaves (AL)
Pruning of Partial Trees No Pruning (NP) PRuning (PR)
Priorization of Pure Nodes Prioritize Pures (PP) Do not Prioritize (DP)

Table 4.1: Summary of the options explored for the generation of new variants
of PART.
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Hill Climbing

Treated Leaves All Leaves Leaves

No pruning Pruning No Pruning Pruning

Prioritize Pures Do not Prioritize Prioritize Pures Do not Prioritize Prioritize Pures Do not Prioritize Prioritize Pures Do not Prioritize

PART HC TL NP DP HC TL PR PP HC TL PR DP HC AL NP PP HC AL NP DP HC AL PR PP HC AL PR DP

Best-First

Treated Leaves All Leaves Leaves

No pruning Pruning No Pruning Pruning

Prioritize Pures Do not Prioritize Prioritize Pures Do not Prioritize Prioritize Pures Do not Prioritize Prioritize Pures Do not Prioritize

BF TL NP PP BF TL NP DP BF TL PR PP BF TL PR DP BF AL NP PP BF AL NP DP BF AL PR PP BF AL PR DP

Table 4.2: Reference table for PART variant names.

An experiment was performed to determine the best among the 16 proposed
PART variants. However, the methodology and datasets used for that particular
experiment were different from the datasets and methodology primarily used in
this thesis so the details about that experiment are placed on Appendix H.
In summary, results showed that the BF AL PR DP variant achieved the best
results taking all metrics into account. This variant uses Best-First as the
search algorithm when looking for the next node to develop (BF), takes all leaf-
like nodes into account when extracting a rule (AL), prunes partial trees before
extracting the rules (PR), and does not prioritize treating class-pure nodes (DP).
This variant is exactly the opposite to the original PART algorithm regarding
these characteristics. As this variant does not restrict the search to the nearest
subtree, and postpones processing homogeneous nodes, partial decision trees
are developed further than in the original PART. However, this is compensated
by pruning the partial tree after the construction process and using selecting
nodes in higher, undeveloped, levels of the tree to extract the rule. This variant
was compared to the original PART, C4.5 and CHAID* using five performance
metrics and was found to perform best among the compared algorithms. The
results of that study can be found on Appendix H and were published on [85].
This variant was dubbed BFPART as it uses the Best-First search algorithm.
The results presented later in this chapter, confirm the good results the chosen
variants achieves using the common experimental methodology and datasets
used by the reference work and this thesis.

Algorithm 4.1 shows BFPART’s partial tree construction algorithm. The
functions new test, best, gain ratio and average gain ratio found in that
algorithm work the same as they did in Algorithm 2.2. This algorithm also uses
the sort by entropy and it works similarly to how it does in Algorithm 2.7
however in this case the newly created subsets are added to a global list and
this global list is sorted. The prune functions in the same ways as it does in
Algorithm 2.3. The main method of the BFPART algorithm is the same as
PART’s found on Algorithm 2.6, however, the get rule method takes all leaves
into account, not just treated leaves.
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Input:
S: training data set
V: independent variables
Sglobal = S
Function expand BFPART(S,V ):

mark S as treated
Sglobal = Sglobal \ S
if S is empty then

turn node into leaf
assign S same label as parent
return

end
if S meets stop criteria then

turn node into leaf
assign S label of most common label of instances in S
return

end
if all cases on S are members of class Cj then

turn node into leaf
assign label Cj to S
return

end
foreach Vi in V do

if Vi is discrete then
Ti = new test(Vi)

end
if Xi is continuous then

threshold = best split(Vi)
Ti = new test(Vi)

end

end
gravg = average gain ratio(T )
Tb = best(T )
if gain ratio(Tb) < gravg then

turn node into leaf
assign S label of most common label of instances in S
return

end
foreach instance Ij in E do

foreach outcome Oi in T do
if Oi = Iji then

Si = Si ∪ Ij
end

end

end
Sglobal = Sglobal ∪ Ei

sort by entropy(Sglobal) // Exception: subsets with exactly

0 entropy are put last

foreach Si in Sglobal do
expand BFPART (Si,V)
if replacementFailed for Si then

return
end

end
prune(S)
if S is not leaf then

replacementFailed = true
end
return

Algorithm 4.1: BFPART’s partial C4.5 tree construction algorithm.
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4.3 The UnPART algorithm

The differences between PART and BFPART result in BFPART developing
the partial trees further than PART does. PART uses a local search algorithm
to guide the node processing order, and this search is restricted to the current
subtree. BFPART uses the Best-First global search algorithm to look through-
out the entire tree. If, for example, the first split in a tree creates three nodes
and a stable subtree is found while developing the first of the subtrees, the other
two are not even analyzed. BFPART can jump between different points of the
decision tree and develop more branches. BFPART also uses the node’s entropy
value to select the next node to be developed, but unlike PART, makes an excep-
tion for class-pure nodes and does not treat them until later. These nodes have
an entropy of zero. Delaying processing these nodes also delays the collapsing
step, which in turn, delays the end of the tree building process, as the failure of
replacing a subtree is the main stop criteria for partial trees. This could lead
to a higher degree of overfitting the partial decision tree to the training data.
However, the pruning used by BFPART’s after the partial tree is built seems to
mitigate this.

The results described on Appendix H show that BFPART creates classifiers
with improved discriminating capacity, and significantly less structural com-
plexity. So,

• What if instead of modifying the PART algorithm to create bigger but still
partial decision trees, fully developed decision trees were used to extract
rules?

The UnPART algorithm proposed in this chapter answers that question. The
name itself is a play on words as UnPART (as in ‘not PART’) does not generate
partial decision trees but still uses a very similar strategy to build rulesets based
on decision trees.

The construction phase of decision trees in UnPART is the same as the base
decision tree’s construction process. The same stop criteria as the base tree
construction process are used. There is no need to use a search algorithm to
establish an order in which to develop nodes. All nodes are eventually developed
using the decision tree algorithm’s ordering method. There is also no need to
discriminate between valid and invalid leaf-like nodes to extract the rules, as
all leaf-like nodes are actually true leaf nodes. Like in BFPART, C4.5’s subtree
replacement pruning process is applied once the tree is built. Like in PART,
the most populous node is used to extract a rule, the examples covered by the
extracted rule are removed from the training set and the process is repeated
until all training examples are covered by the ruleset. Algorithm 4.2 shows how
UnPART creates decision trees by simply calling the base algorithm’s construc-
tion process. In order to extract rules from decision trees it uses BFPART’s
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extraction procedure.

Input:
S: node whose biggest branch has to be identified
V: independet variables
Function expand UnPART(S,V ):

expand DecisionTree(S,V )

return
Algorithm 4.2: UnPART’s tree construction algorithm.

4.4 CHAID*-based PART-like algorithms

PART uses the C4.5 decision tree induction algorithm as base algorithm to
create the partial decision tree. BFPART and UnPART have originally been
conceived with also C4.5 in mind as base algorithm.

However, the base tree algorithm can be replaced by other tree algorithms.
The CHAID* algorithm, proposed in Chapter 3, is one such possibility. It is
similar enough to C4.5 to enable easy integration into PART’s ruleset creation
process. Regarding PART, the two main differences between C4.5 and CHAID*
are the criterion used to select the best split for a node and how splits by discrete
features are handled. C4.5 uses the gain ratio of a split to determine its worth,
and CHAID* uses the p-value of Pearson’s chi-square test. When splitting a
node using a discrete variable, C4.5 creates a branch for each possible value the
variable can take, but CHAID* can group several values in the same branch.

From this point onward, in order to distinguish the same variant with differ-
ent base, the C45 (PART C45, BFPART C45 and UnPART C45) and CHD
(PART CHD, BFPART CHD and UnPART CHD) suffixes will be added when
referring to C4.5-based and CHAID*-based algorithms, respectively.

C4.5-based PART and BFPART use the node’s entropy to determine the
node processing order. C4.5 uses entropy as part of the calculation to deter-
mine the information gain and gain ratio of possible splits, and select the best
split. But CHAID* does not use entropy at any point of the process. CHAID*
computes Pearson’s Chi-square test for every possible split, and adjusts the
p-value using the Bonferroni Correction. The split with the lowest adjusted
p-value is used. Instead of using entropy, CHAID*-based PART and BFPART
use the adjusted p-value of the best possible split for each node, selecting the
node with the best split (lowest p-value). Entropy is not a value tied to a split,
so even nodes that cannot be split have an entropy value. This is not the case
of CHAID* nodes. But the p-value is tied to a split, so nodes that cannot be
split, for example if all examples are already of the same class, do not have a
p-value. In this cases, the p-value of the parent node is assigned to the node
that cannot be split.

Table 4.3 summarizes the characteristics of each of the proposed variants
compared to the original PART algorithm.
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C4.5-based CHAID*-based
PART BFPART UnPART PART BFPART UnPART

split criterion gain ratio p-value based on chi-squared test
next node search Hill Climbing Best-First - Hill Climbing Best-First -

next node selection entropy - p-value -
discrete variables one branch per value grouped subsets

missing values spread between branches combined with least significant branch if possible
stopping criterion failed replacement - failed replacement -

leaf for rule treated leaves all leaves all leaves are treated treated leaves all leaves all leaves are treated
pruning no yes yes no yes yes

Table 4.3: Defining features of different PART-like algorithms.

4.5 Experimental Setup

The experiments in this chapter follow the same structure as the reference
work and Chapter 3. The same train and test partitions for the same 96 datasets
(described at the beginning of the contributions) are used.

The analysis of results in this section has been done in three stages, in-
crementally adding the number of compared algorithms. The first stage only
compares the results of C4.5-based algorithms (three PART-like algorithms and
C4.5 itself). The second stage compares the results of C4.5-based algorithms
and their CHAID*-based equivalents. In the third stage these eight algorithms
are compared to the set of genetics-based (GBML) and classical rule and deci-
sion tree induction algorithms used in the reference work and in Chapter 3.

The reference work only used performance metrics related to the discrimi-
nating capacity of the classifiers (kappa, overall accuracy, and GM). However,
the modifications to the PART algorithm proposed in this chapter, greatly affect
other aspects of the algorithm, such as the structural complexity of the classi-
fiers and the computational cost required to build the classifiers. As there is
no structural complexity and computational cost data for the results published
by the reference work, the third stage is still limited to discriminating capacity
metrics. However, on the first and second stages, structural complexity and
computational cost metrics are used. For discriminating capacity, apart from
kappa (first context) and GM (second and third contexts), the AUC is also used.
For structural complexity two metrics are used: the number of rules in a ruleset
(number of leaves in the case of C4.5 and CHAID*) and the Length, that as
described in Section 2.8.1.1 is the average number of decisions in rules. For
computational cost, the classifier construction time is used, measured in mil-
liseconds. All of the experiments in this chapter were performed using the same
hardware and software. The hardware node has an Intel Core i7-4790 processor
(3.60 Ghz) and 16 GB of RAM. The operating system is Windows 7 Enterprise
SP1, and all algorithms and variants were implemented in Visual C++.

The reference work divided the experimentation into three context: stan-
dard classification, imbalanced two-class classification and imbalanced two-class
classification with datasets preprocessed with SMOTE. In order to keep the re-
sults section somewhat compact, context-by-context average results are given
for every performance metric used, but the statistical tests for significance are
performed using the 96 datasets together. This allows obtaining a global point
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of view of the performance of each algorithm over different classification con-
texts. The full tables containing the values for each algorithm, dataset and
performance metric combination can be found on Appendix I.

The reference work classified 16 genetics-based algorithms into five subcat-
egories and an independent hierarchical study was performed for each classifi-
cation context. First, an intra-subcategory study was performed, and then, the
best algorithm of each subcategory and six classical algorithms were compared.
As the third stage of this chapter compares the results of the algorithms pro-
posed in this chapter and the reference work combining the results of the three
classification contexts, any genetics-based algorithm winning at least one intra-
subcategory comparison is considered. The GBML and all classical algorithms
(AQ, C4.5, C4.5rules, CART, CN2, and RIPPER), plus CHAID*, which was
not originally present, are compared to C4.5-based and CHAID*-based PART-
like algorithms. For this third stage, the performance metrics are limited to
those published for the GBML and classical algorithms in the reference work:
kappa for the first group of datasets, the GM for the rest.

4.6 Results

As mentioned in the Experimental Setup, the results are divided into three
parts. The first part compares the results of C4.5-based algorithms: Un-
PART C45, BFPART C45, PART C45 and C4.5 itself. The second part adds
CHAID*-based variants for the same algorithms, and compares the eight algo-
rithms against each other. The final part compares these eight algorithms to
results published in [53] for 16 genetics-based and five classical decision tree
and rule induction algorithms, found in Appendix B. For simplicity, this chap-
ter only includes the average values for every evaluation metric on each of the
classification contexts, and the Friedman Average rank computed over the 96
datasets, in order to analyze the global performance of the algorithms on dif-
ferent classification contexts.

In this chapter, results are displayed in figures such as Figure 4.1. In these
figures, each box represents an algorithm and its computed rank. A box with
filled background denotes the best ranking algorithm for this set and metric,
and a line between two algorithms denotes a lack of statistically significant
differences (α = 0.05) between those two algorithms according to the post hoc
procedure. In this case, the number of compared algorithms allows to perform
an efficient n× n pairwise analysis so the Bergman-Hommel procedure is used.

4.6.1 Results for C4.5-based PART-like algorithms

This subsection compares C4.5-based PART-like algorithms (PART C45,
BFPART C45 and UnPART C45) and C4.5 exclusively.

The results are divided into three groups according to the type of evaluation
metric. First, the discriminating capacity metrics (Kappa, GM, and AUC) are
discussed, followed by the structural complexity measures (Number of Rules and
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Length), and finally, computational cost (classifier construction time measured
in milliseconds).

At the end of the section, the results of different metrics are combined.

4.6.1.1 Results for discriminating capacity metrics

Table 4.4 shows the average values for the kappa and GM metrics for the
four algorithms. For the standard datasets, the kappa statistic has been chosen
as representative over the error rate, as class imbalance is also present in most
standard datasets, and kappa is better suited in this case. Thus, Table 4.4 shows
the average kappa values for standard datasets and the GM for imbalanced
datasets.

UnPART C45 BFPART C45 PART C45 C4.5

1.Standard 0.6047 0.5989 0.6024 0.5851

(kappa) (1) (3) (2) (4)

2.Imbalanced 0.7294 0.7232 0.7105 0.7298

(GM) (2) (3) (4) (1)

3.Imb-SMOTE 0.8132 0.8121 0.8129 0.8068

(GM) (1) (3) (2) (4)

Friedman 166.03 193.08 213.40 197.49

Aligned ranks (1) (2) (4) (3)

Table 4.4: Average kappa and GM values for C4.5-based UnPART, BFPART,
and PART, and C4.5.

For the standard datasets, UnPART achieves the best average value, followed
by PART and BFPART, with C4.5 performing worst. This same order appears
for the SMOTE-preprocessed datasets and the GM metric. On the other hand,
for the original imbalanced datasets C4.5 achieves the best GM value, very
closely followed by UnPART, with BFPART and PART lagging behind.

From a global point of view, according to the statistical tests for significance,
statistically significant differences are found with a p-value of 0.006. UnPART
ranks first, followed by BFPART and C4.5, with PART ranking worst. The
Bergmann-Hommel post hoc procedure finds differences between the best- and
worst-ranking algorithms, UnPART and PART, in favor of UnPART. These
results are graphically shown on Figure 4.1.

113



CHAPTER 4. CONTRIBUTIONS TO PART-LIKE RULESET
ALGORITHMS

UnPART_C45 [1]
166.03

BFPART_C45 [2]
193.08

PART_C45 [4]
213.4

C4.5 [3]
197.49

Figure 4.1: Friedman Aligned ranks and pairwise statistical differences for C4.5-
based algorithms using the kappa and GM measures.

Table 4.5 shows the average results using the AUC measure. In this case,
for each of the classification contexts, a different algorithm achieves the best
average results: UnPART for standard datasets, PART for imbalanced datasets,
and BFPART for preprocessed datasets. From a global point of view, PART
performs best followed by UnPART, BFPART, and finally, C4.5. In this case
statistically significant differences are also found by the Friedman Aligned ranks
test (p-value=0.0002). The Bergmann-Hommel post hoc procedure concludes
that C4.5 performs significantly worse than all of the other algorithms, whereas
the other algorithms do not show significant differences among them, as seen on
Figure 4.2.

In summary, for the kappa measure on standard datasets and the GM
measure on SMOTE-preprocessed imbalanced datasets UnPART performs the
best among the compared algorithms, whereas C4.5 performs best for non-
preprocessed imbalanced datasets. Using these metrics, the Friedman Aligned
ranks test and the Bergmann-Hommel post hoc procedure find UnPART to rank
first and perform significantly better than PART. On the contrary, when AUC is
used, PART performs best without significant differences to UnPART and BF-
PART, while C4.5 performs significantly worse than any of the rest. According
to both statistical tests UnPART ranks in top positions.
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UnPART C45 BFPART C45 PART C45 C4.5

1.Standard 0.8345 0.8301 0.8314 0.8134

(1) (3) (2) (4)

2.Imbalanced 0.8245 0.8268 0.8415 0.825

(4) (2) (1) (3)

3.Imb-SMOTE 0.8594 0.8602 0.857 0.8445

(2) (1) (3) (4)

Friedman 178.57 183.07 168.24 240.12

Aligned rank (2) (3) (1) (4)

Table 4.5: Average AUC values for C4.5-based UnPART, BFPART, and PART,
and C4.5.

UnPART_C45 [2]
178.57

BFPART_C45 [3]
183.07

PART_C45 [1]
168.24

C4.5 [4]
240.12

Figure 4.2: Friedman Aligned ranks and pairwise statistical differences for C4.5-
based algorithms using the AUC measure.
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4.6.1.2 Results for structural complexity metrics

This subsection compares the structural complexity of the algorithms.

Table 4.6 shows the average results for the Number of Rules metrics. Context-
by-context average results are almost consistent, with UnPART and BFPART
sharing the first positions, and PART and C4.5 placing third and fourth, re-
spectively. Globally, as seen on Figure 4.3, the Friedman Aligned ranks test
ranks UnPART first, followed by BFPART, PART and finally C4.5. PART gen-
erates considerably more rules on average compared to UnPART and BFPART,
but less than C4.5. Both UnPART and BFPART show statistically significant
differences when compared to PART and C4.5. PART, even though it creates
significantly longer rules than UnPART and BFPART, still creates significantly
simpler classifiers than C4.5 does, according to this metric.

UnPART C45 BFPART C45 PART C45 C4.5

1.Standard 13.25 13.15 26.55 36.44

(2) (1) (3) (4)

2.Imbalanced 5.27 5.39 6.22 11.27

(1) (2) (3) (4)

3.Imb-SMOTE 9.44 9.47 11.53 25.54

(1) (2) (3) (4)

Friedman 121.96 125.04 196.91 326.09

Aligned rank (1) (2) (3) (4)

Table 4.6: Average Number of Rules values for C4.5-based UnPART, BFPART,
and PART, and C4.5.

UnPART_C45 [1]
121.96

BFPART_C45 [2]
125.04

PART_C45 [3]
196.91

C4.5 [4]
326.09

Figure 4.3: Friedman Aligned ranks and pairwise statistical differences for C4.5-
based algorithms using the Number of Rules measure.
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For the Length metric, according to the average results, the first position
belongs to BFPART, UnPART or PART depending on the context. C4.5 places
last for all three contexts, creating rules twice as long as the shortest ruleset.
Average values are shown on Table 4.7. From a global point of view, according
to the results of the statistical tests shown on Figure 4.4, UnPART ranks best,
followed by BFPART and then PART. Finally, C4.5 creates significantly longer
rules than the PART-like algorithms. It is not uncommon for algorithm orders
to change between the average values and ranks, as average values tend to be
skewed in presence of outliers. On the other hand, ranks smooth the effect of
outliers.

UnPART C45 BFPART C45 PART C45 C4.5

1.Standard 2.35 2.31 2.46 4.88

(2) (1) (3) (4)

2.Imbalanced 1.40 1.46 1.52 3.48

(1) (2) (3) (4)

3.Imb-SMOTE 2.40 2.42 2.17 5.24

(2) (3) (1) (4)

Friedman 136.46 143.23 154.08 336.22

Aligned rank (1) (2) (3) (4)

Table 4.7: Average Length values for C4.5-based UnPART, BFPART, and
PART, and C4.5.

UnPART_C45 [1]
136.46

BFPART_C45 [2]
143.23

PART_C45 [3]
154.08

C4.5 [4]
336.22

Figure 4.4: Friedman Aligned ranks and statistical differences for C4.5-based
algorithms using the Length measure.

In summary, UnPART ranks best for both structural complexity metrics,
showing statistical improvement over PART for the Number of Rules metric,
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and C4.5 for both measures.

4.6.1.3 Results for computational cost

For the computational cost metric, the classifier construction time in mil-
liseconds is used. As expected, C4.5 is the fastest, followed by PART, BFPART
and finally UnPART, except for the standard classification context where BF-
PART and PART exchange places. Average values are shown on Table 4.8.
If the median (not displayed in these results) is used instead of the average,
the difference between algorithms is reduced from four-fold to two-fold. This
indicates that some datasets act as outliers, greatly increasing execution time.
The dataset-by-dataset results found in the additional material show that this
happens with big datasets with mostly continuous variables. This makes sense
as C4.5 finds the best split point by checking every possible value as a potential
split point. This effect is augmented on datasets preprocessed with SMOTE, as
this technique creates new artificial values for continuous variables.

According to the results shown on Figure 4.5, all algorithm pairs show sig-
nificant differences.

In summary, C4.5 creates classifiers significantly faster than the rest of al-
gorithms. This is expected, specially in the case of UnPART, as UnPART has
to first create the same tree as C4.5 does, and then grow more trees. However,
it should be noted that even though C4.5 works faster than the rule induc-
tion algorithms, it performs significantly worse for the AUC metric and creates
significantly more complex classifiers.

UnPART C45 BFPART C45 PART C45 C4.5

1.Standard 252 229 237 75

(4) (2) (3) (1)

2.Imbalanced 103 91 88 62

(4) (3) (2) (1)

3.Imb-SMOTE 2335 1873 1465 521

(4) (3) (2) (1)

Friedman 271.80 230.95 175.96 91.29

Aligned rank (4) (3) (2) (1)

Table 4.8: Average Time values (in milliseconds) for C4.5-based UnPART, BF-
PART, and PART, and C4.5.
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UnPART_C45 [4]
271.8

BFPART_C45 [3]
230.95

PART_C45 [2]
175.96

C4.5 [1]
91.29

Figure 4.5: Friedman Aligned ranks and pairwise statistical differences for C4.5-
based algorithms using the Time measure.

4.6.1.4 Global analysis of results

This last subsection focuses on comparing the four algorithms from a global
point of view, combining the results of discriminating capacity, structural com-
plexity, and cost metrics. This comparison gives twice the weight to the discrimi-
nating capacity (using kappa/GM and AUC) compared to structural complexity
and computational cost measured in time. Since the main goal of a classifier is
to generalize correctly, and results have shown that there are statistically sig-
nificant differences among the algorithms in this regard, it makes sense to give
more importance to this aspect of the classifiers. Regarding structural complex-
ity, the rank orders are the same for both complexity measures, the common
rank is used with the alias Complexity for the variable.

Table 4.9 shows the rank position each algorithm achieved for the measured
metrics, and an average of rank positions is made.

UnPART C45 BFPART C45 PART C45 C4.5

kappa/GM 1 2 4 3

AUC 2 3 1 4

Complexity 1 2 3 4

Time 4 3 2 1

Average 2 2.5 2.5 3

(1) (2) (3) (4)

Table 4.9: Combining the results for all metrics for C4.5-based algorithms.

UnPART is determined to be the best among the compared algorithms.
Even though it is the slowest to create classifiers, it creates the simplest models
for both complexity measures and also ranks first for the combination of kappa
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and GM. On the opposite side is C4.5: it is the fastest to create the models
but creates the most complex and less accurate classifiers for AUC (second to
last for the combination of kappa and GM). BFPART and PART fight for the
middle positions. BFPART does not rank first or last for any of the measures,
whereas PART performs worst for kappa and GM but best for AUC. From a
global point of view BFPART ranks slightly above PART.

4.6.2 C4.5-based vs CHAID*-based PART-like algorithms

This subsection compares the results of C4.5-based algorithms and their
equivalent CHAID*-based algorithms. The same performance measures as in
the previous subsection (kappa, GM, AUC, Number of Rules, Length and Time)
are used.

4.6.2.1 Results for discriminating capacity metrics

Table 4.10 shows the average values for the four C4.5-based and four CHAID*-
based algorithms. Just as in Section 4.6.1, thus kappa is used for the stan-
dard datasets and the geometric mean (GM) for the rest. Results show that
C4.5-based algorithms achieve the best results most of the time. UnPART C45
achieves the best average results for standard and SMOTE-preprocessed imbal-
anced datasets followed by PART C45 and BFPART C45. The original C4.5
decision tree algorithm achieves the worst average results for these datasets. On
the other hand, when the original imbalanced datasets are used C4.5 achieves
the best GM, followed by the C4.5-based PART-like algorithms. There is more
variance when the results of the CHAID*-based variant algorithms are observed,
however, PART CHD gets the best average positions among CHAID*-based al-
gorithms.

UnPART C45 BFPART C45 PART C45 C4.5 UnPART CHD BFPART CHD PART CHD CHAID*

1.Standard 0.6047 0.5989 0.6024 0.5851 0.589 0.5871 0.5966 0.5906

(kappa) (1) (3) (2) (8) (6) (7) (4) (5)

2.Imbalanced 0.7294 0.7232 0.7105 0.7298 0.6797 0.681 0.6836 0.6793

(GM) (2) (3) (4) (1) (7) (6) (5) (8)

3.Imb-SMOTE 0.8132 0.8121 0.8129 0.8068 0.7948 0.785 0.7886 0.7851

(GM) (1) (3) (2) (4) (5) (8) (6) (7)

Friedman 298.78 314.46 359.24 342.70 444.06 441.56 427.88 447.31

Aligned rank (1) (2) (4) (3) (7) (6) (5) (8)

Table 4.10: Average kappa and GM values for the eight algorithms.

The Friedman Aligned ranks test finds statistically significant differences
among the compared algorithms (test statistic = 47.51, p-value = 4.4e−8). Fig-
ure 4.6 shows the average ranks and the significant differences found by the
Bergmann-Hommel post hoc procedure. UnPART C45 ranks first for all three
contexts. From the other algorithms, BFPART C45 is the one with the most
behavior. It places third for the three contexts but it ranks second for the global
comparison because it does not fall positions for any context like all other algo-
rithms do. According to the Friedman Aligned ranks test and the pairwise test
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UnPART C45 and BFPART C45 perform significantly better than all CHAID*-
based algorithms. No significant differences are found between C4.5-based vari-
ants, or between CHAID*-based variants.

UnPART_C45 [1]
298.78

BFPART_C45 [2]
314.46

PART_C45 [4]
359.24

C4.5 [3]
342.7

UnPART_CHD [7]
444.06

BFPART_CHD [6]
441.56

PART_CHD [5]
427.88

CHAID* [8]
447.31

Figure 4.6: Friedman Aligned ranks and pairwise statistical differences for the
eight algorithms using the kappa and GM measures.
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When AUC is used as the discriminating measure, for standard datasets
every CHAID*-based variant achieves a better average value than its C4.5-based
counterpart except for UnPART. These values are shown on Table 4.11. For
imbalanced datasets, C4.5-based algorithms perform better. The best average
values are achieved by PART CHD, PART C45 and BFPART C45, depending
on the classification context.

UnPART C45 BFPART C45 PART C45 C4.5 UnPART CHD BFPART CHD PART CHD CHAID*

1.Standard 0.8345 0.8301 0.8314 0.8134 0.8319 0.8337 0.8425 0.8306

(2) (7) (5) (8) (4) (3) (1) (6)

2.Imbalanced 0.8245 0.8268 0.8415 0.825 0.8094 0.8109 0.8205 0.8094

(4) (2) (1) (3) (8) (6) (5) (7)

3.Imb-SMOTE 0.8594 0.8602 0.857 0.8445 0.8398 0.8392 0.8439 0.825

(2) (1) (3) (4) (6) (7) (5) (8)

Friedman 329.09 333.26 325.98 434.47 431.91 424.38 350.40 446.51

Aligned rank (2) (3) (1) (7) (6) (5) (4) (8)

Table 4.11: Average AUC values for the eight algorithms.

As shown on Figure 4.7, the Friedman Aligned ranks test and the Bergmann-
Hommel post hoc procedure find statistically significant differences. PART C45
ranks best followed by UnPART C45. Both of these algorithms show significant
differences compared to most CHAID*-based algorithms and C4.5. PART-like
algorithms perform better than their base decision tree, with C4.5 and CHAID*
achieving a worse rank than any ruleset algorithm.

In summary, depending on the used performance measure, UnPART C45
or PART C45 achieve the best position. For any of the measures used, both
of these algorithm perform significantly better than most CHAID*-based algo-
rithms and C4.5. In fact, when kappa and GM are used, UnPART C45 performs
significantly better than all CHAID*-based algorithms.
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UnPART_C45 [2]
329.09

BFPART_C45 [3]
333.26

PART_C45 [1]
325.98

C4.5 [7]
434.47

UnPART_CHD [6]
431.91

BFPART_CHD [5]
424.38

PART_CHD [4]
350.4

CHAID* [8]
446.51

Figure 4.7: Friedman Aligned ranks and pairwise statistical differences for the
eight algorithms using the AUC measure.
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4.6.2.2 Results for structural complexity metrics

For the Number of Rules metric, in Table 4.12 it can be observed that
CHAID*-based algorithms create rulesets with less rules than their C4.5-based
equivalent. UnPART CHD, BFPART CHD and PART CHD always achieve the
lowest number of rules, whereas C4.5 creates the most, regardless of the clas-
sification context. From a global point of view, UnPART algorithms achieve
the lowest rank, followed by BFPART and PART algorithms, and finally, the
decision tree algorithms, CHAID* and C4.5, ranking worst.

The results of the analysis for statistical significance, depicted in Figure
4.8, show that UnPART CHD achieves the least complex rulesets. The algo-
rithms are grouped in four groups, where each group member does not show
significant differences to other members of the same group. Closely following
UnPART CHD, BFPART CHD and PART CHD can be found without showing
statistically significant differences with UnPART CHD. The next group consists
of BFPART C45 and PART C45, followed by another group made of PART C45
and CHAID*. Finally, C4.5 stands on its own group, creating significantly more
leaves than any other algorithm in the comparison.

