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Abstract
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School of Computer and Security Science

Doctor of Philosophy

Intelligent Network Intrusion Detection Using an Evolutionary

Computation Approach

by Samaneh Rastegari

With the enormous growth of users’ reliance on the Internet, the need for secure

and reliable computer networks also increases. Availability of effective automatic

tools for carrying out different types of network attacks raises the need for effective

intrusion detection systems.

Generally, a comprehensive defence mechanism consists of three phases, namely,

preparation, detection and reaction. In the preparation phase, network administra-

tors aim to find and fix security vulnerabilities (e.g., insecure protocol and vulnerable

computer systems or firewalls), that can be exploited to launch attacks. Although

the preparation phase increases the level of security in a network, this will never

completely remove the threat of network attacks. A good security mechanism re-

quires an Intrusion Detection System (IDS) in order to monitor security breaches

when the prevention schemes in the preparation phase are bypassed. To be able

to react to network attacks as fast as possible, an automatic detection system is

of paramount importance. The later an attack is detected, the less time network

administrators have to update their signatures and reconfigure their detection and

remediation systems. An IDS is a tool for monitoring the system with the aim of

detecting and alerting intrusive activities in networks. These tools are classified into

two major categories of signature-based and anomaly-based. A signature-based IDS

stores the signature of known attacks in a database and discovers occurrences of

attacks by monitoring and comparing each communication in the network against

the database of signatures. On the other hand, mechanisms that deploy anomaly

detection have a model of normal behaviour of system and any significant deviation

from this model is reported as anomaly.

http://http://www.ecu.edu.au/
http://http://www.ecu.edu.au/faculties/health-engineering-and-science/overview
http://http://www.ecu.edu.au/schools/computer-and-security-science/overview
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This thesis aims at addressing the major issues in the process of developing signature

based IDSs. These are: i) their dependency on experts to create signatures, ii) the

complexity of their models, iii) the inflexibility of their models, and iv) their inability

to adapt to the changes in the real environment and detect new attacks. To meet

the requirements of a good IDS, computational intelligence methods have attracted

considerable interest from the research community.

This thesis explores a solution to automatically generate compact rulesets for net-

work intrusion detection utilising evolutionary computation techniques. The pro-

posed framework is called ESR-NID (Evolving Statistical Rulesets for Network In-

trusion Detection). Using an interval-based structure, this method can be deployed

for any continuous-valued input data. Therefore, by choosing appropriate statistical

measures (i.e. continuous-valued features) of network traffic as the input to ESR-

NID, it can effectively detect varied types of attacks since it is not dependent on the

signatures of network packets.

In ESR-NID, several innovations in the genetic algorithm were developed to keep

the ruleset small. A two-stage evaluation component in the evolutionary process

takes the cooperation of rules into consideration and results into very compact,

easily understood rulesets. The effectiveness of this approach is evaluated against

several sources of data for both detection of normal and abnormal behaviour. The

results are found to be comparable to those achieved using other machine learning

methods from both categories of GA-based and non-GA-based methods. One of

the significant advantages of ESR-NIS is that it can be tailored to specific problem

domains and the characteristics of the dataset by the use of different fitness and

performance functions. This makes the system a more flexible model compared to

other learning techniques. Additionally, an IDS must adapt itself to the changing

environment with the least amount of configurations. ESR-NID uses an incremental

learning approach as new flow of traffic become available. The incremental learning

approach benefits from less required storage because it only keeps the generated

rules in its database. This is in contrast to the infinitely growing size of repository

of raw training data required for traditional learning.

Keywords: Network security, intrusion detection, evolutionary computation, classi-

fication, genetic based machine learning, supervised learning, rule based algorithms.
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Chapter 1

Introduction

Computers and networks have been under threat from viruses, worms and attacks

from hackers since they were first used. In 2008, the number of devices connected

to the Internet exceeded the number of human beings and this increasing trend will

see about 50 billion devices by 2020 (see Figure 1.1) (Evans, 2011). Securing these

devices and the data passing between them is a challenging task because the number

of intrusions is also increasing sharply year by year.

Figure 1.1: Increases on the number of devices connected to the Internet over
years.

1
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To address this issue, a large number of defences against network attacks have been

proposed in the literature. Despite all the efforts made by researchers in the com-

munity over the last two decades, the network security problem is not completely

solved. One reason for that is the rapid growth in computational power and available

resources to attackers, which enables them to launch complex attacks (Wu et al.,

2010). This can be considered a two-player game, where an attacker attempts to find

the most effective strategy to disrupt normal operations in a network and the de-

fender’s challenge is to determine optimal defensive solutions and block illegitimate

access to the network.

In general, defence against network attacks consists of preparation, detection and

reaction phases. A risk analysis process is usually conducted by security engineers

during the preparation phase to understand the environment and the assets they are

trying to protect in that environment. This process is very crucial because it helps

the engineers to understand how attacks can take place and how they affect the

network (Santos, 2007). The preparation phase also includes identification of infras-

tructure vulnerabilities, development of security strategies and plans and installation

of required security devices based upon analysis of the information gathered (Hamdi

& Boudriga, 2005; Mölsä, 2005). Another key element of network security is a de-

tection system. An intrusion detection system (IDS) usually complements a firewall

to form an effective cyber security solution. One security motto is “Prevention is

ideal but detection is a must” (Cole, 2011). Fast detection of attacks is required

to be able to react rapidly. Thus, an automatic detection phase is of paramount

importance. Finally, handling detected intrusions in a network is done during the

reaction phase. A traffic blocking method is an example of a mitigation mechanism

used in the reaction phase.

One of the main challenges in securing networks is the appropriate design and use

of an intrusion detection system, that can monitor network traffic and effectively

identify network intrusions. The role of this key element in an effective defence

system will be explained in the next section.
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1.1 The Role of Intrusion Detection

A large number of defence approaches have been proposed in the literature to provide

different functions in various environments. The core element of a good defence sys-

tem is an Intrusion Detection System (IDS), which provides proper attack detection

before any reaction. An IDS aims to detect intrusions before they seriously damage

the network. The term intrusion refers to any unauthorised attempt to access the

elements of a network with the aim of making the system unreliable. Figure 1.2

depicts the organization of a generalized IDS. The solid lines show the data/control

flow and the dashed lines indicate the responses to the intrusions.

Data Pre-processingData 
Collection

Intrusion Recognition Alarm Report

Intrusion Models Security 
Administrator

Monitored System

Response to Intrusion

Response to Intrusion

Figure 1.2: Organization of a generalized intrusion detection system (Wu &
Banzhaf, 2010).

Intrusion detection systems are generally categorised into signature based or anomaly

based. Signature based IDSs use a database of rules or so called signatures to classify

network connections, whereas anomaly based IDSs create a normal user profile and

identify anything that does not match this profile as an attack. In the former, known

intrusions can be detected efficiently with a low false alarm rate. Thus, in most of

the commercial systems, this approach has been widely used.

One of the major challenges in the signature based intrusion detection is the de-

tection of new intrusions. To address this issue, the database of rules should be

regularly updated with a manual or automatic process. A manual process is usu-

ally done by a network administrator by finding new signatures and adding them

to the database of rules, while an automatic process can be done with the help of
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supervised learning algorithms. Another way to address this problem is to switch

to an anomaly detection system, which has the capability of detecting new types of

attacks. However, the major problem in anomaly detection systems is discovering

the boundaries between normal and anomalous behaviour. In addition to that, as

the normal traffic pattern is also changing over time, an anomaly detection system

needs to adapt itself to this changing behaviour.

Nowadays, due to the exponential growth of technologies and the increased number

of available hacking tools, in both approaches, adaptability should be considered as

a key requirement. To be able to react to network intrusions as fast as possible, an

automatic or at least semi-automatic detection phase is required. This will decrease

the amount of damage to legitimate users because an early detection system supplies

more time for a proper reaction.

1.1.1 Essential Requirements of an IDS

The main features that an IDS should have are effectiveness, adaptability and exten-

sibility (Lee, 1999). Effectiveness refers to the ability of an IDS in detection of slight

variations of known attacks and extensibility means that an IDS can be customised

easily for different environments.

A majority of proposed IDSs in the past are based on signature detection (Gómez

et al., 2013) because of their effectiveness in detection of known attacks. Two exam-

ples of widely used open-source signature-based tools are Snort (Roesch, 1999) and

ClamAV (Kojm, 2004). Both have their own database of signatures (more than 4000

rules in Snort database and over 800,000 in ClamAV repository). However, these

systems raise two important issues for further research: 1) a human is responsible

for generation of signatures and updating the database and as a result the cost of

developing and maintaining this database is an important issue. They also suffer

from the time lag between facing new attacks and manually updating the signatures.

and 2) they do not work against new and unknown attacks.
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To automate the process of signature generation, the use of computational algo-

rithms is a promising method with adaptation, fault tolerance, high computational

speed and error resilience in the face of noisy information characteristics (Wu &

Banzhaf, 2010). Additionally, to update the database of signatures for a dynamic

environment, an incremental learning approach can be used to repeatedly learn new

attacks.

To summarise, the laborious manual process of signature creation for IDSs, non-

adaptability of them to a dynamically changing environment and considering exten-

sibility as an important feature for the design of IDSs introduce a new direction of

research and the motivation for this thesis.

1.2 Research Motivation and Objectives

As the number of malicious computer users and their intrusive behaviour increase,

the task of designing comprehensive network protection systems become more and

more difficult. This thesis focuses on the majority class of IDSs, which is based on

signature detection and proposes a method for automatically generating signatures

for network intrusion detection. The main disadvantage of signature-based detec-

tion systems is the impossibility of detecting new intrusions because they only look

for patterns that match the signatures (or rules) stored in their databases. These

systems need frequent updates to keep the database of signatures current. Creation,

test and distribution of these signatures are often carried out by human experts.

This involves examining and analysing the malicious traffic for extracting informa-

tion needed for signature-based detectors. After creation of signatures, they should

be tested against some captured network data and if they perform well, they will be

added to the repository of signatures. To facilitate the signature creation process,

a computational intelligence method can be used in a supervised learning mode in

building an automatic rule-based IDS. More specifically in this thesis, a Genetic-

based Machine Learning (GBML) technique is proposed and its application to IDS
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problems is evaluated. The proposed approach uses a genetic algorithm (GA) to

generate an optimal set of rules for intrusion detection.

Although the application of nature inspired rule based systems, such as genetic algo-

rithms, for classification tasks is a promising line of work, there are some challenges

that need to be addressed, such as scalability (how do they deal with datasets with

a high number of attributes?), flexibility (can they deal with both balanced and

imbalanced (i.e. a problem where the total number of a class of data is far less than

the total number of another class of data) datasets?), understandability of the model

(how complex is the final ruleset?), etc. These challenges are discussed below.

One of the challenges in evolutionary rule learning techniques is dealing with datasets

with a large number of attributes. Standard feature selection strategies are often

used to find relevant attributes and reduce the search space. However, these meth-

ods are only able to initially filter the dataset for the use of a classification method

and thus the classifier is forced to use the same subset of features for every rule

(signature) it generates. Therefore, the same subset of attributes are seen for the

whole solution (i.e. ruleset). For example, if the feature selection method chose

five of the 10 received features as the relevant attributes for the classifier, then

the final ruleset generated by the classifier includes rules that are all the same size

(each rule comprises five features). Recently, some other approaches have been pro-

posed to integrate feature selection and learning in a concurrent manner (Bacardit &

Krasnogor, 2009a). These fine grained feature selection approaches are more flexible

and produce rules with different sets of attributes. This also reduces complexity

of the final ruleset generated for the classification task by giving the flexibility to

learning system to only use and keep relevant attributes during the evolutionary

course. Therefore, two advantages of an integrated feature selection and learning

approach are 1) a more efficient learning process and 2) a more compact and hence

understandable final solution.

In many real world situations (e.g., intrusion detection, risk management and med-

ical applications), cases where one class (usually the positive class) represents only
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a very small fraction of the entire dataset can often be seen. For example, in net-

work intrusion detection, the number of intrusive instances is typically a very small

fraction of the total network traffic records. Similarly, for classifying the cancerous

pixels from normal ones in mammogram images, the cancerous instances represent

only a very small fraction of the entire image (Chawla et al., 2003). Dealing with

these cases is considered one of the emergent challenges in data mining (Yang &

Wu, 2006). Since the minority class is considered the target class in the learning

and prediction process, the cost associated with misclassification of even one exam-

ple of that class should be higher than that of the other class. Therefore, a rule

learning system’s design should be flexible enough to adapt to different types of

problems and datasets.