UnPART C45 BFPART C45 PART C45 C4.5 UnPART CHD BFPART CHD PART CHD CHAID*

1.Standard 13.25 13.14 26.55 36.44 6.75 7.06 8.00 14.63

(5) (4) (7) (8) (1) (2) (3) (6)

2.Imbalanced 5.27 5.39 6.22 11.27 3.44 3.54 3.82 6.16

(4) (5) (7) (8) (1) (2) (3) (6)

3.Imb-SMOTE 9.44 9.47 11.53 25.54 6.52 6.81 7.84 17.78

(4) (5) (6) (8) (1) (2) (3) (7)

Friedman 355.11 360.43 514.47 673.43 216.48 223.80 241.76 490.52

Aligned rank (4) (5) (7) (8) (1) (2) (3) (6)

Table 4.12: Average Number of Rules values for the eight algorithms.
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UnPART_C45 [4]
355.11

BFPART_C45 [5]
360.43

PART_C45 [7]
514.47

C4.5 [8]
673.43

UnPART_CHD [1]
216.48

BFPART_CHD [2]
223.8

PART_CHD [3]
241.76

CHAID* [6]
490.52

Figure 4.8: Friedman Aligned ranks and pairwise statistical differences for the
eight algorithms using the Number of Rules measure.

For the Length metric, UnPART CHD achieves the best average results for
standard and imbalanced datasets, with PART C45 achieving the best average
result for preprocessed imbalanced datasets, as seen on Table 4.13. As it happens
with the Number of Rules metric, decision tree algorithms achieve worse results
than the PART-like algorithms.

The results of the statistical tests can be seen on Figure 4.9. Globally speak-
ing, UnPART CHD also ranks first for this measure. For this metric, just like
the average results, ranks are also closer, only three algorithms generate signif-
icantly more longer rules than the rest: PART CHD, C4.5 and CHAID*.

In summary, for both measures UnPART CHD achieves the best average

UnPART C45 BFPART C45 PART C45 C4.5 UnPART CHD BFPART CHD PART CHD CHAID*

1.Standard 2.35 2.31 2.46 4.88 2.23 2.45 2.93 3.63

(3) (2) (5) (8) (1) (4) (6) (7)

2.Imbalanced 1.40 1.46 1.52 3.48 1.14 1.19 1.53 2.31

(3) (4) (5) (8) (1) (2) (6) (7)

3.Imb-SMOTE 2.40 2.42 2.17 5.24 2.39 2.58 3.02 4.27

(3) (4) (1) (8) (2) (5) (6) (7)

Friedman 275.52 280.47 300.34 691.09 234.40 282.61 412.02 599.55

Aligned rank (2) (3) (5) (8) (1) (4) (6) (7)

Table 4.13: Average Length values for the eight algorithms.
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UnPART_C45 [2]
275.52

BFPART_C45 [3]
280.47

PART_C45 [5]
300.34

C4.5 [8]
691.09

UnPART_CHD [1]
234.4

BFPART_CHD [4]
282.61

PART_CHD [6]
412.02

CHAID* [7]
599.55

Figure 4.9: Friedman Aligned ranks and pairwise statistical differences for the
eight algorithms using the Length measure.

results and ranks, closely followed by BFPART CHD. Depending on the metric
used, C4.5-based PART-like algorithms and PART CHD also achieve similar
results. However, independent of the performance metric used, decision tree
algorithms create significantly more complex classifiers than their PART-like
equivalents.
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4.6.2.3 Results for computational cost metric

The results in Table 4.14 show the average construction times measured in
milliseconds. As in Section 4.6.1, decision-tree algorithms are the fastest to
create classifiers, followed by PART, BFPART and finally UnPART. In fact,
this order is the most common, regardless of base decision tree or classifica-
tion context. The only exceptions are BFPART C45 and PART C45 switching
places when using standard datasets and PART CHD being slower than Un-
PART CHD and BFPART CHD when using imbalanced datasets. Just as ex-
plained in Section 4.6.1, this is understandable as PART-like algorithms have to
construct multiple decision trees. In the case of PART and BFPART, although
the constructed trees are partial, the creation of multiple trees requires greater
computational cost because each time a new partial tree is started, all of the
examples not covered by previously-built nodes are packed together again, and
node processing time is related to the number of examples in that node.

It is very noticeable that CHAID*-based algorithms require much more con-
struction time than C4.5-based algorithms. The fastest CHAID*-based algo-
rithm (CHAID* itself) being on average seven times slower than the slowest
C4.5-based algorithm. Also, for discrete-valued attributes, CHAID* uses a
heuristic algorithm to find the most significant grouping of values, whereas C4.5
simply creates one branch for each value, requiring no extra computational cost.

UnPART C45 BFPART C45 PART C45 C4.5 UnPART CHD BFPART CHD PART CHD CHAID*

1.Standard 253 229 237 75 1809 1767 1588 875

(4) (2) (3) (1) (8) (7) (6) (5)

2.Imbalanced 103 91 88 62 2294 2037 2641 1562

(4) (3) (2) (1) (7) (6) (8) (5)

3.Imb-SMOTE 2335 1873 1465 521 79596 76565 68174 17738

(4) (3) (2) (1) (8) (7) (6) (5)

Friedman 224.18 222.38 215.06 200.08 603.25 596.53 581.11 433.42

Aligned rank (4) (3) (2) (1) (8) (7) (6) (5)

Table 4.14: Average Time values (in milliseconds) for the eight algorithms.

According to the results of the statistical tests for significance, graphically
shown on Figure 4.10, C4.5-based algorithms do not show significant differences
among them when CHAID*-based algorithms are taken into account, with C4.5
ranking first. Next, CHAID* takes significantly longer than C4.5-based algo-
rithms but significantly less than CHAID*-based PART-like ruleset algorithms.

127



CHAPTER 4. CONTRIBUTIONS TO PART-LIKE RULESET
ALGORITHMS

UnPART_C45 [4]
224.18

BFPART_C45 [3]
222.38

PART_C45 [2]
215.06

C4.5 [1]
200.08

UnPART_CHD [8]
603.25

BFPART_CHD [7]
596.53

PART_CHD [6]
581.11

CHAID* [5]
433.42

Figure 4.10: Friedman Aligned ranks and pairwise statistical differences for the
eight algorithms using the Time measure.

4.6.2.4 Global analysis of results

Just like when comparing the C4.5-based algorithms, this last subsection
compares the eight algorithms from a global point of view by combining the
discriminating capacity, structural complexity and computational cost metrics.
Table 4.15 shows the rank position each algorithm achieved for all metrics, and
an average of rank positions.

Based on the average rank position UnPART C45 is the best performing
algorithm from a global point of view. UnPART C45 creates some of the best
classifiers without generating models that are too complex. Even though it is
the slowest of all C4.5-based algorithms it is faster than any CHAID*-based
algorithm.

For both algorithm bases (C4.5 and CHAID*), UnPART achieves the best
average rank position and the decision trees achieve the worst position. Even
though all C4.5-based PART like algorithms perform better than all CHAID*-
based algorithms, CHAID*-based PART-like algorithms still perform better
than C4.5.

Individually looking at the relationships between the base algorithm and the
type of performance metric, a trade-off between discriminating capacity and
complexity can be observed. C4.5-based algorithms create models with greater
discriminating capacity but also greater complexity, whereas CHAID*-based
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algorithms are worse classifying new examples but generate simpler models.

C4.5-based CHAID*-based

UnPART BFPART PART C4.5 UnPART BFPART PART CHAID*

kappa/GM 1 2 4 3 7 6 5 8

AUC 2 3 1 7 6 5 4 8

Number of Rules 4 5 7 8 1 2 3 6

Length 2 3 5 8 1 4 6 7

Time 4 3 2 1 8 7 6 5

Average 2.6 3.2 3.8 5.4 4.6 4.8 4.8 6.8

(1) (2) (3) (7) (4) (5.5) (5.5) (8)

Table 4.15: Combining the results for all metrics for C4.5-based and CHAID*-
based algorithms.

4.6.3 PART-like algorithms vs GBML and classical algo-
rithms

This subsection compares the results of PART-like and decision tree algo-
rithms from Section 4.6.2 to results published in the reference work. In that
work, 16 genetics-based rule induction algorithms were classified into three cat-
egories and five subcategories, and a hierarchical comparison was performed.
The datasets were separated in the three context described at the beginning of
this chapter, and the algorithms were compared for each classification context,
independent of the other two. For each dataset group, first an intra-subcategory
comparison was made, and the winner of each subcategory and other six classical
non-evolutionary algorithms were compared.

From each evolutionary subcategory, any algorithm ranking first for at least
one of the intra-subcategory comparisons is used. This results in a direct com-
parison of 21 algorithms.

In Section 4.6.1 and Section 4.6.2 structural complexity and computational
cost metrics are used in conjunction with discriminating capacity metrics to
evaluate the algorithms. However, in this section, results are restricted to the
metrics used in the referenced work: kappa and accuracy for standard datasets,
and GM for imbalanced datasets. For standard datasets kappa is select because
the majority of standard datasets present class-imbalance, and kappa is a better
suited measure in this case.

Like in previous comparisons, the Friedman Aligned ranks test is used to
analyze the differences between algorithms for statistical significance. However,
in this case it is not possible to show all pairwise significant differences (or lack
of) because of the number of algorithms. So in this case, the used pairwise test
is the 1×n Holm procedure. Results are shown on Table 4.16. For the standard
classification context, the Friedman Aligned ranks test finds significant differ-
ences (test statistic = 237.91, p-value = 1e−10). In this case, due to the size
of the algorithm set compared, the statistical analysis for pairwise differences
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switches from a n×n test to a 1×n test, comparing the best ranking algorithm
(one of this chapter’s proposals) to the rest of the algorithms. UnPART C45
ranks first and the post hoc pairwise test finds significant differences between it
and SIA, CART, OCEC, CN2, C4.5rules and CORE. BFPART C45, PART C45
and PART CHD rank the following 3 positions. For the imbalanced classifica-
tion context, RIPPER ranks first according to the Friedman Aligned ranks test
and the pairwise test finds significant differences with most of the algorithms.
However, with the exception of PART C45, every other C4.5-based algorithm
does not perform significantly worse than RIPPER. For the imbalanced context
preprocessed with SMOTE, XCS ranks first showing significant differences with
about half of the algorithms. It should be noted that in this case RIPPER
performs significantly worse than XCS for this context. From a global point of
view, taking all three contexts into account, UnPART C45 ranks first, followed
by BFPART C45. Significant differences are found with UCS, CART, OCEC,
CORE, AQ, CN2.

UnPART C45, BFPART C45, C4.5 and Oblique-DT (ranked in this order)
show the most robust behavior. These algorithms rank either in top positions
in the three contexts, or their differences with the best ranking-algorithm are
not found to be significant. RIPPER, best ranking algorithm for the second
context, performs significantly worse than XCS in the third context. Also,
XCS, best ranking algorithm of the third context performs significantly worse
than RIPPER in the second context. UnPART C45 on the other hand, as
mentioned, ranks first for the standard classification context and it does not
perform significantly worse than RIPPER and XCS in the other two contexts.

In summary, UnPART C45 ranks first for the first context and from a global
point of view, in both cases with BFPART C45 following right after. Among
all C4.5-based PART-like algorithms PART C45 is the only to perform worse
than C4.5. UnPART CHD ranks above BFPART CHD and its base decision
tree, CHAID*. This ordering is similar to the one achieved in Section 4.6.2 only
comparing PART-like algorithms and their base decision trees. However, this
comparison allows seeing the competitive performance these algorithms have
compared to a broader range of ruleset and tree induction algorithms. CHAID*-
based PART-like algorithms sacrifice part of their discriminating capacity for
significantly simpler models, which is not measured in this section. However,
from a global point of view, none of them perform worse than UnPART C45,
the best ranking algorithm.
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CHAPTER 4. CONTRIBUTIONS TO PART-LIKE RULESET
ALGORITHMS

4.7 Summary

PART is one of the most widely known ruleset induction algorithms. Modi-
fying some aspects of the rule induction process could improve the performance
of the algorithm. However, since its inception not many variations have been
proposed. This chapter proposes multiple variants of PART-like algorithms.

The first proposed variant differs from the original PART algorithm in four
different aspects. First, it uses the Best-First global search algorithm to look for
the next node to be developed. Hence the name, Best-First PART or BFPART.
This variant does not process class-pure nodes until later than the original
PART. Thus, the partial trees are developed further in BFPART. These partial
trees are then pruned. Finally, any leaf node, processed or not, is considered a
candidate to extract the rule.

Another variant uses the same strategy, sequentially creating decision trees
and extracting a rule from each, but using fully developed decision trees instead
of partial trees. This variant is named UnPART as the trees are not really
partial.

Finally, CHAID*-based variants are proposed for PART, BFPART, and Un-
PART, bringing the total of proposed new algorithms to five.

Then, experiments have been carried out in three stages.
The first stage compares the three C4.5-based algorithms (PART C45, BF-

PART C45 and UnPART C45) and C4.5 over the 96 datasets from the point
of view of discriminating capacity (using kappa, GM and AUC), the structural
complexity of the generated classifiers (Number of Rules and Length) and the
computational cost to build the classifiers.

Results show that UnPART C45 achieves the best discriminating capacity
if kappa and GM are used as measures, performing significantly better than
PART C45, and second best discriminating capacity if AUC is used as the met-
ric. For structural complexity, UnPART C45 creates the simplest models. In
fact, significantly simpler models than C4.5 (for both metrics) and PART C45
(for one of the metrics). For computational cost C4.5 is significantly faster
than any other algorithm but UnPART C4.5 is not significantly slower than
PART C45 or UnPART C45.

In the second stage, the results of the first stage are compared to those
achieved by the CHAID*-based variants of the same algorithms (CHAID*,
PART CHD, BFPART CHD and UnPART CHD).

According to the results of the second stage, UnPART C45 and PART C45
still create the classifiers with the best discriminating capacity. Significantly
better than any CHAID*-based algorithm. For structural complexity, how-
ever, UnPART CHD creates the simplest models for both complexity measures.
UnPART CHD rulesets contain significantly less rules than any C4.5-based al-
gorithm. For execution time, any C4.5-based algorithm is significantly faster
than any CHAID*-based algorithm.

The third stage, compares the results of the second stage to the results pub-
lished by the reference work from the point of view of discriminating capacity.
Thus, this stage compares 16 genetics-based, 7 classical (including CHAID*),
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and 6 PART-like algorithms. All of them with explaining capacity.
The results of the third stage show that among the compared algorithms,

UnPART C45 ranks first, performing significantly better than six other algo-
rithms. UnPART C45 and BFART C45 (ranking second) are two of the most
robust algorithms. They are two of the only four (out of 21) algorithms to
not perform significantly worse than the best ranking algorithm for any of the
three contexts, and they hold the first two positions for the standard classifi-
cation context. Both UnPART C45 and BFPART C45 rank better than their
base decision tree algorithm, C4.5. All CHAID*-based PART-like algorithms
rank better than CHAID* and none of them show significantly worse than Un-
PART C45 from a global point of view. This, combined with their models
being significantly simpler, with UnPART CHD’s models being simplest, make
CHAID*-based PART-like algorithms a competitive alternative for instances
where model complexity might be critical.
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Chapter 5

Combining the results of
consolidated and PART-like
algorithms

In the previous chapters, Chapter 3 and Chapter 4, results are shown for in-
dependent experiments. In Chapter 3 the consolidation methodology is applied
to decision tree algorithms and both the base decision tree algorithms and con-
solidated decision tree algorithms are compared against a wide set of decision
tree and ruleset induction algorithms from the reference work. In Chapter 4
improvements are proposed to the PART ruleset induction algorithms by mod-
ifying the way the algorithms make certain key decisions. Eight variants of the
PART algorithm are compared among themselves.

This chapter combines the results of Chapter 3 and Chapter 4 by comparing
PART-like algorithms, base decision trees and consolidated decision tree algo-
rithms to the genetics-based and classical algorithms from the reference work.
Both Chapter 3 and Chapter 4 use the same datasets, same train and test splits
for cross validation, and compare to the results published by the same reference
work.

Chapter 3 compares different pruning strategies. For the results presented
in this chapter, the best performing strategy has been chosen. Since C4.4 and
CHAIC, and their consolidated versions, observed in Chapter 3, are considered
pruning strategies, and are not the best performing for their respective algo-
rithms, are not include in this chapter.

The results of this experiment can be found on Table 5.1. Just like in Chap-
ter 3 this comparison can only be done from the point of view of discriminating
capacity as model complexity and computational cost data is not available for
the algorithms used in the reference work. The results are shown first con-
text by context and them from a global point of view taking all contexts into
account. For each comparison three columns are displayed. The first column
shows the names of the algorithms, ordered by their Friedman Aligned rank,
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PART-LIKE ALGORITHMS

from lower (best) to larger. The middle column shows the Friedman Aligned
rank of each algorithm and the right-side column shows the p-value regarding
the significance of the differences between the best ranking algorithm and the
algorithm presented in that row.

For the standard classification context, the Friedman Aligned ranks tests
finds the differences between algorithms to be significant. UnPART C45 ranks
first and the post hoc test finds significant differences against nine algorithms
(RIPPER, DT-GA, SIA, CART, OCEC, CN2, C4.5rules, AQ, and CORE). Un-
PART C45 is followed by BFPART C45, CHAID* which are also contributions
of this thesis, with XCS ranking fourth. For the imbalanced classification con-
text CTC45 ranks first followed by RIPPER, CTCHAID and C4.5rules. The
Friedman aligned ranks test and pairwise post hoc test find that most algorithms
(15 out of 25) perform significantly worse than the best ranking algorithm,
CTC45. In fact, some of the best ranking algorithms for the standard classifica-
tion context (such as XCS) now perform significantly worse than CTC45. For
the final context, imbalanced datasets preprocessed with SMOTE, XCS ranks
best, showing statistically significant differences against 10 algorithms. XCS is
followed by GAssist, CTC45 and CTCHAID.

From a global point of view, the Friedman Aligned ranks test finds signifi-
cant differences (test statistic = 496.92, p-value=1.78e−10), assigning the best
rank to CTC45, whereas the post hoc tests finds differences between CTC45 and
more than half of the algorithms (13 out of 25) including all CHAID*-based al-
gorithms except CTCHAID, and most classical rule induction algorithms. Four
of the top five positions are held by algorithms proposed in this thesis (CTC45,
CTCHAID, UnPART C45 and BFPART C45). This shows the robust behavior
of these algorithms as they rank in the top positions for at least two of the three
contexts and when they are not on top, they do not perform significantly worse
than the best ranking algorithm. GAssist is the fourth ranking algorithm from a
global point of view but for the imbalanced classification context it performs sig-
nificantly worse than CTC45 (p-value=0.004). A similar thing happens to XCS,
it performs well for the standard classification context and ranks best for the
imbalanced datasets preprocessed with SMOTE, but it performs significantly
worse than CTC45 for imbalanced datasets without preprocessing, leading it to
fall to the seventh position from a global point of view.

These results are consistent with the results seen on Chapter 3 and Chapter
4. Consolidated algorithms perform better than their base counterpart in most
contexts and globally, and CTC45 and CTCHAID rank best. As for PART-
like algorithms, their performance is different depending on the base algorithm,
for C4.5-based variants UnPART ranks best, followed by BFPART and finally
PART. For CHAID* it’s the almost the opposite with CHAID* ranking best
followed by PART, UnPART and BFPART. Chapter 4 showed that CHAID*-
based UnPART, BFPART and PART rank better if the complexity of the models
is taken into account because these variants sacrifice part of the discriminating
capacity in favor of generating significantly simpler models. However, model
complexity is not taken into account in this comparison.

In Summary, when combining the results of the contributions from Chapter
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3 and Chapter 4 and comparing them to a wide set of algorithms from the refer-
ence work, the performed test show that contributions from this thesis perform
best, with the top two positions of the ranking belonging to the consolidations
of C4.5 and CHAID* when compared globally taking all contexts into account,
closely followed by variations of the PART algorithm also proposed in this thesis.
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Chapter 6

Conclusions and Further
Work

This chapter describes the conclusions extracted from the work presented in
this thesis, and outlines potential further work based on said conclusions.

6.1 Conclusions

In some applications of classification, knowing the reasons why a classifier
assigns an unseen example with one class or another is almost as important as
the accuracy of the classification itself. This is specially true in fields where
classification works as a decision support system and a human operator makes
a final decision based on the outcome of the classifier, such as insurance fraud
detection and medical diagnosis.

Some classification algorithms create models that are easily understandable
by humans. Examples of such classifiers are decision trees and rulesets. These
models are comprehensible because they classify unseen examples by applying
simple decisions based on the values of the example’s features. Other supervised
learning algorithms such as Artificial Neural Networks and Support Vector Ma-
chines create complex models that do not offer a simple explanations of how
classifications are made. These models work like black boxes; the output for a
specific input is known but not how that output has been obtained.

This thesis aims to contribute to the field of comprehensible supervised learn-
ing algorithms. The contributions are grouped into the two aforementioned al-
gorithm types: contributions to the consolidation of decision tree algorithms and
contributions to PART-like ruleset induction algorithms. All of the experiments
in the thesis follow a similar methodology, using the same 96 datasets and the
same 5-fold cross validation partitions. The datasets are divided into three con-
texts, standard mostly multi-class dataset classification, imbalanced two-class
classification and imbalanced two-class classification preprocessed with SMOTE
(Synthetic Minority Over-sampling Technique). This methodology was origi-
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nally used by the reference work for this thesis [64], that originally proposed a
taxonomy for genetics-based algorithms for rule and tree induction and com-
pared the performance of these algorithms against other classical algorithms for
rule and tree induction.

6.1.1 Conclusions for the consolidation of decision tree al-
gorithms

The most common way found in the literature of improving the results of
decision tree algorithms is to create ensemble classifiers. These ensemble clas-
sifiers combine the outcome of multiple individual (usually dozens) classifiers
each trained with a different sample, usually created by resampling the original
training sample. In consequence, ensemble classifiers are not considered compre-
hensible. The ALDAPA research group developed a methodology that applies
the ensemble process during the decision tree building process. This method-
ology is called consolidation and also uses multiple samples, but applies the
ensemble’s voting process on each node of the tree, by using the majority vote
obtained by ’consulting’ each of the samples. So, even if this methodology uses
multiple samples, the outcome is a single decision tree, a consolidated decision
tree. Recently the term ’Inner Ensembles’ has been coined to refer to methodolo-
gies that work this way. The consolidation methodology was originally applied
to C4.5 and the resulting decision tree algorithm was named CTC (Consoli-
dated Tree Construction), although in this thesis it is referred to as CTC45
to distinguish it from other consolidated algorithms. CTC45 creates classifiers
with a better discriminating capacity and more stability than C4.5 does. The
conclusions of this thesis regarding the consolidation of decision tree algorithms
can be organized in three groups: conclusions about the contributions to the
creation of samples for consolidated decision trees, about the contributions to
extending the number of consolidated algorithms, and about the contributions
to the effect of pruning on decision trees and their consolidated version.

6.1.1.1 Conclusions about the Contributions to the Creation of Sam-
ples for Consolidated Decision Trees

Consolidation originally used samples that kept the dataset’s original class
distribution (stratified samples), and needed two parameters, the subsample size
relative to the full sample size, and the number of samples (N S ). However, re-
cent research suggests that CTC45 benefits from changing the class distribution.
Specifically, creating subsamples with a balanced class distribution. However,
this required a new way to create the subsamples, as the original resampling
strategy did not take into account a particular issue of changing the class dis-
tribution: the fact that each sample does not represent all classes equally. The
first contribution of this thesis to the consolidation methodology is the coverage-
based resampling. This resampling technique takes into account the notion of
coverage: the probability of all examples of the training sample being repre-
sented by the set of randomly created subsamples. Using a coverage value, a
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distinct N S value is computed for each dataset, removing the need to use a
specific value for that parameter. The first experiment presented in the thesis
analyzes the discriminating capacity of the CTC45 algorithm using two different
balanced subsample sizes and several coverage values between 10% and 99.9%.
The results of the tests for statistical significance show that CTC45 works signif-
icantly better using the bigger subsample sizes. These subsamples are achieved
by keeping the full minority class and randomly undersampling every other class
until the sample is balanced. This is the biggest possible balanced subsample
without oversampling the minority class and is named maxSize in the exper-
iments. Regarding the coverage value, most of the used performance metrics
(kappa, accuracy, the geometrical mean, and F-Value) show an improvement
when the coverage value is increased. In conclusion, using maxSize samples
with a coverage value of 99% is considered the optimal configuration for CTC.
This configuration offers a trade-off between using a fixed number of samples
and the performance of the algorithm, and is the standard configuration used
throughout the rest of this thesis. Using these parameters, comparing the per-
formance of CTC45 with the original imbalanced datasets and the preprocessed
datasets, there are statistically significant differences in favor of using SMOTE
prior to CTC. When comparing results globally, taking all contexts into account,
CTC45 has the most robust performance compared to the other 20 algorithms.
It is able to achieve top ranks in all three contexts, not being hindered by the
differences in the real-world problems for each context.

6.1.1.2 Conclusions about the Contributions to extending the Num-
ber of Consolidated Algorithms

Before the work on this thesis begun, the only consolidated algorithm was
C4.5. Some contributions to consolidation focus on extending the consolidation
methodology to other decision tree algorithms to evaluate if consolidation can
improve the results of algorithms other than C4.5. For this, one existing deci-
sion tree algorithm, C4.4, and two novel algorithms proposed in this thesis are
selected. These are CHAID* (Chi-squared Automatic Interaction Detection)
and CHAIC. CHAID* is a variation of the CHAID algorithm that, among other
things, can handle continuous variables and prunes the decision trees. CHAIC is
created by applying the same modifications made to C4.4, to CHAID*. This re-
sults in three new consolidated algorithms CTCHAID, CTC44 and CTCHAIC.
For clarity, the original CTC algorithm (based on C4.5) is referred to as CTC45
after this point. CHAID* and CHAIC stratify the values of discrete variables to
combine several values into a single branch. The consolidation of these two algo-
rithms required figuring out a way of consolidating the individual stratification
proposals computed from each sample. This handicap was solved by creating
an average contingency table and providing this average table to the algorithm
developed by Kass to group the values. The second experiment compares the
four base decision tree algorithms and their consolidated versions with the set
of 16 genetics-based and five classical algorithms used in the reference work.

Depending on the classification context, the performance of consolidated
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algorithms changes. For two out of three context the four consolidated algo-
rithms perform competitively. In one of such contexts, four of the first five
ranking positions belong to consolidated algorithms. In another context, al-
most all consolidated algorithms rank in the top half, above their respective
base algorithm. In the third context, base decision trees rank better than their
consolidated counterparts but without significant differences if kappa is used
as a performance measure context. When comparing all algorithms globally,
taking the results of the 96 datasets into account, CTC45 ranks first closely fol-
lowed by the rest of consolidated algorithms showing no statistically significant
differences. All base decision tree algorithms show a more robust behavior than
their consolidated counterpart.

6.1.1.3 Conclusions about the Contributions to the Effect of Pruning
on Decision Trees and their Consolidated Version

It is not uncommon for the pruning process to fully prune decision trees into
a single root node in presence of class imbalance, as some branches of decision
trees are very specialized to identify a very small subset of instances. These
fully pruned trees do not offer any kind of explanation because all instances are
simply classified as majority class.

In this thesis, a new pruning strategy is proposed. This new pruning strat-
egy is called Not Root Tree strategy (NRT), and consists on using the unpruned
decision tree if pruning results in a root node tree. The base and consolidated
decision trees on the first and second experiments of the thesis follow this strat-
egy. The third experiment compares the performance of decision trees by us-
ing different pruning strategies: always pruning, never pruning, NRT, and the
same strategy followed by Probability Estimation Trees (PET) such as C4.4 and
CHAIC. This comparison is performed independently for C4.5 and CTC45 on
one side, and CHAID* and CTCHAID on another.

Results for these experiments show the NRT strategy to be the best strategy
in most cases. The results of NRT are usually equal or better than using pruned
trees, except for standard classification using kappa as measure. For imbalanced
classification with no preprocessing, unpruned and PET trees rank better, at the
cost of a higher complexity, as unpruned trees are, by definition, equally complex
or more complex than pruned trees. On a global comparison NRT places better
for C4.5-based trees while unpruned trees rank better for CHAID*-based trees
because unpruned CTCHAID trees distance themselves much more from the
nearest competitor on the SMOTE-less two class classification context.

6.1.2 Conclusions for PART-like ruleset algorithms

One of the most widely-used ruleset induction algorithms is PART. This
algorithm combines two ruleset induction paradigms: extracting rules from trees
and separate-and-conquer strategies. It creates a partial decision tree (hence
the name), extracts a rule from the decisions between the root node and the
most populous treated leaf, and repeats the process until the ruleset covers the
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entire training sample. This thesis proposes multiple algorithms derived from
the PART algorithm. These algorithms are referred to PART-like algorithms.
The conclusions of this thesis regarding the PART-like ruleset algorithms can
be organized in three groups: conclusions about the contributions to modifying
the way partial trees are built and used, about the contributions to using fully
developed trees instead of partial trees, and about the contributions to using
new base algorithms to create PART-like algorithms.

6.1.2.1 Conclusions about the Contributions to Modifying the Way
Partial Trees are Built

Four key aspects of PART’s development process were identified and an
alternative is proposed to how the algorithm originally works on those aspects.
PART builds partial decision trees following a Hill Climbing (HC) strategy to
determine the order in which nodes are treated and expanded. The modifications
proposed in this thesis consist of the following: switching from Hill Climbing to
a Best-First (BF) search strategy; considering all leaf-like nodes (AL), and not
just treated leaves (TL) to extract the rule in each iteration; not prioritizing the
analysis of pure nodes (DP) instead of treating them first (PP); and pruning the
partial trees before extracting the rule (PR) instead of keeping them unpruned
(NP). This leads to 16 different variants, one of which is the original PART
algorithm. Following the study detailed in Appendix H a variant is selected.
This variant is the complete opposite to the original PART algorithm in terms
of the four identified aspects. It uses a Best-First to select the next node of the
partial tree to be developed, considers all leaves as candidates to extract a rule,
prunes partial trees, and does not prioritize pure nodes. This variant is named
BFPART, and according to the aforementioned study, it creates classifiers with
better discriminating capacity and lower structural complexity than PART.

6.1.2.2 Conclusions about the Contributions to using fully devel-
oped trees

Based on the notion of developing partial trees further like BFPART does,
a second proposal is presented. This proposal completely departs from the idea
of using partial trees to create rulesets. Hence the name, UnPART, as the trees
are not really partial. This proposal removes the need for three of the four
key criteria identified for PART as using fully developed trees removes the need
of determining the order in which noes are treated during the tree building
process, and all leaf-like nodes are actual true treated leaves once the tree is
fully built. The only remaining criterion is whether trees should be pruned
or not before extracting a rule. Not pruning a tree results in more complex
classifiers as each unpruned rule has at least the same number of decisions as
the pruned rule (potentially more), and unpruned rules cover less examples,
which in consequence, results in more rules being developed until the ruleset
covers the entire training sample. As a result, computational cost increases and
could incur in potential overfitting diminishing the discriminating capacity of
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the classifiers. In consequence, UnPART prunes trees before extracting a rule.
In this thesis, C4.5-based PART-like algorithms (PART C45, BFPART C45,

and UnPART C45) and C4.5 are compared using discriminating capacity (using
kappa and GM), structural complexity (using the number of rules and the aver-
age number of conditions per rule), and computational cost (using time) metrics
to evaluate the algorithms. UnPART C45 achieves the best discriminating ca-
pacity if kappa and GM are used, showing significant improvement compared
to PART C45, and second best (after PART C45) for AUC. UnPART C45 also
creates the simplest classifiers according to both metrics, creating models signif-
icantly simpler than C4.5, and also PART for one of the metrics. For computa-
tional cost, C4.5 is significantly faster than any other algorithm. However, C4.5
performs significantly worse for almost every other metric. By combining the
results for all metrics, UnPART C45 is determined to be the best performing
algorithm among the compared options.

6.1.2.3 Conclusions about the Contributions to using other decision
tree algorithms as base

This thesis also proposes replacing C4.5 as the base algorithm for PART,
BFPART and UnPART. The chosen algorithm to replace C4.5 is CHAID*,
due to its similarity to the C4.5 algorithm, which eases the integration into
PART’s construction process. In order to achieve this, a suitable replacement
for entropy had to be found to prioritize treating one node over another when
constructing partial trees for PART and BFPART. As entropy is a measure
closely related to how C4.5 decides the best split for a node, a similar measure
was chosen for CHAID*, the p-value of the best possible split for that node.
In cases where no valid split can be found the p-value of the parent node’s
best split is used. UnPART algorithms do not need any p-value as the full
tree is developed. In order to distinguish all variants, C4.5-based algorithms
receive the C45 suffix (PART C45, BFPART C45, and UnPART C45) whereas
CHAID*-based algorithms get the CHD suffix (PART CHD, BFPART CHD,
and UnPART CHD). Thus, it can be said that this dissertation proposes five
PART-like algorithms.

Following the experiment of the previous subsection, CHAID*-based variants
are added to the comparison. UnPART C45 and PART C45 still achieve the
best results for discriminating capacity, significantly better than any CHAID*-
based variants. For structural complexity, however, UnPART CHD achieves
the best rank for both metrics, creating significantly simpler classifiers than
any C4.5-based algorithm. For execution time, all C4.5-based algorithms are
significantly faster than any CHAID*-based algorithm.

One final experiment further explored the contributions of the previous sub-
section and this one. The discriminating capacity of the eight PART-like algo-
rithms is compared to the 16 genetics-based and five classical rule and decision
tree induction algorithms. In this case, UnPART C45 performs best among the
compared algorithms, showing statistically significant differences with six. Both
UnPART C45 and BFPART C45 (ranking second) perform better than their
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base algorithm (C4.5), while all CHAID*-based PART-like algorithms perform
better than CHAID*.

Summarizing the three groups of conclusions, UnPART C45 is an algorithm
that should be considered for applications where the understability of the classi-
fiers is crucial, as it does not only create classifiers with the best discriminating
capacity compared to a substantial number of ruleset and tree induction al-
gorithms, but it also creates models that are significantly simpler than those
built by PART and C4.5. If model simplicity is of value for the problem, Un-
PART CHD can also be considered as its classifiers are significantly simpler, at
the cost of a lower discriminating capacity and greater execution time.

6.1.3 Conclusions for the consolidation of decision trees
and PART-like rulesets

When comparing the 16 genetics-based and five classical algorithms from the
reference work to the PART-like ruleset algorithms, and consolidated decision
trees with their optimal configuration, results show that the three best ranking
positions are occupied by CTC45, CTCHAID, and UnPART C45, above the
rest of the compared algorithms. CTC45 shows statistically significantly better
discriminating capacity than 13 of the algorithms, including all CHAID*-based
algorithms.

6.2 Further Work

There are several lines of work that remain open in relation to the outcomes
presented in this dissertation. This section is further divided into two subsec-
tions. Section 6.2.1 outlines further work on consolidation while Section 6.2.2
does the same for PART-like algorithms.

6.2.1 Further Work in the field of Consolidation

Further work in the field of consolidation could focus on the different ex-
tracted conclusions. Four research avenues have been identified:

• Using samples of different class distributions.

• Using other resampling techniques.

• Applying consolidation to other types of algorithms.

• Exploring new strategies of when to apply pruning to decision trees.

First, the use of coverage-based resampling could be extended to other types
of subsamples: bootstrap samples, samples with other shifted class distribu-
tions... One interesting approach would be to test different degrees of class
imbalance in order to reach an improvement of the GM metric by trying to in-
crease the true-negative rate without sacrificing much of the initial true-positive
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rate. This might be achievable by creating samples that are somewhere between
stratified and fully balanced samples. Some sort of a controlled imbalance.

Second, research could also focus on the type of resampling techniques used.
The methodology used in this thesis uses SMOTE for oversampling the minority
class. When samples need to be reduced in size to create balanced samples, the
majority class is randomly undersampled. These are two of the most widely used
oversampling and undersampling techniques in the literature. However, some
other techniques such as SMOTE+ENN (Edited Nearest Neighbors) or genetics-
based approaches such as EUSCHC (Evolutionary UnderSampling CHC [51])
could be integrated into the resampling process for consolidated trees.

Third, now that research shows consolidation can be successfully applied to
algorithms other than C4.5, it would be interesting to make an even bigger jump
and trying to apply the consolidation methodology to other types of classifica-
tion algorithms. The ideal subset of algorithms to start from would be ruleset
algorithms. One of the classical rule induction algorithms used by the reference
work and this dissertation, RIPPER, shows great performance in the context of
class imbalance. A better performance that C4.5’s. As the best performing al-
gorithms of that context are precisely consolidated algorithms, the consolidation
process could give RIPPER a chance to top decision tree-based consolidated al-
gorithms. Another way to use consolidation on rule induction algorithms would
use the other type of algorithms discussed in this thesis, PART-like algorithms.
Instead of using regular decision trees to build PART, BFPART and UnPART
trees, consolidated trees could be used to extract rules. One thing to keep in
mind with this approach is that both consolidation, and PART-like algorithms
multiply the computational cost to build the classifiers.

Finally, this dissertation concludes that NRT is the optimal pruning strategy
for base and consolidated decision trees solely based on the results for discrim-
inating capacity. Using unpruned trees has a clear impact on the complexity
of the models. It would be interesting to analyze the discriminating capacity /
structural complexity trade-off of using different pruning strategies.

An additional avenue, not explored by the research presented in this the-
sis, are partially consolidating algorithms. The current consolidation technique
applies to the full tree-building phase. However, this would not be necessary.
Decision trees could be developed using the consolidation technique to a certain
point. This would result in smaller consolidated trees with leaves potentially
able to expand further. Each of these leaves would contain multiple small sam-
ples. One for each of the samples used in the consolidation process. These
multiple samples could be used to grow classification models on each leaf. The
simplest approach would be to generate a Bagging model on each leaf so that
the final model would be part consolidated decision tree, and multiple Bagging
classifiers. In fact, the classification model could be unrelated to decision trees,
using the samples on each leaf to create an independent classifier, unrelated to
the algorithm used to create the partially consolidated tree, in a similar way
to how NBTree [104] works by developing a decision tree and then placing a
Naive-Bayes classifier on each leaf.
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6.2.2 Further Work in the field of PART-like algorithms

Regarding future work in the field of PART-like algorithms, three research
avenues have been identified:

• Resampling the training data between rules in a ruleset.

• Exploring ways to determine the stop point of developing partial decision
trees sooner.

• Creating ensembles of UnPART rulesets.

First, an interesting proposal would be to use resampling techniques between
the iterations of these algorithms. Right now, all of these algorithms just use
the instances not covered by the already existing ruleset to create a new tree.
However, it could be possible to improve the discriminating capacity of these
algorithms by applying resampling techniques to the leftover examples between
iterations of the algorithms, like ensemble-based algorithms such as SMOTE-
Bagging or RUSBoost do.

Second, results of this thesis clearly indicate that UnPART’s biggest weak-
ness is its execution time. This is expected as for the datasets used in this thesis
the average number of rules per UnPART ruleset (thus, the number of decision
trees to be built) is nine. It could be hypothesized that using the node size
as indicator of the next node to be developed, and stopping the process when
the biggest node is decided not to be split should yield the same rule, as this
biggest node would be used for the rule. Preliminary results show that this
variant could potentially be faster than C4.5. Future work could test whether
this replacement for UnPART could really maintain the same discriminating
capacity, while being faster than C4.5. Also, consolidated trees have shown to
stand out when used against imbalanced datasets. As the imbalanced context
is where UnPART seems to perform the worst, using consolidated trees as base
trees for UnPART could be a viable choice to improve the performance in this
context.

Finally, for applications where time and structural complexity are not criti-
cal, UnPART rulesets could be used as base for ensemble algorithms (Bagging,
Boosting...), as it is very common to use C4.5 as base algorithms for ensembles,
and these results show that UnPART has a greater discriminating capacity than
C4.5. It is possible that this increase in discriminating capacity might translate
to ensemble classifiers as well.

6.3 Related publications

The majority of the work presented in this dissertation has already been
published. The following is a list of current publications derived from the thesis.

• International journals:
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– Igor Ibarguren, Jesús M. Pérez, Javier Muguerza, Ibai Gurrutxaga,
and Olatz Arbelaitz. Coverage-based resampling: Building robust
consolidated decision trees. Knowledge-Based Systems, 79, 51-67,
2015.

– Igor Ibarguren, Jesús M. Pérez, Javier Muguerza, and Ibai Gurrutx-
aga. CT< DT >: Extending the application of the consolidation
methodology even further. Expert Systems, 34 (5), 2017.

– Igor Ibarguren, Aritz Lasarguren, Jesús M. Pérez, Javier Muguerza,
Ibai Gurrutxaga, and Olatz Arbelaitz. BFPART: Best-First PART.
Information Sciences, 367, 927-952, 2017.

– Igor Ibarguren, Jesús M. Pérez, Javier Muguerza, Ibai Gurrutxaga,
and Olatz Arbelaitz. UnPART: PART without the ’partial’ condition
of it, Information Sciences, 465, 505-522, 2018.

• National journals:

– Igor Ibarguren, Jesús M. Pérez, and Javier Muguerza. J48Consolidated
WEKA paketea, adibide ezohikoen patroiak identifikatzeko tresna
(in Basque). EKAIA Euskal Herriko Unibertsitateko Zientzia eta
Teknologia Aldizkaria, 29, 155-178, 2016.

• International conferences:

– Igor Ibarguren, Jesús M. Pérez, and Javier Muguerza. CTCHAID:
Extending the Application of the Consolidation Methodology. In
Progress in Artificial Intelligence: 17th Portuguese Conference on
Artificial Intelligence, EPIA 2015, 572-577, 2015.

– Igor Ibarguren, Jesús M. Pérez, Javier Muguerza, Daniel Rodriguez,
and Rachel Harrison. The Consolidated Tree Construction algorithm
in imbalanced defect prediction datasets. In 2017 IEEE Congress on
Evolutionary Computation (CEC), 2656-2660, 2017.

• National conferences:

– Igor Ibarguren, Jesús M. Pérez, Javier Muguerza, Ibai Gurrutxaga,
and Olatz Arbelaitz. Remuestreo basado en coverage: construyendo
árboles de decisión consolidados robustos (key work). In Actas de
la XVI Conferencia de la Asociación Española para la Inteligencia
Artificial (CAEPIA), 2015.

• Technical reports:

– Igor Ibarguren, Jesús M. Pérez, Javier Muguerza, Ibai Gurrutxaga,
and Olatz Arbelaitz. An update of the J48Consolidated WEKA’s
class: CTC algorithm enhanced with the notion of coverage. Tech-
nical Report EHU-KAT-IK-02-14, University of the Basque Country
(UPV/EHU), June 2014.
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and F. Herrera. KEEL data-mining software tool: Data set repository,
integration of algorithms and experimental analysis framework. Journal
of Multiple-Valued Logic and Soft Computing, 17(2-3):255–287, 2011.
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[40] J. Derrac, S. Garćıa, D. Molina, and F. Herrera. A practical tutorial on
the use of nonparametric statistical tests as a methodology for comparing
evolutionary and swarm intelligence algorithms. Swarm and Evolutionary
Computation, 1(1):3 – 18, 2011.

[41] B. Desmet and V. Hoste. Online suicide prevention through optimised
text classification. Information Sciences, 439-440:61 – 78, 2018.

[42] T. G. Dietterich. Machine-learning research: four current directions. AI
Magazine, 18:97–136, 1997.

[43] P. Domingos. Knowledge acquisition from examples via multiple models.
In In Proceedings of the Fourteenth International Conference on Machine
Learning (ICML’97), page 98–106. Morgan Kaufmann, 1997.

154



[44] P. Domingos. MetaCost: A general method for making classifiers cost-
sensitive. In In Proceedings of the Fifth International Conference on
Knowledge Discovery and Data Mining, pages 155–164. ACM Press, 1999.

[45] P. Domingos. A few useful things to know about machine learning. Com-
mun. ACM, 55(10):78–87, Oct. 2012.

[46] F. Doshi-Velez and B. Kim. Towards a rigorous science of interpretable
machine learning. arXiv preprint arXiv:1702.08608, 2017.
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rounding neighborhood-based smote for learning from imbalanced data
sets. Progress in Artificial Intelligence, 1(4):347–362, 2012.
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In M. K lopotek, S. Wierzchoń, and K. Trojanowski, editors, Intelligent
Information Processing and Web Mining, volume 25 of Advances in Soft
Computing, pages 79–88. Springer Berlin Heidelberg, 2004.
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Appendix A

Summary of Appendices

These appendices mostly include the full result tables for the experiments
carried out through the thesis. But before beginning with the experiment re-
sults:

• Appendix B details the dataset-by-dataset results of the 16 genetics-based
and 6 classical rule induction algorithms from the reference work described
in Section 2.10. These results are used as benchmark to test the perfor-
mance of the contributions presented throughout the thesis.

Part III, Contributions, looks at results from a macro level, either from a point
of view from classification contexts (30 - 33 datasets at the same time), or
from a global point of view (3 contexts, 96 datasets). The following appendices
give micro level detail of the dataset-by-dataset performance of the classifiers.
Appendices C through G extend the tables from the contributions to the con-
solidation of decision tree algorithms:

• Appendix C specifies the N S values for each dataset and coverage value
in Experiment 1 of Chapter 3.

• Appendix D displays dataset-by-dataset result tables for the 96 datasets,
2 subsample types and 11 coverage values for Experiment 1 of Chapter 3.

• Appendix E extends the analysis of the effect of subsample type and cov-
erage value on Imbalanced datasets.

• Appendix F extends the results from Experiment 2 of Chapter 3.

• Appendix G details the results for different pruning strategies on base and
consolidated decision trees. This was Experiment 3 of Chapter 3.

Appendices H and I extend the tables from the contributions to PART-like
ruleset algorithms:
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APPENDIX A. SUMMARY OF APPENDICES

• Appendix H details a study carried out during the thesis that was left out
of the main sections of the dissertation. This work was used to propose four
changes to the PART ruleset induction algorithm. This study analyzed 16
variants of the algorithm, and selected the best one, later used on Chapter
4. This work followed an experimental methodology different from the rest
of the thesis.

• Appendix I extends the results analyzed on Chapter 4.
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Appendix B

Results from the reference
work for genetics-based and
classical algorithms

This appendix contains the result tables from the reference work used in the
comparisons throughout the thesis, and described in Section 2.10.

In tables regarding genetics-based algorithms, columns in bold indicate that
algorithms is best for that particular subcategory and, thus, used on context-
by-context comparisons. Underlined column headers indicate that algorithm is
not the best on that subcategory for that particular context, but it is for one of
the other two contexts and, thus, used on global comparisons that combine the
results from the three contexts.

In tables regarding the classical algorithms, only the algorithms from the
referenced work have been included and not the algorithms proposed in this
thesis. In fact, the results published by the reference work for the C4.5 have
been omitted as this thesis uses another implementation of the C4.5 algorithm.
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APPENDIX B. RESULTS FROM THE REFERENCE WORK FOR
GENETICS-BASED AND CLASSICAL ALGORITHMS
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dataset CART AQ CN2 C4.5rules RIPPER
nursery .7764 .6853 .6903 .6903 .8386
abalone .0918 .059 .159 .159 .0935
ecoli .6367 .5349 .5816 .5816 .6559
lymphography .5611 .504 .6325 .6325 .5627
car .5534 .6689 .323 .323 .7591
zoo .8815 .8855 .8197 .8197 .8828
flare .6702 .5552 .5596 .5596 .5891
glass .5738 .4477 .436 .436 .5288
cleveland .1655 .1288 .0918 .0918 .2068
dermatology .6567 .8341 .8448 .8448 .8513
balance .3024 .216 .6069 .6069 .3178
penbased .5768 .5756 .6318 .6318 .8412
newthyroid .8807 .6981 .7877 .7877 .8769
hepatitis .3124 .3916 .2169 .2169 .3191
contraceptive .2517 .0105 .0652 .0652 .2723
vehicle .54 .4252 .4083 .4083 .6104
haberman .0387 .0018 .0051 .0051 .1432
wine .88 .6885 .7847 .7847 .8504
breast 0 .2166 .1417 .1417 .1716
german .2591 .1858 .1254 .1254 .251
iris .93 .722 .86 .86 .896
wisconsin .8509 .6903 .8984 .8984 .9122
tictactoe .4222 .8613 .1881 .1881 .9375
pima .4002 .0862 .1239 .1239 .3795
magic .448 .1092 .1524 .1524 .499
bupa .3465 .0184 .0538 .0538 .2839
heart .4459 .5577 .5097 .5097 .5017
australian .6947 .3876 .5884 .5884 .63
crx .6864 .5832 .5751 .5751 .6387
ring .6675 -.0076 .5907 .5907 .6286
Mean .5167 .424 .4484 .4484 .5643

Table B.2: Results for classical algorithms on standard datasets using the kappa
measure
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APPENDIX B. RESULTS FROM THE REFERENCE WORK FOR
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dataset CART AQ CN2 C4.5rules RIPPER
nursery .848 .7667 .7917 .8367 .8895
abalone .2129 .1517 .268 .2097 .1737
ecoli .7382 .6858 .7145 .777 .7437
lymphography .7761 .7208 .8108 .7265 .7634
car .8085 .8682 .7726 .8681 .8828
zoo .9105 .9145 .871 .931 .9111
flare .7448 .6593 .666 .7015 .6713
glass .687 .6059 .6079 .6276 .648
cleveland .4917 .5126 .5388 .5387 .4404
dermatology .7322 .8704 .8798 .9079 .8811
balance .6224 .5712 .7872 .8064 .5069
penbased .62 .6185 .6691 .872 .8571
newthyroid .9442 .8428 .907 .9023 .9433
hepatitis .825 .8725 .8625 .8125 .7975
contraceptive .5133 .4258 .4447 .5166 .521
vehicle .6536 .5672 .5579 .6447 .7076
haberman .6961 .2791 .7026 .696 .5071
wine .9211 .7947 .8595 .949 .9006
breast .7076 .7285 .7221 .7071 .6144
german .701 .7144 .725 .7116 .6666
iris .9533 .8147 .9067 .94 .9307
wisconsin .9327 .8333 .9547 .9503 .9596
tictactoe .7265 .94 .7056 .8601 .9716
pima .7187 .6703 .6732 .7284 .7005
magic .7476 .6751 .6866 .7843 .7689
bupa .6899 .4458 .5942 .6417 .6359
heart .7259 .7859 .7667 .7778 .7474
australian .8464 .713 .8014 .8481 .8133
crx .8439 .7889 .7949 .8539 .8177
ring .8338 .4922 .7959 .8492 .8141
Mean .7391 .6777 .728 .7659 .7396

Table B.4: Results for classical algorithms on standard datasets using the ac-
curacy measure
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APPENDIX B. RESULTS FROM THE REFERENCE WORK FOR
GENETICS-BASED AND CLASSICAL ALGORITHMS

M
ich

ig
a
n

a
p

p
ro

a
ch

IR
L

a
p

p
ro

a
ch

G
C

C
L

A
p

p
ro

ach
P

ittsb
u

rg
h

a
p

p
ro

a
ch

H
E

D
T

ap
p

roach
d

a
taset

X
C

S
U

C
S

S
IA

H
ID

E
R

C
O

R
E

O
C

E
C

C
O

G
IN

G
IL

P
itts-G

IR
L

A
D

M
E

L
G

A
ssist

O
IG

A
IL

G
A

D
T

-G
A

O
b

liq
u

e
-D

T
T

arget
a
b

a
lon

e1
9

0
0

0
0

0
.6

1
7
2

0
.6

8
96

0
.0

8
04

0
0

0
0

.0
7
5
3

0
yea

st6
0

.7
5
5
3

.5
1
4
7

0
0

.5
4
2
4

.18
2

.5
6
43

0
0

0
0

0
.566

.6
2
8

0
yea

st5
0

.7
8
1
4

.7
7
7
1

0
.0

9
4
3

.7
8
0
4

.2
6
5
6

.7
9
44

.2
8
01

0
.7

2
6
7

.4132
.1369

.8367
.8

0
8
2

0
yea

st4
0

.5
9
9
6

.2
6
2
1

.0
6
3

.0
6
3
1

.5
8
3
1

.0
8
9
1

.5
8
91

.1
1
21

0
.1

7
1
6

.1234
.1231

.3992
.5

5
5
6

0
yea

st2
v
s

8
.6

96
5

.5
6
5
7

.1
.6

95
8

.7
2
6
6

.7
1
4
5

.6
5
4
6

.7
1
23

.1
.2

5
5
5

.6
2
7
4

0
0

.1
.6

9
0
5

.7283
g
lass5

.3
3
9
7

.6
7
7
9

.3
28

7
.7

3
4
7

.8
8
3
4

.1
9
7
5

.7
2
01

0
0

.1
3
9
7

.6762
0

.4225
.9

3
6
5

0
a
b

a
lon

e9
v
s

18
.1

41
4

.4
1
3
6

.4
0
1
7

.1
85

5
.3

2
7
3

.4
8
6
5

.2
0
5
6

.5
3
5

.2
1
1
9

.4
4
67

.4
0
4
1

.2036
.0707

.4478
.5

4
1
1

0
g
lass4

.8
59

7
.3

6
1
2

.9
5
4
1

.4
15

5
.5

6
4
7

.6
9
7
2

.3
5
7
9

.6
6
51

.1
1
4

.0
7
6
3

.6
2
5
1

.2767
.4849

.3009
.6

2
7

0
ecoli4

.4
43

7
.6

8
7
3

.6
5
2
1

.6
9
5

.7
8
4

.7
6
0
6

.2
71

8
.7

3
38

.6
3
74

.0
7
5
6

.7
8
0
2

.7528
.58

.8233
.8

8
0
9

.677
g
lass2

.
.0

9
6
1

.1
9
3
4

0
.1

.6
5
9
9

0
.6

7
11

0
0

.
0

0
.5259

.3
2
0
5

0
vow

el0
.9

08
1

.9
6
6
8

1
.7

63
7

.7
2
6

.6
2
3
8

.3
96

7
.6

2
77

.6
0
33

.1
6
8
6

.9
3
6

.8452
.8171

.9683
.9

5
5
9

.7107
p

a
g
e-b

lo
ck

s0
.8

45
8

.8
5
0
4

.8
6
5
9

.8
92

7
.6

4
9
2

.7
5
1
4

.5
5
0
1

.7
4
73

.4
5
75

0
.8

0
8
7

.8162
.6249

.9218
.9

0
0
7

.5999
ecoli3

.3
19

1
.4

6
2
9

.6
1
6
9

.4
50

4
.4

8
7
9

.6
3
2
9

.56
7

.6
6
32

.4
2
14

.0
7
3

.6
7
1
1

.5084
.4023

.7268
.6

7
1
5

0
yea

st3
.1

71
8

.8
9
4
6

.8
1
7
1

.5
22

7
.7

0
1

.9
0
5
5

.5
40

6
.9

0
36

.8
3
67

0
.8

5
2
5

.805
.6365

.8238
.8

2
0
5

.5389
g
lass6

.9
4

.8
8
4
9

.9
0
6
3

.7
62

5
.7

3
7

.8
9
1
5

.8
48

7
.8

8
31

.9
1
98

.5
0
6
8

.8
4
7
4

.835
.833

.7942
.8

2
2
9

.8966
seg

m
en

t0
.9

89
8

.9
8
8
8

.9
9
4
4

.8
03

9
0

.9
3
3
7

.6
5
1
3

.9
3
31

0
0

.9
8

.9826
.9808

.9819
.9

8
4
1

.8054
ecoli2

.3
08

2
.5

0
8
1

.8
6
9

.5
93

7
.7

8
.5

3
4
9

.3
73

7
.5

3
17

.8
2
88

0
.8

7
9
1

.798
.762

.7755
.8

6
4
7

.8228
n

ew
-th

y
roid

1
.9

.8
9
5
5

.9
1
8
7

.9
23

2
.9

1
2
5

.8
3
6
8

.8
3
9
6

.8
3
77

.3
7
98

.8
3
6
3

.9
6
2
1

.9135
.943

.9086
.9

5
6
5

.9377
n

ew
-th

y
roid

2
.9

64
9

.9
1
5
9

.9
0
3
7

.8
75

7
.8

8
8
3

.9
3
5
1

.8
1
9
4

.9
3
51

.9
2
45

.7
8
1
3

.9
7
6
7

.8643
.9067

.9217
.9

3
2
9

.9166
ecoli1

.8
72

9
.5

8
0
9

.7
3
8
5

.7
65

6
.8

8
7
9

.5
8
7
2

.5
0
6
3

.6
2
07

.8
5
6

.1
5
5
3

.8
6
2
2

.8144
.8752

.8491
.8

1
5
5

.8664
veh

icle0
.9

53
7

.8
8
6
4

.8
0
5
4

.6
08

1
.1

2
8
3

.7
6
4
9

.64
9

.7
5
7

.1
5
2
9

.0
1
76

.9
0
7
7

.89
.7973

.9258
.9

0
0
7

.581
g
lass0-1

-2
-3

v
s

4-5
-6

.9
31

1
.8

7
0
7

.8
6
9
7

.8
9
9

.8
0
8
7

.8
5
3
5

.7
9
8
7

.8
3
49

.8
0
16

.6
3
0
4

.8
8
5
7

.7999
.7759

.8924
.8

7
1
9

.8953
h

a
b

erm
an

.3
65

5
.4

7
8
7

.5
2
2
9

.3
23

1
.3

7
3

.4
5
2
6

.13
9

.4
5
18

.1
7
59

.3
3
5
6

.4
5
2
6

.05
.0989

.3563
.5

9
7
7

.3649
veh

icle3
.5

98
2

.6
9
1
4

.5
3
1
8

.4
37

7
.1

1
0
2

.6
5
1
2

.5
0
8
5

.6
2
87

.0
5
3

.1
2
9
6

.5
8
8
3

.4475
.3816

.5725
.6

5
2
1

0
veh

icle2
.9

70
6

.9
2
6
3

.8
5
0
9

.7
51

6
.3

6
2
9

.8
8
4
1

.8
3
9
7

.8
8
31

.1
7
23

.5
0
1
7

.9
4
7
5

.8814
.8677

.9423
.9

4
4
8

.4968
veh

icle1
.6

40
6

.6
2
7
4

.5
7
7
1

.4
46

9
.3

4
9
2

.5
8
9
5

.5
1
3
6

.5
9
84

0
.0

3
56

.5
6
2
3

.4377
.3251

.5828
.6

6
9
2

.0842
yea

st1
.4

15
9

.6
8
7
6

.5
7
0
8

.4
23

1
.4

8
6
4

.4
1
1
5

.0
8
2
1

.4
0
96

.2
7
85

0
.6

1
2
3

.4772
.3858

.6125
.6

1
2

.1427
g
lass0

.8
32

9
.3

0
9
3

.7
7
2

.6
96

3
.6

3
0
7

.6
8
4

.5
65

1
.6

9
32

.5
9
51

0
.8

1
0
3

.4917
.5605

.8102
.7

4
5
3

.3119
iris0

1
.9

8
9
7

1
1

1
.8

9
8
3

.9
1
1
6

.9
0
65

.9
8
97

.7
2
4
6

.9
9
4
9

.9795
.9848

.9897
.9

7
8
9

.9897
p

im
a

.6
80

5
.6

9
1
4

.6
3
1
7

.6
32

3
.6

0
1
3

.5
0
3
8

.3
6
9
5

.5
0
65

0
.1

6
39

.6
5
6
4

.6245
.6199

.6979
.6

6
9
4

.5533
ecoli0

v
s

1
.9

76
7

.2
.9

6
9

.9
66

3
.9

5
9
7

.8
7
7
3

.7
9
5
3

.8
9
2

.9
7
6
1

.1
2
65

.9
7
9
7

.9699
.9451

.9831
.9

6
9

.9828
w

iscon
sin

.9
69

7
.9

6
2
2

.9
6
6
1

.9
58

1
.9

3
7
7

.9
5
3
8

.9
4
6
6

.9
6
57

.5
2
93

.5
3
1
8

.9
5
2
3

.9174
.9051

.9405
.9

3
2
1

.9393
g
lass1

.7
50

7
.5

5
4

.7
4
5
1

.6
41

2
.4

8
7
5

.5
0
7
9

.4
3
0
4

.5
3
14

.6
5
69

.1
9
7
6

.7
0
0
7

.3734
.2554

.6562
.6

8
5
7

.6438
M

ean
.5

89
3

.6
4
9
2

.6
9
6
2

.5
61

3
.5

2
7
3

.7
0
8
8

.4
8
0
8

.7
0
96

.3
9
59

.2
0
7
6

.6
7
5
8

.5748
.5176

.6987
.7

5
8
1

.4693

T
ab

le
B

.5:
R

esu
lts

for
gen

etics-b
a
sed

a
lg

o
rith

m
s

o
n

im
b
a
la

n
ced

d
a
ta

sets
u

sin
g

th
e

G
M

m
easu

re

174



dataset CART AQ CN2 C4.5rules RIPPER
abalone19 0 .5664 0 0 .232
yeast6 .6803 .5587 0 .7327 .7999
yeast5 .7145 .6812 .4133 .8489 .8739
yeast4 .1084 .3839 .2121 .5508 .6382
yeast2 vs 8 .5086 .5366 .5808 .2813 .7189
glass5 .939 .7186 0 .8804 .7347
abalone9 vs 18 .2514 .1979 .2078 .4755 .5337
glass4 .7637 .7423 .5855 .5822 .7889
ecoli4 .7788 .5598 .6398 .8551 .8841
glass2 .2508 .6572 0 .6008 .3666
vowel0 .8468 .6006 .4883 .9683 .9573
page-blocks0 .7104 .117 .5929 .9309 .9357
ecoli3 .6812 .4538 .5604 .6956 .8069
yeast3 .8082 .8117 .1856 .8723 .9181
glass6 .8089 .881 .8114 .7921 .8449
segment0 .986 .9283 .6388 .9839 .9882
ecoli2 .8124 .5542 .5173 .8608 .8618
new-thyroid1 .9462 .8656 .8566 .9178 .9288
new-thyroid2 .9118 .9289 .8566 .9327 .9275
ecoli1 .8291 .4212 .5593 .857 .9152
vehicle0 .9228 .6986 .2988 .9283 .9088
glass0-1-2-3 vs 4-5-6 .9101 .7651 .8219 .9098 .9053
haberman .2544 .1385 .232 .3506 .5554
vehicle3 .5363 .4378 .3094 .6175 .7128
vehicle2 .9352 .8908 .4964 .9364 .9533
vehicle1 .5007 .4255 .3967 .6799 .7101
yeast1 .5397 .3503 .1014 .6896 .6772
glass0 .746 .6311 .2162 .783 .768
iris0 1 .9225 .9173 .9897 .9789
pima .7025 .1477 .3862 .6895 .6966
ecoli0 vs 1 .9686 .8705 .885 .9831 .9582
wisconsin .9223 .8536 .9484 .9481 .9638
glass1 .7336 .441 .4538 .6935 .7396
Mean .6972 .5981 .4597 .7521 .7934