Another important challenge for nature inspired rule based systems is the com-

plexity of the final ruleset. In most domains, experts are interested in human-

understandable models. A common metric used in the literature for measuring com-

plexity is the number of rules. To avoid generating too many rules and to minimize

overlapping regions covered by rules, cooperation between rules should be considered

when evolving rules.

Therefore, this thesis aims at designing a genetic-based rule learning classifier, which

can automatically generate a concise set of easy to understand rules for intrusion

detection. This system decreases human effort in creating and maintaining rules

for rule-based systems. Another goal of this thesis is to make the detection system

adaptable to the changes in the real environment using an incremental learning

approach. The contributions of the proposed approach to both the GBML and

network intrusion detection fields are explained in the following section.

1.3 Thesis Contributions

The main contributions of this thesis are:
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• Automatic rule creation for intrusion detection:

The proposed nature inspired approach in this thesis is able to automatically

generate signatures (rules) to detect anomalous traffic. This is accomplished

by implementing a genetic algorithm with new features, which are explained

later, to autonomously derive a set of rules from network data. This facilitates

and speeds up the process of rule extraction from network audit data, which

has been traditionally carried out by human experts for signature based IDSs.

• Use of statistical features for detector rules:

The types of rules generated in this thesis are statistical based as it is be-

lieved that the generated packets by today’s attack tools with improved packet

crafting characteristics will most likely distort statistical measurements of the

composition of network traffic. For example, flooding attacks produce huge

amount of normal packets to disrupt normal victim’s services. To be able to

detect this kind of network intrusion, statistical methods can be used. Aiming

for generation of statistical based rules, the input features to the proposed

intrusion detection system are real-valued attributes. Accordingly, the sys-

tem is named ESR-NID (Evolving Statistical Rulesets for Network Intrusion

Detection). Examples of these statistical measures are number of data bytes

from source to destination, number of data bytes from destination to source,

Entropy of source IP address, Entropy of source port number, Entropy of des-

tination port number, Entropy of packet type and Entropy of packet size. The

rules generated by ESR-NID are not dependent on the categorical features

extracted from packets and can be used for detection of a wide range of in-

trusions. Most of the existing signature based IDSs lack the ability to detect

slight variations of known attacks because they look for exact matches against

network packets. Example of these features are source IP address, source port

number, protocol and destination port number.

• Development and analysis of a flexible genetic-based rule learning technique:

One of the main contributions of the thesis is the development of an effective

genetic algorithm with new features to generate accurate and compact rulesets
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for network intrusion detection. The proposed model, ESR-NID, has two main

features:

1. An advanced two-stage evaluation approach:

ESR-NID uses two functions to find the best cooperating rules in each

generation of an evolutionary run. These are a well-defined fitness func-

tion, which considers the cooperation of rules to eliminate redundancy

and minimize the overlap between the rules and a performance function,

which decides on the best ruleset in a cooperative manner and provides

flexibility in dealing with different problems, including imbalanced prob-

lems. ESR-NID is also flexible enough to accommodate alternative fitness

and performance functions based on the designer’s needs and preferences.

To show this, a new problem is defined for exploring the use of ESR-NID

for detecting normal instances instead of intrusions. The aim is to design

a detection system that matches maximum number of normal instances.

This can be achieved by changing the performance function in ESR-NID

model. Accordingly, a set of experiments is conducted to show the flexi-

bility aspect of ESR-NID.

2. An adaptive elitism mechanism:

To avoid the laborious task of finding the best elite value through a trial-

and-error method and also losing good cooperative rules over the gen-

erations, an adaptive approach is proposed for ESR-NID to adjust the

number of elites copied into each new generation. This enhances the

learning process by keeping the best performed rules from one generation

to the next.

Analysis of the proposed method: The performance of ESR-NID is eval-

uated against three sources of data: synthetic datasets, NSL-KDD dataset

(a new improved version of the KDD99) and a combined DARPA/CAIDA

dataset. Preliminary evaluations of the method are carried out against the

first set of data as the ground truth is known for synthetic problems. Four

different scenarios are designed for generation of synthetic datasets. The other

two sets of data are used for evaluating the ESR-NID within the context of a
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real-world problem (network intrusion detection). The outcomes of ESR-NID

are compared against five machine learning methods from two categories of

GA-based and non-GA-based algorithms: J48, kNN and JRip (non-GA-based)

and GASSIST-ADI and MPLCS (GA-based).

• Incremental learning:

Finally, a methodology is developed to make ESR-NID adaptable to environ-

ment changes. Using this approach, ESR-NID is able to frequently update

its database of rules to detect new attacks. The adaptability of ESR-NID is

evaluated against synthetic datasets and NSL-KDD dataset.

1.4 Thesis Structure

The remainder of this thesis is structured as follows: In chapter 2, the context of this

thesis is set by providing a brief introduction to the intrusion detection problem and

the existing detection systems. After describing the important factors that should

be considered in the design and implementation of intrusion detection systems, an

overview of capabilities of machine learning techniques and their application to rule

learning is provided. Additionally, a review of some of the recent and most related

work to the proposed approach is provided.

In chapter 3, the design and implementation of the proposed approach, ESR-NID,

for generating optimised rulesets for network intrusion detection is presented. The

contributions of ESR-NID to the genetic based machine learning techniques are also

explained in more detail.

Chapter 4 introduces the synthetic datasets generated for evaluation of ESR-NID.

Through the first set of experiments, an adaptive elitism mechanism is proposed

for enhancing the proposed algorithm. Additionally, an algorithm tuning process is

conducted to find the best settings for ESR-NID for all the subsequent experiments.

In chapter 5, ESR-NID is more extensively evaluated for network intrusion detec-

tion. This is achieved through a series of experiments against NSL-KDD datasets.
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Additionally, by combining the new attack traces in CAIDA DDoS 2007 data with

the attack-free DARPA data, another dataset is created for testing the performance

of ESR-NID. The flexibility in the use of ESR-NID on a different problem, where

the aim is to detect normal instances instead of intrusions, is tested in this chapter

as well.

In chapter 6, an incremental learning approach is proposed to make ESR-NID adapt-

able to a dynamic environment. To evaluate the proposed model, an evaluation

strategy is developed to carry out a series of experiments. Synthetic datasets and

the NSL-KDD dataset are again used as the sources of data in this chapter.

Finally, chapter 7 summarizes the contributions of this thesis, points out the limita-

tions of the work and discusses the future directions for continuing further research

in this area.





Chapter 2

Background and Related Work

2.1 Introduction

This chapter first provides a brief introduction to the network intrusion problem

and then an overview of intrusion detection systems (IDSs) and their selection cri-

teria. Following the introductory concepts, a brief background on machine learning

techniques with emphasis on rule learning approaches will be covered. The rule

learning techniques are broadly categorised into evolutionary and non-evolutionary

algorithms. Under each category, a set of selected machine learning techniques are

reviewed. Finally, a survey of past research on the use of nature-inspired techniques

for rule based intrusion detection systems, that is related to the work presented in

this dissertation is provided.

2.2 Overview of Network Intrusions

Nowadays, many variations of network attacks are seen and they are increasingly

becoming more varied and sophisticated. To improve computer and network security,

knowing the existing attack types and categorising them based on their patterns

is very useful. A standard taxonomy of attacks will decrease confusion between

13
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organisations and researchers who are dealing with computer and network attacks

on a regular basis to provide effective methods to combat them.

A comprehensive taxonomy of network and computer attacks that takes into account

all parts of the attack (from the vulnerability to the target to the attack itself) can

be found in Hansman & Hunt (2005). This taxonomy is designed using the concept

of dimensions. There are four dimensions introduced for attack classification. The

first dimension is based on the attack vector (i.e. the method by which an attack

reaches its target). For example, the Melissa virus uses email as its main method

of propagation. Therefore, it will be categorised in the category of mass-mailing

worms. As defining the attack vector for some types of attacks is not easy, the cate-

gory that best matches the following definitions are chosen in the taxonomy. These

are virus (propagates through some form of infected files), Trojans (a benign looking

program that serves some malicious purposes), buffer overflows (crashes a process

by overflowing its buffer), denial of service attacks (makes services unavailable to

legitimate users), network attacks (by manipulating network protocols), physical at-

tacks (by damaging physical components of a network), password attacks (aims at

gaining a password) and information gathering attacks (aims at gaining important

information). The second dimension covers the target(s) of attacks. There are two

main categories in this dimension: hardware and software. Each category can be

broken down into multiple sub-classes. Hardware targets include computer com-

ponents (such as CPUs and hard-disks), network equipment (such as routers and

switches) and peripheral devices (such as monitors). On the other hand, software

targets are classified into operating systems and applications. The list of potential

targets increases each year. The third dimension in this taxonomy covers the vulner-

abilities that the attack uses. For this dimension, the CVE (Common Vulnerabilities

and Exposure) standard (CVE, 2015) for vulnerabilities is used. For categorising an

attack in this level, one should recognise the vulnerability or vulnerabilities that an

attack exploits and assign CVE entries to it. Finally, the fourth dimension takes into

account the possibility for an attack to have a payload or effects beyond itself. This

dimension consists of five categories: first dimension attack payload, corruption of

information, disclosure of information, theft of service and subversion.
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There are some other methods in the literature, which are aimed at classifying secu-

rity threats using various factors. For example, some are only focused on vulnerabil-

ities (Abbott et al., 1976; Lough, 2001) and some others categorise the attacks based

on attacker motivation and objectives, for example, Howard & Longstaff (1998)’s

taxonomy.

This research, however, is only concerned with distinguishing intrusive behaviour

from legitimate behaviour. Therefore, any set of actions that attempt to compro-

mise the integrity, confidentiality or availability of network resources is considered

an attack or network intrusion (this definition of intrusion has been adopted from

Heady et al. (1990)). Intrusions can be broadly categorised into two classes: anoma-

lies and misuse intrusions. Anomalies are deviations from normal behaviour while

misuses are known patterns of attacks. As misuses are known patterns of attacks,

detecting novel attacks is a challenging task for detection systems designed for this

category of intrusions. On the other hand, because the behaviour of normal pat-

terns varies in different environments and as a result the system profiles should be

updated from time to time, detection of anomaly intrusions is computationally ex-

pensive (Mukkamala et al., 2002). Some examples of intrusions are unauthorized

modifications of system files to facilitate illegal access to the system, unauthorized

modifications of router tables to deny use of the network and unauthorized use of

computing resources (Bishop, 2003).

As the number of devices connected to the Internet grows and the resources facil-

itated by bandwidth-providers increase, the adversary-class has less concerns with

the network bandwidth constraint and easily produces highly sophisticated network-

based attacks (Baig et al., 2011). Therefore, there is still a need for highly efficient

and intelligent defence mechanisms to stand against network threats. In the next

section, an overview of intrusion detection systems as the key element of defence

mechanisms against network attacks will be presented.
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2.3 Overview of Intrusion Detection Systems

A complete security solution against network attacks has three main security com-

ponents: attack prevention, attack detection, and attack reaction (Thomas, 2001;

Yang et al., 2004). These components are presented in Figure 2.1.

Figure 2.1: Components of a comprehensive defence mechanism.

Prevention - The prevention phase aims to increase the overall security of the

system by installation of required security devices, removing application bugs, up-

dating protocol implementation, and improving the security of all computers linked

to the Internet. In this stage, the network administrator tries to secure the system

from illegitimate users by implementing preventive methods. Although it is not pos-

sible to prevent all attacks, the goal is to raise the bar for attackers to launch DoS

attacks (Glenn, 2003).

Detection - A good defence system should have a proper attack detection phase

before any reaction. The goal of every attack detection mechanism is to detect

intrusions before any serious damage. The term intrusion means any unauthorized

attempt to access, falsify, change or destroy information in order to make a system

unreliable (Spafford & Zamboni, 2000). A good system can detect attacks in a short
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period of time with a low proportion of false positives. Due to the growing number of

intrusions, researchers are increasingly trying to develop Intrusion Detection Systems

(IDSs). An IDS consists of three major components: sensor, analyser, and user

interface (Allen et al., 2000). The key feature of such a system is its ability to

provide a view of malicious activities and give out alerts, which inform the network

administrators and facilitate the process of reaction.

Based on the analysis methods used, there are two broad groups of IDSs: signature

based detection and anomaly based detection. Mechanisms that combine anomaly

based detection and signature based detection are known as hybrid detection sys-

tems, which update an attack signature database using data about discovered attacks

through an anomaly detection phase. Anomaly based detection systems explore in-

trusions based on deviations from normal behaviours and thus they can detect some

new or modified attacks. On the other hand, signature based detection systems can

identify an attack if the monitored traffic matches the anomaly patterns (signatures)

in their databases. Signature based mechanisms usually work faster and produce less

false positives, but they need prior knowledge of intrusions and consequently, in the

case of novel attacks, a network system is left vulnerable until the signature database

is updated. Table 2.1 shows pros and cons of these detection methodologies (Liao

et al., 2013). A hybrid system that can use the advantages of both signature based

and anomaly based IDSs provides a more comprehensive protection against a wide

range of attacks.

Table 2.1: Pros and cons of signature and anomaly based IDSs.

Signature-based Anomaly-based
Pros - Simple and effective in detection

of known attacks
- Detail contextual analysis

- Effective in detection of new vul-
nerabilities
- Facilitates detection of privilege
abuse

Cons - Ineffective in detection of unknown
attacks and variants of known at-
tacks
- Hard to keep signatures up-to-date
- Time consuming and expensive to
extract and maintain the knowledge

- Weak accuracy of normal profiles
as observed events are constantly
changing
- Not effective during recreation of
behaviour profiles
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There are different methods and techniques involved in each category including

threshold detection, statistical measurement, rule-based methods, and evolutionary

computation methods (Haag et al., 2007). For example in a threshold detection

approach, the user specifies threshold values for network traffic and any deviation

from the values is considered an attack and the system produces an alarm. This

approach is a very common technique used in sensor networks. The detection sys-

tem recognises an event of interest, when the sensory readings exceed a predefined

threshold value (Baqer & Khan, 2007). Similarly, a statistical technique determines

a network’s normal traffic distributions and if these distributions change signifi-

cantly, the system triggers an alarm. On the other hand, there are sets of predefined

rules provided for rule-based systems. A rule-based classifier fires once a match is

found between an input record and a rule in the system. Finally, the application

of evolutionary computation techniques becomes a key technology in many research

efforts in this area, but improvements are likely possible. These techniques with

learning and adaptive capabilities have often been used together with rule-based

methods to acquire knowledge of normal and abnormal behaviour (Wu & Banzhaf,

2010; Baig et al., 2011). Artificial neural networks (ANNs), fuzzy logic (FL), genetic

algorithms (GAs), genetic programming (GP), swarm intelligence (SI) and artificial

immune systems (AISs) are examples of computational intelligence approaches, that

have been used (Wu & Banzhaf, 2010) for solving intrusion detection problems.

Considering the source of data being used for intrusion detection, IDSs are classi-

fied into two categories; Host-based IDS (HIDS) and Network-based IDS (NIDS)

(Northcutt & Novak, 2002). A HIDS operates on a single host and monitors events

occurring within an individual computer system. So, HIDS provide protection for

critical computers that may house sensitive information. On the other hand, NIDSs

are not restricted to packets going to a specific host since all the machines in the net-

work are protected using this NIDS. A NIDS monitors traffic in a network segment

and analyses the traffic in order to identify suspicious activities. In order to com-

bine the advantages of both host-based and network-based IDSs and reduce human

interaction, correlators are used to prioritize alerts from several different detection
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systems. Correlators are able to weigh alerts, cluster related alerts, and assign pri-

orities regarding the level of harm to a critical resource. This technique can help

analysts by reducing the quantity of information they should analyse to recognise

attacks (Haines et al., 2003).

Reaction - Finally, as the Internet is a resource-sharing architecture, a reaction

mechanism should be employed when an attack is underway. The first advantage of

having a good reaction technique is to save bandwidth that will be wasted by attack

traffic and the second advantage is to separate the packets belonging to attack flow

and normal flow of traffic. However, it needs to make sure that in the filtration

phase, only attack traffic is filtered, and it has no impact on legitimate traffic (Peng

et al., 2007). It is possible to combine any detection mechanism with one or more

reaction techniques for achieving better results (Mölsä, 2005). There are several

reaction mechanisms proposed in the literature such as killing of active network

connections, filtering, defining new policies and reconfiguring, and source traceback

mechanism. Responses to attacks could either be in an active or passive mode. In

an active scheme, the reaction mechanism reacts against attack traffic in real-time

while in a passive mode, the attack traffic log will be analysed passively to find the

sources of attacks, for example, see Chen et al. (2004).

As the focus of this thesis is on the intrusion detection problem, in the next section,

some of the important features that an intrusion detection system should posses will

be described.

2.3.1 Selection Criteria for Intrusion Detection Systems

Although there are many different IDSs available to secure networks, attackers on the

other hand are evolving and coming up with new attack strategies against network

infrastructure. There are several factors that should be considered when choosing

a cost-effective defence. Several factors affecting the selection process are presented

in Table 2.2 (Mölsä, 2005; Chebrolu et al., 2005).
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Table 2.2: Factors affecting the selection process of defence mechanisms

Factor Explanation

Effectiveness How capable is an IDS in detection of attacks? Is there

a possibility of false positives?

Adaptability How capable is a defence mechanism in learning changes

in the environment over time?

Misusability Can an attacker use a defence mechanism for achieving

a DoS condition?

Collateral damage Does a defence mechanism cause any negative side ef-

fects? Does it harm the legitimate traffic?

Proactivity Can a defence mechanism prevent attacks?

Completeness What kind of other defence mechanisms are required?

Reaction time How fast does a defence mechanism react to attacks?

Ease of implementation Is it feasible to implement a defence mechanism?

Ease of use Is the interface easy to use? Is it configurable for differ-

ent environments?

Installation place What is the optimal place to implement a defence mech-

anism?

Effectiveness and adaptability are the two key characteristics of intrusion detection

systems.

Effectiveness - An effective IDS should be general enough to detect different

types of attacks and at the same time it should not misclassify legitimate activity as

an attack (Chebrolu et al., 2005). The only way to evaluate the effectiveness of an

intrusion detection system is to measure its ability to accurately detect intrusions

(detection rate) without raising too many false alarms (false positives/negatives).

These two metrics are the most common ones used in IDS evaluation studies (Eskin

et al., 2002; Lee & Shields, 2002; Lee & Stolfo, 1998). The detection rate is generally

defined as the percentage of attacks detected by the IDSs and the false positive rate

is the percentage of normal traffic that has been mistakenly detected as malicious
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traffic by IDSs. There is always a tradeoff between the detection rate and false

alarm rate. The analysis of their trade-off can be represented as a receiver operating

characteristic (ROC) curve. Some ROC curves of real IDSs can be seen in several

research efforts (Durst et al., 1999; Lippmann et al., 2000). A ROC curve clearly

presents the relationship between the number of false positives and true positives.

An effective IDS can detect a high number of intrusions with an acceptable level of

false alarms.

Adaptability - refers to an IDS’ ability in learning changes in the environment

over time and adjusting to them (Bai & Kobayashi, 2003). For both signature

and anomaly based detection systems, this is a major challenge and a highly de-

sired characteristic. In signature based systems, the database of signatures should

be regularly updated either manually, which is time-consuming and laborious, or

automatically to be able to detect unknown intrusions. Although anomaly based

detection systems are able to detect new types of intrusions, they also need to adapt

to constantly changing normal behaviour (Wu & Banzhaf, 2010).

One solution to the problem of facing new attacks is considering the use of biologi-

cally inspired approaches such as artificial immune systems (AISs). The principles of

immunology have been adapted by the evolutionary computation community to de-

velop AISs in the hope that these systems will adjust over time (Forrest & Hofmeyr,

1999; Dasgupta & González, 2002). Another research direction is the use of incre-

mental learning techniques to provide the ability of repeatedly updating the system

when new data becomes available (Nasr et al., 2014). The later is a broader solution

as it will adapt the system to both changes in attack and normal behaviour.

In this dissertation, the main advantage of signature based IDSs, which is an effective

detector of known attacks, will be used to provide high detection accuracy with few

false positives. However, to overcome the problem of developing and maintaining

the rules (signatures) for the signature based system, this thesis investigates the

existing learning solutions and proposes an evolutionary computation based rule

learning technique to automatically create IDS rulesets (signatures).
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The following section demonstrates the promising capabilities of machine learning

techniques in designing effective and adaptable intrusion detection systems. How-

ever, more emphasis will be put on rule learning techniques as the proposed approach

belongs to this category of machine learning techniques. Rule learning is a kind

of machine learning technique, that uses rules for knowledge representation. The

rule learning classification approaches can be broadly divided into two categories:

evolutionary rule learners (GA-based) and non-evolutionary (non-GA-based) rule

learners. One of the advantages of rule learning techniques is that they are very

competitive in terms of interpretability since rules can often be understood easily

by human experts (Fernández et al., 2010).

2.4 Machine Learning

Machine learning is a field of artificial intelligence (AI), that studies learning tech-

niques that improve their behaviour based on past observations (Michalski et al.,

2013). The goal of these techniques is to adapt to their environment and learn from

their past experience, which has attracted researchers from different fields includ-

ing computer science, engineering, mathematics, and cognitive science (Alpaydin,

2004). In general, a learning technique transforms information obtained from the

environment into some new form for future use.

The three most common types of machine learning algorithms are supervised learn-

ing, unsupervised learning and reinforcement learning. Every record in any dataset

prepared for machine learning algorithms is usually represented using a set of fea-

tures. The features might be continuous, categorical or binary. If the data is labelled,

then the learning technique is referred to as supervised learning. In these techniques,

a mapping will be found between the set of input values and their corresponding

desired outputs. Support vector machines, neural networks, decision trees and k-

nearest neighbour are examples of supervised learning techniques (Kotsiantis, 2007).

The proposed algorithm in this thesis works in a supervised environment and thus

the learning algorithm is provided with the class of the input example. Another
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kind of machine learning is unsupervised learning, where records in datasets are un-

labelled. Finding regularities in the input data is the aim of unsupervised learning

techniques, which will find unknown, but useful classes of items. This is done by

finding structure in a collection of unlabelled data points. One common method

in this category is clustering, which finds clusters of input data (Alpaydin, 2004).

Finally, reinforcement learning will learn behaviour through trial-and-error interac-

tions with a dynamic environment. In this approach, the learner is not told which

actions to take. It will discover the best ones by trying each action in turn and being

positively reinforced for good actions. (Kaelbling et al., 1996; Kotsiantis, 2007).

Machine learning techniques can be applied to intrusion detection problems in dif-

ferent ways. For example, automatically generating signatures or rules for signature

based IDSs, extracting interesting features to improve the performance of IDS or

learning the normal behaviour of a protected system for an anomaly based IDS

(Shafi, 2008).

In the following sections, a set of selected machine learning techniques from the

categories of non-evolutionary and instance-based approaches are explained. These

are C4.5 (a decision tree learner), RIPPER (a propositional rule learner) and kNN

(instance-based learning scheme). Additionally, a number of evolutionary algorithms

are described to provide a sufficient background on the proposed technique in this

dissertation.

2.4.1 Non-evolutionary Rule Learning Algorithms

Rule-based methods generally work as follows. A set of rules is manually defined

or automatically learned by the system. Each rule uses a set of features and the

input data points are also represented by those features. A rule-based classifier

fires once a match is found between an input record and a rule in the system. A

rule consists of a pattern and an action. When a pattern matches a sequence of

values, the corresponding action will be fired (Aggarwal & Zhai, 2012). The goal

of rule-based systems is to construct the smallest ruleset that is consistent with the
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training data. If the number of rules learned by the system is large, the learning

algorithm is only replicating the training data and will not generalise well. This is

also called an overfitting problem which is a key problem for all learning algorithms

(Fürnkranz et al., 2012). Prepruning of rules during the learning and post-pruning

after an overfitting ruleset has been learned are two standard techniques used to

avoid this problem.

One example of a rule learning techniques is a separate-and-conquer or covering al-

gorithm, which is presented in Algorithm 1. Basically, it searches for a rule that ex-

plains a part of training dataset, separates these instances, and repeatedly conquers

the remaining instances by learning more rules until no instance remains (Fürnkranz,

1999). The final ruleset generated by this algorithm can be ordered in terms of rule

accuracy so the most accurate rules are considered first when the system classifies a

new instance.