Table B.6: Results for classical algorithms on imbalanced datasets using the
GM measure
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APPENDIX B. RESULTS FROM THE REFERENCE WORK FOR
GENETICS-BASED AND CLASSICAL ALGORITHMS
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dataset CART AQ CN2 C4.5rules RIPPER
abalone19 0 .1826 .5541 .0799 .388
yeast6 .6803 .4271 .6022 .8031 .7325
yeast5 .7145 .3416 .6816 .9507 .8471
yeast4 .1084 .2871 .2259 .7583 .6567
yeast2 vs 8 .5086 .4169 .6944 .7418 .5875
glass5 .939 .9061 .7189 .9114 .7777
abalone9 vs 18 .2514 .0708 .4971 .6646 .738
glass4 .7637 .7109 .7696 .68 .6894
ecoli4 .7788 .5561 .7459 .8428 .8239
glass2 .2508 .6266 .6512 .6804 .6233
vowel0 .8468 .5536 .4986 .9659 .9747
page-blocks0 .7104 .0064 .7343 .9455 .9436
ecoli3 .6812 .3998 .1999 .8183 .8716
yeast3 .8082 .7514 .764 .9355 .8826
glass6 .8089 .6039 .8659 .8958 .9495
segment0 .986 .9196 .7802 .9891 .9914
ecoli2 .8124 .5191 .4977 .8864 .8406
new-thyroid1 .9462 .8325 .8535 .9485 .9434
new-thyroid2 .9118 .8327 .8612 .977 .9711
ecoli1 .8291 .4079 .4214 .8826 .8509
vehicle0 .9228 .7529 .763 .9225 .9352
glass0-1-2-3 vs 4-5-6 .9101 .5514 .8057 .8711 .8553
haberman .4707 .0298 .3958 .669 .3478
vehicle3 .5363 .4124 .5238 .7213 .6652
vehicle2 .9352 .7149 .6812 .9546 .967
vehicle1 .5007 .3535 .5674 .6918 .6485
yeast1 .5397 .2493 .2793 .6994 .6792
glass0 .746 .5884 .7223 .7576 .7952
iris0 1 .9534 .9434 .9897 .9789
pima .7596 .0878 .479 .7047 .6944
ecoli0 vs 1 .9686 .8665 .8665 .9758 .9513
wisconsin .9223 .9455 .9398 .9558 .9441
glass1 .7336 .4725 .4077 .7204 .6837
Mean .7055 .5252 .6361 .8179 .7948

Table B.8: Results for classical algorithms on SMOTE-preprocessed imbalanced
datasets using the GM measure
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Appendix C

N S values for different
coverage values for datasets
from the KEEL repository

This appendix contains the full tables containing the number of samples or
N S values for the 96 datasets and 10 coverage values (plus a static value of 3)
used in the experiments of Section 3.6.1.
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APPENDIX C. N S VALUES FOR DIFFERENT COVERAGE VALUES
FOR DATASETS FROM THE KEEL REPOSITORY
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APPENDIX C. N S VALUES FOR DIFFERENT COVERAGE VALUES
FOR DATASETS FROM THE KEEL REPOSITORY
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APPENDIX C. N S VALUES FOR DIFFERENT COVERAGE VALUES
FOR DATASETS FROM THE KEEL REPOSITORY
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Appendix D

Full result tables for CTC45
using two sample sizes and
eleven coverage values

This appendix contains the full result tables related to the summary tables
shown on Section 3.6.1. These tables show the kappa and accuracy values (for
standard classification) and GM values (for imbalanced classification) for all
datasets and all coverage values.

Numbers in bold indicate the best average value for each dataset.
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APPENDIX D. FULL RESULT TABLES FOR CTC45 USING TWO
SAMPLE SIZES AND ELEVEN COVERAGE VALUES

dataset
coverage values

NS=3 10% 20% 30% 40% 50% 75% 90% 95% 99% 99.9%

nursery .8131 .8202 .812 .819 .8204 .8212 .8204 .8245 .8257 .8289 .8342

abalone .0922 .0922 .0878 .0839 .0831 .0694 .07 .0698 .0627 .0647 .0715

ecoli .6705 .6774 .6946 .6855 .7027 .6871 .6951 .6971 .6947 .6942 .6808

lymphography .4819 .468 .4742 .5132 .5202 .5239 .5335 .5249 .5644 .55 .5124

car .6393 .6667 .6522 .6712 .6824 .6896 .7263 .7414 .7464 .7515 .7543

zoo .9137 .9137 .9162 .9054 .9157 .9076 .9133 .9132 .9076 .9076 .9076

flare .6657 .6657 .6702 .6698 .668 .6717 .6697 .6692 .6695 .6681 .6697

glass .5662 .5662 .5631 .5793 .561 .5686 .5561 .5293 .5582 .5645 .5704

cleveland .2546 .2546 .2373 .2217 .2347 .2253 .2304 .2405 .2374 .2472 .2418

dermatology .9134 .9134 .9134 .9141 .914 .9266 .9183 .9176 .9162 .9218 .921

balance .6086 .6086 .6086 .6109 .6156 .6074 .6132 .6059 .6049 .6042 .598

penbased .8834 .8834 .8834 .8834 .8834 .8834 .8834 .885 .8838 .8769 .8765

newthyroid .8472 .8472 .8472 .8539 .8449 .8537 .8583 .8722 .8832 .8778 .8755

hepatitis .1956 .1956 .1956 .2557 .3472 .3593 .2933 .317 .3488 .4015 .3812

contraceptive .2669 .2669 .2669 .2669 .2669 .2669 .2532 .2701 .2701 .2608 .2696

vehicle .6264 .6264 .6264 .6264 .6264 .6264 .6264 .6333 .6418 .6424 .6405

haberman .1553 .1553 .1553 .1553 .1553 .1283 .1328 .1212 .1458 .1259 .1567

wine .9049 .9049 .9049 .9049 .9049 .9049 .8982 .9119 .9273 .8956 .9219

breast .2216 .2216 .2216 .2216 .2216 .2216 .2476 .2469 .256 .2523 .2519

german .2949 .2949 .2949 .2949 .2949 .2949 .2959 .2892 .2891 .2788 .2873

iris .904 .904 .904 .904 .904 .904 .904 .906 .896 .894 .898

wisconsin .8336 .8336 .8336 .8336 .8336 .8336 .8428 .848 .8502 .8469 .8489

tictactoe .6452 .6452 .6452 .6452 .6452 .6452 .6625 .6649 .6732 .6671 .6707

pima .4028 .4028 .4028 .4028 .4028 .4028 .3981 .3831 .3842 .366 .39

magic .5149 .5149 .5149 .5149 .5149 .5149 .494 .5012 .5023 .4887 .4747

bupa .2925 .2925 .2925 .2925 .2925 .2925 .3319 .3377 .3364 .3367 .3191

heart .5619 .5619 .5619 .5619 .5619 .5619 .5619 .5743 .5603 .5736 .5558

australian .6926 .6926 .6926 .6926 .6926 .6926 .6926 .6903 .6876 .6938 .688

crx .7099 .7099 .7099 .7099 .7099 .7099 .7099 .6968 .7088 .7121 .7078

ring .7113 .7113 .7113 .7113 .7113 .7113 .7113 .7097 .7189 .7205 .7097

Mean .5761 .5771 .5765 .5802 .5844 .5836 .5848 .5864 .5917 .5905 .5895

Median .6329 .6358 .6358 .6358 .6358 .6358 .6445 .6491 .6556 .6548 .6551

Table D.1: Results for kappa over standard datasets using sizeOfMinClass sub-
samples.
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dataset
coverage values

NS=3 10% 20% 30% 40% 50% 75% 90% 95% 99% 99.9%

nursery .8111 .8111 .8183 .8236 .8203 .8276 .8307 .8312 .8339 .8352 .8362

abalone .081 .081 .081 .081 .0804 .0748 .0819 .073 .0633 .0676 .0682

ecoli .6972 .6972 .7004 .6964 .6926 .6863 .698 .6949 .6918 .6917 .7024

lymphography .4774 .4774 .5203 .5233 .5688 .5767 .5756 .5558 .5937 .5977 .6028

car .7037 .7037 .7136 .7317 .7303 .7441 .7455 .7492 .7528 .7524 .7458

zoo .9212 .9212 .9212 .9212 .9266 .9268 .9183 .9104 .9104 .9132 .9132

flare .6674 .6674 .6674 .6674 .6694 .6663 .6652 .6676 .6659 .6654 .6649

glass .543 .543 .543 .543 .556 .5531 .5377 .5504 .5551 .534 .5313

cleveland .2438 .2438 .2438 .227 .2525 .2364 .2308 .2229 .2229 .2309 .2246

dermatology .9211 .9211 .9211 .9211 .9211 .9204 .9064 .9092 .9112 .9113 .9078

balance .6276 .6276 .6276 .6276 .6276 .6339 .6023 .6013 .6047 .604 .5968

penbased .8802 .8802 .8802 .8802 .8802 .8802 .8802 .8802 .8802 .8802 .8802

newthyroid .8805 .8805 .8805 .8805 .8805 .8875 .8888 .8933 .8918 .884 .8957

hepatitis .3008 .3008 .3008 .3008 .3008 .3678 .4413 .4556 .4546 .472 .4528

contraceptive .2556 .2556 .2556 .2556 .2556 .2556 .2556 .2688 .2688 .2574 .2488

vehicle .6377 .6377 .6377 .6377 .6377 .6377 .6377 .6377 .6377 .6377 .6377

haberman .1363 .1363 .1363 .1363 .1363 .1363 .1343 .1195 .1201 .1372 .1377

wine .9171 .9171 .9171 .9171 .9171 .9171 .9171 .9171 .9171 .9291 .9257

breast .2668 .2668 .2668 .2668 .2668 .2668 .2668 .2777 .2723 .2806 .2875

german .2708 .2708 .2708 .2708 .2708 .2708 .2708 .29 .2929 .3179 .3096

iris .898 .898 .898 .898 .898 .898 .898 .898 .902 .904 .906

wisconsin .8448 .8448 .8448 .8448 .8448 .8448 .8448 .8456 .8456 .8445 .8531

tictactoe .6905 .6905 .6905 .6905 .6905 .6905 .6905 .688 .688 .7008 .6991

pima .3859 .3859 .3859 .3859 .3859 .3859 .3859 .3859 .3798 .3998 .3732

magic .4908 .4908 .4908 .4908 .4908 .4908 .4908 .4908 .4852 .4699 .4732

bupa .3095 .3095 .3095 .3095 .3095 .3095 .3095 .3095 .3095 .2923 .285

heart .456 .456 .456 .456 .456 .456 .456 .456 .456 .456 .4359

australian .6893 .6893 .6893 .6893 .6893 .6893 .6893 .6893 .6893 .6893 .6843

crx .6961 .6961 .6961 .6961 .6961 .6961 .6961 .6961 .6961 .6961 .7182

ring .7087 .7087 .7087 .7087 .7087 .7087 .7087 .7087 .7087 .7087 .7087

Mean .5803 .5803 .5824 .5826 .5854 .5879 .5885 .5891 .59 .592 .5902

Median .6525 .6525 .6525 .6525 .6535 .652 .6515 .6526 .6518 .6515 .6513

Table D.2: Results for kappa over standard datasets using maxSize subsamples.
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APPENDIX D. FULL RESULT TABLES FOR CTC45 USING TWO
SAMPLE SIZES AND ELEVEN COVERAGE VALUES

dataset
coverage values

NS=3 10% 20% 30% 40% 50% 75% 90% 95% 99% 99.9%

nursery .8737 .8783 .8726 .877 .878 .8787 .8777 .8806 .881 .8838 .8873

abalone .183 .183 .1788 .1761 .1763 .1633 .1628 .1629 .1568 .1582 .1641

ecoli .7598 .766 .7809 .7741 .7853 .7736 .7801 .781 .7798 .779 .7695

lymphography .7265 .7181 .7307 .7481 .7514 .7519 .7545 .7489 .7679 .7662 .7395

car .8324 .8442 .8365 .8465 .851 .8547 .8711 .8786 .8814 .884 .8852

zoo .9345 .9345 .9365 .9292 .9369 .9312 .9349 .9349 .9312 .9312 .9312

flare .7414 .7414 .7447 .7447 .7436 .7461 .7448 .7446 .7448 .7437 .7447

glass .6807 .6807 .6816 .6904 .6797 .6842 .673 .6533 .6735 .6789 .6841

cleveland .5441 .5441 .5338 .5189 .5256 .523 .5262 .5284 .5259 .5332 .5251

dermatology .9314 .9314 .9314 .9314 .9315 .94 .9353 .9348 .9336 .9378 .936

balance .7848 .7848 .7848 .785 .7857 .781 .7839 .7773 .7763 .7746 .7703

penbased .8948 .8948 .8948 .8948 .8948 .8948 .8948 .8961 .8945 .8888 .8883

newthyroid .9276 .9276 .9276 .9319 .9278 .9309 .9327 .9386 .9429 .9403 .9378

hepatitis .8313 .8313 .8313 .8433 .8604 .8608 .8329 .8417 .8479 .8583 .8508

contraceptive .5276 .5276 .5276 .5276 .5276 .5276 .5173 .5283 .5279 .5219 .5284

vehicle .7206 .7206 .7206 .7206 .7206 .7206 .7206 .7254 .7338 .7322 .7311

haberman .7193 .7193 .7193 .7193 .7193 .7112 .7103 .7052 .7127 .7043 .7097

wine .9386 .9386 .9386 .9386 .9386 .9386 .9322 .9437 .9532 .9328 .9495

breast .7299 .7299 .7299 .7299 .7299 .7299 .7426 .745 .7458 .7468 .7457

german .722 .722 .722 .722 .722 .722 .7224 .7199 .7186 .7173 .7189

iris .9362 .9362 .9362 .9362 .9362 .9362 .9362 .9376 .9307 .9293 .932

wisconsin .9237 .9237 .9237 .9237 .9237 .9237 .9279 .9304 .9313 .9298 .9307

tictactoe .8447 .8447 .8447 .8447 .8447 .8447 .8526 .8548 .8557 .8532 .8547

pima .7351 .7351 .7351 .7351 .7351 .7351 .7296 .7236 .7233 .7147 .7261

magic .7871 .7871 .7871 .7871 .7871 .7871 .7742 .7778 .7793 .7721 .7658

bupa .662 .662 .662 .662 .662 .662 .6781 .6781 .6798 .679 .6733

heart .7844 .7844 .7844 .7844 .7844 .7844 .7844 .7873 .7816 .7878 .7801

australian .8479 .8479 .8479 .8479 .8479 .8479 .8479 .8467 .8455 .849 .8461

crx .8542 .8542 .8542 .8542 .8542 .8542 .8542 .8486 .8537 .8559 .8536

ring .8571 .8571 .8571 .8571 .8571 .8571 .8571 .8567 .8615 .8608 .8553

Mean .7746 .775 .7752 .7761 .7773 .7765 .7764 .777 .7791 .7782 .7772

Median .786 .786 .786 .7861 .7864 .7858 .7842 .7841 .7807 .7834 .7752

Table D.3: Results for accuracy over standard datasets using sizeOfMinClass
subsamples.
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dataset
coverage values

NS=3 10% 20% 30% 40% 50% 75% 90% 95% 99% 99.9%

nursery .8722 .8722 .877 .8806 .8783 .8832 .8852 .8855 .8874 .8883 .8889

abalone .1733 .1733 .1733 .1733 .1743 .169 .1743 .168 .1585 .1618 .1623

ecoli .781 .781 .7834 .7811 .7786 .7732 .7816 .7792 .7768 .7774 .7845

lymphography .7244 .7244 .7473 .7448 .7728 .7755 .7755 .7646 .7845 .786 .7876

car .8614 .8614 .866 .8745 .8742 .8806 .8814 .8828 .8846 .884 .8808

zoo .9405 .9405 .9405 .9405 .9445 .9445 .9385 .9325 .9325 .9345 .9345

flare .742 .742 .742 .742 .7435 .7411 .7401 .7422 .7409 .7405 .7401

glass .6629 .6629 .6629 .6629 .6741 .6722 .662 .6705 .6743 .6584 .6566

cleveland .5291 .5291 .5291 .5138 .53 .5199 .5167 .5118 .507 .5104 .5071

dermatology .9368 .9368 .9368 .9368 .9368 .9363 .9251 .9273 .929 .929 .9262

balance .7926 .7926 .7926 .7926 .7926 .7965 .7757 .7754 .7763 .7757 .7715

penbased .8922 .8922 .8922 .8922 .8922 .8922 .8922 .8922 .8922 .8922 .8922

newthyroid .9433 .9433 .9433 .9433 .9433 .947 .947 .9498 .9488 .9451 .9507

hepatitis .845 .845 .845 .845 .845 .8475 .855 .8625 .8675 .8775 .8775

contraceptive .5189 .5189 .5189 .5189 .5189 .5189 .5189 .5279 .5279 .52 .5147

vehicle .7283 .7283 .7283 .7283 .7283 .7283 .7283 .7283 .7283 .7283 .7283

haberman .7129 .7129 .7129 .7129 .7129 .7129 .7064 .6972 .6972 .7103 .7063

wine .9455 .9455 .9455 .9455 .9455 .9455 .9455 .9455 .9455 .9535 .9513

breast .7488 .7488 .7488 .7488 .7488 .7488 .7488 .7523 .7494 .7544 .7559

german .7148 .7148 .7148 .7148 .7148 .7148 .7148 .719 .7186 .73 .7256

iris .932 .932 .932 .932 .932 .932 .932 .932 .9347 .936 .9373

wisconsin .9302 .9302 .9302 .9302 .9302 .9302 .9302 .9305 .9305 .9302 .934

tictactoe .8641 .8641 .8641 .8641 .8641 .8641 .8641 .8637 .8637 .8687 .8685

pima .7247 .7247 .7247 .7247 .7247 .7247 .7247 .7247 .7198 .7313 .718

magic .7724 .7724 .7724 .7724 .7724 .7724 .7724 .7724 .7703 .7627 .7633

bupa .6655 .6655 .6655 .6655 .6655 .6655 .6655 .6655 .6655 .6591 .6533

heart .7319 .7319 .7319 .7319 .7319 .7319 .7319 .7319 .7319 .7319 .7222

australian .8467 .8467 .8467 .8467 .8467 .8467 .8467 .8467 .8467 .8467 .8443

crx .8497 .8497 .8497 .8497 .8497 .8497 .8497 .8497 .8497 .8497 .8604

ring .8543 .8543 .8543 .8543 .8543 .8543 .8543 .8543 .8543 .8543 .8543

Mean .7746 .7746 .7757 .7755 .7774 .7773 .7761 .7762 .7765 .7776 .7766

Median .7868 .7868 .788 .7869 .7856 .786 .7786 .7773 .7807 .7817 .7861

Table D.4: Results for accuracy over standard datasets using maxSize subsam-
ples.
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APPENDIX D. FULL RESULT TABLES FOR CTC45 USING TWO
SAMPLE SIZES AND ELEVEN COVERAGE VALUES

dataset
coverage values

NS=3 10% 20% 30% 40% 50% 75% 90% 95% 99% 99.9%

abalone19 .5201 .5738 .5623 .5325 .5119 .4554 .4065 .4291 .3762 .3944 .4335

yeast6 .8125 .8246 .8357 .817 .8211 .8338 .8303 .7627 .73 .7619 .7123

yeast5 .9526 .9444 .9238 .9087 .919 .9255 .8913 .8799 .8662 .8549 .8614

yeast4 .7897 .7804 .8081 .7716 .7496 .7718 .6299 .5877 .6143 .5577 .4563

yeast2 vs 8 .7283 .7283 .7283 .7283 .7283 .7283 .7283 .7283 .7283 .7283 .7283

glass5 .942 .9435 .9505 .9525 .9352 .9352 .944 .9622 .9764 .9769 .9429

abalone9 vs 18 .6922 .6918 .7299 .713 .7105 .6991 .7133 .7064 .7122 .6906 .6944

glass4 .7438 .7857 .7987 .7537 .7739 .7448 .7842 .79 .7778 .7823 .8215

ecoli4 .8006 .8006 .8297 .8313 .8164 .8218 .7317 .8108 .823 .8469 .8092

glass2 .6642 .6642 .6058 .5499 .4801 .5731 .5902 .6214 .5802 .5198 .5695

vowel0 .887 .887 .9001 .8915 .8849 .9 .9154 .9147 .9175 .929 .9293

page-blocks0 .8881 .8881 .8965 .9041 .906 .9099 .9175 .9087 .9094 .907 .9052

ecoli3 .6883 .6883 .7404 .7679 .7462 .7698 .7451 .7411 .744 .7741 .7647

yeast3 .8838 .8838 .8851 .8673 .8707 .8664 .8673 .8666 .8668 .8601 .8593

glass6 .872 .872 .872 .9011 .8772 .8892 .876 .8526 .8407 .8358 .83

segment0 .9783 .9783 .9783 .9835 .984 .9818 .983 .9837 .9857 .9861 .9891

ecoli2 .8569 .8569 .8569 .859 .8602 .8666 .8672 .845 .8556 .8668 .8647

new-thyroid1 .9411 .9411 .9411 .9499 .9499 .9437 .9493 .9514 .9566 .9518 .9524

new-thyroid2 .9239 .9239 .9239 .9401 .9459 .9487 .9575 .9568 .9598 .952 .9485

ecoli1 .8546 .8546 .8546 .8546 .8583 .8564 .8566 .8433 .8591 .8502 .8415

vehicle0 .9229 .9229 .9229 .9229 .9255 .9297 .9196 .9242 .9187 .9206 .9215

glass0-1-2-3 vs 4-5-6 .8797 .8797 .8797 .8797 .8724 .8885 .8639 .8708 .864 .8686 .8566

haberman .5205 .5205 .5205 .5205 .5205 .4977 .4891 .4434 .4862 .4627 .4629

vehicle1 .5996 .5996 .5996 .5996 .5996 .6129 .6326 .6279 .6592 .6378 .6376

vehicle2 .9326 .9326 .9326 .9326 .9326 .9321 .9347 .9358 .9341 .9338 .9439

vehicle3 .5806 .5806 .5806 .5806 .5806 .6241 .6292 .6479 .6454 .6529 .6515

yeast1 .6479 .6479 .6479 .6479 .6479 .6397 .6327 .6378 .6521 .6275 .6416

glass0 .7668 .7668 .7668 .7668 .7668 .7668 .7852 .7811 .8006 .7947 .8078

iris0 .9815 .9815 .9815 .9815 .9815 .9815 .9836 .9836 .9836 .9836 .9815

pima .6734 .6734 .6734 .6734 .6734 .6734 .6908 .6841 .6912 .691 .6821

ecoli0 vs 1 .9802 .9802 .9802 .9802 .9802 .9802 .9802 .9809 .9774 .9795 .9795

wisconsin .9293 .9293 .9293 .9293 .9293 .9293 .9262 .9278 .9229 .9192 .9171

glass1 .6648 .6648 .6648 .6648 .6648 .6648 .6756 .707 .7246 .6966 .6828

Mean .803 .8058 .8091 .8048 .8001 .8043 .7978 .7968 .7982 .7938 .7903

Median .8546 .8546 .8546 .8546 .8583 .8564 .8566 .8433 .8407 .8469 .83

Table D.5: Results for GM over imbalanced datasets using sizeOfMinClass sub-
samples.
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dataset
coverage values

NS=3 10% 20% 30% 40% 50% 75% 90% 95% 99% 99.9%

abalone19 .5823 .4918 .5103 .4752 .4726 .4093 .454 .3878 .4111 .4383 .4024

yeast6 .7911 .814 .8174 .8091 .8161 .8345 .7874 .757 .7747 .7203 .7389

yeast5 .9303 .9443 .9288 .9316 .9086 .9003 .8913 .8693 .8705 .8648 .8742

yeast4 .7487 .7487 .7544 .7222 .6549 .6221 .5709 .5761 .5237 .5193 .5279

yeast2 vs 8 .7283 .7283 .7283 .7283 .7283 .7283 .7283 .7283 .7283 .7283 .7283

glass5 .9158 .9158 .9249 .9304 .977 .9801 .9764 .9555 .9437 .9437 .9437

abalone9 vs 18 .7135 .7135 .7283 .719 .7007 .7009 .6559 .6888 .6593 .6453 .6678

glass4 .8549 .8549 .8481 .864 .8453 .8542 .864 .8438 .8347 .8184 .8139

ecoli4 .8599 .8599 .8599 .8362 .808 .8082 .8188 .8326 .8249 .8321 .8353

glass2 .6882 .6882 .6882 .6608 .6399 .656 .5709 .6431 .6708 .624 .5618

vowel0 .9115 .9115 .9115 .9128 .9107 .931 .9277 .9351 .9335 .9286 .9289

page-blocks0 .919 .919 .919 .919 .9232 .9242 .9217 .9202 .916 .9167 .9143

ecoli3 .7509 .7509 .7509 .7509 .7641 .7648 .7436 .7608 .7783 .7472 .7335

yeast3 .8852 .8852 .8852 .8852 .8865 .868 .8745 .8538 .8624 .8594 .8638

glass6 .8679 .8679 .8679 .8679 .8679 .8708 .8394 .8356 .8435 .8586 .8444

segment0 .9853 .9853 .9853 .9853 .9853 .9866 .9881 .9881 .9893 .9896 .9884

ecoli2 .859 .859 .859 .859 .859 .8692 .8768 .8674 .8657 .8764 .8683

new-thyroid1 .9577 .9577 .9577 .9577 .9577 .965 .9608 .9583 .948 .9571 .9509

new-thyroid2 .9488 .9488 .9488 .9488 .9488 .9488 .9573 .9567 .9568 .9643 .9632

ecoli1 .8629 .8629 .8629 .8629 .8629 .8629 .8752 .859 .8498 .8623 .8612

vehicle0 .9184 .9184 .9184 .9184 .9184 .9184 .9302 .929 .9324 .929 .9301

glass0-1-2-3 vs 4-5-6 .877 .877 .877 .877 .877 .877 .8764 .8783 .8707 .8606 .8765

haberman .5908 .5908 .5908 .5908 .5908 .5908 .5908 .5273 .5337 .5323 .5053

vehicle1 .6578 .6578 .6578 .6578 .6578 .6578 .6578 .6628 .6582 .6537 .6597

vehicle2 .9395 .9395 .9395 .9395 .9395 .9395 .9395 .9445 .9466 .9497 .9488

vehicle3 .6536 .6536 .6536 .6536 .6536 .6536 .6536 .6575 .6622 .6628 .6648

yeast1 .6424 .6424 .6424 .6424 .6424 .6424 .6424 .6498 .6563 .6545 .6482

glass0 .785 .785 .785 .785 .785 .785 .785 .797 .802 .7714 .7914

iris0 .9897 .9897 .9897 .9897 .9897 .9897 .9897 .9897 .9897 .9897 .9897

pima .6923 .6923 .6923 .6923 .6923 .6923 .6923 .6923 .6902 .6849 .6848

ecoli0 vs 1 .9823 .9823 .9823 .9823 .9823 .9823 .9823 .9823 .9815 .9816 .9816

wisconsin .923 .923 .923 .923 .923 .923 .923 .923 .928 .926 .9251

glass1 .6953 .6953 .6953 .6953 .6953 .6953 .6953 .6953 .7082 .706 .6909

Mean .8215 .8198 .8207 .8174 .8141 .8131 .8073 .8044 .8044 .7999 .7972

Median .8599 .8599 .8599 .8629 .859 .8629 .864 .8438 .8435 .8586 .8444

Table D.6: Results for GM over imbalanced datasets using maxSize subsamples.
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APPENDIX D. FULL RESULT TABLES FOR CTC45 USING TWO
SAMPLE SIZES AND ELEVEN COVERAGE VALUES

dataset
coverage values

NS=3 10% 20% 30% 40% 50% 75% 90% 95% 99% 99.9%

abalone19 .6164 .6229 .5733 .5429 .6244 .583 .5317 .4337 .4703 .4754 .431

yeast6 .8697 .8642 .8391 .8358 .8552 .8273 .8586 .8363 .851 .8502 .856

yeast5 .9437 .9398 .9553 .9659 .9674 .9651 .9629 .9619 .9693 .9733 .9717

yeast4 .8091 .8092 .8027 .8044 .8137 .8029 .8027 .8081 .8182 .7893 .7665

yeast2 vs 8 .7455 .751 .7532 .7588 .7454 .771 .7643 .7961 .8137 .793 .802

glass5 .8725 .9321 .9391 .9433 .9407 .887 .9357 .8546 .8646 .8589 .9272

abalone9 vs 18 .6833 .7011 .6619 .6366 .6596 .6726 .6703 .6556 .6544 .6173 .6082

glass4 .7955 .752 .7914 .8104 .7899 .82 .8228 .8342 .8044 .7836 .8263

ecoli4 .8631 .8631 .858 .8248 .8227 .8526 .8459 .8143 .8255 .8409 .8522

glass2 .5539 .5539 .5605 .5195 .606 .6215 .4801 .6514 .5478 .6436 .5542

vowel0 .9286 .9286 .9296 .9296 .9336 .9297 .9333 .9374 .9399 .9419 .932

page-blocks0 .9358 .9358 .9355 .9368 .9377 .942 .9421 .9422 .9418 .9441 .9441

ecoli3 .8552 .8552 .8559 .8569 .8608 .881 .8647 .8667 .8665 .8693 .8548

yeast3 .9187 .9187 .917 .9203 .9182 .9164 .9143 .918 .9158 .9219 .9211

glass6 .896 .896 .896 .9025 .8973 .8981 .8898 .8764 .8739 .8795 .8701

segment0 .9784 .9784 .9784 .9832 .9834 .9857 .9857 .9885 .9891 .9895 .9906

ecoli2 .8545 .8545 .8545 .8404 .865 .8543 .8618 .8655 .8559 .8658 .8646

new-thyroid1 .9169 .9169 .9169 .919 .9249 .9345 .9403 .9548 .9503 .9535 .945

new-thyroid2 .9079 .9079 .9079 .8969 .9251 .9241 .9342 .9371 .9392 .9507 .9493

ecoli1 .8921 .8921 .8921 .8921 .8904 .8867 .8853 .8903 .8851 .8943 .892

vehicle0 .9327 .9327 .9327 .9327 .937 .9373 .9356 .9323 .9335 .9308 .9352

glass0-1-2-3 vs 4-5-6 .8776 .8776 .8776 .8776 .8757 .8824 .8953 .8848 .8926 .8807 .8896

haberman .6064 .6064 .6064 .6064 .6064 .611 .6135 .6038 .6185 .6116 .616

vehicle1 .7204 .7204 .7204 .7204 .7204 .7133 .7107 .7371 .7225 .7146 .7087

vehicle2 .9341 .9341 .9341 .9341 .9341 .9352 .9368 .9334 .9406 .9406 .9452

vehicle3 .7226 .7226 .7226 .7226 .7226 .7364 .7404 .7147 .7272 .7132 .7211

yeast1 .6964 .6964 .6964 .6964 .6964 .6981 .7058 .7029 .7021 .7109 .71

glass0 .7846 .7846 .7846 .7846 .7846 .7846 .7904 .7949 .7871 .7999 .7951

iris0 .9815 .9815 .9815 .9815 .9815 .9815 .9815 .9815 .9784 .9815 .9815

pima .7076 .7076 .7076 .7076 .7076 .7076 .7155 .7178 .71 .7222 .7177

ecoli0 vs 1 .9779 .9779 .9779 .9779 .9779 .9779 .9737 .9737 .9774 .976 .9781

wisconsin .9347 .9347 .9347 .9347 .9347 .9347 .9398 .9415 .9416 .9404 .9434

glass1 .6966 .6966 .6966 .6966 .6966 .6966 .7048 .7045 .7239 .7118 .7231

Mean .8306 .8317 .83 .8271 .8344 .8349 .8324 .8317 .8313 .8324 .831

Median .8697 .8642 .858 .8569 .865 .881 .8647 .8655 .8646 .8658 .8646

Table D.7: Results for GM over imbalanced datasets preprocessed with SMOTE
using sizeOfMinClass subsamples.
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dataset
coverage values