Algorithm 1 A general pseudo-code for rule learners (Kotsiantis, 2007)

Initialize ruleset to a default (usually empty) or a rule assigning all objects to the
most common class
Initialize instances to either all available instances in the training data or all
instances not correctly handled by rule set
repeat

Find best, the best rule with respect to instances
if such a rule can be found then

Add best to ruleset
Set instances to all instances not handled correctly by ruleset

end if
until no rule best can be found for instance, because no instances remain

Two dominant schemes for rule learning are RIPPER (for Repeated Incremental

Pruning to Produce Error Reduction) (Cohen, 1995) and C4.5 (a decision tree learner

explained in Section 2.4.1.2) (Quinlan, 1993) algorithms. Both perform an optimi-

sation process on the set of initial rules, which is a complex and heuristic process

according to Frank & Witten (1998). In an intrusion detection context, a rule-based

algorithm can be used to learn rules for the most interesting class, which is usually

the attack class.



Chapter 2. Related Work 25

2.4.1.1 Repeated Incremental Pruning to Produce Error Reduction (RIP-

PER)

RIPPER implements a propositional rule learner, which was proposed by Cohen

(1995) as an optimised version of Reduced Error Pruning (REP). RIPPER defines

a rule-based model and seeks to improve it iteratively by using different heuristic

techniques. The aim is to increase the accuracy of the ruleset by replacing or revising

individual rules. Finally, the constructed ruleset is used to classify new instances.

Experiments in the literature showed that the classification accuracy of RIPPER is

comparable to that produced by C4.5. However, the time complexity of RIPPER is

less than C4.5 and, thus, makes RIPPER more attractive for large datasets. Since

RIPPER is able to induce rules from examples that are encoded using boolean,

numeric, or nominal attributes, it has been used in a wide range of practical appli-

cations (Yang et al., 2001; Gaonjur et al., 2008).

The experiments using RIPPER algorithm in this thesis are conducted using the

WEKA (The Waikato Environment for Knowledge Analysis) software system. WEKA

is a tool for data analysis and includes implementations of data pre-processing, clas-

sification, regression, clustering, association rules, and visualization by different algo-

rithms (Witten & Frank, 2005; Zhao & Zhang, 2008). The implemented approaches

in WEKA include instance-based learning algorithms, statistical learning and rule-

based methods. The JRip algorithm in WEKA implements Repeated Incremental

Pruning to Produce Error Reduction.

2.4.1.2 Decision Trees

Among the existing classification techniques, decision trees are simple yet successful

for explaining the relationship between some measurements about the input instance

and its target class (Rokach, 2008). In classification tasks, a decision tree is more

appropriately referred to as a classification tree, which classifies an input example

(such as flow of traffic) to a predefined set of classes (such as normal/attack) based

on its attributes values (such as total packet count or destination port entropy).
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The decision tree consists of a root node, internal nodes with outgoing edges and

leaves (also known as decision nodes). Based on a certain discrete function of the

input attribute values, each internal node divides the instance space into two or

more sub-spaces. Finally, each leaf is assigned to one class in a classification task.

Decision trees can also be turned into a ruleset by generating one rule for each path

from the root to each leaf. Decision makers prefer decision trees that are easy to

understand and not complex because their complexity has a crucial effect on their

accuracy (Breiman et al., 1984). For measuring the tree complexity, the total number

of nodes, total number of leaves, tree depth and number of attributes are usually

used.

C4.5 (Quinlan, 1993) and its predecessor ID3 (Quinlan, 1986) are two well known

examples of algorithms that summarise training data in the form of a decision tree.

These algorithms employ a greedy approach, that use an information theoretic mea-

sure as their guide. C4.5 has the advantage of pruning the decision trees, which

simplifies the trees and reduces the probability of over fitting the training data. It

also accepts both continuous and categorical attributes (Anyanwu & Shiva, 2009).

This enhanced algorithm has been used as a benchmark when measuring the per-

formance of other machine learning algorithms (Hall, 1999). J48, which is a slightly

modified version of C4.5 provided with WEKA, is used in this thesis.

For binary problems, a rule-based technique which learns a set of rules for only

the positive class is more comprehensible than decision trees. On the other hand,

for multi-class problems, rule-based learners must be run separately for each class.

Finally, all the rulesets generated are combined and as a result, these sets might be

inconsistent or incomplete. This is usually solved by ordering the rules and a rule is

only fired when none of the preceding rules are applicable. The divide-and-conquer

technique used by decision trees is usually more efficient than the approach used

by rule-based systems in small datasets (Kotsiantis, 2007). When the classification

problem is more complex and challenging, such as the intrusion detection task, use

of these techniques requires care to produce a comprehensive system with the least

complexity.
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2.4.2 k-Nearest Neighbour (kNN)

The nearest neighbour algorithm is from the category of instance-based or lazy-

learning algorithms. These algorithms delay the induction or generalization process

until classification is performed. Comparing to eager-learning algorithms such as

decision trees, instance-based methods need less computational resources during

the training. However, for classification process, more computation time is needed

(Kotsiantis et al., 2006). The kNN classifies an unseen instance by finding the

k closest previously observed examples, and assigning a label to the test instance

by identifying the most frequent class in this neighbourhood. The kNN has been

listed among the most influential data mining algorithms in the research community

according to Wu et al. (2008). One of the key issues affecting the performance of

kNN is the choice of k. Being sensitive to noise points is the result of a small k and

including too many instances from other classes during classification is the result of

a too large k. Another issue is the choice of the distance measure used to compare

instances. Various measures can be used to compute the distance between two points

such as Cosine measure, Euclidean measure, Chi-square and hyperrectangle distance

function. The most commonly used one is the Euclidean distance function (Wilson

& Martinez, 2000), which is defined as:

E(~x, ~y) =

√√√√ m∑
i=1

(xi − yi)2 (2.1)

where ~x and ~y are the two input vectors, m is the number of input attributes, and

xi and yi are the input values of attribute i. In some algorithms, weighting schemes

are used to provide more accurate results by altering the distance measurements

and voting influence of each instance. This will give more weight to highly reliable

training objects (Domeniconi et al., 2002). A weighted distance computation can be

defined as:
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D(~x, ~y) =

√√√√ m∑
i=1

wi(xi − yi)2 (2.2)

where wi is the weight of attribute i.

In this thesis, the IBk algorithm in WEKA toolkit is used, which is a k-nearest-

neighbor classifier that uses an Euclidean distance measure. If more than one neigh-

bour is selected, the predictions of the neighbours can be weighted according to their

distance to the test instance. Two different methods are implemented in WEKA for

converting the distance into a weight: inverse-distance weighting (weight neighbours

by the inverse of their distance) and similarity weighting (weight neighbours by 1-

their distance).

2.4.3 Evolutionary Rule Learning Algorithms

The focus of this section is on the specific machine learning paradigm used in this

thesis. According to Michalewicz (1996), Genetic-based Machine Learning (GBML)

approaches use evolutionary computation techniques (EC) as their learning tech-

nique to search in the space of possible solutions (Holland et al., 2000).

Evolutionary Computation (EC) is a research area inspired from the process of

natural evolution. Natural evolution can be presented as a population of individuals

in a given environment, that compete with each other for survival and reproduction.

The success of an individual is determined by fitness rules in the environment (Eiben

& Smith, 2003). In the area of computer science, evolutionary computation can be

used for problem solving. Given a set of candidate solutions for a problem as the

individuals, an evolutionary computation algorithm finds the fittest individuals or

the best solutions to the problem as follows:

The evolutionary process starts with generating a population of individuals (each

referred to as chromosome). In the standard genetic algorithm each member of the
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Algorithm 2 Evolutionary Computation

Initialize population
while termination condition not satisfied do

Evaluate fitness value of each individual
Select intermediate population
Apply genetic operators (crossover and mutation) to the individuals
Create a new population

end while
return the best individuals in current population

initial population is a binary of string of length l, which corresponds to the problem

encoding. Each bit in the chromosome is called a gene.

The individuals generated for the first population are the candidate solutions for

the target problem. Next, in an iterative manner, the population of individuals goes

through evaluation and breeding stages with the aim of coming closer to solving the

problem in hand.

In the evaluation stage, each individual is evaluated and a set of fit individuals

(intermediate population) is selected. Selection of individuals is based on the fitness

value assigned by the evaluator. These individuals in the intermediate population

are used as the breeding ground for the next population.

In the breeding stage, by applying the genetic operators, the EC algorithm tries to

provide better solutions in the new generated population. Crossover is a mechanism

for reproducing in evolutionary computation algorithms. This can be done for ex-

ample by selecting two individuals from the intermediate population and choosing

a random point to split the parents organisms’ strings (with a probability of pc).

To produce two new children, the substrings from each parent are swapped. The

parameter pc, or the crossover probability is the probability that crossover occurs

at a particular mating. Next, to introduce diversity into the population, mutation

is applied to each individual with a probability of pm. This parameters determines

how likely it is that each part of an individual will be changed to a different value.

In addition to the use of crossover and mutation operators to modify a population

of potential solutions, the application of reproductive techniques can also be used.

There are two reproductive techniques introduced in the literature: generational
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and steady-state (Syswerda, 1991). The generational genetic algorithm replaces the

entire population with a new population, while the steady-state genetic algorithm

replaces only a few members during a generation (Vavak & Fogarty, 1996). In differ-

ent comparative studies, these approaches were compared against several problems

(Vavak & Fogarty, 1996; Dahal & McDonald, 1998; Rogers & Prügel-Bennett, 1999;

Goldberg & Deb, 1991). However, definitive statements about the performance of

these two reproductive schemes are difficult to make.

Defining the right chromosome representation for each problem is a key issue in

genetic algorithm work (Michalewicz, 1996). The encoding mechanism for repre-

senting the problem’s solutions depends on the nature of the problem. For example,

for solving the travelling salesman problem, the variables can be binary quantities

representing the inclusion or exclusion of an edge in the Hamiltonian circuit. Integer

and real-valued representations are two other types of encoding schemes.

Evolutionary rule-based systems are a kind of GA-based machine learning, that uses

sets of rules for knowledge representation (such as IF-THEN prediction rules) and

genetic algorithms as the learning mechanism (Freitas, 2002) - the type of GBML

technique used in this thesis. When an evolutionary algorithm is used to learn rules,

there are two learning styles: Michigan and Pittsburgh approaches. Depending on

which method is used in the evolutionary algorithm design, the individual represen-

tation for the classification problem can either be a ruleset or just a single rule. The

Michigan style evolutionary learning system operates at the level of the individual

rule. On the other hand, an individual in the Pittsburgh approach represents a

complete solution to the classification problem. The main advantage of the former

is that the evaluation of an individual takes into account rule interactions. As a

result, no conflict between individuals arises, the problem that can often be seen in

the Michigan style evolutionary learning systems. On the other hand, maintenance

and evaluation of complete rulesets in the Pittsburgh approach is much more com-

putationally expensive than the Michigan style, which has a simpler chromosome

representation (Casillas et al., 2007; Freitas, 2008).
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The advantages of GBML approaches are production of interpretable models, no

assumption of prior relationships among features and the possibility of obtaining

precise and compact rulesets (Garćıa et al., 2009). Examples of GBMLs are XCS

(Wilson, 1995), UCS (Bernadó-Mansilla & Garrell-Guiu, 2003), GASSIST (Bacardit

& Garrell, 2004) and MPLCS (Bacardit & Krasnogor, 2009b), which are explained

in the following subsections and a summary of their components is also provided in

Table 2.3.

2.4.3.1 XCS

A genetic algorithm is the main component of a learning classifier system (LCS i.e.

further explained in Section 2.5.2) such as XCS (Wilson, 1995). The condition-action

rules in LCSs are referred to as classifiers. The original XCS was mainly applied

to binary problems and a ternary representation in the form of {0, 1, #}, where #

means it can match either of the input values, was utilised in its implementation

(Holland et al., 2000). An interval based representation was later introduced for

XCS by Wilson (2000, 2001), where the condition part is replaced by a conjunction

of interval predicates. The intervals are in the form of (li, ui), where li is the lower

bound and ui is the upper bound of an interval. The genetic algorithm in XCS tries

to find new classifiers, which contribute to the existing knowledge and eliminate

classifiers that do not contribute much. There are three different sets considered in

the XCS algorithm: [P]: population, [M]: match set and [A]: action set. When an

input instance is presented to XCS, it will be processed in one of two modes: explore

and exploit. During the explore phase, a match set will be created of all the matching

classifiers in the population set. If all of the actions are not presented in the match

set, a covering operator will be activated to create new classifiers with the actions

that are not in [M]. An action set will be then created by randomly choosing an

action and selecting the classifiers advocating that action. Next, the selected action

is sent to the environment and depending on the input example label, a reward will

be returned to the system. XCS uses this reward to update the parameters of the

classifiers in [A]. Fitness is also updated based on the classifier’s reward prediction.

A GA is applied to the action set if the average time since the last application of
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GA to the classifiers in [A] exceeds a threshold. During the GA process, two parents

are selected with probability proportional to their fitness. Then, after reproducing,

crossing over and mutating the parents, two offspring will be generated and inserted

to the population. If the number of classifiers in the population exceeds a user-

defined threshold, a classifier will be removed stochastically to keep the population

size constant. On the other hand, during the exploit phase, a test input example is

presented to the system and the algorithm has to predict the corresponding action.

A prediction for each matching action is calculated using the fitness weighted average

of the predictions of all the classifiers in [M] that advocated the given action. Finally,

the system will return the action with the highest prediction (Shafi et al., 2009).

The most important feature of XCS is its fitness calculation, which is based on

the accuracy of the classifier’s payoff prediction. This is in contrast to the use of

only prediction in previous strength-based LCSs, which was originally introduced

by Holland (1975). In traditional LCSs, a strength value is assigned to each rule.

This value shows the reward that the system can expect if that rule is fired. In both

selection of individuals in the evolutionary process and controlling the participating

rules for decision making (or prediction), this strength value will be used. This

might eliminate some low-rewarded classifiers from the population which are still well

suited for the environmental niche (Urbanowicz & Moore, 2009). Another feature

of XCS is that the GA is applied over niches (i.e. the match set) instead of the

whole population. This will increase the proportion of accurate classifiers in the

population. The general and simple design of XCS was a great start for its following

implementations. As an example, UCS (Bernadó-Mansilla & Garrell-Guiu, 2003)

is a well-known variant of XCS that has been designed specifically for supervised

learning tasks. Both XCS and UCS are Michigan style LCSs. The Michigan-style is

characterized by a population of rules and the GA operates at the individual rules

level. The final optimized solution is then represented by the entire population of

rules.
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2.4.3.2 GASSIST

Genetic Algorithms based claSSIfier sySTem (GASSIST) (Bacardit, 2004) is a Pitts-

burgh GBML algorithm that evolves individuals representing complete problem so-

lutions. An individual consists of an ordered, variable-length ruleset and the GA

operates at the level of a ruleset. GASSIST uses the minimum description length

principle for its fitness function design. This fitness takes into account both the

accuracy and the complexity of ruleset. An adaptive discretization intervals rule

representation (Bacardit & Garrell, 2003) for real-valued attributes is used in GAS-

SIST. This representation can be converted into an interval-rule later by taking the

lower and upper cut-points of each attribute. To keep the ruleset small, GASSIST

additionally introduces a new deletion operator after a predefined number of iter-

ations to remove the rules of an individual which do not match any training input

instance.

2.4.3.3 MPLCS

Memetic Pittsburgh Learning Classifier System (MPLCS) (Bacardit & Krasnogor,

2009b) incorporates two kinds of local search operators into GASSIST: (1) rule-wise

mechanism and (2) ruleset-wise mechanism.

Rule-wise operators are rule cleaning (RC), rule splitting (RS) and rule generalizing

(RG) operators. The first two edit the rules to eliminate some of their misclassifica-

tions, which make the rules more specific. The RG operator edits the rules to make

them more general by adding literals to the rules in order to classify more instances

correctly.

The ruleset-wise local search mechanism has three main stages: evaluation of the

candidate rules, selection of the rules that will form the offspring ruleset and gen-

eration of the final individual. This approach recombines rules from many different

parents to generate a single ruleset with maximum possible accuracy and compact-

ness.
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In (Bacardit & Krasnogor, 2009b), both classes of operators were tested separately

and together against four different datasets. The aim was to find the MPLCS vari-

ants that produce optimal solutions and converge to them using the least amount of

training samples. Different configurations of MPLCS were also evaluated in terms

of their ability to cope with noise and required amount of computational effort. The

results showed that a proper equilibrium of specificity and generality pressures is

the key for successful learning. The best configuration of MPLCS was the one that

used the three rule-wise operators simultaneously across the whole population.
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Table 2.3: A summary of the reviewed GA-based rule learning techniques.

Method Learning Evaluation Metric Evaluation Style
Chromosome

Representation Type of GA
XCS Reinforcement accuracy Michigan-style interval representation steady-state
UCS Supervised accuracy Michigan-style interval representation steady-state

GASSIST Supervised minimum description
length principle (accu-
racy and complexity)

Pittsburgh-style adaptive discretization intervals generational

MPLCS Supervised minimum description
length principle (accu-
racy and complexity)

Pittsburgh-style adaptive discretization intervals generational
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2.5 Rule-based nature-inspired approaches for IDSs

Network Intrusion Detection Systems (NIDS) can be categorised into behaviour-

based (anomaly-based) and rule-based (signature-based) systems. Behaviour-based

systems create a model of normal behaviour and when input values fall outside the

norm, they raise alarms. On the other hand, rule-based systems use rulesets to

detect known network threats. An important issue for rule-based systems is the

cost of developing and maintaining the rulesets. In traditional rule-based systems, a

human expert is responsible for creating, testing and distributing the rules through a

manual process of trial and error (Vollmer et al., 2011). To address this issue, the use

of nature-inspired approaches can be investigated in rule-based IDSs. In this section,

some of the work related to the proposed approach is presented. These are from the

category of rule-based systems, which use nature-inspired learning techniques. Their

learning approaches are grouped into Artificial Immune System (AIS) (i.e. applies

to the category of anomaly detection) and GA-based (applicable to both anomaly

and signature based systems).

2.5.1 Artificial Immune System

The biological immune system can be broadly divided into two categories: Innate

(non-specific) Immunity and Adaptive (specific) Immunity, which are linked together

and influence each other. This system is able to categorize all cells within our bodies

as self-cells or non-self-cells. The interesting mechanism of adaptive immune system

in responding to previously unknown foreign cells and building a long-term response

to them in the body, has attracted the attention of researchers in computer science

recently. This nature inspired computational intelligence technique is known as an

Artificial Immune System (AIS) (Aickelin et al., 2014; Kubi, 2002).

A standardized framework is defined by De Castro & Timmis (2002), which has

three basic elements: representation of components, affinity measures, and immune

algorithms as presented in Figure 2.2. At the first layer, the chromosome data

structure representation will be defined. Bit string, real-valued vector and length
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are examples of a chromosome representation. In the next layer, one or more affinity

measures are defined to measure the interactions of the system’s elements. For

example, for the bit string representation, Hamming distance can be used and for

real-valued vectors, Euclidean distance is a good measurement. Finally, an immune

algorithm with a proper choice of mutation, selection, and evaluation methods will

be selected to complete the framework.

Immune Algorithms

Affinity Measures

Representation

AIS

Application Domain

Solution

Figure 2.2: Layered AIS Framework (De Castro & Timmis, 2002).

The effectiveness and efficiency of an AIS strongly depends on the search algorithm

used within it. The purpose of searching is divided into two phases: initialization

and scanning phase. In the former, a set of optimal detectors will be chosen to

detect anomalies and in the latter, based on a user-define matching threshold, the

selected detectors search for the anomalies (Haag et al., 2007).

This technique has recently been used for network protection by a number of re-

searchers (Hou & Dozier, 2005; Forrest & Hofmeyr, 1999). The AIS based intrusion

detection systems are in the category of anomaly detection. They generate non-self

patterns for anomalous records based on received normal data. In all of the previ-

ously developed AISs for network protection, the success of the natural system has

been emulated to overcome the common problem of IDSs in detecting novel attacks.

They evolve a population of coded detectors (e.g., binary strings, network packets,
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etc.) to match malicious instances, so the system is able to classify the network

traffic as either “self” or “non-self“ (Forrest & Hofmeyr, 1999). The evolutionary

process in AISs developed for network protection is presented in Listing 2.1. Ini-

tially, a set of immature detectors is randomly generated. These detectors then go

through two phases of training. First, for a pre-defined amount of time, they are

exposed to the normal instances and if any detector matches a self packet, it will

be removed from the population. This process is also referred to as the negative

selection mechanism (Kim & Bentley, 1999). After the negative selection phase, the

surviving mature detectors are able to detect non-self packets but they still have

to go through another phase of learning. During this phase, detectors that fail to

match a certain number of non-self instances will die. Finally, a set of detectors that

remain in the population after two phases of training are used as memory detectors

in order to detect threats against the system (Britt et al., 2007; Hou & Dozier, 2005).

Create a population of detectors randomly (Pop)

// negative selection phase

for some predefined amount of time

Compare each detector to self instances

if (detector matches the self)

Remove the detector

else

Keep the detector as a Mature Detector

// second phase of learning

for some predefined amount of time

Expose Mature Detectors to non -self

if (Mature Detector matches a certain number of non -self instances)

Promote to Memory Detector

else

Remove the detector

// Detection Phase

while (condition is true)

Use each element of Pop to perform detection

Listing 2.1: Training Detectors in an AIS.

The negative selection phase, which is the core of these systems, enables them to

perform a form of passively proactive protection and this gives them the advantage
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of detecting previously unknown attacks. In this approach, it is assumed that the

normal behaviour of a system shows stable patterns over time.

The most commonly used coding scheme for AIS-based IDSs is binary strings (Wu &

Banzhaf, 2010), where a matching rule is a r-contiguous bit string accordingly. Since

real-valued representation is closer to the problem space (Gonzalez et al., 2002), Hou

(2006) proposed a constraint-based AIS with a novel detector representation. A data

sample is a vector of integers, (x0, x1, ..., xn), where n is the number of fields and xi

is the value of the corresponding field. The range of each field can be chosen based

on an analysis on the actual data set. Accordingly, detectors are coded as interval

constraints which are in the form of vector of intervals, (lb0..ub0, lb1..ub1, ..., lbn..ubn).

Each interval covers the possible values of the corresponding field in the pattern rep-

resentation. For the matching rule, an any-r -interval matching rule is used to find a

match between a data sample and a constraint-based detector. Based on this match-

ing rule, if any r fields representing the data sample fall within the corresponding

r intervals of a detector then that detector matches the pattern. By changing the

value of r to a higher value, we can have a more specific detector but as a result, a

more specific detector will match fewer patterns. Based on this novel idea, in Hou &

Dozier (2005), the representation of packets is in the form of (ip address, port, src),

where ip address is the remote host address, port represents the port number on the

receiving host, and src is 0 for incoming and 1 for outgoing packets. Accordingly, a

detector is represented as (lb0..ub0, lb1..ub1, lb2..ub2, lb3..ub3, lbport..ubport, src), where

the first 4 intervals are used for the possible IP addresses, the fifth interval is for

the port number, and src value decides whether the detector should be used on

incoming or outgoing traffic. For the experiments in Hou & Dozier (2005), a r=3

threshold value has been used. For performance measurements, two popular metrics

in anomaly detection system evaluation have been used: false positive (self instances

are erroneously detected as non-self) and false negative rates (nonself instances are

not detected). One of the major disadvantage of AISs is that there is no way to

know which nonself instances were not detected successfully. This is also referred to

as a hole (vulnerability) in the detection system (Hofmeyr & Forrest, 2000).
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Another challenge in AIS implementations is the length of detectors to be used in the

system (Britt et al., 2007). Short strings are more general, which leads to matching

of more entities (and more false positives), while long strings are very specific but

we need more of them to effectively map the appropriate search space. Therefore,

defining a proper length for the detectors is very important because the number of

detectors in the final set has a direct impact on the time needed for the recognition of

self and non-self patterns and the memory requirements. Additionally, the size of the

self space and the complexity of the matching function will affect the training time.

The size of the self space is important because during the negative selection phase,

every detector has to be checked against the self instances. More attention needs

to be paid on the selection of matching function, since it affects both the learning

phase and the recognition phase. Correlation Coefficient, Hamming Distance, r-

contiguous-bits matching function, and constraint-based matching are the examples

of matching functions used in the literature. A constraint-based approach has the

advantages of being more understandable by humans, and having some fuzziness

comparing to the rigid bitwise approach.

Additionally, according to Wu & Banzhaf (2010), evaluation of effectiveness of AIS-

based IDSs in real-environments and exploring their adaptation to changes in self

data (normal patterns) are open areas for further research. The incremental learn-

ing approach used in this thesis can be a solution for the second challenge (i.e.

adaptation to environment changes).