NS=3 10% 20% 30% 40% 50% 75% 90% 95% 99% 99.9%

abalone19 .6509 .5867 .5148 .529 .4918 .4195 .4734 .4793 .4945 .4794 .4413

yeast6 .8506 .837 .8405 .842 .8384 .8378 .8412 .8503 .838 .8241 .8344

yeast5 .9367 .9527 .9642 .9701 .9687 .9601 .9706 .9728 .9718 .9608 .9526

yeast4 .8102 .8102 .7942 .8012 .8094 .8184 .7799 .7617 .7539 .7527 .7281

yeast2 vs 8 .7447 .7447 .7464 .7617 .7827 .7881 .7921 .8034 .803 .8077 .7833

glass5 .8554 .8554 .8732 .8733 .8809 .8382 .7984 .8628 .9227 .9136 .9145

abalone9 vs 18 .634 .634 .6551 .6321 .648 .6274 .6308 .6509 .6092 .6157 .6106

glass4 .8302 .8302 .8478 .8388 .8278 .8347 .8405 .8494 .8451 .8377 .8221

ecoli4 .8339 .8339 .8339 .8053 .8155 .8339 .8443 .8424 .8145 .8551 .8681

glass2 .6504 .6504 .6504 .6831 .6781 .6911 .6993 .7046 .7167 .734 .7578

vowel0 .9391 .9391 .9391 .9404 .9479 .9373 .9468 .9514 .942 .9508 .9578

page-blocks0 .943 .943 .943 .943 .9435 .9421 .9441 .9402 .944 .9442 .9416

ecoli3 .8589 .8589 .8589 .8589 .8601 .8647 .8714 .852 .8681 .8636 .8452

yeast3 .9194 .9194 .9194 .9194 .9221 .9205 .9149 .9137 .9115 .9067 .9054

glass6 .8904 .8904 .8904 .8904 .8904 .8927 .8795 .845 .8501 .8545 .8637

segment0 .9873 .9873 .9873 .9873 .9873 .9871 .988 .9882 .9891 .9888 .9894

ecoli2 .8531 .8531 .8531 .8531 .8531 .8657 .8567 .846 .8531 .8472 .8453

new-thyroid1 .9445 .9445 .9445 .9445 .9445 .9538 .9525 .9595 .9568 .9562 .9498

new-thyroid2 .9455 .9455 .9455 .9455 .9455 .9455 .9461 .9462 .9474 .9565 .9542

ecoli1 .8951 .8951 .8951 .8951 .8951 .8951 .8911 .887 .893 .8884 .8953

vehicle0 .9289 .9289 .9289 .9289 .9289 .9289 .9288 .9359 .932 .9296 .9301

glass0-1-2-3 vs 4-5-6 .881 .881 .881 .881 .881 .881 .8689 .8826 .8939 .8881 .895

haberman .6149 .6149 .6149 .6149 .6149 .6149 .6149 .6089 .6005 .5977 .6085

vehicle1 .7127 .7127 .7127 .7127 .7127 .7127 .7127 .7098 .7113 .7229 .7016

vehicle2 .9381 .9381 .9381 .9381 .9381 .9381 .9381 .9397 .9433 .9473 .9465

vehicle3 .7415 .7415 .7415 .7415 .7415 .7415 .7415 .7208 .7131 .7174 .7211

yeast1 .6978 .6978 .6978 .6978 .6978 .6978 .6978 .6924 .6957 .6928 .6856

glass0 .7915 .7915 .7915 .7915 .7915 .7915 .7915 .8025 .7886 .8032 .8147

iris0 .9856 .9856 .9856 .9856 .9856 .9856 .9856 .9856 .9877 .9877 .9877

pima .6957 .6957 .6957 .6957 .6957 .6957 .6957 .6957 .7036 .704 .6974

ecoli0 vs 1 .9773 .9773 .9773 .9773 .9773 .9773 .9773 .9773 .9787 .9779 .9743

wisconsin .9394 .9394 .9394 .9394 .9394 .9394 .9394 .9394 .9419 .9435 .9438

glass1 .7186 .7186 .7186 .7186 .7186 .7186 .7186 .7186 .7111 .7176 .7118

Mean .8363 .8344 .8339 .8345 .835 .8326 .8325 .8338 .8341 .8354 .8327

Median .8554 .8554 .8589 .8589 .8601 .8647 .8567 .8503 .8531 .8551 .8637

Table D.8: Results for GM over imbalanced datasets preprocessed with SMOTE
using maxSize subsamples.
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APPENDIX D. FULL RESULT TABLES FOR CTC45 USING TWO
SAMPLE SIZES AND ELEVEN COVERAGE VALUES
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Appendix E

Analysis of the effect of
coverage-based resampling
on the true-positive and
true-negative rates for
imbalanced datasets

In one of the contributions of this thesis, when analyzing the effect of differ-
ent coverage values on the performance of the CTC45 algorithm on imbalanced
datasets (See Section 3.6.1), the results show that whereas the kappa and ac-
curacy increase with coverage on standard datasets, the GM on imbalanced
datasets decreases.

In Figure E.1 and Figure E.2 the same results are shown for maxSize sub-
samples, however, this time the individual rates that conform the GM are also
shown.

It can be observed that in both cases (with and without the SMOTE prepro-
cessing), the decrease in GM is due to a decrease in the true-positive rate, as the
true-negative does indeed increase, albeit at a lower rate than the true-positve
decrease, which turns into a decrease for the geometric mean. This is expected,
using balanced subsamples, each added sample brings more new information for
the negative class than for the positive class. In fact, using maxSize samples
on non-preprocessed datasets, each and every sample already has all available
information about the minority class, whereas in the case of the majority class,
each new sample has the potential of containing all new information.
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APPENDIX E. ANALYSIS OF THE EFFECT OF COVERAGE -BASED
RESAMPLING ON THE TRUE-POSITIVE AND TRUE-NEGATIVE
RATES FOR IMBALANCED DATASETS

N_S=3 10% 20% 30% 40% 50% 75% 90% 95% 99% 99.9%
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Figure E.1: Performance of CTC45 for different coverage values with maxSize
subsamples on imbalanced datasets.

N_S=3 10% 20% 30% 40% 50% 75% 90% 95% 99% 99.9%
0.78

0.8

0.82

0.84

0.86

0.88

0.9

GM
TNrate
TPrate

Coverage

Figure E.2: Performance of CTC45 for different coverage values with maxSize
subsamples on imbalanced datasets preprocessed with SMOTE.
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Appendix F

Full result tables for the
second experiment from the
contributions to the
consolidation of decision
tree algorithms

This appendix contains the full result tables related to the summary tables
shown on Section 3.6.2. These tables show the kappa and accuracy values (for
standard classification) and GM values (for imbalanced classification) for all
datasets and all GBML, classical, and consolidated algorithms.

Numbers in bold indicate the best average value for each dataset.
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APPENDIX F. FULL RESULT TABLES FOR THE SECOND
EXPERIMENT FROM THE CONTRIBUTIONS TO THE
CONSOLIDATION OF DECISION TREE ALGORITHMS

gen
etics-b

ased
classical

b
ase

d
ecision

trees
co

n
so

lid
a
ted

d
ecision

trees
d

ataset
X

C
S

S
IA

O
C

C
E

C
G

A
ssist

O
b

liq
u

e-D
T

C
A

R
T

A
Q

C
N

2
C

4
.5

ru
les

R
IP

P
E

R
C

4.5
C

4.4
C

H
A

ID
*

C
H

A
IC

C
T

C
45

C
T

C
4
4

C
T

C
H

A
ID

C
T

C
H

A
IC

n
u

rsery
.6988

.8467
.7

353
.85

5
3

.8
9
6
2

.7
7
6
4

.6
8
5
3

.69
0
3

.6
9
03

.8
38

6
.8

341
.83

03
.8

68
4

.8
797

.81
71

.8
07

3
.7

57
7

.70
33

ab
alon

e
.0701

.0966
.0

701
.12

5
5

.0
6
7
4

.0
9
1
8

.0
5
9
0

.1
5
9
0

.1
5
9
0

.0
9
3
5

.0
96

2
.06

86
.1

510
.1

46
4

.09
24

.0
88

7
.1

26
4

.07
64

ecoli
.7

0
4
3

.5654
.4768

.6
71

1
.6

7
3
2

.6
3
6
7

.5
3
4
9

.58
1
6

.5
8
16

.6
55

9
.7

030
.69

06
.6

88
3

.6
888

.69
26

.6
63

0
.5

64
3

.50
25

ly
m

p
h

ograp
h
y

.6044
.6099

.5
508

.59
1
8

.4
5
9
7

.5
6
1
1

.5
0
4
0

.6
3
2
5

.6
3
2
5

.5
6
2
7

.5
36

7
.45

13
.5

408
.5

38
6

.51
33

.4
85

8
.1

41
5

.10
70

car
.4321

.8550
.5

535
.82

3
8

.9
6
4
7

.5
5
3
4

.6
6
8
9

.32
3
0

.3
2
30

.7
59

1
.7

986
.80

91
.9

04
7

.9
034

.64
83

.7
41

3
.8

29
7

.79
41

zo
o

.8527
.9377

.9
166

.91
6
7

.9
4
7
7

.8
8
1
5

.8
8
5
5

.81
9
7

.8
1
97

.8
82

8
.9

215
.90

86
.9

36
5

.9
365

.88
26

.8
77

1
.8

51
6

.69
32

fl
are

.3931
.3479

.6
290

.66
3
1

.6
5
6
1

.6
7
0
2

.5
5
5
2

.55
9
6

.5
5
96

.5
89

1
.6

676
.65

09
.6

8
6
1

.68
32

.66
67

.6
10

1
.6

67
2

.62
03

glass
.5350

.6
4
0
4

.3
37

6
.45

1
7

.5
5
4
6

.5
7
3
8

.4
4
7
7

.43
6
0

.4
3
60

.5
28

8
.5

494
.53

15
.5

16
4

.5
164

.54
96

.5
29

1
.4

86
5

.35
48

clevelan
d

.2794
.1720

.3
0
6
7

.24
4
8

.2
21

3
.1

6
5
5

.1
2
8
8

.09
1
8

.0
9
18

.2
06

8
.2

257
.23

84
.2

34
5

.2
532

.26
14

.2
07

3
.2

32
9

.21
55

d
erm

atology
.9446

.7890
.7

543
.90

3
3

.9
2
2
7

.6
5
6
7

.8
3
4
1

.84
4
8

.8
4
48

.8
51

3
.9

045
.89

40
.9

31
3

.9
138

.93
42

.9
18

0
.9

5
3
1

.951
0

b
alan

ce
.6851

.6790
.5

113
.60

3
1

.8
3
4
7

.3
0
2
4

.2
1
6
0

.60
6
9

.6
0
69

.3
17

8
.5

922
.62

38
.6

07
5

.6
036

.61
59

.5
53

6
.5

69
5

.46
82

p
en

b
ased

.8731
.9

5
2
5

.6
41

5
.62

0
1

.9
0
1
6

.5
7
6
8

.5
7
5
6

.63
1
8

.6
3
18

.8
41

2
.8

838
.86

76
.8

51
5

.8
454

.87
75

.8
75

9
.8

46
2

.84
52

n
ew

th
y
roid

.8833
.8454

.7
132

.84
6
0

.8
8
7
1

.8
8
0
7

.6
9
8
1

.78
7
7

.7
8
77

.8
76

9
.8

519
.82

83
.8

25
1

.8
067

.85
33

.8
53

2
.8

20
7

.75
85

h
ep

atitis
.5

3
8
9

.1283
.3646

.4
23

0
.4

1
7
1

.3
1
2
4

.3
9
1
6

.21
6
9

.2
1
69

.3
19

1
.1

115
.25

36
.2

62
5

.2
390

.27
91

.2
17

7
.3

06
2

.27
03

con
tracep

tive
.2761

.1853
.1

943
.28

0
6

.1
9
0
9

.2
5
1
7

.0
1
0
5

.06
5
2

.0
6
52

.2
72

3
.2

845
.22

21
.3

0
9
2

.30
20

.27
04

.2
19

5
.2

98
4

.29
14

veh
icle

.6
3
6
1

.4983
.3647

.5
52

9
.6

0
4
3

.5
4
0
0

.4
2
5
2

.40
8
3

.4
0
83

.6
10

4
.6

185
.62

32
.5

96
7

.6
058

.62
89

.6
21

9
.5

88
2

.59
05

h
ab

erm
an

.0835
.1304

.0
862

.08
8
0

.0
7
0
1

.0
3
8
7

.0
0
1
8

.00
5
1

.0
0
51

.1
43

2
.1

521
.14

66
.0

85
3

.0
853

.14
64

.1
50

1
.2

4
9
7

.247
9

w
in

e
.9

5
2
0

.9287
.5876

.8
88

5
.8

8
0
2

.8
8
0
0

.6
8
8
5

.78
4
7

.7
8
47

.8
50

4
.9

222
.92

22
.9

05
3

.9
053

.90
55

.9
05

5
.8

76
6

.87
20

b
reast

.2781
.2191

.2
082

.3
0
9
9

.1
0
51

.0
0
0
0

.2
1
6
6

.14
1
7

.1
4
17

.1
71

6
.2

330
.14

01
.2

97
0

.2
970

.24
18

.0
73

7
.2

49
0

.29
30

germ
an

.3
0
8
2

.1104
.2400

.2
95

3
.2

2
6
8

.2
5
9
1

.1
8
5
8

.12
5
4

.1
2
54

.2
51

0
.3

049
.27

90
.3

03
8

.2
979

.27
48

.2
22

4
.2

90
1

.29
21

iris
.9160

.9160
.8

220
.9

3
8
0

.8
9
20

.9
3
0
0

.7
2
2
0

.86
0
0

.8
6
00

.8
96

0
.9

000
.90

00
.8

90
0

.8
800

.90
60

.8
96

0
.9

08
0

.90
00

w
iscon

sin
.9258

.9
3
3
5

.9
07

2
.90

2
0

.8
4
6
2

.8
5
0
9

.6
9
0
3

.89
8
4

.8
9
84

.9
12

2
.8

515
.76

66
.8

70
5

.8
593

.84
80

.7
73

5
.8

48
2

.85
12

tictacto
e

.6487
.9

9
4
9

.5
90

9
.88

9
1

.7
7
9
6

.4
2
2
2

.8
6
1
3

.18
8
1

.1
8
81

.9
37

5
.6

770
.69

87
.7

62
6

.7
432

.66
31

.6
92

8
.7

50
4

.70
49

p
im

a
.4233

.3564
.2

303
.38

9
6

.3
5
4
0

.4
0
0
2

.0
8
6
2

.12
3
9

.1
2
39

.3
79

5
.4

175
.41

69
.4

4
3
4

.43
70

.38
87

.3
44

8
.4

03
2

.39
68

m
agic

.5
6
4
3

.4462
.1623

.5
43

0
.4

3
8
4

.4
4
8
0

.1
0
9
2

.15
2
4

.1
5
24

.4
99

0
.5

183
.51

28
.4

99
6

.4
933

.49
83

.4
64

0
.5

12
6

.48
16

b
u

p
a

.2662
.2560

-.0047
.2

6
6
7

.2
4
0
9

.3
4
6
5

.0
1
84

.0
5
3
8

.0
5
38

.2
83

9
.312

4
.3

14
4

.2
44

4
.207

7
.32

22
.2

84
5

.2
27

4
.23

92
h

eart
.5644

.3379
.5

583
.5

9
4
8

.4
7
38

.4
4
5
9

.5
5
7
7

.50
9
7

.5
0
97

.5
01

7
.5

636
.51

68
.5

48
9

.5
484

.56
05

.5
47

2
.5

43
1

.53
83

au
stralian

.7092
.2752

.7
1
6
2

.70
4
2

.6
34

5
.6

9
4
7

.3
8
7
6

.58
8
4

.5
8
84

.6
30

0
.6

886
.62

20
.6

69
8

.6
930

.69
30

.6
32

7
.6

74
3

.66
69

crx
.7146

.2879
.7

2
6
2

.71
5
8

.5
99

1
.6

8
6
4

.5
8
3
2

.57
5
1

.5
7
51

.6
38

7
.7

196
.61

69
.7

17
0

.7
170

.69
69

.5
97

6
.7

03
2

.69
29

rin
g

.8
3
6
7

.3692
.5680

.7
62

7
.5

9
7
7

.6
6
7
5

-.0
0
7
6

.59
0
7

.5
9
0
7

.6
28

6
.71

35
.6

91
8

.7
78

6
.79

37
.71

89
.7

10
2

.7
76

3
.77

05
M

ean
.5866

.5237
.4

840
.59

5
3

.5
7
7
9

.5
1
6
7

.4
2
4
0

.44
8
4

.4
4
84

.5
64

3
.5

851
.56

79
.5

9
7
6

.59
40

.58
16

.5
52

1
.5

68
4

.53
96

M
ed

ian
.6202

.4722
.5

522
.61

1
6

.6
0
1
7

.5
5
7
3

.4
7
5
9

.53
4
6

.5
3
46

.5
99

7
.6

431
.62

26
.6

38
6

.6
4
4
5

.63
86

.6
03

8
.5

78
9

.56
44

T
ab

le
F

.1
:

R
esu

lts
fo

r
ka

p
p

a
over

sta
n

d
a
rd

d
a
ta

sets.

198



ge
n

et
ic

s-
b

as
ed

cl
a
ss

ic
a
l

b
as

e
d

ec
is

io
n

tr
ee

s
co

n
so

li
d

at
ed

d
ec

is
io

n
tr

ee
s

d
at

as
et

X
C

S
S

IA
O

C
C

E
C

G
A

ss
is

t
O

b
li

q
u

e-
D

T
C

A
R

T
A

Q
C

N
2

C
4
.5

ru
le

s
R

IP
P

E
R

C
4
.5

C
4
.4

C
H

A
ID

*
C

H
A

IC
C

T
C

45
C

T
C

4
4

C
T

C
H

A
ID

C
T

C
H

A
IC

n
u

rs
er

y
.7

9
69

.8
94

8
.8

16
2

.9
02

3
.9

2
9
0

.8
4
8
0

.7
66

7
.7

9
17

.8
3
67

.8
89

5
.8

87
4

.8
8
27

.9
10

4
.9

1
81

.8
76

2
.8

6
71

.8
3
63

.7
90

7
ab

al
on

e
.1

8
67

.1
95

2
.1

41
2

.2
44

5
.1

65
6

.2
1
2
9

.1
51

7
.2

6
8
0

.2
09

7
.1

7
37

.1
9
3
8

.1
6
99

.2
5
60

.2
51

2
.1

95
3

.1
5
98

.2
4
22

.1
22

6
ec

ol
i

.7
8
9
9

.6
94

8
.6

12
6

.7
6
67

.7
6
19

.7
3
8
2

.6
85

8
.7

1
45

.7
7
70

.7
43

7
.7

85
8

.7
7
69

.7
73

9
.7

7
39

.7
78

1
.7

5
07

.6
8
39

.6
27

3
ly

m
p

h
og

ra
p

h
y

.7
9
46

.7
97

0
.7

63
3

.7
87

3
.7

16
6

.7
7
6
1

.7
20

8
.8

1
0
8

.7
26

5
.7

6
34

.7
5
0
1

.7
0
97

.7
5
06

.7
50

6
.7

49
9

.7
2
69

.5
9
66

.3
27

8
ca

r
.7

9
55

.9
33

7
.7

75
2

.9
20

6
.9

8
3
8

.8
0
8
5

.8
68

2
.7

7
26

.8
6
81

.8
82

8
.9

08
0

.9
1
38

.9
56

0
.9

5
54

.8
33

2
.8

6
91

.9
2
16

.8
97

6
zo

o
.8

8
88

.9
52

5
.9

36
6

.9
36

6
.9

6
0
5

.9
1
0
5

.9
14

5
.8

7
10

.9
3
10

.9
11

1
.9

41
0

.9
3
10

.9
51

4
.9

5
14

.9
11

0
.9

0
70

.8
8
74

.7
44

4
fl

ar
e

.5
3
17

.5
20

1
.7

05
4

.7
39

9
.7

31
7

.7
4
4
8

.6
59

3
.6

6
60

.7
0
15

.6
71

3
.7

42
0

.7
2
98

.7
5
7
0

.7
54

7
.7

41
4

.6
9
17

.7
4
41

.6
95

5
gl

as
s

.6
6
47

.7
3
4
3

.4
9
72

.6
14

2
.6

71
2

.6
8
7
0

.6
05

9
.6

0
79

.6
2
76

.6
48

0
.6

68
7

.6
5
47

.6
35

9
.6

3
59

.6
74

0
.6

4
51

.6
2
53

.4
67

4
cl

ev
el

an
d

.5
4
41

.4
95

6
.5

6
9
7

.5
42

1
.4

91
5

.4
9
1
7

.5
12

6
.5

3
88

.5
3
87

.4
40

4
.5

18
2

.5
1
83

.5
35

3
.5

3
51

.5
56

8
.4

4
23

.5
6
02

.4
53

0
d

er
m

at
ol

og
y

.9
5
59

.8
32

4
.8

04
5

.9
22

9
.9

38
5

.7
3
2
2

.8
70

4
.8

7
98

.9
0
79

.8
81

1
.9

24
6

.9
1
62

.9
45

7
.9

3
16

.9
47

5
.9

3
46

.9
6
2
6

.9
6
09

b
al

an
ce

.8
2
69

.8
24

0
.7

00
5

.7
85

6
.9

0
5
6

.6
2
2
4

.5
71

2
.7

8
72

.8
0
64

.5
06

9
.7

72
8

.7
8
40

.7
87

2
.7

8
40

.7
87

8
.7

2
13

.7
6
54

.6
50

2
p

en
b

as
ed

.8
8
58

.9
5
7
3

.6
7
75

.6
58

4
.9

11
5

.6
2
0
0

.6
18

5
.6

6
91

.8
7
20

.8
57

1
.8

95
5

.8
8
09

.8
66

4
.8

6
09

.8
89

8
.8

8
84

.8
6
16

.8
60

7
n

ew
th

y
ro

id
.9

4
60

.9
31

2
.8

61
4

.9
27

4
.9

4
7
9

.9
4
4
2

.8
42

8
.9

0
70

.9
0
23

.9
43

3
.9

30
2

.9
1
63

.9
16

3
.9

0
70

.9
30

2
.9

2
84

.9
1
53

.8
72

6
h

ep
at

it
is

.9
0
0
0

.8
40

0
.7

90
0

.8
5
75

.8
3
25

.8
2
5
0

.8
72

5
.8

6
25

.8
1
25

.7
97

5
.7

87
5

.8
1
25

.8
37

5
.8

1
25

.8
32

5
.7

7
50

.7
4
86

.7
12

5
co

n
tr

ac
ep

ti
ve

.5
4
06

.4
90

3
.4

51
7

.5
44

6
.4

77
1

.5
1
3
3

.4
25

8
.4

4
47

.5
1
66

.5
21

0
.5

36
3

.4
9
96

.5
5
1
9

.5
45

8
.5

29
7

.4
8
69

.5
4
57

.5
27

6
ve

h
ic

le
.7

2
7
0

.6
23

9
.5

23
3

.6
6
46

.7
0
33

.6
5
3
6

.5
67

2
.5

5
79

.6
4
47

.7
07

6
.7

13
9

.7
1
75

.6
97

4
.7

0
40

.7
21

7
.7

1
65

.6
9
12

.6
92

9
h

ab
er

m
an

.7
1
90

.6
59

3
.6

74
5

.6
86

8
.6

24
8

.6
9
6
1

.2
79

1
.7

0
26

.6
9
60

.5
07

1
.7

22
2

.7
1
89

.7
28

8
.7

2
8
8

.7
11

6
.6

5
29

.7
0
50

.6
86

3
w

in
e

.9
6
8
3

.9
52

6
.7

27
0

.9
2
66

.9
2
08

.9
2
1
1

.7
94

7
.8

5
95

.9
4
90

.9
00

6
.9

49
0

.9
4
90

.9
37

6
.9

3
76

.9
37

7
.9

3
77

.9
1
85

.9
15

3
b

re
as

t
.7

4
89

.6
94

6
.6

54
0

.7
39

4
.6

28
4

.7
0
7
6

.7
28

5
.7

2
21

.7
0
71

.6
14

4
.7

43
7

.6
7
88

.7
65

4
.7

6
5
4

.7
44

5
.6

0
15

.7
2
72

.7
11

3
ge

rm
an

.7
3
1
2

.6
77

0
.6

70
0

.7
2
60

.6
7
06

.7
0
1
0

.7
14

4
.7

2
50

.7
1
16

.6
66

6
.7

31
0

.7
1
40

.7
18

0
.7

1
60

.7
21

4
.6

6
60

.7
2
42

.6
61

4
ir

is
.9

4
40

.9
44

0
.8

81
3

.9
5
8
7

.9
2
8
0

.9
5
3
3

.8
14

7
.9

0
67

.9
4
00

.9
30

7
.9

33
3

.9
3
33

.9
26

7
.9

2
00

.9
37

3
.9

3
07

.9
3
87

.9
33

3
w

is
co

n
si

n
.9

6
60

.9
6
9
6

.9
5
81

.9
55

5
.9

30
6

.9
3
2
7

.8
33

3
.9

5
47

.9
5
03

.9
59

6
.9

33
3

.8
9
84

.9
42

0
.9

3
70

.9
31

7
.9

0
10

.9
3
14

.9
32

7
ti

ct
ac

to
e

.8
5
32

.9
9
7
7

.8
1
21

.9
51

1
.9

00
8

.7
2
6
5

.9
40

0
.7

0
56

.8
6
01

.9
71

6
.8

58
1

.8
6
85

.8
93

8
.8

8
47

.8
52

8
.8

6
06

.8
9
20

.8
59

9
p

im
a

.7
4
6
6

.7
19

0
.6

96
3

.7
3
27

.7
0
83

.7
1
8
7

.6
70

3
.6

7
32

.7
2
84

.7
00

5
.7

35
7

.7
3
44

.7
44

8
.7

4
22

.7
26

0
.6

9
95

.7
3
28

.7
15

9
m

ag
ic

.8
1
2
4

.7
53

7
.6

87
7

.7
9
94

.7
4
40

.7
4
7
6

.6
75

1
.6

8
66

.7
8
43

.7
68

9
.7

94
4

.7
9
07

.7
86

0
.7

8
39

.7
77

2
.7

5
55

.7
9
02

.7
61

8
b

u
p

a
.6

6
03

.6
38

3
.4

52
2

.6
48

1
.6

30
7

.6
8
9
9

.4
4
58

.5
9
4
2

.6
4
17

.6
3
59

.6
7
25

.6
66

7
.6

40
6

.6
20

3
.6

71
9

.6
4
99

.6
3
25

.6
20

9
h

ea
rt

.7
8
52

.6
75

6
.7

80
0

.8
0
0
7

.7
4
0
0

.7
2
5
9

.7
85

9
.7

6
67

.7
7
78

.7
47

4
.7

85
2

.7
6
30

.7
77

8
.7

7
78

.7
83

0
.7

7
48

.7
7
48

.7
71

1
au

st
ra

li
an

.8
5
59

.6
53

0
.8

5
9
1

.8
53

9
.8

20
3

.8
4
6
4

.7
13

0
.8

0
14

.8
4
81

.8
13

3
.8

46
4

.8
1
45

.8
36

2
.8

4
93

.8
48

7
.8

1
86

.8
3
86

.8
34

2
cr

x
.8

5
79

.6
56

1
.8

6
3
7

.8
58

5
.8

01
0

.8
4
3
9

.7
88

9
.7

9
49

.8
5
39

.8
17

7
.8

60
7

.8
1
17

.8
57

6
.8

5
76

.8
49

6
.8

0
16

.8
5
15

.8
46

6
ri

n
g

.9
1
8
4

.6
86

2
.7

84
6

.8
8
14

.7
9
89

.8
3
3
8

.4
92

2
.7

9
59

.8
4
92

.8
14

1
.8

56
8

.8
4
59

.8
89

2
.8

9
68

.8
59

5
.8

5
51

.8
8
81

.8
85

1
M

ea
n

.7
7
81

.7
46

5
.7

04
2

.7
77

8
.7

65
8

.7
3
9
1

.6
77

7
.7

2
80

.7
6
59

.7
39

6
.7

79
3

.7
6
67

.7
8
5
8

.7
83

0
.7

76
9

.7
4
72

.7
6
45

.7
18

0
M

ed
ia

n
.7

9
6
2

.7
26

7
.7

16
2

.7
9
34

.7
8
04

.7
3
5
2

.7
13

7
.7

4
59

.7
9
54

.7
66

2
.7

86
7

.7
8
74

.7
86

6
.7

8
39

.7
85

4
.7

6
52

.7
7
01

.7
30

1

T
ab

le
F

.2
:

R
es

u
lt

s
fo

r
a
cc

u
ra

cy
ov

er
st

a
n

d
a
rd

d
a
ta

se
ts

.