2.5.2 GA-based Techniques

Genetic algorithms have been used as a powerful searching technique to find the

optimal set of rules for anomaly detection systems. In these types of classification

problems, GAs perform a global search using a population of individuals. During the

evolutionary process, a fitness function encourages rules, which accurately classify

the training instances. The final set of rules produced by GAs will be used for

predicting unseen instances. In the area of network security, this method has also

provided good results in the identification of network intrusion attempts.
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In Vollmer et al. (2011), a GA is used to produce a set of near optimal rules for

the Snort rule engine. Snort is an open source IDS developed by Roesch (1999).

Snort has a simple rule language that matches against network packets for gener-

ating alerts or logging messages. In this work, they assumed that the anomalous

traffic has already been identified in advance. Thus, their proposed system will be

working in an offline mode to process pre-captured data files for rule generation.

The focus of this study is on ICMP traffic and thus, the GA population representa-

tion includes the following fields: source IP address, destination IP address, ICMP

id, type, code, sequence number and packet size. These fields and their acceptable

values are extracted directly from the Snort rule syntax definition. Each individual

in the population of solutions in their proposed system is presented using a variable

length vector: ~vi=(x0, ..., xn) of mixed data type values x. For designing the fitness

function, which judges the desirability of rules, three criteria are considered: com-

plete rule match, grammar check and partial rule match. The first criterion is tested

by running Snort with a candidate rule on a test packet and evaluating the results

(a large value for a successful alert). Secondly, the Perl based dumbpig grammar

checker is used to check the candidate rule format (a greater value between 0.0 to

1.0 will be assigned if the tool finds fewer issues). Finally, a match function is used

to compute the number of fields in a rule that matched an evaluation packet. The

final output of the GA is a set of rules, which will be sorted according to their

fitness values and any duplicates will be removed. Then, the resulting top three

rules are proposed as possible rule definitions to be distributed. The ICMP test

data is generated using existing packet creation tools such as Nemesis, packETH

and ISIC. Testing showed that the generated rules were specific to the packets and

produced a low false positive rate. To provide a broader coverage of all possible net-

work anomalies, further investigation on other protocols including TCP and UDP

is needed.

As another solution to the problem of manual processing of rule creation in IDSs,

a Pareto-based multi-objective evolutionary algorithm (MOEA) is used in Gómez

et al. (2013) to optimize the automatic rule generation of a signature-based IDS

(i.e. Snort). They proposed a new MOEA within the detection engine of Snort,
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which will optimize the rule generation while minimizing two different objectives:

the non-detected hostile traffic (i.e. the false negatives) and the non-hostile traffic

erroneously detected as hostile (i.e. the false positives). Pareto-optimization (Gold-

berg, 1989) is used in this algorithm to address the problem involved in algorithms

with one single aggregate objective function, which only provide a single compromise

solution. Pareto-optimization establishes a relationship between solutions according

to Pareto-dominance relations. A solution (s1 ) is dominant over another (s2 ) if s1

is better than s2 in at least one objective, and not worse in the other objectives.

The aim of a Pareto-based multi-objective approach is to find the Pareto-optimal

set. In the proposed algorithm, each individual contains a certain number of Snort

signatures (rules). The focus of this study is on the payload part of rules, which

examines data contained in the network packet. MOEA-Snort has two optimiza-

tion modes: a single aggregated objective function (a function that combines both

above-mentioned objectives) and Pareto-optimization. The second enables the algo-

rithm to obtain a set of non-dominated solutions. The performance of MOEA-Snort

is tested on an attack-free DARPA 1999 dataset combined with 173 attacks (on

web server and ftp). The results showed that the rules obtained using the single

aggregate objective function are very affected by the weights used in the objective

function. The Pareto-optimization mode, on the other hand, has the advantage of

producing a wide set of solutions and so it is very useful for the decision maker to

choose not from one, but several solutions.

As another example of the use of genetic algorithms for intrusion detection problem,

Baig et al. (2011) proposed a GA-based method which falls in the category of rule-

based intrusion detection systems. Each individual (chromosome) in their system

is a rule, which represents the status of a network connection. The dataset used in

this study is the KDD99 dataset, which was first distributed as part of a compe-

tition (1999 KDD Cup competition) sponsored by the International Conference on

Knowledge Discovery in Databases (Tavallaee et al., 2009). To find the relevant fea-

tures and eliminate redundancies, some initial preprocessing is done on the original

KDD99 dataset. Then, for each type of attack, a set of effective chromosomes using

a combination of features are constructed (i.e. the initial chromosome generation
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phase). A binary format chromosome is selected due to ease of use for the crossover

and mutation phases. For example, a chromosome like (tcp, ftp, REJ, 0, 0, 0.91, xx)

is constructed for a Satan attack which includes the following features: protocol type,

service, flag, src bytes, dst bytes, dst host error rate, and dst host srv rerror rate.

During the evolution process, the system tries to form some new chromosomes with

enhanced detection rate for the attacks. A bit-flip mutation and a 1-point crossover

were used to generate the next generation chromosomes. For testing the system, the

new chromosomes go through a pattern matching exercise and get rewards based on

the number of correctly detected connections. Finally, analysis of the ROC curve

showed that the false alarm rate decreases with increasing attack detection rate.

One challenging task in rule-based systems, such as signature based intrusion de-

tection systems, is reducing the signature database size. In this system, as the final

set of evolved chromosomes are responsible for intrusion detection, the number of

rules generated by the system is equal to the population size. For KDD99 dataset,

31 chromosomes provided an acceptable detection rate, but more investigation is

needed on other datasets. In the design and implementation of rule-based intrusion

detection systems, the cooperation of rules should be taken into account to decrease

the size of the final rulset. In Baig et al. (2011)’s proposed approach, however, each

rule is evaluated in isolation from others in the population. Therefore, the final

ruleset might include some redundant rules or conflict between the rules.

In Gong et al. (2005), a similar GA-based approach is proposed for network intrusion

detection. Seven network features, which have high likelihood of being involved

in intrusions were extracted from the data to form a fixed length chromosome.

Two modules were implemented for the training stage in an offline environment

and the testing (detection stage) in the real-time environment. In the first stage,

a set of optimal rules were generated. Each rule was in the form of an if-then

clause, where the first six features compose the condition part and the last feature

(attack name) is the outcome. Figure 2.3, shows an encoded form of a chromosome

including different types of genes. A support-confidence framework (Lu & Traore,

2004) is used to evaluate each rule in the system. Once the training stage on the

benchmark DARPA datasets (MIT Lincoln Laboratory, 2002) for ruleset generation
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is finished, the generated rules are tested to classify incoming network connections

from a different subset of 1998 DARPA data. The proposed system is implemented

on top of a Java-based evolutionary computation research system called ECJ (Luke

et al., 2006). The fitness function used in this system consumes a lot of memory

because it needs the whole training data to be loaded before any computation.

Another limitation of the proposed approach is that the generated rules are biased

to the training subset. The author proposed two techniques which may solve this

problem: 1) selecting appropriate number of generations; or 2) selecting appropriate

number of best-fit rules.

{0, 0, 1, 2, 18982, 79, 9, 9, 9, 9, 172, 16, 112, 50, 1} 

Duration Source_IP Destination_IP Attack name

Destination_port

Source_port

Protocol

Figure 2.3: Encoded Form of a Rule (Gong et al., 2005).

Another example of the use of GAs for IDSs can be found in Li (2004). Simple

rules in the form of if {condition} then {act} are evolved for network traffic using

GAs. Nine attributes of network connections are included in the condition part:

source IP address, destination IP address, source port number, destination port

number, duration, state, protocol, number of bytes sent by originator and number

of bytes sent by responder. Altogether there are 57 genes in each chromosome. In

their system, the fitness of each chromosome is computed separately, which means

a rule will receive a bonus if it finds an anomalous behaviour or a penalty if it

matches a normal connection. Thus, there is a chance of redundant rules in the

final optimised ruleset, which cover some overlapping regions of search space. The

evolution process in their system starts with a population of randomly generated

rules and continues with applying crossover and mutation operators toward finding

an optimised ruleset. Finally, these rules will be added into the rule database used by

the IDS. For testing the system, the DARPA dataset in tcpdump binary format was
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used. Additionally, the authors added two statistical attributes of network traffic

to overcome the problem involved in other similar approaches, which only used the

categorical features of raw data. The disadvantage of using the categorical features

is that these attributes do not present normal or abnormal behaviours of networks in

all cases since they are extracted from packet headers. For example, in port scanning

attempts, the attacker only uses some scanning tools to find the available ports in

a server and as a result the generated packets are all normal and can not be easily

diagnosed by signature-based systems or systems that are constructed based on only

categorical features.

Another similar rule-based method used for IDSs is a Learning Classifier System

(LCS), which was first introduced by Holland et al. (2000) as a genetic-based machine

learning technique. The GA module is responsible for searching a large space by

first randomly generating a population of individuals and then selecting the best

and producing new individuals by mutation and crossover operators, iteratively.

For evaluating the quality of individuals (or evaluating the fitness), LCSs utilise

reinforcement learning or supervised learning techniques. As an example, in Shafi

& Abbass (2009), a supervised signature learning classifier was used to evolve a set

of classifiers, where each classifier is in the form of a simple rule. Two main metrics

were used to evaluate the performance of rules: Accuracy and Fitness. Accuracy is

the ratio between the large number of times a classifier was successful in detecting

an instance and the number of times it has been fired. Fitness is then calculated as

a function of accuracy. In this system, during the training phase, a set of matching

classifiers for an input instance is built from the population of individuals. Then

based on their updated performance parameters, the system finds the classifiers,

which predict the instance class (label) correctly. Finally, a GA is applied to the

selected classifiers to form the next generation population. One problem of LCSs is

the number of rules generated by the system, which makes the resulting ruleset less

transparent, and is an issue for time critical applications. To solve this problem,

the authors proposed two generalisation operators to modify rule boundaries, which

reduces the overlapping regions covered by the individuals.
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The appropriateness of evolutionary rule learning techniques for detection of Ses-

sion Initiation Protocol (SIP) based flooding attacks and malware detection has been

evaluated in (Akbar & Farooq, 2009) and (Shafiq et al., 2009) comparative studies,

correspondingly. In these studies, the performance of evolutionary rule learning al-

gorithms such as XCS, UCS and GASSIST is compared to some non-evolutionary

classifiers such as RIPPER and C4.5 in terms of classification accuracy, number of

rules and processing overhead. The results from (Akbar & Farooq, 2009), showed

that evolutionary classifiers can even detect low intensity SIP floods in realtime.

However, in Shafiq et al. (2009), although the evolutionary algorithms provided ac-

ceptable performance results, the non-evolutionary techniques outperformed evolu-

tionary ones especially in terms of comprehensibility of rules (due to large rulesets).

Therefore, an important direction for the future of these algorithms is improving

the comprehensibility of the final rulesets. This will also reduce the complexity of

the rule learning process. Another issue found with LCSs such as XCS and UCS for

intrusion detection is that LCSs have difficulty in achieving high accuracy on rare

classes (Orriols-Puig & Bernadó-Mansilla, 2006). They also need a large population

of individuals to cover high dimensional search spaces. This might lead to complex

models for IDSs and generating the model can be computationally expensive.

2.5.2.1 Adapting to Environment Changes

Learning and adapting to the changing environment and detecting both known and

unknown intrusions is a key issue in IDSs (Dasgupta, 1999; Shafi et al., 2006).

A typical approach to learn new information is to discard current classifier and

create a new classifier using all of the data that have been collected thus far. This

approach is used in common neural networks such as multilayer perceptron and

radial basis function network (Polikar et al., 2001). A similar incremental approach

is used in Pietraszek (2004), in which subsequent new training examples are added

to the training set and the classifier is retrained on the entire training set. Since

it is not feasible to retrain the system on every single new training sample, the

training examples are handled in batches. The size of these batches can be fixed or

decided by the administrators or it can be dependant on the current performance
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of the classifier. The former approach is used in Pietraszek (2004). If the current

classifier accuracy drops below a pre-defined threshold, they rebuild the classifier

using the entire training set. This approach, however, might not be feasible for some

applications and is very resource consuming as it should store the original training

data and add the new data to it. The size of this storage will grow dramatically

over time and the training time in the system will also increase.