199



APPENDIX F. FULL RESULT TABLES FOR THE SECOND
EXPERIMENT FROM THE CONTRIBUTIONS TO THE
CONSOLIDATION OF DECISION TREE ALGORITHMS
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APPENDIX F. FULL RESULT TABLES FOR THE SECOND
EXPERIMENT FROM THE CONTRIBUTIONS TO THE
CONSOLIDATION OF DECISION TREE ALGORITHMS
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Appendix G

Full result tables for the
third experiment from the
contributions to the
consolidation of decision
tree algorithms

This appendix contains the full result tables related to the summary tables
shown on Section 3.6.3. These tables show the kappa and accuracy values (for
standard classification) and GM values (for imbalanced classification) for all
datasets and different pruning strategies, using a coverage value of 99%.

Numbers in bold indicate the best average value for each dataset.
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APPENDIX G. FULL RESULT TABLES FOR THE THIRD EXPERIMENT
FROM THE CONTRIBUTIONS TO THE CONSOLIDATION OF
DECISION TREE ALGORITHMS

base decision trees consolidated decision trees

dataset pruned NRT unpruned PET pruned NRT unpruned PET

nursery .8684 .8684 .8797 .8797 .7577 .7577 .7534 .7033

abalone .1533 .151 .1464 .1464 .1264 .1264 .0829 .0764

ecoli .6805 .6883 .6888 .6888 .5643 .5643 .5133 .5025

lymphography .5304 .5408 .5386 .5386 .1415 .1415 .1435 .107

car .9076 .9047 .9034 .9034 .8297 .8297 .8226 .7941

zoo .9398 .9365 .9365 .9365 .8516 .8516 .7854 .6932

flare .6893 .6861 .6832 .6832 .6672 .6672 .622 .6203

glass .5391 .5164 .5164 .5164 .4865 .4865 .3924 .3548

cleveland .2256 .2345 .2532 .2532 .2329 .2329 .2248 .2155

dermatology .9383 .9313 .9138 .9138 .9531 .9531 .966 .951

balance .5996 .6075 .6036 .6036 .5695 .5695 .4909 .4682

penbased .8373 .8515 .8454 .8454 .8462 .8462 .847 .8452

newthyroid .8686 .8251 .8067 .8067 .8207 .8207 .8014 .7585

hepatitis .1908 .2625 .286 .239 .0505 .3062 .2822 .2703

contraceptive .2909 .3092 .302 .302 .2984 .2984 .2916 .2914

vehicle .5902 .5967 .6015 .6058 .5882 .5882 .5916 .5905

haberman .0265 .0853 .0853 .0853 .1529 .2497 .2448 .2479

wine .8797 .9053 .9053 .9053 .8766 .8766 .8759 .872

breast .297 .297 .297 .297 .249 .249 .293 .293

german .2714 .3038 .2979 .2979 .2901 .2901 .2938 .2921

iris .92 .89 .88 .88 .908 .908 .9109 .9

wisconsin .841 .8705 .8593 .8593 .8482 .8482 .8552 .8512

tictactoe .7605 .7626 .7432 .7432 .7504 .7504 .7054 .7049

pima .4043 .4434 .437 .437 .4032 .4032 .397 .3968

magic .5266 .4996 .4933 .4933 .5126 .5126 .4812 .4816

bupa .2444 .2444 .2077 .2077 .2274 .2274 .2392 .2392

heart .5489 .5489 .5484 .5484 .5431 .5431 .5383 .5383

australian .6837 .6698 .693 .693 .6743 .6743 .6669 .6669

crx .7172 .717 .717 .717 .7032 .7032 .6917 .6929

ring .7482 .7786 .7867 .7937 .7763 .7763 .7726 .7705

Mean .5906 .5976 .5952 .594 .5567 .5684 .5526 .5396

Table G.1: Results for different pruning strategies for CHAID* over standard
datasets using kappa as measure.
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base decision trees consolidated decision trees

dataset pruned NRT unpruned PET pruned NRT unpruned PET

nursery .9104 .9104 .9181 .9181 .8363 .8363 .8302 .7907

abalone .2584 .256 .2512 .2512 .2422 .2422 .1323 .1226

ecoli .7661 .7739 .7739 .7739 .6839 .6839 .641 .6273

lymphography .7494 .7506 .7506 .7506 .5966 .5966 .3544 .3278

car .9571 .956 .9554 .9554 .9216 .9216 .914 .8976

zoo .9572 .9514 .9514 .9514 .8874 .8874 .8212 .7444

flare .7615 .757 .7547 .7547 .7441 .7441 .697 .6955

glass .6572 .6359 .6359 .6359 .6253 .6253 .5027 .4674

cleveland .5355 .5353 .5351 .5351 .5602 .5602 .4475 .453

dermatology .9512 .9457 .9316 .9316 .9626 .9626 .9729 .9609

balance .784 .7872 .784 .784 .7654 .7654 .6696 .6502

penbased .8536 .8664 .8609 .8609 .8616 .8616 .8624 .8607

newthyroid .9395 .9163 .907 .907 .9153 .9153 .8982 .8726

hepatitis .8275 .8375 .8125 .8125 .835 .7486 .7161 .7125

contraceptive .5363 .5519 .5458 .5458 .5457 .5457 .5276 .5276

vehicle .693 .6974 .7009 .704 .6912 .6912 .6937 .6929

haberman .7288 .7288 .7288 .7288 .73 .705 .6831 .6863

wine .9208 .9376 .9376 .9376 .9185 .9185 .9178 .9153

breast .7654 .7654 .7654 .7654 .7272 .7272 .7113 .7113

german .7127 .718 .716 .716 .7242 .7242 .662 .6614

iris .9467 .9267 .92 .92 .9387 .9387 .9406 .9333

wisconsin .9285 .942 .937 .937 .9314 .9314 .9345 .9327

tictactoe .8929 .8938 .8847 .8847 .892 .892 .8601 .8599

pima .7266 .7448 .7422 .7422 .7328 .7328 .7158 .7159

magic .7923 .786 .7839 .7839 .7902 .7902 .7614 .7618

bupa .6406 .6406 .6203 .6203 .6388 .6325 .6209 .6209

heart .7778 .7778 .7778 .7778 .7748 .7748 .7711 .7711

australian .842 .8362 .8493 .8493 .8386 .8386 .8342 .8342

crx .8576 .8576 .8576 .8576 .8515 .8515 .8458 .8466

ring .8741 .8892 .8932 .8968 .8881 .8881 .8862 .8851

Mean .7848 .7858 .7828 .783 .7684 .7645 .7275 .718

Table G.2: Results for different pruning strategies for CHAID* over standard
datasets using accuracy as measure.
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APPENDIX G. FULL RESULT TABLES FOR THE THIRD EXPERIMENT
FROM THE CONTRIBUTIONS TO THE CONSOLIDATION OF
DECISION TREE ALGORITHMS

base decision trees consolidated decision trees

dataset pruned NRT unpruned PET pruned NRT unpruned PET

nursery .8341 .8341 .8381 .8303 .8171 .8171 .8076 .8073

abalone .0962 .0962 .0843 .0686 .0924 .0924 .0906 .0887

ecoli .703 .703 .6989 .6906 .6926 .6926 .6613 .663

lymphography .5367 .5367 .5269 .4513 .5133 .5133 .4861 .4858

car .7986 .7986 .8285 .8091 .6483 .6483 .7427 .7413

zoo .9215 .9215 .9084 .9086 .8826 .8826 .8771 .8771

flare .6676 .6676 .6479 .6509 .6667 .6667 .6063 .6101

glass .5494 .5494 .5345 .5315 .5496 .5496 .5301 .5291

cleveland .2257 .2257 .2375 .2384 .2614 .2614 .2046 .2073

dermatology .9045 .9045 .9011 .894 .9342 .9342 .918 .918

balance .5922 .5922 .6469 .6238 .6159 .6159 .5536 .5536

penbased .8838 .8838 .8818 .8676 .8775 .8775 .8759 .8759

newthyroid .8519 .8519 .8531 .8283 .8533 .8533 .8532 .8532

hepatitis .1115 .1115 .2395 .2536 .2791 .2791 .2177 .2177

contraceptive .2845 .2845 .2517 .2221 .2704 .2704 .2195 .2195

vehicle .6185 .6185 .6216 .6232 .6289 .6289 .6219 .6219

haberman .1521 .1521 .1466 .1466 .1464 .1464 .1565 .1501

wine .9222 .9222 .9222 .9222 .9055 .9055 .9055 .9055

breast .233 .233 .1299 .1401 .2418 .2418 .0737 .0737

german .3049 .3049 .2809 .279 .2748 .2748 .2224 .2224

iris .9 .9 .9 .9 .906 .906 .896 .896

wisconsin .8515 .8515 .7703 .7666 .848 .848 .7793 .7735

tictactoe .677 .677 .7085 .6987 .6631 .6631 .6928 .6928

pima .4175 .4175 .4203 .4169 .3887 .3887 .3448 .3448

magic .5183 .5183 .5117 .5128 .4983 .4983 .464 .464

bupa .3124 .3124 .3307 .3144 .3222 .3222 .2845 .2845

heart .5636 .5636 .5203 .5168 .5605 .5605 .5472 .5472

australian .6886 .6886 .6385 .622 .693 .693 .6327 .6327

crx .7196 .7196 .6262 .6169 .6969 .6969 .5988 .5976

ring .7135 .7135 .7108 .6918 .7189 .7189 .7102 .7102

Mean .5851 .5851 .5773 .5679 .5816 .5816 .5525 .5521

Table G.3: Results for different pruning strategies for C4.5 over standard
datasets using kappa as measure.
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base decision trees consolidated decision trees

dataset pruned NRT unpruned PET pruned NRT unpruned PET

nursery .8874 .8874 .8889 .8827 .8762 .8762 .8674 .8671

abalone .1938 .1938 .1843 .1699 .1953 .1953 .1622 .1598

ecoli .7858 .7858 .7828 .7769 .7781 .7781 .7489 .7507

lymphography .7501 .7501 .7434 .7097 .7499 .7499 .7269 .7269

car .908 .908 .9219 .9138 .8332 .8332 .8697 .8691

zoo .941 .941 .931 .931 .911 .911 .907 .907

flare .742 .742 .727 .7298 .7414 .7414 .6885 .6917

glass .6687 .6687 .6547 .6547 .674 .674 .645 .6451

cleveland .5182 .5182 .5149 .5183 .5568 .5568 .4376 .4423

dermatology .9246 .9246 .9218 .9162 .9475 .9475 .9346 .9346

balance .7728 .7728 .8 .784 .7878 .7878 .7213 .7213

penbased .8955 .8955 .8936 .8809 .8898 .8898 .8884 .8884

newthyroid .9302 .9302 .9302 .9163 .9302 .9302 .9284 .9284

hepatitis .7875 .7875 .8 .8125 .8325 .8325 .775 .775

contraceptive .5363 .5363 .5152 .4996 .5297 .5297 .4869 .4869

vehicle .7139 .7139 .7163 .7175 .7217 .7217 .7165 .7165

haberman .7222 .7222 .7189 .7189 .7116 .7116 .6529 .6529

wine .949 .949 .949 .949 .9377 .9377 .9377 .9377

breast .7437 .7437 .6681 .6788 .7445 .7445 .6015 .6015

german .731 .731 .71 .714 .7214 .7214 .666 .666

iris .9333 .9333 .9333 .9333 .9373 .9373 .9307 .9307

wisconsin .9333 .9333 .9 .8984 .9317 .9317 .9035 .901

tictactoe .8581 .8581 .8716 .8685 .8528 .8528 .8606 .8606

pima .7357 .7357 .7357 .7344 .726 .726 .6995 .6995

magic .7944 .7944 .7902 .7907 .7772 .7772 .7555 .7555

bupa .6725 .6725 .6783 .6667 .6719 .6719 .6499 .6499

heart .7852 .7852 .763 .763 .783 .783 .7748 .7748

australian .8464 .8464 .8217 .8145 .8487 .8487 .8186 .8186

crx .8607 .8607 .8147 .8117 .8496 .8496 .8009 .8016

ring .8568 .8568 .8554 .8459 .8595 .8595 .8551 .8551

Mean .7793 .7793 .7712 .7667 .7769 .7769 .747 .7472

Table G.4: Results for different pruning strategies for C4.5 over standard
datasets using accuracy as measure.
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APPENDIX G. FULL RESULT TABLES FOR THE THIRD EXPERIMENT
FROM THE CONTRIBUTIONS TO THE CONSOLIDATION OF
DECISION TREE ALGORITHMS

base decision trees consolidated decision trees

dataset pruned NRT unpruned PET pruned NRT unpruned PET

abalone19 0 0 0 0 0 .6156 .6156 .6443

yeast6 .1302 .3111 .3106 .3111 .608 .7193 .8232 .7107

yeast5 .7715 .8112 .8354 .8357 .8353 .8353 .9639 .9168

yeast4 .3844 .2322 .2122 .2124 .0547 .6867 .8178 .7656

yeast2 vs 8 .7274 .7274 .7251 .7264 .7283 .7283 .7052 .7122

glass5 .9876 .9876 .9876 .9876 .237 .9582 .958 .9613

abalone9 vs 18 .2975 .2975 .4317 .3628 0 .7108 .7108 .7079

glass4 .303 .414 .414 .414 .2534 .7979 .7763 .7341

ecoli4 .8123 .8123 .8381 .8381 .8565 .8565 .8866 .8312

glass2 0 0 0 0 0 .7058 .7058 .6859

vowel0 .8722 .9298 .9298 .9298 .9152 .9152 .952 .9348

page-blocks0 .9002 .8977 .9059 .9025 .9012 .9012 .9421 .9289

ecoli3 .6749 .6629 .6516 .6516 .7696 .7696 .8872 .8132

yeast3 .867 .8541 .8508 .8508 .8732 .8732 .9221 .8984

glass6 .792 .792 .792 .792 .8392 .8392 .8977 .8224

segment0 .9829 .9761 .9761 .9761 .9868 .9868 .9881 .9869

ecoli2 .7564 .7564 .7564 .7576 .8649 .8649 .8757 .8595

new-thyroid1 .9503 .9175 .9175 .9175 .9397 .9397 .9535 .9391

new-thyroid2 .9355 .9019 .9192 .9019 .9357 .9357 .9496 .9312

ecoli1 .8221 .8194 .8194 .8194 .8528 .8528 .8968 .8801

vehicle0 .9023 .9186 .9221 .9193 .9214 .9214 .9364 .9219

glass0-1-2-3 vsvs vs4-5-6 .8766 .7726 .7726 .8773 .9048 .9048 .9136 .9022

haberman .0931 .2147 .2147 .2147 .2791 .617 .6205 .6188

vehicle1 .5033 .5274 .5764 .5079 .6316 .6316 .715 .7009

vehicle2 .9221 .9454 .9446 .9429 .9408 .9408 .9411 .9358

vehicle3 .5542 .5542 .5874 .5497 .555 .555 .7452 .7381

yeast1 .5889 .5889 .5934 .5934 .6457 .6457 .7081 .7044

glass0 .7726 .8882 .8787 .7726 .7791 .7791 .778 .7766

iris0 .9897 .9897 .9897 .9897 .9897 .9897 .9897 .9897

pima .6953 .7182 .7197 .7147 .6782 .6782 .7078 .704

ecoli0 vs 1 .9831 .9831 .9831 .9831 .9831 .9831 .9781 .9739

wisconsin .9411 .9543 .9543 .9466 .9403 .9403 .943 .9358

glass1 .6278 .647 .6302 .605 .6278 .6278 .6651 .6652

Mean .6793 .691 .6982 .691 .6766 .8093 .8445 .8252

Table G.5: Results for different pruning strategies for CHAID* over imbalanced
datasets using GM as measure.

208



base decision trees consolidated decision trees

dataset pruned NRT unpruned PET pruned NRT unpruned PET

abalone19 0 0 0 0 0 .4383 .4383 .4352

yeast6 .566 .7335 .7335 .7339 .5342 .7203 .7937 .7947

yeast5 .8612 .8612 .872 .8726 .8648 .8648 .9315 .9284

yeast4 .4208 .4208 .4448 .2993 .3527 .5193 .7065 .7072

yeast2 vs 8 .1723 .1723 .0984 .0984 .7283 .7283 .7555 .7597

glass5 .8804 .8804 .8804 .8804 .9437 .9437 .9774 .9774

abalone9 vs 18 .3882 .3882 .5551 .5373 .0419 .6453 .6934 .6934

glass4 .5769 .5769 .5769 .5848 .742 .8184 .8508 .8508

ecoli4 .7777 .7777 .8159 .8201 .8321 .8321 .8369 .8369

glass2 .4427 .4427 .4427 .3464 .1171 .624 .6219 .6219

vowel0 .9683 .9683 .9627 .9627 .9286 .9286 .9367 .9367

page-blocks0 .9225 .9225 .923 .9177 .9167 .9167 .933 .9331

ecoli3 .6773 .6773 .7119 .696 .7472 .7472 .8161 .8133

yeast3 .8479 .8479 .8594 .8552 .8594 .8594 .8801 .8799

glass6 .794 .794 .7833 .7833 .8586 .8586 .8625 .8554

segment0 .9814 .9814 .9845 .9816 .9896 .9896 .9933 .9933

ecoli2 .8497 .8497 .8497 .8401 .8764 .8764 .876 .876

new-thyroid1 .946 .946 .946 .9155 .9571 .9571 .959 .959

new-thyroid2 .9327 .9327 .9327 .9327 .9643 .9643 .9587 .9593

ecoli1 .8538 .8538 .8538 .8481 .8623 .8623 .8707 .8707

vehicle0 .9378 .9378 .9334 .9282 .929 .929 .9266 .9257

glass0-1-2-3 vsvs vs4-5-6 .7845 .7845 .7619 .9274 .8606 .8606 .8704 .8686

haberman .3563 .3563 .3544 .3544 .4513 .5323 .5917 .5883

vehicle1 .6512 .6512 .625 .6137 .6537 .6537 .6802 .6779

vehicle2 .9453 .9453 .9405 .9413 .9497 .9497 .9472 .9469

vehicle3 .6728 .6728 .6839 .6722 .6628 .6628 .6887 .6876

yeast1 .6276 .6276 .6575 .6502 .6545 .6545 .66 .6581

glass0 .921 .921 .9274 .7568 .7714 .7714 .758 .7529

iris0 .9897 .9897 .9897 .9897 .9897 .9897 .9897 .9897

pima .7023 .7023 .7068 .7026 .6849 .6849 .6802 .6774

ecoli0 vs 1 .9831 .9831 .976 .976 .9816 .9816 .9688 .9688

wisconsin .9315 .9315 .9449 .8953 .926 .926 .9429 .8923

glass1 .7198 .7198 .7211 .7102 .706 .706 .6937 .6948

Mean .7298 .7349 .7409 .728 .7375 .7999 .8209 .8185

Table G.6: Results for different pruning strategies for C4.5 over imbalanced
datasets using GM as measure.
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APPENDIX G. FULL RESULT TABLES FOR THE THIRD EXPERIMENT
FROM THE CONTRIBUTIONS TO THE CONSOLIDATION OF
DECISION TREE ALGORITHMS

base decision trees consolidated decision trees

dataset pruned NRT unpruned PET pruned NRT unpruned PET

abalone19 .0806 .1558 .1558 .1558 .4739 .4739 .4791 .4388

yeast6 .8042 .7262 .7253 .7253 .8333 .8333 .8119 .723

yeast5 .921 .9059 .8203 .8203 .9415 .9415 .9466 .8633

yeast4 .6952 .6236 .5629 .5635 .8018 .8018 .7994 .7269

yeast2 vs 8 .7313 .7039 .7039 .7039 .7546 .7546 .7418 .7493

glass5 .9274 .9316 .9316 .9316 .9507 .9507 .9518 .9522

abalone9 vs 18 .5534 .5456 .5456 .5456 .6695 .6695 .6655 .6423

glass4 .8406 .7966 .7993 .8045 .8268 .8268 .7241 .7224

ecoli4 .8184 .8484 .8221 .8221 .8009 .8009 .8295 .7636

glass2 .66 .6572 .6572 .6572 .6069 .6069 .584 .4832

vowel0 .9367 .9404 .9415 .9415 .9395 .9395 .9427 .8983

page-blocks0 .9435 .9244 .9206 .9195 .9364 .9364 .9367 .9171

ecoli3 .8338 .83 .7858 .7858 .8869 .8869 .8898 .8161

yeast3 .8783 .92 .909 .9087 .9238 .9238 .9303 .8941

glass6 .8868 .8071 .8048 .8071 .8367 .8367 .8795 .8132

segment0 .9891 .9898 .9904 .9893 .9831 .9831 .9862 .982

ecoli2 .8452 .8489 .8398 .8489 .8373 .8373 .8329 .814

new-thyroid1 .9741 .9595 .9595 .9595 .9556 .9556 .9574 .9315

new-thyroid2 .9473 .9916 .9916 .9916 .9496 .9496 .9502 .9416

ecoli1 .9222 .882 .8818 .8818 .8909 .8909 .8911 .8813

vehicle0 .9294 .9209 .9172 .9129 .9212 .9212 .9251 .9048

glass-0-1-2-3 vs 4-5-6 .8898 .7916 .7681 .9135 .908 .908 .8972 .8618

haberman .6189 .5368 .5237 .5237 .5792 .5792 .5922 .5813

vehicle1 .7227 .7316 .7252 .7246 .7138 .7138 .7078 .6793

vehicle2 .9649 .9508 .9524 .9532 .9427 .9427 .9391 .9224

vehicle3 .7297 .7412 .7445 .7342 .7297 .7297 .7255 .6976

yeast1 .7012 .7186 .7165 .7165 .7014 .7014 .6991 .6965

glass0 .7617 .9223 .9092 .7872 .7731 .7731 .752 .738

iris0 .9897 .9897 .9897 .9897 .9897 .9897 .9877 .9877

pima .7174 .693 .705 .6995 .7089 .7089 .7092 .7015

ecoli0 vs 1 .976 .9831 .9831 .9831 .9816 .9816 .9788 .9774

wisconsin .9436 .9492 .9434 .9477 .9463 .9463 .9546 .9513

glass1 .7002 .6965 .69 .6632 .6922 .6922 .6931 .6827

Mean .8132 .8065 .7975 .7974 .8299 .8299 .827 .7981

Table G.7: Results for different pruning strategies for CHAID* over SMOTE-
preprocessed imbalanced datasets using GM as measure.
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base decision trees consolidated decision trees

dataset pruned NRT unpruned PET pruned NRT unpruned PET

abalone19 .1558 .1558 .1558 .1559 .4794 .4794 .4784 .4726

yeast6 .8048 .8048 .805 .805 .8241 .8241 .8204 .8171

yeast5 .9445 .9445 .9324 .9324 .9608 .9608 .9535 .9538

yeast4 .6521 .6521 .6519 .6527 .7527 .7527 .7425 .7413

yeast2 vs 8 .7402 .7402 .7403 .7403 .8077 .8077 .825 .8257

glass5 .872 .872 .872 .872 .9136 .9136 .918 .918

abalone9 vs 18 .5319 .5319 .5347 .5357 .6157 .6157 .6086 .5971

glass4 .8443 .8443 .8443 .8443 .8377 .8377 .8306 .834

ecoli4 .741 .741 .741 .741 .8551 .8551 .8469 .8477

glass2 .65 .65 .6535 .6535 .734 .734 .7055 .6976

vowel0 .9357 .9357 .9362 .9379 .9508 .9508 .9513 .9513

page-blocks0 .9428 .9428 .939 .9371 .9442 .9442 .939 .939

ecoli3 .7442 .7442 .761 .7625 .8636 .8636 .8566 .8484

yeast3 .8843 .8843 .8819 .8841 .9067 .9067 .8875 .8874

glass6 .8662 .8662 .8662 .8691 .8545 .8545 .8561 .8561

segment0 .9944 .9944 .9944 .9944 .9888 .9888 .9875 .9873

ecoli2 .8809 .8809 .8757 .8696 .8472 .8472 .8328 .8356

new-thyroid1 .9741 .9741 .9741 .9741 .9562 .9562 .9586 .9586

new-thyroid2 .9677 .9677 .9677 .9677 .9565 .9565 .9576 .9576

ecoli1 .9125 .9125 .9106 .9058 .8884 .8884 .8606 .8579

vehicle0 .9139 .9139 .9117 .9113 .9296 .9296 .9256 .9238

glass0-1-2-3 vs 4-5-6 .7726 .7726 .7726 .8721 .8881 .8881 .886 .8866

haberman .6074 .6074 .5964 .5882 .5977 .5977 .5978 .59

vehicle1 .6838 .6838 .6803 .675 .7229 .7229 .699 .6942

vehicle2 .9486 .9486 .9494 .9446 .9473 .9473 .947 .9468

vehicle3 .7085 .7085 .6911 .6821 .7174 .7174 .7033 .7023

yeast1 .7135 .7135 .7147 .7125 .6928 .6928 .6669 .6638

glass0 .8668 .8668 .8721 .7644 .8032 .8032 .781 .7735

iris0 .9897 .9897 .9897 .9897 .9877 .9877 .9877 .9877

pima .7128 .7128 .7096 .7093 .704 .704 .6785 .6776

ecoli0 vs 1 .9725 .9725 .9725 .9725 .9779 .9779 .9661 .9659

wisconsin .9454 .9454 .9207 .955 .9435 .9435 .923 .9486

glass1 .748 .748 .7457 .7429 .7176 .7176 .7223 .7228

Mean .8068 .8068 .805 .8047 .8354 .8354 .8273 .8263

Table G.8: Results for different pruning strategies for C45 over SMOTE-
preprocessed imbalanced datasets using GM as measure.
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Appendix H

Performance of sixteen
PART variants on UCI
datasets

This appendix describes the experiment that was used to determine the best
of the 16 PART variants proposed in Section 4.2. This work was published in
[85].

This appendix contains the table with the characteristics for the 36 real
world problem datasets used in the study mentioned in Section 4.2. The datasets
whose names end with the subindex 2 represent two-class versions of multi-class
datasets. This conversion was done by grouping all classes other than the one
with the least examples (the same way it was done for imbalanced datasets in
the reference work [53]). In these datasets the number between parentheses for
the #classes column represents the number of classes on the original dataset.

The 36 real world problem datasets that were used for this experiments are
described in Table H.1.

This experiment compares the 16 PART variants using five performance
metrics, grouped into three groups: discriminating performance, structural com-
plexity and computational cost.

For discriminating capacity the AUC and the error rate are used. For the
structural complexity of the generated models two metrics are used: the number
of internal nodes (number of decisions) of the ruleset, referred to as Complexity,
and the average length of the rules (also measured in number of decisions),
referred to as Length. The computational cost is measured as the time (in
milliseconds) taken to build the classifier.

Only the analysis of statistical significance of the results is included.
For each of the metrics, a table with the average values obtained with each

variant and a figure with the related CD diagram are given. These CD diagrams
graphically show the presence or absence of significant differences based on the
distance between the average ranks of two algorithms as [39] proposed.
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APPENDIX H. PERFORMANCE OF SIXTEEN PART VARIANTS ON
UCI DATASETS

#features

#discrete

dataset #examples #nominals #ordinals #continuous #total #classes
%min. size of

class min. class

breast-w 699 10 10 2 34.5 241

heartc 303 7 1 5 13 2 45.87 139

spam 4601 57 57 2 39.4 1813

hypo 3163 18 7 25 2 4.77 151

liver 345 6 6 2 42.03 145

lymph 148 17 1 18 4 1.35 2

lymph2 148 17 1 18 2 (4) 41.22 61

credit a 690 8 6 14 2 44.49 307

vehicle 846 18 18 4 23.52 199

vehicle2 846 18 18 2 (4) 23.52 199

iris 150 4 4 3 33.33 50

iris2 150 4 4 2 (3) 33.33 50

glass 214 9 9 7 4.2 9

glass2 214 9 9 2 (7) 23.83 51

breast-y 286 5 4 9 2 29.72 85

voting 435 16 16 2 38.62 168

heart-h 294 8 5 13 2 36.05 106

hepatitis 155 13 6 19 2 20.65 32

credit g 1000 10 3 7 20 2 30 300

soybean 15CL 290 34 1 35 15 3.45 10

soybean 15CL2 290 34 1 35 2 (15) 13.79 40

segment2310 2310 19 19 7 14.29 330

segment23102 2310 19 19 2 (7) 14.29 330

segment210 210 19 19 7 14.29 30

segment2102 210 19 19 2 (7) 14.29 30

sick-euthyroid 3164 18 7 25 2 9.26 293

bands 540 18 21 39 2 42.2 228

ks-vs-kp 3196 36 36 2 47.8 1528

optdigits2 5620 64 64 2 (10) 9.9 556

car2 1728 6 6 2 (4) 30 518

abalone2 4177 8 8 2 (29) 8.6 359

solar flare 1389 13 13 2 15.7 218

yeast2 1484 8 8 2 (10) 28.9 429

splice junction2 3190 60 60 2 (3) 24.1 769

kddcup 4941 7 34 41 2 19.69 973

pima 768 8 8 2 34.9 268

Mean 1402.89 20.94 2.92 24.88 306.03

Median 694.5 18 2.00 23.97 199

Table H.1: UCI datasets for the analysis of sixteen PART variants.
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16 variants of PART

Nemenyi 3.8445

Bonferroni-Dunn 3.2936

Table H.2: Critical distance values for the Nemenyi and Bonferroni-Dunn tests
used in this appendix.

The Friedman test (with the Iman-Davenport extension) [39] is used to dis-
cover whether or not significant differences appear in the behavior of the vari-
ants. When significant differences are found, the Nemenyi and the Bonferroni-
Dunn classic tests are used, which are graphically represented in CD (Critical
Difference) diagrams. The Nemenyi test is used to perform comparisons of all
algorithms against each other (n×n), whereas the Bonferroni-Dunn test is used
to perform comparisons of one algorithm (the control algorithm) against the
others (1× n comparisons). The Bonferroni-Dunn test is applied twice for each
metric using different control variants: the best ranking variant and the ref-
erence variant for the comparison, the original PART algorithm. The positive
aspect of the Nemenyi and Bonferroni-Dunn tests is that their critical differ-
ences for significance are determined by the number of competitors, and thus,
the critical differences are fixed and can easily be visually represented on CD di-
agrams. However, both of these tests are currently considered conservative. The
results of these tests are complemented with more powerful tests (as proposed
by Garćıa et al. in [65]), namely the Shaffer test to complement the Nemenyi
test (both n×n) and the Holm [64] test to complement the Bonferroni-Dunn test
(both 1× n). However, the results of these two tests cannot be represented on
CD diagrams, so their results are discussed when referencing the CD diagrams.
Holm’s tests is only used once per measure, using the best ranking algorithm as
control. The results of the two Bonferroni-Dunn tests are both represented by
orange lines below the ranking line on CD diagrams, as their critical distance is
the same, but a different tone for each line is used. The lighter line represents
the results when the best ranking variant is used as control variant, and the
darker line when PART is used as control.

For each of the Nemenyi and Bonferroni-Dunn tests, significance level, num-
ber of algorithms to be compared and number of datasets used, a critical value
(maximum distance between the average ranks) is defined. For a significance
level of 95% and 36 datasets, the critical values for the Nemenyi and Bonferroni-
Dunn tests used in this appendix are shown in Table H.2. The critical values
have been graphically represented in the CD diagrams to provide a visual ref-
erence. When the Nemenyi test is used, groups of variants that are not signif-
icantly different are connected by a line (above the x-axis). With respect to
the Bonferroni-Dunn test, all variants with ranks outside the marked interval
(under the x-axis) are significantly different from the control option.
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APPENDIX H. PERFORMANCE OF SIXTEEN PART VARIANTS ON
UCI DATASETS

H.1 Results for Discriminating Capacity Met-
rics

Table H.3 shows the average values for the two metrics used to assess the
discriminating capacity for each of the 16 variants of the PART algorithm,
whereas Figure H.1 shows two CD diagrams, one for the average ranks for each
measure. Each AUC and Error value was calculated as an average of the values
of the 36 datasets. When using a rank-based statistical analysis, the order in
which the algorithms (the 16 different variants, in this case) appear based on
their average values, and the order in which the algorithms appear based on
their average ranks, are not necessarily the same. As an example, in Table H.3,
the variant BF AL PR DP (found in the lower row, last column) achieved the
sixth best average value for AUC (86.02), but it obtained the best rank. This
is because there may be some datasets that obtain much better AUC values for
a particular variant, but that variant outperforms others in fewer datasets.

According to the AUC and Error results shown in Table H.3, the BF (Best-
First) option appears to be a good choice for both measures as most variants
using this option place in the top half. In fact, six out of eight variants using
Best-First rank better than their Hill Climbing counterpart for AUC, and seven
out of eight for Error. As expected, unpruned variants place better for the
AUC measure. However, two variants using pruning (PR) placed in the top
half, specifically variants combining pruning with developing trees further by
not prioritizing pure nodes (DP). Surprisingly, pruning, a process designed to
increase accuracy, does not appear to be relevant for the Error measure, as
variants both pruning and not pruning place in top positions. With respect to
the AUC measure, those variants that use pruning place in higher positions if
combined with not prioritizing pure nodes, whereas pruning while prioritizing
pure nodes does not appear to achieve good results.

For a more in-depth analysis of the differences in the results, an evaluation
of statistically significant differences was carried out based on multiple tests.
First, the Friedman test showed that significant differences existed between
the 16 variants for both metrics, computing an adjusted p-value of 9.6473e-11
(test statistic value 17.14) and 0 (test statistic value 13.32) for AUC and Error,
respectively. Therefore, the post hoc tests proposed by Demšar were applied,
and obtained the CD diagrams shown in Figure H.1.

With respect to the AUC metric, the best ranking variant is BF AL PR DP,
which shows statistically significant differences compared to most Hill Climbing-
based (HC) variants according to both post hoc tests. Most variants that use
Best-First (BF) rank in the top half, except for those that combine pruning (PR)
and pure nodes (PP). For this measure, there is a balance between variants that
use the AL (All Leaves) option and those that use the TL (Treated Leaves)
option, which are evenly divided in both halves of the ranking.

Results for the Error metric show another Best-First-based variant ranking
first: BF TL PR DP, showing significant differences with most variants using
the HC option and two variants using BF, according to the post hoc tests.
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PART HC TL NP DP HC TL PR PP HC TL PR DP HC AL NP PP HC AL NP DP HC AL PR PP HC AL PR DP

AUC 87.34 87.08 80.08 80.16 81.68 81.68 76.84 76.7

Error 13.04 13.32 14.57 14.18 21.15 21.15 20.16 20.49

BF TL NP PP BF TL NP DP BF TL PR PP BF TL PR DP BF AL NP PP BF AL NP DP BF AL PR PP BF AL PR DP

AUC 87.22 87.15 80.58 86.01 83.03 87.25 77.79 86.02

Error 13.1 13.31 14.48 12.48 21 13.34 19.7 12.49

Table H.3: Average AUC and Error values for the 16 variants of the PART
algorithm.

The variant ranking first for AUC also ranks second for Error, with both first
and second ranking variants combining Best-First (BF), pruning (PR), and not
prioritizing pure nodes (DP). For the Error metric, TL-based variants rank
better than their AL counterpart.

The more powerful Shaffer and Holm post hoc tests confirm the pairwise
statistically significant differences.

In summary, it should be noted that most variants that use Best-First rank
better than their Hill-Climbing counterpart. In fact, variants combining Best-
First, pruning and not prioritizing pure nodes rank first for both measures,
showing significant differences with most Hill Climbing-based variants.

H.2 Results for Structural Complexity Metrics

This section analyzes the results obtained by the 16 variants of PART from
the perspective of their explaining capacity, i.e., Complexity measured as the
number of decisions throughout the whole classifier, and Length measured as
the average number of conditions per branch or rule. Table H.4 includes the
average values for both metrics. The values show that HC AL PR DP and
HC AL PR PP, which are the two variants that combine the Hill Climbing
algorithm as the Next Node to Develop criterion, the All Leaves value as the
Leaf for Next Rule, and pruning criterion, produce the simplest models.

The CD diagrams presented in Figure H.2 show that these two variants
(HC AL PR DP and HC AL PR PP) achieved significant differences when com-
pared to most variants, including the original PART algorithm, according to
the Nemenyi and both Bonferroni-Dunn tests. Statistically significant differ-
ences were found based on the Friedman test, which calculated a p-value of
1.4116e-10 and 1.8016e-10 for Complexity and Length, respectively. All post
hoc tests, even the more powerful ones, agree on the pairwise significant differ-
ences.

Results suggest that in general, variants using HC are simpler than those
using the BF option. Two variants using the BF option rank among the first
group of variants that do not show significant differences among themselves. As
expected, the top positions in both rankings are filled with variants that prune
partial trees, as these trees will be equal or smaller than trees that are kept
unpruned. In fact, all variants with the PR option rank better than their NP
counterparts for both measures. In a similar fashion, for Complexity, with the
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APPENDIX H. PERFORMANCE OF SIXTEEN PART VARIANTS ON
UCI DATASETS
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Figure H.1: CD diagrams for AUC and Error metrics comparing the 16 variants
of the PART algorithm.

exception of one variant, all variants that use AL rank better than their TL
counterparts. This occurs for every variant when Length is measured. This is
expected however, as most of the time, AL should choose leaves at a level that is
similar to or higher than TL, with the same or a smaller number of conditions,
and it should therefore produce shorter rules than TL.
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PART HC TL NP DP HC TL PR PP HC TL PR DP HC AL NP PP HC AL NP DP HC AL PR PP HC AL PR DP

Complexity 25.01 28.79 6.29 6.87 7.57 7.57 3.85 3.83

Length 2.43 3.47 1.21 1.66 1.44 1.44 0.87 0.87

BF TL NP PP BF TL NP DP BF TL PR PP BF TL PR DP BF AL NP PP BF AL NP DP BF AL PR PP BF AL PR DP

Complexity 28.91 30.05 6.67 9.5 11.25 25.95 4.8 9.65

Length 2.95 3.88 1.38 2.31 2.12 3.18 1.17 2.02

Table H.4: Average Complexity and Length values for the 16 variants of the
PART algorithm.

Finally, it should be noted that most variants ranking in the first group of
variants, which show no significant differences for complexity measures, rank
in very low positions for the discriminating capacity measures. For example,
the two best-ranking variants for complexity measures achieve the two worst
positions for both AUC and Error.

H.3 Results for Computational Cost Metrics

To evaluate the computational cost, the average time values in milliseconds
for the 16 variants are provided in Table H.5. As seen in the table, the differences
between some of the variants are of an order of magnitude. HC AL PR DP and
HC AL PR PP (the variants achieving the simplest models according to the
structural complexity metrics) were the fastest to build the ruleset. Unfortu-
nately, these variants obtained very poor results for AUC and Error, being last
for both metrics. It appears the short time taken to build the ruleset is not
sufficient to obtain competitive classifiers.

In this case, the results of the Friedman test also indicated the presence of
statistically significant differences, with a p-value of 1.2075e-10 (test statistic
value 44.38). Figure H.3 shows the pairs between which the differences appeared.
All variants belonging to the top ranking group that shows no significant dif-
ferences use the AL option. This suggests that the variants using all leaves
(and not just analyzed nodes) to create a rule cover more examples per rule,
thus leading to the creation of fewer partial trees as the training example is
covered by a smaller number of rules. The five worst-ranking variants (PART
included) show one common trait, i.e., none of them prune the partial trees.
This makes sense, as even though pruning trees requires extra computational
effort, it results in leaf nodes that cover the same or a greater number of exam-
ples, and thus, the training sample is covered with fewer rules than when using
unpruned partial trees. The Shaffer and Holm post hoc tests, which are more
powerful, find another significant pairwise difference between BF AL PR PP
and BF AL PR DP.

In summary, there are similarities between the structural complexity rank-
ings and the time ranking. For example, the two variants creating the simplest
classifiers are also the fastest to be built. However, as is the case with the
structural complexity, the fastest variants to be built are also the worst clas-
sifying new examples. Variants pruning partial trees build more quickly than
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Figure H.2: CD diagrams for Complexity and Length metrics comparing the 16
variants of the PART algorithm.

their counterpart. At the same time, variants using the Hill Climbing option
are faster than the same variant using Best-First.
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PART HC TL NP DP HC TL PR PP HC TL PR DP HC AL NP PP HC AL NP DP HC AL PR PP HC AL PR DP

Time 441.51 786.4 220.46 283.61 133.34 131.48 128.21 109.92

BF TL NP PP BF TL NP DP BF TL PR PP BF TL PR DP BF AL NP PP BF AL NP DP BF AL PR PP BF AL PR DP

Time 556.76 1436.84 233.67 536.71 207.52 759.68 176.76 435.74

Table H.5: Average Time values for the 16 variants of the PART algorithm.
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Figure H.3: CD diagram for Time metric comparing the 16 variants of the PART
algorithm.

H.4 Selection and Naming of the Best Variant

This final section analyzes all of the variants of the PART algorithm from a
global point of view, i.e., considering all of the metrics analyzed simultaneously,
to select the best variant as a competitive alternative to the original PART
algorithm. This is not an easy task because it deals with a multi-objective
problem, where the best variant has to be selected according to all the metrics
used.

As shown in previous subsections, the best variant is different depending
on the point of view. The variants that produce the simplest models from
the perspective of structural complexity are usually the fastest to be built, but
they classify new examples significantly worse according to the AUC and Error
measures than variants that are slower and more complex. This requires an
approach to combine multiple measures in order to choose the best variant.

In order to find the best variant, the average “global” rank positions were
computed, considering the average ranks for the five metrics. Table H.6 shows
the average rank positions, and Figure H.4 shows these values graphically so
that the distance between the different variants can be appreciated. In this
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PART HC TL NP DP HC TL PR PP HC TL PR DP HC AL NP PP HC AL NP DP HC AL PR PP HC AL PR DP

AUC 2 7 9 10 12.5 12.5 16 15

Error 3 10 8 4 15.5 15.5 12.5 12.5

Complexity 12 14 4 5 7.5 7.5 1 2

Length 12 15 4 8 6.5 6.5 1 2

Time 12 14 6 8 4 3 2 1

Avg ranks
8.2 12 6.2 7 9.2 9 6.5 6.5

(9) (16) (1) (5) (11) (10) (3.5) (3.5)

BF TL NP PP BF TL NP DP BF TL PR PP BF TL PR DP BF AL NP PP BF AL NP DP BF AL PR PP BF AL PR DP

AUC 6 5 11 4 8 3 14 1

Error 5 6 7 1 14 9 11 2

Complexity 16 15 6 9 11 13 3 10

Length 13 16 5 11 10 14 3 9

Time 13 16 7 11 9 15 5 10

Avg ranks
10.6 11.6 7.2 7.2 10.4 10.8 7.2 6.4

(13) (15) (7) (7) (12) (14) (7) (2)

Table H.6: Average global ranks (and rank positions) based on the analyzed
five performance metrics for the 16 variants of the PART algorithm.
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Figure H.4: Average global ranks for the 16 variants of the PART algorithm.

ranking, the HC TL PR PP variant ranks best. However it should be noted
that this is because it creates some of the simplest models at the cost of its
ability of correctly classifying unseen instances. Its AUC and Error values are
worse than most other variants. On the other hand, the second ranking variant,
BF AL PR DP, achieves the best rank for AUC and second best for Error,
even if it creates complex models. Among the top five ranking variants, all
but BF AL PR DP are variants that create fast but less accurate models. For
example, the third and fourth ranking variants also create very simple classifiers
very fast, but then achieve the worst possible positions for AUC, and similar for
Error. It can be argued that in a classifier algorithm the first priority should be
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to create the best classifying models, and this should be prioritized more than
other metrics. Therefore, the BF AL PR DP variant was selected as the true
alternative to the PART algorithm. In other words, its considered worth it to
use the Best-First (BF) local search algorithm to determine the next node to
develop in a partial tree, that all leaves (even undeveloped leaf-like nodes, the
AL option) of the partial tree should be taken into account when selecting the
most appropriate branch to extract the next rule, partial trees should be pruned
(PR) and pure nodes should not be prioritized for analysis, and should be left
for the end (DP). This variant is the complete opposite to PART with respect
to the four proposed criteria. With the aim of having an appropriate name that
is similar to the original PART name, this variant was named BFPART.
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Appendix I

Full result tables for
C4.5-based and
CHAID*-based PART-like
algorithms

This appendix includes the full tables of the results related to the C4.5-based
and CHAID*-based algorithms (UnPART, BFPART, PART, and C4.5/CHAID*)
for the six performance metrics used in the study: kappa, GM, AUC, Number
of Rules, Length, and Time. For Length the unit of measurement is the average
number of decisions per rule or tree branch. Computational cost is measured
in milliseconds. Numbers in bold indicate the best value for that particular
dataset and base algorithm (C4.5 or CHAID*).

Numbers in bold indicate the best average value for each dataset.
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APPENDIX I. FULL RESULT TABLES FOR C4.5-BASED AND
CHAID*-BASED PART-LIKE ALGORITHMS

dataset
C4.5-based CHAID*-based

UnPART BFPART PART C4.5 UnPART BFPART PART CHAID*
nursery .8424 .8482 .8753 .8341 .8478 .8477 .8947 .8684
abalone .1035 .0918 .0683 .0962 .1314 .1326 .1497 .1533
ecoli .7359 .6986 .7289 .703 .6981 .7065 .6814 .6805
lymphography .5593 .5758 .4688 .5367 .5354 .5764 .6374 .5304
car .9033 .9068 .8894 .7986 .8924 .89 .8971 .9076
zoo .9215 .9215 .9215 .9215 .9218 .9218 .9218 .9398
flare .6668 .6751 .647 .6676 .6707 .6559 .6613 .6893
glass .5394 .5526 .6076 .5494 .5085 .5085 .5124 .5391
cleveland .2789 .2187 .2444 .2257 .2738 .239 .2366 .2256
dermatology .9226 .9226 .9226 .9045 .9335 .9335 .93 .9383
balance .6447 .6447 .6494 .5922 .6175 .6209 .6262 .5996
penbased .8818 .8889 .8737 .8838 .8331 .8311 .8355 .8373
newthyroid .8795 .8795 .8525 .8519 .8618 .8618 .8618 .8686
hepatitis .252 .252 .5485 .1115 .133 .0899 .2285 .1908
contraceptive .2816 .2641 .2356 .2845 .2815 .2896 .2778 .2909
vehicle .6421 .6248 .6452 .6185 .5789 .5707 .5969 .5902
haberman .1186 .1186 .0924 .1521 .0265 .0265 .0265 .0265
wine .8969 .8969 .8971 .9222 .8795 .8795 .8966 .8797
breast .2418 .2418 .23 .233 .297 .297 .2663 .297
german .3124 .3243 .3333 .3049 .3158 .315 .2705 .2714
iris .91 .91 .9 .9 .92 .92 .92 .92
wisconsin .8474 .8474 .8236 .8515 .8699 .8556 .8907 .841
tictactoe .7803 .7573 .843 .677 .6817 .6789 .7847 .7605
pima .3814 .3814 .4078 .4175 .4051 .4051 .3893 .4043
magic .5186 .519 .4806 .5183 .5034 .4979 .4871 .5266
bupa .2867 .2701 .2594 .3124 .2613 .2613 .2424 .2444
heart .5703 .5384 .5239 .5636 .6225 .6537 .6537 .5489
australian .7156 .7063 .6742 .6886 .6845 .6851 .6681 .6837
crx .7371 .7184 .6651 .7194 .7354 .7194 .7116 .7172
ring .7702 .7702 .7623 .7135 .7482 .742 .742 .7482
Mean .6047 .5989 .6024 .5851 .589 .5871 .5966 .5906
Median .6557 .6599 .6482 .6431 .6466 .6548 .6575 .64

Table I.1: Results for kappa over standard datasets.
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dataset
C4.5-based CHAID*-based

UnPART BFPART PART C4.5 UnPART BFPART PART CHAID*
abalone19 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
yeast6 .5660 .5660 .7333 .5660 .1302 .1302 .2359 .1302
yeast5 .8846 .8742 .8850 .8612 .7967 .7957 .8601 .7715
yeast4 .4731 .4731 .4239 .4208 .3844 .3844 .2326 .3844
yeast2 vs 8 .3137 .1704 .1704 .1723 .7274 .7274 .7264 .7274
glass5 .8787 .8787 .8787 .8804 .9876 .9876 .9876 .9876
abalone9 vs 18 .4173 .3897 .4157 .3882 .2983 .2983 .2930 .2975
glass4 .5836 .5836 .5836 .5769 .3397 .3397 .3397 .3030
ecoli4 .7791 .7791 .7786 .7777 .7821 .7821 .8405 .8123
glass2 .4597 .4597 .4597 .4427 .0000 .0000 .0000 .0000
vowel0 .9149 .9149 .9207 .9683 .8552 .9112 .9194 .8722
page-blocks0 .9136 .8944 .8932 .9225 .8879 .9001 .9096 .9002
ecoli3 .7227 .7227 .7290 .6773 .7003 .7003 .7003 .6749
yeast3 .8567 .8567 .8097 .8479 .8537 .8537 .8552 .8670
glass6 .7940 .7940 .7874 .7940 .7946 .7946 .7946 .7920
segment0 .9858 .9858 .9893 .9814 .9794 .9796 .9867 .9829
ecoli2 .8041 .8041 .7963 .8497 .7564 .7564 .7564 .7564
new-thyroid1 .9394 .9394 .9394 .9460 .9529 .9529 .9529 .9503
new-thyroid2 .9206 .9206 .9206 .9327 .9328 .9328 .9328 .9355
ecoli1 .8590 .8590 .8411 .8538 .8062 .8062 .8062 .8221
vehicle0 .9029 .9242 .9267 .9378 .9209 .9213 .8902 .9023
glass-0-1-2-3 vs 4-5-6 .8711 .8711 .8682 .9210 .8638 .8660 .8576 .8766
haberman .3252 .3252 .2876 .3563 .0931 .0931 .0931 .0931
vehicle1 .6362 .6112 .3773 .6512 .5063 .4975 .5113 .5033
vehicle2 .9421 .9514 .9499 .9453 .9234 .9284 .9394 .9221
vehicle3 .6581 .6489 .5071 .6728 .5250 .4651 .4939 .5542
yeast1 .6093 .6093 .5333 .6276 .6048 .6068 .5996 .5889
glass0 .7703 .7742 .7967 .7845 .7726 .7726 .7752 .7726
iris0 .9897 .9897 .9897 .9897 .9897 .9897 .9897 .9897
pima .6724 .6795 .6973 .7023 .6879 .6879 .6709 .6953
ecoli0 vs 1 .9831 .9831 .9723 .9831 .9831 .9831 .9831 .9831
wisconsin .9365 .9345 .9347 .9315 .9445 .9561 .9521 .9411
glass1 .7065 .6974 .6503 .7198 .6493 .6732 .6732 .6278
Mean .7294 .7232 .7105 .7298 .6797 .6810 .6836 .6793
Median .7940 .7940 .7963 .7940 .7821 .7821 .7946 .7726

Table I.2: Results for GM over imbalanced datasets.
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dataset
C4.5-based CHAID*-based

UnPART BFPART PART C4.5 UnPART BFPART PART CHAID*
abalone19 .0806 .0811 .1560 .1558 .0809 .1624 .1625 .1600
yeast6 .8042 .8042 .7855 .8048 .6794 .6122 .6283 .5637
yeast5 .9210 .9210 .9198 .9445 .8428 .8571 .7098 .7987
yeast4 .6952 .6782 .6954 .6521 .6151 .6814 .6043 .5417
yeast2 vs 8 .7313 .7323 .7171 .7402 .7047 .6653 .6607 .6509
glass5 .9274 .9274 .9249 .8720 .9242 .6687 .8688 .9266
abalone9 vs 18 .5534 .5845 .5773 .5319 .6157 .6260 .6714 .5169
glass4 .8406 .8406 .8406 .8443 .6714 .7097 .7097 .6673
ecoli4 .8184 .8184 .8468 .7410 .8123 .7712 .9060 .8142
glass2 .6600 .6600 .6754 .6500 .6053 .4813 .4993 .6873
vowel0 .9367 .9311 .8956 .9357 .8831 .8639 .8343 .8452
page-blocks0 .9435 .9439 .9438 .9428 .9291 .9374 .9317 .9174
ecoli3 .8338 .8338 .8387 .7442 .8108 .7867 .8200 .8365
yeast3 .8783 .8790 .8939 .8843 .8994 .8867 .9034 .8996
glass6 .8868 .8868 .8255 .8662 .8596 .8596 .8454 .8019
segment0 .9891 .9891 .9878 .9944 .9919 .9924 .9880 .9921
ecoli2 .8452 .8577 .8797 .8809 .8599 .9024 .8949 .8785
new-thyroid1 .9741 .9741 .9713 .9741 .9624 .9624 .9651 .9624
new-thyroid2 .9473 .9445 .9449 .9677 .9888 .9888 .9647 .9916
ecoli1 .9222 .9031 .8923 .9125 .8837 .8837 .8838 .9111
vehicle0 .9294 .9302 .9247 .9139 .9243 .9163 .9102 .9018
glass-0-1-2-3 vs 4-5-6 .8898 .8898 .8688 .8668 .9085 .8825 .8887 .8922
haberman .6189 .6085 .6381 .6074 .5368 .5368 .5368 .5368
vehicle1 .7227 .7033 .7367 .6838 .7526 .7501 .7239 .7156
vehicle2 .9649 .9649 .9695 .9486 .9508 .9464 .9262 .9398
vehicle3 .7297 .7292 .7183 .7085 .7454 .7542 .7514 .7477
yeast1 .7012 .6972 .6881 .7135 .6988 .6983 .7086 .7199
glass0 .7617 .7617 .7617 .7726 .7913 .7913 .7906 .7916
iris0 .9897 .9897 .9897 .9897 .9897 .9897 .9897 .9897
pima .7174 .7145 .6840 .7128 .7025 .7028 .7268 .6980
ecoli0 vs 1 .9760 .9760 .9760 .9725 .9831 .9831 .9831 .9831
wisconsin .9436 .9436 .9434 .9454 .9362 .9662 .9552 .9393
glass1 .7002 .7002 .7158 .7480 .6885 .6885 .6811 .6902
Mean .8132 .8121 .8129 .8068 .7948 .7850 .7886 .7851
Median .8452 .8577 .8468 .8662 .8428 .7913 .8343 .8142

Table I.3: Results for GM over imbalanced datasets preprocessed with SMOTE.
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dataset
C4.5-based CHAID*-based

UnPART BFPART PART C4.5 UnPART BFPART PART CHAID*
nursery .9678 .9709 .9723 .961 .9736 .9741 .9828 .9781
abalone .582 .5878 .5525 .5668 .6824 .6823 .6878 .6847
ecoli .9048 .8818 .898 .878 .9099 .9132 .9036 .9125
lymphography .8402 .8192 .7544 .8193 .8369 .8363 .8459 .8163
car .987 .987 .9858 .9681 .9843 .9844 .9898 .9914
zoo .9804 .9804 .9804 .9814 .986 .986 .986 .9869
flare .9177 .9243 .9096 .9154 .9225 .9212 .9213 .9251
glass .7832 .7922 .8201 .823 .8009 .8009 .7992 .7777
cleveland .7082 .6549 .6695 .6604 .7346 .7225 .7614 .7161
dermatology .9667 .9667 .9667 .9572 .9839 .9762 .9751 .9707
balance .8616 .8616 .8953 .8359 .8466 .8606 .8604 .8328
penbased .9448 .9487 .9458 .9523 .9476 .9426 .9481 .9436
newthyroid .9318 .9318 .93 .9331 .9177 .9177 .9177 .929
hepatitis .686 .686 .7744 .469 .6001 .5858 .6735 .6103
contraceptive .6896 .6894 .6485 .6683 .6896 .6878 .71 .6935
vehicle .8833 .8751 .8789 .8462 .8752 .8704 .8798 .8761
haberman .57 .57 .5883 .5714 .5117 .5117 .539 .5171
wine .9469 .9469 .9522 .9609 .9473 .9473 .9442 .9381
breast .6299 .6299 .6096 .6016 .6709 .6709 .6487 .6712
german .7028 .7149 .6961 .6643 .7094 .7091 .7179 .6815
iris .964 .964 .9687 .9538 .9683 .9683 .9683 .9577
wisconsin .954 .954 .9587 .9323 .9381 .9614 .9623 .937
tictactoe .9397 .9313 .9722 .9002 .8952 .8991 .9352 .9275
pima .7574 .7574 .7688 .7529 .7444 .7501 .7751 .755
magic .8165 .8149 .8113 .7655 .8003 .7974 .7956 .7999
bupa .6709 .6418 .6536 .6897 .6502 .6502 .6345 .6567
heart .7651 .7706 .7894 .8021 .8166 .8381 .8395 .8019
australian .8762 .8548 .84 .8578 .8646 .8925 .9033 .8745
crx .9059 .8964 .8772 .8664 .8739 .8821 .8969 .8781
ring .899 .899 .8739 .8489 .8742 .8714 .8714 .8776
Mean .8345 .8301 .8314 .8134 .8319 .8337 .8425 .8306
Median .8797 .8684 .8755 .8475 .8693 .8709 .8756 .8753

Table I.4: Results for AUC over standard datasets.
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dataset
C4.5-based CHAID*-based

UnPART BFPART PART C4.5 UnPART BFPART PART CHAID*
abalone19 .5000 .5000 .5000 .5000 .5000 .5000 .5001 .5000
yeast6 .7846 .7846 .8542 .7855 .5798 .5798 .6040 .5798
yeast5 .9692 .9694 .9469 .9584 .8248 .8237 .8782 .8242
yeast4 .7583 .7583 .8651 .7799 .7381 .7381 .8107 .7381
yeast2 vs 8 .6239 .5818 .6057 .5718 .7728 .7728 .7704 .7720
glass5 .9927 .9927 .9927 .9951 .9878 .9878 .9878 .9878
abalone9 vs 18 .6831 .7312 .7218 .6547 .6384 .6384 .6847 .6371
glass4 .6517 .6517 .6517 .6925 .6046 .6046 .6046 .5988
ecoli4 .7659 .7659 .8401 .7643 .8187 .8187 .8866 .8655
glass2 .7724 .7724 .7780 .7535 .4975 .4975 .4975 .4975
vowel0 .9449 .9405 .9393 .9706 .8970 .9464 .9320 .8865
page-blocks0 .9765 .9764 .9604 .9595 .9624 .9647 .9654 .9552
ecoli3 .7726 .7726 .8412 .7638 .9071 .9071 .9071 .9014
yeast3 .9132 .9132 .9388 .9054 .9144 .9144 .9081 .9088
glass6 .7914 .7914 .8171 .7914 .7895 .7895 .7895 .7873
segment0 .9860 .9860 .9901 .9844 .9774 .9776 .9904 .9832
ecoli2 .8296 .8296 .8296 .8459 .8288 .8288 .7824 .7966
new-thyroid1 .9548 .9548 .9548 .9655 .9544 .9544 .9544 .9516
new-thyroid2 .9349 .9349 .9349 .9472 .9345 .9345 .9345 .9373
ecoli1 .9131 .9159 .9347 .8807 .9356 .9356 .9356 .9223
vehicle0 .9297 .9544 .9477 .9468 .9460 .9483 .9352 .9490
glass-0-1-2-3 vs 4-5-6 .9005 .9005 .8894 .9209 .9564 .9564 .9583 .9284
haberman .5700 .5700 .5883 .5714 .5117 .5117 .5390 .5117
vehicle1 .6864 .7123 .7383 .7099 .6718 .6786 .7085 .6751
vehicle2 .9448 .9489 .9448 .9398 .9632 .9584 .9530 .9564
vehicle3 .7628 .7666 .8012 .7357 .7455 .7516 .7857 .7788
yeast1 .7083 .7134 .7425 .7017 .6768 .6746 .7036 .7007
glass0 .7780 .7834 .8231 .8119 .7992 .7992 .7789 .8004
iris0 .9900 .9900 .9900 .9900 .9900 .9900 .9900 .9900
pima .7604 .7574 .7688 .7529 .7462 .7501 .7751 .7550
ecoli0 vs 1 .9832 .9832 .9726 .9832 .9832 .9832 .9832 .9832
wisconsin .9647 .9651 .9666 .9700 .9593 .9606 .9571 .9632
glass1 .7112 .7170 .6984 .7192 .6977 .6831 .6831 .6882
Mean .8245 .8268 .8415 .8250 .8094 .8109 .8205 .8094
Median .7914 .7914 .8542 .8119 .8248 .8237 .8782 .8242