To address this issue, an incremental learning approach can be deployed to repeat-

edly train the network when new data becomes available and not forget the previous

knowledge gained. In Nasr et al. (2014), a learnable IDS is proposed using decision

trees and incremental learning, that promotes adaptability to a dynamic changing

environment. Their system consists of two phases: offline training and incremen-

tal online testing. During the offline phase, pairwise datasets are generated for

1-vs-1 model classification. Therefore, for the five attack types in the KDD99 and

NSL-KDD dataset, they produced 10 datasets containing 2 different classes in each

dataset. Using the existing training datasets, the algorithm produces 10 unique

classifiers. Next, in the online phase, the incoming records will be classified using

the previously generated model from offline phase. On each single record, a Bagging

approach votes all five classes. Then, the Bagging component flags the record by

the class that received the maximum vote. Next, the corresponding classifiers in the

database will be updated based on the information obtained from record features

and predicted results. To test the system, 20% of NSL-KDD training dataset was

used during the offline training phase and 20% of NSL-KDD testing dataset was fed

into the online phase as a stream. The results showed that their system is capable

of learning new rules from the new input data.

2.6 Summary of Challenges in GA-based IDSs

In network intrusion problem, because the pattern of normal and intrusive behaviour

is very similar, the normal and attack classes have some overlap as seen in the

most well-known dataset in this area, KDD99. This makes the problem harder for
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generalisation and considered a challenging problem for learning algorithms (Shafi,

2008). In the reviewed approaches, GAs were used as a tool for automatically

generating knowledge for rule-based IDSs. Each rule in these systems is considered

a classifier and the goal is to find and add a set of most fit classifiers to the rule

database to provide an acceptable detection rate. The results showed that GAs are

a promising learning technique for IDSs and fulfill the effectiveness criteria. Each

of the existing approaches offers its own strength and weaknesses. The challenges

found in this GA-based IDSs which require further research are:

• Inflexibility of the system (e.g., fixed length chromosomes and use of packet

header features)

• Use of out-dated data for testing (e.g., DARPA and KDD99 datasets)

• No consideration for cooperation among rules (complex models)

• Not adjustable to the changes in a dynamic environment

• Failure to eliminate irrelevant features

The use of fixed length chromosomes in system design forces the rule learner al-

gorithm to only generate same size rules as the output. Simpler models can be

produced if variable-length chromosomes were used in the design of algorithm. An-

other solution to that is defining a new representation of chromosomes with one

bit associated to each feature of the domain. This method has been introduced in

Bacardit et al. (2009) to improve the scalability of rule-based evolutionary learning.

This new representation not only provided competent learning performance but it

also reduced the system run-time. This is because by the use of the proposed in-

dividual representation, the evolutionary algorithm is attempting to provide a high

accuracy while reducing the subset of selected features. As a result, a feature selec-

tion is performed at the rule-wise level and the final ruleset includes one or more

rules that each can have different set of relevant attributes.

Another area worthy of exploration is the complexity of models generated by these

approaches. One of the weaknesses found in the reviewed GA-based rule learning
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techniques used for IDSs is that they did not take into account the cooperation

of rules in the course of evolutionary run. By not considering this, the learning

system may end up generating a set of rules, where each of them is a good classifier

by itself but one specific rule might cover a region of search space that has been

covered by another rule. So, numerous rules for each class will be produced. Thus,

more attention need to be paid to the degree of cooperation of the rules when

they are evaluated by the GA, which results in a more concise set of rules. This

is one of the requirements in the design and implementation of IDSs. The rules

(or signatures) generated by rule learning techniques should be understandable by

network administrators and analysts. Thus, further analysis and verification can be

carried out by experts (Helmer et al., 2002; Pietraszek, 2004).

By addressing the above-mentioned issues (more specifically inflexibility of the sys-

tem, no consideration for cooperation among rules, not adjustable to the changes

in a dynamic environment), this thesis contributes to both intrusion detection and

GA-based rule learning techniques.

2.7 Summary

This chapter set the context of this thesis by providing a brief introduction to intru-

sion detection problem and the existing defensive solutions. After stating the impor-

tant factors that should be considered in the design and implementation of intrusion

detection systems, an overview of the capabilities of machine learning techniques

and their applications for rule learning is provided. A literature review of existing

techniques relating to the proposed approach in this thesis is then provided. In

particular, nature-inspired rule learning techniques for IDSs are reviewed. Next, by

summarizing the existing challenges in GA-based IDSs, the areas for further research

in this thesis are shaped.

In the following chapter, the design and implementation of the proposed GA-based

approach for generating optimised rulesets for network intrusion detection will be

presented.





Chapter 3

ESR-NID: A Framework for

Evolving Statistical Rulesets for

Network Intrusion Detection

3.1 Introduction

This chapter presents the design and implementation of a GA-based classification

approach, called ESR-NID, that generates optimised rulesets for network intrusion

detection through a learning stage. ESR-NID aims to address some of the issues

found in the existing GA-based IDSs. These are inflexibility of the system (e.g.,

fixed length chromosomes and use of packet header features), no consideration for

cooperation among rules (complex models) and not adjustable to the changes in a

dynamic environment.

The generated rules as the output of ESR-NID are used for classifying unseen data

points. This is a general view of the proposed system, which classifies it as a ma-

chine learning algorithm. Specifically, as depicted in Figure 3.1, among the machine

learning algorithms, ESR-NID belongs to the supervised machine learning category.

A supervised machine learning system consists of three parts: a learning module,
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a model and a classification module. The learning module is responsible for con-

structing a model based on a labelled training dataset. The model in the proposed

system contains a set of rules for future prediction. These rules, when applied to the

records in the test dataset, will predict labels of the test set using the classification

module.

Labelled 
Training Data

Learning 
Module

Classification 
Module

Model
Predicted Test 

Labels

Test Data

Figure 3.1: General view of supervised machine learning algorithms.

Due to the amount of data to be analysed and the similarity of malicious and normal

traffic, intrusion detection is considered a complex real world problem. The aim is

to develop a generic approach, which is not a protocol-specific mechanism and thus

can be used against different existing attack tools and future malicious attempts and

can be also deployed at any point of network infrastructure.

The proposed framework (ESR-NID) is depicted in Figure 3.2. The two impor-

tant characteristics of ESR-NID are the new representation of individuals and an

advanced two-stage evaluation approach to find the best set of cooperative rules.

ESR-NID is implemented on top of a third party Java-based package called ECJ

(Luke et al., 2006), an evolutionary computation research system, developed at

George Mason University. There are three main stages in ESR-NID: pre-processing,

evolutionary process and post-processing. In the pre-processing stage, the focus is

on the preparation of data for the system, which is done through normalization. In

the next stage, the evolutionary process starts, with two components to read the
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preprocessed data and to initialize the population of individuals. Then, for a num-

ber of generations (i.e. until the termination condition), the evaluator, selection and

breeder modules will operate to select a set of fit individuals from the population

and to apply genetic operators (mutation and crossover) to each individual, respec-

tively. Next, after completion of the evolutionary run, through a post-processing

step, the final ruleset for the classification task will be produced. In the following

subsections, the framework components are explained in more detail. Accordingly,

in Figure 3.2, the related subsection number is provided. Thus, the explanation for

each component can be found in the corresponding subsection.

Initializer
(3.1.2.3)

Evaluator 

Breeder
(Mutation & Crossover)

(3.1.2.5)

Fitness function finds the 
best individual rules

(3.1.2.4)

Performance Evaluation 
aims to find the best set of 

individuals
(in a cooperative manner)

(3.1.2.4)

Meet termination criteria?

Optimised-ruleset

Seed selection
(3.1.2.3)

Dataset
(3.1.1.1)

Normalization
(3.1.1.2)

Pre-processing (3.1.1) Evolutionary process (3.1.2)

Selection
(3.1.2.5)

No

Yes

R
ep
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uction of a 

n
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 gen
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Removing similar 
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Post-processing (3.1.3)

Final ruleset

gen=1
bestPerf=0

gen<= 
generations

Perf(rulesetgen) > 
bestPerf

yes

Yes

Optimised-ruleset=rulesetgen

bestPerf=Perf(rulesetgen) 

gen++

No
No

Figure 3.2: The architecture of the ESR-NID system.

In the following sections, the two stages of ESR-NID and the components involved

in each stage are introduced.

3.1.1 Pre-processing Stage

In the pre-processing stage, the input dataset will be processed through normaliza-

tion. Next, the characteristics of input data to ESR-NID and the data normalization

module will be explained.
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3.1.1.1 Input data

ESR-NID accepts input with continuous features. This data is in the form of vectors

of floats, (x1, ..., xn), where n is the number of features in the dataset and xi is the

value of the corresponding feature. Additionally, each record in the dataset should

have a class label, “normal” or “anomaly”.

3.1.1.2 Data Normalization

Since the aim is to design a generic system, that can be applied to a dataset with

arbitrary distribution, in ESR-NID, at the beginning of the classification process,

a data normalization component is used. A data normalization is usually needed

if some distance measures (e.g., Euclidean distance) are used in the approach. By

normalizing the data, the values of all features are in the same range. In this work,

the feature scaling function in equation (3.1) is used, so that the values of features

fall in the range of [0, 1].

x′ =
x−minx

maxx −minx

(3.1)

where x is the original value, x′ is the normalized value and minx and maxx are the

minimum and maximum possible values for variable x.

3.1.2 Evolutionary Process

The evolutionary process starts with generating a population of individuals. This is

done through the seed selection and initializer modules. The individuals generated

for the first population are candidate solutions for the target problem. Next, in an

iterative manner, the population of individuals goes through evaluation, selection

and breeding stages with the aim of coming closer to solving the problem in hand.

This has been implemented using evaluator, selection and breeder components in

ESR-NID (details can be found in section 3.1.2.4 and section 3.1.2.5). This iterative

process will be repeated until the termination criteria is met. An upper limit on the
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number of generations is the termination method used in ESR-NID, which stops the

evolution once a user-specified number of generations is reached.

In the evaluation stage, each individual is evaluated and a set of fit individuals

(intermediate population) is then selected. These individuals in the intermediate

population are used as the breeding ground for the next population. The evaluator

component uses two functions to find the best cooperating rules in each generation:

fitness function and performance function. The choice of these two functions is

based on the designer’s needs and preferences and this makes ESR-NID a flexible

approach.

In the breeding stage, by applying the genetic operators, the EC algorithm tries to

provide better solutions in the new generated population.

When GAs are used for rule discovery, depending on how the rules are encoded in

the population of individuals, there are two approaches: Michigan and Pittsburgh.

Next, these two approaches will be explained by focusing on the selected one in

ESR-NID.

3.1.2.1 Michigan Versus Pittsburgh Approach

In GAs for rule discovery, rules can be encoded in the population of individuals

(chromosomes) using two approaches: Pittsburgh and Michigan. In the Michigan

approach, an individual represents a single prediction rule, while in the Pittsburgh

approach, each individual represents a set of prediction rules. Depending on which

kind of rules the system is going to discover, one of these two approaches will be

chosen. In the Pittsburgh approach, each chromosome represents an independent so-

lution (i.e. a ruleset). The quality of a candidate solution in the Pittsburgh approach

is evaluated by taking into account the interactions among all the rules included in

the individual (Bojarczuk et al., 2004; Freitas, 2003). This leads to use of more

computational resources and some modifications might be applied on the standard

genetic operators to make them applicable on relatively complex individuals in this

approach. Examples of using the Pittsburgh approach in classification problems can
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be found in De Jong et al. (1994), Bacardit (2004) and Aguilar-Ruiz et al. (2003).

On the other hand, if we aim to find a small set of high quality prediction rules

(e.g., detecting rare events), the Michigan approach might be more suitable. The

advantage of this approach is that the individuals are simpler and shorter and also

the search space is smaller and thus, less time is needed to compute the individuals’

fitness values. However, if the system requires to evaluate the quality of a ruleset

(i.e. taking rule interactions into account), an extra level of evaluation is needed to

co-evolve a set of individuals which cooperatively provide a solution to the problem

(Freitas, 2003). Examples of GAs in classification which used the Michigan approach

are Orriols-Puig et al. (2009) and Urbanowicz & Moore (2010). The former is a rule-

based evolutionary learning system, which uses a steady-state EA at the rule level

to evolve a set of linguistic fuzzy rules to collaborate to cover all the input instances.

At the end of the evolutionary run, a ruleset reduction method is designed to obtain

a minimum set of rules. However, in the latter, the evolved solution is represented

by the entire rule population. This may result in a large set of overlapping rules if

the population size was initially set to a large number.

In Abadeh et al. (2011), both Pittsburgh and Michigan approaches were used for

a fuzzy classifier for intrusion detection in computer networks. In their research,

a Pittsburgh approach was more effective in evolving fuzzy rules. Moreover, Shafi

& Abbass (2009) proposed a supervised learning classifier system (UCS) to learn

signatures for network intrusion detection based on the Michigan style.