Table I.5: Results for AUC over imbalanced datasets.
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dataset
C4.5-based CHAID*-based

UnPART BFPART PART C4.5 UnPART BFPART PART CHAID*
abalone19 .5640 .6000 .5299 .5363 .5778 .6585 .5965 .6054
yeast6 .8677 .8677 .8561 .8490 .8023 .7879 .8001 .7078
yeast5 .9633 .9633 .9312 .9646 .9043 .8819 .7965 .8122
yeast4 .8557 .8426 .8494 .8107 .8293 .8253 .7932 .7136
yeast2 vs 8 .7756 .7761 .8423 .7259 .7326 .7249 .7454 .6726
glass5 .9415 .9415 .9415 .8890 .9220 .8646 .8829 .9402
abalone9 vs 18 .7274 .7436 .6611 .6579 .6308 .6973 .7252 .5543
glass4 .8583 .8583 .8583 .8621 .7173 .7490 .7490 .6848
ecoli4 .8485 .8485 .8874 .7783 .8425 .8270 .9111 .8021
glass2 .7360 .7360 .7703 .7325 .6801 .6288 .6349 .7195
vowel0 .9395 .9439 .9046 .9523 .8859 .8751 .8830 .8582
page-blocks0 .9727 .9759 .9697 .9582 .9678 .9731 .9682 .9549
ecoli3 .8929 .8929 .8793 .7989 .8874 .8696 .8722 .8635
yeast3 .9345 .9348 .9340 .9158 .9387 .9277 .9478 .9290
glass6 .8323 .8323 .8073 .8908 .8386 .8386 .8759 .7245
segment0 .9883 .9883 .9895 .9941 .9917 .9916 .9892 .9954
ecoli2 .8906 .8834 .8957 .8768 .8447 .8855 .8979 .8909
new-thyroid1 .9802 .9802 .9718 .9802 .9603 .9603 .9659 .9615
new-thyroid2 .9516 .9536 .9460 .9714 .9865 .9865 .9794 .9921
ecoli1 .9235 .9028 .9133 .9261 .9160 .9129 .9258 .9282
vehicle0 .9459 .9448 .9355 .9320 .9469 .9329 .9363 .9303
glass-0-1-2-3 vs 4-5-6 .8971 .8971 .8714 .8953 .9261 .8766 .9027 .9223
haberman .6243 .6510 .6518 .6262 .6031 .6031 .5992 .6081
vehicle1 .7638 .7335 .7814 .6967 .7836 .7826 .7650 .7536
vehicle2 .9623 .9666 .9708 .9600 .9608 .9524 .9556 .9525
vehicle3 .7807 .7858 .7708 .7378 .7720 .7820 .7924 .7837
yeast1 .7507 .7550 .7523 .7362 .7160 .7210 .7487 .7607
glass0 .7673 .7686 .7686 .7716 .7802 .7802 .7858 .8134
iris0 .9900 .9900 .9900 .9900 .9900 .9900 .9900 .9900
pima .7686 .7618 .7511 .7374 .7431 .7464 .7760 .7514
ecoli0 vs 1 .9762 .9762 .9762 .9728 .9832 .9832 .9832 .9832
wisconsin .9725 .9725 .9738 .9706 .9527 .9760 .9682 .9488
glass1 .7175 .7175 .7490 .7717 .7005 .7005 .7058 .7170
Mean .8594 .8602 .8570 .8445 .8398 .8392 .8439 .8250
Median .8906 .8834 .8793 .8768 .8447 .8646 .8759 .8134

Table I.6: Results for AUC over imbalanced datasets preprocessed with
SMOTE.
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APPENDIX I. FULL RESULT TABLES FOR C4.5-BASED AND
CHAID*-BASED PART-LIKE ALGORITHMS

dataset
C4.5-based CHAID*-based

UnPART BFPART PART C4.5 UnPART BFPART PART CHAID*
nursery 26.60 28.40 50.20 65.40 18.00 18.20 21.80 37.60
abalone 46.60 46.80 80.80 101.00 4.84 4.80 4.40 11.12
ecoli 12.20 10.20 14.20 19.40 6.60 6.80 6.80 13.20
lymphography 6.20 6.80 9.40 14.40 5.48 6.80 7.00 11.20
car 38.20 39.00 53.00 114.20 23.80 24.00 28.00 48.20
zoo 7.20 7.20 7.20 8.40 8.40 8.40 8.20 10.40
flare 8.80 8.40 33.40 45.80 7.24 12.00 15.40 7.80
glass 12.20 12.00 16.00 22.20 5.80 5.80 5.80 9.96
cleveland 19.24 19.20 34.40 37.00 3.80 4.00 5.20 9.20
dermatology 7.60 7.60 7.60 23.40 8.04 9.40 9.20 15.20
balance 12.40 12.40 32.60 37.00 7.00 6.20 7.20 14.40
penbased 23.80 23.60 29.20 50.00 22.60 22.40 23.80 61.12
newthyroid 4.40 4.40 4.40 6.80 5.00 5.00 5.00 7.80
hepatitis 3.40 3.40 4.20 4.80 2.08 2.08 2.28 4.16
contraceptive 33.60 28.60 143.00 111.00 6.00 5.60 9.40 15.60
vehicle 20.60 22.40 31.40 62.00 11.44 11.40 14.20 37.36
haberman 2.60 2.60 2.80 2.80 1.40 1.40 1.40 1.44
wine 4.20 4.20 4.20 5.20 4.20 4.20 4.00 7.80
breast 3.80 3.80 14.60 13.40 3.80 3.80 3.20 4.00
german 18.20 15.40 60.20 65.00 4.80 5.40 6.76 14.40
iris 3.20 3.20 4.40 4.20 3.20 3.00 3.00 4.20
wisconsin 5.20 5.20 8.60 31.60 4.80 5.20 4.20 6.32
tictactoe 21.00 22.80 39.80 77.40 8.80 8.40 12.80 31.84
pima 6.40 6.40 7.40 21.20 4.20 4.40 4.40 7.80
magic 8.00 7.80 10.00 39.00 4.00 4.24 5.68 9.00
bupa 8.20 8.40 6.80 24.60 3.40 3.40 2.80 4.20
heart 7.20 8.00 16.80 21.40 4.08 4.24 5.20 8.60
australian 11.40 11.20 26.80 20.40 4.20 5.00 5.40 4.96
crx 7.20 7.20 31.60 19.20 3.64 4.24 5.60 5.08
ring 7.80 7.80 11.40 25.00 2.00 2.00 2.00 15.04
Mean 13.25 13.15 26.55 36.44 6.75 7.06 8.00 14.63
Median 8.10 8.20 15.30 24.00 4.82 5.10 5.64 9.58

Table I.7: Results for Number of Rules over standard datasets.
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dataset
C4.5-based CHAID*-based

UnPART BFPART PART C4.5 UnPART BFPART PART CHAID*
abalone19 1 1.00 1.00 1.00 1.00 1.00 1.60 1.00
yeast6 4.00 4.00 4.80 5.20 1.60 1.60 2.00 1.60
yeast5 7.20 7.40 7.40 9.20 4.00 4.00 4.00 5.00
yeast4 5.00 5.00 6.80 8.40 3.40 3.40 3.60 3.80
yeast2 vs 8 1.40 2.00 2.40 1.80 2.00 2.00 2.20 2.80
glass5 4.00 4.00 4.00 4.00 3.00 3.00 3.00 3.00
abalone9 vs 18 4.40 4.80 8.00 7.40 2.40 2.40 2.80 2.80
glass4 4.00 4.00 4.00 5.60 2.60 2.60 2.60 3.20
ecoli4 3.00 3.00 3.80 3.60 3.00 3.00 3.20 4.20
glass2 5.40 5.40 5.60 7.00 1.20 1.20 1.20 1.20
vowel0 5.20 5.60 6.20 7.80 4.40 4.52 5.08 12.68
page-blocks0 11.60 11.00 17.20 36.20 7.16 8.60 10.40 33.64
ecoli3 4.40 4.40 4.00 6.20 3.00 3.00 3.00 3.20
yeast3 5.60 5.60 9.00 10.80 3.20 3.20 3.40 4.00
glass6 3.00 3.00 3.40 3.40 3.00 3.00 3.00 3.60
segment0 5.80 5.80 6.40 9.60 5.20 5.40 6.80 8.20
ecoli2 4.40 4.40 4.80 7.40 3.20 3.20 2.00 4.80
new-thyroid1 3.00 3.00 3.00 5.40 3.80 3.80 3.80 4.80
new-thyroid2 3.40 3.40 3.40 4.40 3.80 3.80 3.80 4.60
ecoli1 4.80 5.00 5.20 7.00 3.00 3.00 3.00 4.80
vehicle0 10.20 10.20 12.20 20.00 7.20 7.40 8.44 17.08
glass-0-1-2-3 vs 4-5-6 4.20 4.20 4.60 5.80 3.00 3.00 3.00 5.00
haberman 2.60 2.60 2.80 2.80 1.40 1.40 1.40 1.40
vehicle1 11.20 12.80 11.80 35.60 3.80 4.00 4.80 5.40
vehicle2 7.40 9.00 9.00 15.80 6.40 7.00 7.80 15.20
vehicle3 10.40 9.60 11.20 41.80 4.60 4.60 6.80 8.40
yeast1 9.00 9.60 8.80 21.40 3.88 3.80 5.20 6.00
glass0 5.60 5.20 7.20 9.80 2.64 2.64 2.08 3.64
iris0 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
pima 6.00 6.40 7.40 21.20 4.20 4.40 4.40 7.80
ecoli0 vs 1 2.00 2.00 2.80 2.00 2.00 2.00 2.00 2.00
wisconsin 7.00 7.40 9.00 31.60 5.60 6.20 5.00 11.40
glass1 5.60 5.20 6.00 10.80 3.00 2.60 2.60 5.00
Mean 5.27 5.39 6.22 11.27 3.44 3.54 3.82 6.16
Median 4.80 5.00 5.60 7.40 3.00 3.00 3.00 4.60

Table I.8: Results for Number of Rules over imbalanced datasets.
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APPENDIX I. FULL RESULT TABLES FOR C4.5-BASED AND
CHAID*-BASED PART-LIKE ALGORITHMS

dataset
C4.5-based CHAID*-based

UnPART BFPART PART C4.5 UnPART BFPART PART CHAID*
abalone19 23 24.00 34.60 67.60 18.80 19.80 20.60 74.80
yeast6 10.20 10.20 10.60 21.20 10.20 11.00 12.00 36.00
yeast5 6.80 6.80 7.60 11.40 9.40 9.60 12.60 11.60
yeast4 15.40 14.80 18.20 41.00 13.80 14.20 14.80 45.40
yeast2 vs 8 7.40 7.40 8.00 12.80 7.40 7.60 9.00 14.80
glass5 3.20 3.20 4.20 6.20 3.80 4.20 3.80 8.80
abalone9 vs 18 20.60 19.40 26.00 49.00 11.00 11.36 12.20 29.40
glass4 4.80 4.80 4.80 8.20 3.40 3.40 3.40 8.00
ecoli4 5.00 5.00 5.60 9.80 4.20 4.20 5.40 9.40
glass2 7.60 7.60 8.00 15.60 3.60 3.80 4.80 9.80
vowel0 6.60 6.80 6.40 12.20 8.76 9.44 10.80 13.00
page-blocks0 29.80 28.40 42.00 116.80 19.20 20.80 33.60 88.40
ecoli3 7.20 7.20 8.00 12.80 4.20 4.40 4.00 9.00
yeast3 13.00 13.20 15.20 31.60 7.20 8.00 8.20 23.92
glass6 4.60 4.60 4.00 8.80 3.60 3.60 4.00 6.60
segment0 7.20 7.80 7.60 13.80 6.00 6.40 8.20 13.80
ecoli2 7.80 8.20 8.80 16.00 5.00 5.20 4.20 8.60
new-thyroid1 3.40 3.40 3.40 4.40 2.80 2.80 3.00 4.00
new-thyroid2 3.60 3.60 3.60 6.20 3.00 3.00 3.60 4.60
ecoli1 5.20 6.60 6.80 9.00 4.20 4.00 3.40 5.80
vehicle0 13.60 13.60 17.80 29.60 8.52 9.20 11.20 26.20
glass-0-1-2-3 vs 4-5-6 4.40 4.40 5.80 8.60 4.60 4.80 4.80 10.20
haberman 5.40 5.60 5.00 10.80 2.60 2.60 2.20 2.80
vehicle1 16.80 17.80 20.60 70.60 7.48 6.68 9.24 28.40
vehicle2 9.60 9.60 11.80 18.60 9.00 9.40 10.64 16.60
vehicle3 18.00 17.60 27.40 76.40 8.12 8.60 11.28 26.40
yeast1 13.92 14.20 17.60 55.40 3.80 4.60 6.60 11.60
glass0 5.80 5.60 5.60 13.00 2.80 2.80 2.20 5.00
iris0 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
pima 9.80 8.80 10.00 30.00 4.60 4.40 4.80 8.80
ecoli0 vs 1 4.00 4.00 4.00 4.20 2.00 2.00 2.00 2.20
wisconsin 9.60 9.60 12.40 35.20 6.40 7.20 6.40 14.00
glass1 6.60 6.60 7.20 14.00 3.56 3.56 3.80 6.80
Mean 9.44 9.47 11.53 25.54 6.52 6.81 7.84 17.78
Median 7.20 7.40 8.00 13.80 4.60 4.80 5.40 10.20

Table I.9: Results for Number of Rules over imbalanced datasets preprocessed
with SMOTE.
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dataset
C4.5-based CHAID*-based

UnPART BFPART PART C4.5 UnPART BFPART PART CHAID*
nursery 1.93 2.04 2.27 4.10 2.19 2.18 3.23 4.35
abalone 4.83 5.03 3.98 7.67 3.62 4.03 4.30 5.02
ecoli 2.84 2.57 2.46 5.36 4.02 4.11 4.56 4.69
lymphography 2.10 2.05 2.34 3.68 2.30 2.52 2.46 2.99
car 2.36 2.38 2.30 4.62 2.31 2.35 2.98 5.17
zoo 1.55 1.55 1.25 3.76 1.77 1.76 1.76 2.51
flare 1.64 1.57 2.68 3.33 1.36 2.61 3.06 1.77
glass 2.97 3.02 2.78 5.55 2.93 2.93 3.10 3.88
cleveland 4.03 3.94 3.77 6.61 2.06 2.00 2.75 3.50
dermatology 2.38 2.38 2.38 3.90 2.59 3.09 3.43 4.71
balance 2.18 2.18 2.98 6.06 1.89 2.04 2.69 4.00
penbased 3.82 3.84 3.31 6.86 6.44 6.50 6.90 7.39
newthyroid 1.58 1.62 1.69 3.42 2.00 2.16 2.16 3.17
hepatitis 1.28 1.28 1.45 2.48 .99 1.09 1.25 1.88
contraceptive 6.06 4.88 5.14 10.14 2.80 2.98 3.63 4.57
vehicle 4.45 4.42 3.47 7.62 3.88 4.02 4.61 6.19
haberman .63 .63 1.23 1.26 .20 .20 .30 .43
wine 1.29 1.29 1.14 2.45 2.05 2.05 2.25 3.13
breast .80 .80 1.94 2.11 .79 .79 1.25 2.24
german 2.48 2.30 2.68 5.27 1.41 1.39 2.46 3.56
iris .95 .95 .92 2.35 1.02 1.20 1.20 2.36
wisconsin .93 .93 .98 1.78 .99 1.30 2.00 1.93
tictactoe 2.31 2.30 2.70 4.49 2.13 2.13 2.82 4.94
pima 1.90 1.90 1.93 5.55 1.65 1.63 2.05 3.15
magic 2.32 2.31 2.68 6.94 2.32 2.48 3.61 3.60
bupa 2.00 2.18 2.22 5.74 .93 .93 1.42 2.16
heart 1.56 1.59 2.48 3.74 1.26 1.34 2.02 3.17
australian 2.09 2.24 3.47 6.27 1.05 1.89 2.65 2.20
crx 1.58 1.53 2.41 4.54 1.07 1.61 2.71 2.36
ring 3.58 3.58 2.61 8.64 7.02 8.14 8.14 7.95
Mean 2.35 2.31 2.46 4.88 2.23 2.45 2.93 3.63
Median 2.10 2.18 2.44 4.58 2.03 2.09 2.70 3.34

Table I.10: Results for Length over standard datasets.

235



APPENDIX I. FULL RESULT TABLES FOR C4.5-BASED AND
CHAID*-BASED PART-LIKE ALGORITHMS

dataset
C4.5-based CHAID*-based

UnPART BFPART PART C4.5 UnPART BFPART PART CHAID*
abalone19 .00 .00 .00 .00 .00 .30 .00
yeast6 .89 .89 1.17 2.77 .15 .15 .28 .45
yeast5 1.17 1.25 1.39 4.65 .95 1.00 1.20 2.50
yeast4 1.13 1.13 1.71 3.81 .68 .68 1.14 1.90
yeast2 vs 8 .20 .60 .73 .65 .90 .90 1.17 1.53
glass5 .75 .75 .75 2.25 .67 .67 .67 1.67
abalone9 vs 18 1.09 1.07 1.62 3.06 .83 .83 1.17 1.50
glass4 1.17 1.17 1.17 2.73 .80 .80 .80 1.69
ecoli4 .87 .87 1.17 1.93 .97 1.02 1.73 2.11
glass2 1.18 1.18 1.34 3.51 .10 .10 .10 .20
vowel0 1.48 1.59 1.39 3.20 2.50 2.75 2.71 4.29
page-blocks0 3.49 3.58 3.40 6.68 3.61 4.17 5.60 5.86
ecoli3 1.00 1.00 1.05 2.96 .73 .73 .73 1.73
yeast3 1.50 1.50 2.04 4.39 .93 1.00 1.48 2.12
glass6 .80 .80 1.07 1.81 .87 .87 .87 1.92
segment0 1.72 1.72 1.72 3.70 1.55 1.59 2.40 4.06
ecoli2 1.35 1.35 1.36 3.56 1.20 1.20 1.90 2.69
new-thyroid1 1.27 1.27 1.27 2.80 1.02 1.02 1.02 2.37
new-thyroid2 .97 1.04 1.04 2.23 .93 .93 .93 2.25
ecoli1 1.06 1.09 1.37 3.31 1.33 1.33 1.47 2.32
vehicle0 2.21 2.39 2.31 6.83 2.33 2.33 2.76 4.87
glass-0-1-2-3 vs 4-5-6 1.23 1.23 1.52 2.80 1.36 1.35 1.47 2.37
haberman .63 .63 1.23 1.26 .20 .20 .30 .40
vehicle1 3.20 4.01 3.05 6.93 1.16 1.24 2.06 2.64
vehicle2 2.05 2.26 2.22 5.00 2.49 2.49 2.99 4.45
vehicle3 4.05 4.06 2.64 8.34 1.76 1.92 2.76 3.22
yeast1 2.18 2.09 2.52 6.29 1.52 1.60 2.50 2.90
glass0 1.75 1.85 1.74 4.06 1.01 1.01 1.31 2.03
iris0 .50 .50 .50 1.00 .50 .50 .50 1.00
pima 1.95 1.90 1.93 5.55 1.66 1.63 2.05 3.15
ecoli0 vs 1 .50 .50 .70 1.00 .50 .50 1.00 1.00
wisconsin 1.03 1.05 1.07 1.62 1.28 1.40 1.97 2.79
glass1 1.90 1.91 2.10 4.26 1.13 1.20 1.20 2.37
Mean 1.40 1.46 1.52 3.48 1.14 1.19 1.53 2.31
Median 1.17 1.18 1.37 3.20 .97 1.01 1.20 2.25

Table I.11: Results for Length over imbalanced datasets.
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dataset
C4.5-based CHAID*-based

UnPART BFPART PART C4.5 UnPART BFPART PART CHAID*
abalone19 4.92 4.29 3.63 9.73 5.40 6.40 7.52 9.78
yeast6 2.80 2.89 2.55 5.69 4.34 4.71 6.25 6.98
yeast5 1.93 1.95 1.97 4.77 2.99 4.22 4.30 4.99
yeast4 3.97 4.20 3.21 7.42 4.83 4.92 5.04 7.58
yeast2 vs 8 2.09 2.17 2.09 5.80 2.76 2.81 3.24 5.45
glass5 1.90 1.90 1.70 3.40 2.24 2.34 2.64 3.79
abalone9 vs 18 3.54 3.84 2.88 7.48 2.97 3.05 3.52 5.71
glass4 1.83 1.83 1.83 3.99 2.08 2.75 2.80 3.26
ecoli4 1.61 1.61 1.65 4.10 1.85 2.18 2.17 3.58
glass2 2.29 2.29 2.46 6.68 2.54 2.60 2.93 4.53
vowel0 2.10 2.23 2.16 4.00 3.34 3.63 3.93 4.45
page-blocks0 5.08 5.04 3.76 9.40 5.03 5.36 6.25 8.01
ecoli3 1.80 1.80 1.86 5.04 2.20 2.33 2.05 3.86
yeast3 3.09 3.07 2.74 6.44 2.94 3.23 3.67 5.55
glass6 1.65 1.65 1.85 3.33 1.94 1.94 1.74 2.95
segment0 2.07 2.04 2.01 4.32 2.19 2.40 3.19 5.20
ecoli2 1.90 1.76 1.84 5.22 1.99 2.43 2.80 3.76
new-thyroid1 1.16 1.16 1.16 2.41 1.13 1.13 1.43 2.03
new-thyroid2 1.40 1.40 1.20 2.73 1.27 1.33 1.43 2.24
ecoli1 1.33 1.31 1.45 3.69 1.27 1.17 1.68 2.60
vehicle0 2.81 2.88 2.55 7.21 3.13 3.26 3.92 6.14
glass-0-1-2-3 vs 4-5-6 1.47 1.47 1.55 3.57 1.94 2.02 2.05 3.61
haberman 1.75 2.02 2.18 4.06 .68 .68 .87 1.52
vehicle1 5.38 5.75 3.69 8.56 2.63 2.76 3.88 5.41
vehicle2 2.49 2.49 2.71 5.11 2.83 3.10 3.85 4.81
vehicle3 4.79 5.11 3.02 10.30 2.89 3.05 4.05 5.48
yeast1 3.27 2.97 2.79 7.70 1.98 1.85 3.08 3.90
glass0 1.96 2.11 2.11 4.59 1.60 1.60 1.90 2.72
iris0 .50 .50 .50 1.00 .50 .50 .50 1.00
pima 2.60 2.37 2.67 6.16 1.70 1.72 1.94 3.39
ecoli0 vs 1 .76 .76 .76 2.33 .60 .60 1.00 1.13
wisconsin .98 .98 1.05 1.82 1.48 1.59 2.12 2.68
glass1 2.02 2.05 2.05 4.91 1.58 1.58 1.75 2.93
Mean 2.40 2.42 2.17 5.24 2.39 2.58 3.02 4.27
Median 2.02 2.05 2.09 4.91 2.19 2.40 2.80 3.86

Table I.12: Results for Length over imbalanced datasets preprocessed with
SMOTE.
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APPENDIX I. FULL RESULT TABLES FOR C4.5-BASED AND
CHAID*-BASED PART-LIKE ALGORITHMS

dataset
C4.5-based CHAID*-based

UnPART BFPART PART C4.5 UnPART BFPART PART CHAID*
nursery 107 110 55 14 633 576 226 94
abalone 1867 1623 1858 139 794 871 849 575
ecoli 50 40 34 19 208 204 174 91
lymphography 14 19 16 8 94 99 59 46
car 145 198 47 18 708 703 330 114
zoo 9 8 8 7 60 99 31 24
flare 56 51 47 20 175 306 184 84
glass 70 64 52 21 321 299 265 148
cleveland 107 99 82 26 128 143 122 89
dermatology 23 18 18 13 381 578 243 117
balance 47 47 27 13 57 58 39 27
penbased 779 693 371 106 13565 11505 5144 1420
newthyroid 11 6 7 7 69 55 47 44
hepatitis 8 2 7 7 22 18 16 24
contraceptive 657 710 314 71 254 249 228 106
vehicle 390 370 227 68 3567 3162 1930 847
haberman 4 7 6 5 6 7 7 11
wine 16 17 16 11 243 175 146 123
breast 11 9 22 9 42 41 41 25
german 204 193 284 51 1071 1157 1173 462
iris 10 5 5 6 22 22 17 16
wisconsin 18 14 16 7 160 179 177 77
tictactoe 89 90 54 15 319 267 129 94
pima 67 59 53 33 555 596 515 338
magic 1661 1432 1914 886 21053 21710 25879 12293
bupa 26 31 16 13 45 47 44 33
heart 21 24 28 13 106 106 137 81
australian 79 74 97 33 417 499 443 260
crx 50 48 128 27 357 432 529 257
ring 965 821 1294 586 8835 8842 8526 8329
Mean 252 229 237 75 1809 1767 1588 875
Median 53 49 47 16 248 258 180 94

Table I.13: Results for Time (in milliseconds) over standard datasets.
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dataset
C4.5-based CHAID*-based

UnPART BFPART PART C4.5 UnPART BFPART PART CHAID*
abalone19 343 293 295 287 6623 6210 7475 6270
yeast6 18 17 16 11 213 198 194 206
yeast5 21 19 15 12 273 202 205 212
yeast4 19 21 20 14 303 277 248 250
yeast2 vs 8 5 6 7 7 57 50 59 52
glass5 8 8 8 8 66 42 52 57
abalone9 vs 18 51 46 54 40 731 693 734 608
glass4 11 9 8 11 104 73 73 93
ecoli4 8 6 7 8 71 50 62 63
glass2 19 15 15 13 29 26 24 29
vowel0 179 154 151 139 7295 5876 5529 5664
page-blocks0 1058 914 934 596 33853 33153 42501 22628
ecoli3 9 9 9 8 58 45 42 40
yeast3 28 23 27 16 303 272 301 246
glass6 10 10 10 9 108 87 83 90
segment0 781 663 789 551 19787 14595 24362 12074
ecoli2 10 11 10 7 66 67 54 46
new-thyroid1 8 7 11 7 35 31 27 26
new-thyroid2 6 6 6 6 34 20 17 25
ecoli1 11 11 10 10 79 84 82 62
vehicle0 81 74 51 31 1201 1046 900 456
glass-0-1-2-3 vs 4-5-6 13 12 13 10 125 110 120 90
haberman 14 6 6 8 11 27 28 11
vehicle1 189 223 129 49 709 714 718 420
vehicle2 69 76 51 29 1287 1040 950 506
vehicle3 222 178 108 56 903 828 912 438
yeast1 63 61 44 30 373 381 508 256
glass0 21 22 18 14 104 120 97 75
iris0 4 3 3 3 9 4 4 11
pima 68 65 55 35 556 575 532 336
ecoli0 vs 1 5 4 5 5 30 24 19 27
wisconsin 18 14 16 8 200 193 173 91
glass1 21 21 18 13 118 100 89 88
Mean 103 91 88 62 2294 2037 2642 1562
Median 19 17 16 12 125 120 120 91

Table I.14: Results for Time (in milliseconds) over imbalanced datasets.
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APPENDIX I. FULL RESULT TABLES FOR C4.5-BASED AND
CHAID*-BASED PART-LIKE ALGORITHMS

dataset
C4.5-based CHAID*-based

UnPART BFPART PART C4.5 UnPART BFPART PART CHAID*
abalone19 50138 38491 29208 7766 1411243 1415336 1086926 252893
yeast6 691 587 647 403 45184 38775 44531 13834
yeast5 854 731 724 467 41557 36696 28528 12344
yeast4 1473 1298 782 334 62353 57358 49315 15453
yeast2 vs 8 120 101 77 50 3902 3155 3113 1296
glass5 33 27 28 34 674 492 556 462
abalone9 vs 18 1505 1327 985 220 18950 17504 15040 4769
glass4 40 33 48 32 756 595 470 419
ecoli4 54 45 52 33 924 704 900 552
glass2 93 79 81 50 698 592 910 484
vowel0 1210 1024 907 622 68271 54730 44627 19085
page-blocks0 13534 11673 7944 2798 776982 741953 763009 145189
ecoli3 60 48 39 32 676 575 535 422
yeast3 565 491 587 320 25298 22970 21088 11619
glass6 32 30 21 28 489 378 304 325
segment0 4480 3765 4726 3269 148637 115337 170759 96426
ecoli2 45 41 39 33 674 597 562 423
new-thyroid1 10 10 9 15 140 107 110 119
new-thyroid2 13 10 12 15 172 120 112 121
ecoli1 25 30 26 25 361 332 308 254
vehicle0 164 164 99 54 2694 2300 1818 991
glass-0-1-2-3 vs 4-5-6 22 22 21 23 475 389 354 292
haberman 12 19 7 17 15 13 18 23
vehicle1 551 535 256 93 2301 2113 2155 957
vehicle2 116 105 84 52 2772 2258 1823 853
vehicle3 557 547 264 102 2538 2513 2525 956
yeast1 402 367 446 158 5653 6328 7564 3550
glass0 33 30 25 28 250 222 201 192
iris0 4 2 4 11 17 9 9 21
pima 152 135 121 63 1303 1269 1048 654
ecoli0 vs 1 8 5 7 12 67 31 31 52
wisconsin 22 27 23 15 313 636 258 109
glass1 32 28 32 24 327 260 230 176
Mean 2335 1873 1465 521 79596 76565 68174 17737
Median 93 79 77 50 924 704 910 552

Table I.15: Results for Time (in milliseconds) over imbalanced datasets prepro-
cessed with SMOTE.
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