ESR-NID is based on a Michigan style, where each individual representing a rule is

evaluated in cooperation with other individuals and the aim is to obtain the best

set of rules via a two-stage evaluation process in each generation.

3.1.2.2 Individual Representation

To briefly review the characteristics of input data, the preprocessed data in ESR-

NID is in the form of vectors of floats, (x1, ..., xn), where n is the number of features

in the dataset and xi is the value of the corresponding feature. Since the original

dataset goes through a normalization stage, the range of values for each feature is
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LB0 UB0 on/off LB1 UB1 on/off LBn UBn on/off...

Field0 Field1 Fieldn

Figure 3.3: The structure of a chromosome in the proposed system. LBi, UBi

are real values between 0 and 1 and represent lower bound and upper bound of
feature i and on/off component is a binary value used to activate or deactivate
feature i in the chromosome. Thus, the system can produce variable length rules.

between 0 and 1. Accordingly, the basic structure of a detector rule in the system

is defined as follows :

Rule: if cond, then anomaly

where cond = xi1 ∈ [LowerBoundi1, UpperBoundi1 ] and ... and

xik ∈ [LowerBoundik, UpperBoundik ];

where ik ∈ [1, n] and LowerBoundi and UpperBoundi ∈ IR(i.e. a real number).

The chromosome structure representing a rule in ESR-NID is shown in Figure 3.3.

It contains one field of three genes for each feature. Depending on the number

of features in the input dataset, the system can be customized by increasing or

decreasing the length of the chromosome. Each field has 3 components: LBi, UBi

are real values between 0 and 1, and a binary on/off value signifies whether the

feature is active in the rule. For reporting the optimised ruleset, the LBi is mapped

back to a value in the original range of the feature using the equation

LowerBoundi = min + LBi × (max−min) (3.2)

where min and max are the minimum and maximum values for that feature and

LowerBoundi is the original value of lower bound of feature i. Similarly, the value

of the upper bound in the original range is also calculated as

UpperBoundi = LowerBoundi + UBi × (max− LowerBoundi) (3.3)
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In the proposed individual representation, the binary regulatory value for each fea-

ture in the chromosome enhances the evolutionary algorithm (EA) by allowing it to

dynamically find the required features to solve the problem. Standard feature selec-

tion methods usually filter the input data by keeping the same subset of features for

the whole solution (i.e. a ruleset), whereas the proposed individual representation

in ESR-NID has a built-in fine grained feature selection process, which provides var-

ied length rules with different sets of relevant features. Using the regulatory genes,

ESR-NID is performing a feature selection at a rule-wise level. Thus, the key fea-

tures may be different for each learned rule. For example, an optimised population

of 3 rules is presented below (e.g. the regulatory genes for x1 and x3 are on and for

x2 and x4 are off in Rule1):

Rule1: if x1 ∈ [LowerBound1, UpperBound1] and x3 ∈ [LowerBound3, UpperBound3]

then anomaly

Rule2: if x2 ∈ [LowerBound2, UpperBound2] then anomaly

Rule3: if x2 ∈ [LowerBound2, UpperBound2] and x3 ∈ [LowerBound3, UpperBound3]

and x4 ∈ [LowerBound4, UpperBound4] then anomaly

In Rule1, features 1 and 3 are active, whereas in Rule2, only feature 2 and in Rule3,

features 2, 3 and 4 are active. This new form of representation reduces the time

needed to evaluate each rule and helps the algorithm to find the set of features with

most predictive ability.

3.1.2.3 Seed Selection and Initializer

Most GA-based systems use random selection of seeds for initialization of the popula-

tion. Experiments in the past showed that non-random initialization, or inoculation,

is able to improve the performance of evolutionary algorithm in terms of average so-

lution quality and runtime (Surry & Radcliffe, 1996). This method incorporates

domain knowledge by using one or more high quality solutions. ESR-NID has two

methods of initialization: random (default option in ESR-NID) and a combination

of random and non-random. The method for initializing a population is determined
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by an input parameter to the algorithm. In a random initialization, the initial pop-

ulation of individuals are randomly generated (and the seed selection module is not

used), whereas in the latter, one or more individuals are read from a file produced

by the seed selection module. For this, a user-defined interval is used by the seed

selection module to create rules for a random subset of anomalous records from the

training set. This is depicted in Algorithm 3, Seed selection.

Algorithm 3 Seed selection

Select a random subset of anomalous records from training set
for each record rec in selected subset do

for each feature f of rec do
LowerBound(f)← f − interval
UpperBound(f)← f + interval
cond(f)← f ∈ [LowerBound(f), UpperBound(f)]

end for
return rule(rec)

end for

The output of Algorithm 3 is: rule(rec) = if condition, then anomaly, where condition

= f1 ∈ [LowerBound(f1), UpperBound(f1)] and f2 ∈ [LowerBound(f2), UpperBound(f2)]

and ... and fn ∈ [LowerBound(fn), UpperBound(fn)]. The output of the seed selec-

tion module will be written into a file to be later used by the initializer module in

ESR-NID. These individuals must be written in a computer-readable fashion into

the file.

In ESR-NID, the size of the population and the number of non-random seeds for

initialization are user defined input parameters to the system. If the number of non-

random seeds is less than the size of the population, the initializer will randomly

generate the rest of the individuals in the population.

As explained before, in ESR-NID, an optimal solution for the classification problem

is encoded by a set of rules using a Michigan approach. For this, the evaluator

component is implemented using a fitness function (designed specifically for the

proposed system) and a performance function, which are described next.
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3.1.2.4 Fitness Function and Performance Function

In ESR-NID, the evaluator component aims to derive a set of classification rules from

the provided dataset, which can cooperatively provide a good coverage of search

space. For this, a two-stage evaluation method is proposed. In the first stage, based

on a fitness value, the best individual rules are found in the population and in the

second stage, a performance function decides on the best ruleset in a cooperative

manner.

To design an appropriate fitness function, the following factors are considered:

• The number of anomalies correctly detected.

• The number of errors (i.e. the number of normal instances incorrectly detected

as anomalies)

• The overlapping with other rules; a higher score will be given to the rules that

detect anomalies which were not identified by many other rules.

• A weighting, on the scores and errors, to control the balance between them

and to address the influence of imbalanced datasets.

To explain the first two factors, suppose that Figure 3.4 shows a simple binary

classification problem with one detection rule constructed to classify five abnormal

instances. This rule also misclassifies two normal instances. Since the aim of an IDS

is to detect the abnormal instances, the fitness function should reward a detection

rule for its correctly detected abnormal instances. At the same time, a good system

should produce a low false positive rate. Therefore, the fitness function should

penalise a detection rule for incorrectly detecting normal instances as abnormal

records. The false negative rate is not taken into account here in designing the

fitness function, because the main concern is measuring the performance of a single

rule in detection of abnormal instances. As the final output of ESR-NID is an

optimised ruleset, those abnormal instances not detected correctly by this rule will

be classified by some other rules in the optimised ruleset.
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Figure 3.4: An example of a binary classification problem. One detection rule
is covering a set of input instances.

Considering the first two factors listed above, a näıve fitness function is formed as

below:

fitnessfunction(1) = no.ofInstancesCorrectlyDetected− no.ofErrors (3.4)

It rewards correct classifications made by an individual rule and penalises incor-

rect ones, but does not take into account class imbalance, or overall coverage in

combination with other rules.

One of the challenges that needed to be overcome in this research was to design

a fitness function that can measure the degree of cooperation between the rules.

This can be addressed by giving a higher score to those rules that detect anomalies

which were not identified by many other rules. Thus, a compact set of unique

rules can be found as opposed to collecting too many rules, that cover overlapping

regions of search space. Moreover, to counter imbalance in data, particularly in

network intrusion detection datasets, where the malicious traffic instances are far

fewer than the instances of normal traffic, some adjustments are needed to weigh

errors in the fitness function. This is important for intrusion detection because

without addressing this issue, the system will not be properly trained using the

limited number of anomalous instances.
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To cover all above mentioned factors for designing the fitness function, the following

functions are proposed:

fitnessfunction(2) = (2p− 1) ∗ no.ofInstancesCorrectlyDetectedby1rule

+(2p− 2) ∗ no.ofInstancesCorrectlyDetectedby2rules

+... + (2p− p) ∗ no.ofInstancesCorrectlyDetectedbyAllRules

−(p) ∗ (
no.ofabnormalInstances

no.ofnormalInstances
) ∗ no.ofErrors

(3.5)

fitnessfunction(3) = (p) ∗ no.ofInstancesCorrectlyDetectedby1rule

+(p− 1) ∗ no.ofInstancesCorrectlyDetectedby2rules

+... + (1) ∗ no.ofInstancesCorrectlyDetectedbyAllRules

−(p) ∗ (
no.ofabnormalInstances

no.ofnormalInstances
) ∗ no.ofErrors

(3.6)

where p is the number of individuals (rules) in the population. Also knowing that a

fitness function is measuring the fitness of one individual (rule) in the population:

• no.ofInstancesCorrectlyDetectedby1rule is the number of abnormal instances

being correctly detected by only the rule under evaluation. This rewards the

rule for detecting unique instances.

• no.ofInstancesCorrectlyDetectedby2rule is the number of abnormal instances

being correctly detected by the rule under evaluation and another rule in the

population.

...

• no.ofInstancesCorrectlyDetectedbyAllrule is the number of abnormal instances

being correctly detected by all the rules in the population.

• and no.ofErrors is the number of normal instances incorrectly detected as

anomalies.

To better understand the proposed fitness functions, suppose that the proposed

system tries to generate an optimised set of three rules for detection of abnormal
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instances in an example problem presented in Figure 3.5. Below, the calculations

and outputs of the three proposed fitness functions for the green rule are provided.

Figure 3.5: A ruleset with three rules (corresponding to regions marked in green,
yellow and purple respectively) for detection of abnormal instances.

The value of parameters in the proposed fitness functions (i.e. equations 3.5 and

3.6) for the green rule in Figure 3.5 is as follows:

• p = 3

• no.ofabnormalInstances = 10

• no.ofnormalInstances = 10

• no.ofInstancesCorrectlyDetectedby1rule = 3

• no.ofInstancesCorrectlyDetectedby2rule = 2

• no.ofInstancesCorrectlyDetectedbyAllrule = 0

• no.ofErrors = 2

Accordingly, the output of the three fitness functions is calculated as follows:

• fitness function(1) = 5 - 2 = 3

• fitness function(2) = (2*3-1)* 3

+ (2*3-2)* 2

+ (2*3-3)* 0

- 3*
10

10
* 2 = 17
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• fitness function(3) = 3* 3

+ 2* 2

+ 1* 0

- 3*
10

10
* 2 = 7

As can be seen, fitness function (2) has higher weightings for scoring the rules than

fitness function (3) and both functions use the same weight for penalising the rules

for false positives. As a result, fitness function (2) puts more emphasis on detec-

tion of anomalies than on reducing false alarms. Based on the pre-set objectives in

different environments, one can decide on the sensitivity of the system on detect-

ing abnormal instances or preventing the false positives. To take care of the class

imbalance problem in the data, a ratio of the no.of abnormalInstances to the no.

of normalInstances is applied to the error in both functions. Therefore, when the

number of normal instances is greater than the number of abnormal instances in a

dataset, if a detection rule misclassifies a normal instance, it receives less penalties

in comparison to a dataset with twice the abnormal records and a smaller number

of normal records. This is shown in Figure 3.6.

To provide a better understanding of how different fitness functions select a good

solution for a classification problem, these function are explored in different scenarios

which are simple and easy to understand and at the same time, representative of a

variety of situations.

Evaluating Fitness Functions: In this section, the proposed fitness functions

((2) and (3)) will be investigated on balanced and imbalanced data with different

complexity of rulesets (that can be measured by the amount of coverage and false

positive ratio). For this purpose, five different scenarios are designed (i.e. presented

in Table 3.1) as follows:

1. A balanced data to test a set of rules with good coverage and low false positives

2. A balanced data to test a set of rules with poor coverage and very low false

positives
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Figure 3.6: Weighting on the false positives in the proposed fitness functions
(fitness function (2) and (3)) to take care of the problem of the class imbalance

in a dataset.

3. A balanced data to test a set of rules with good coverage but high false positives

4. A balanced data to test a set of rules with full coverage but high false positives

5. An imbalanced data to test a set of rules with full coverage but high false

positives

In these scenarios, if a ruleset classifies approximately 80 percent of the abnormal

instances, then it provides a “good coverage”. Similarly, if all the abnormal instances

are classified correctly by a ruleset, then a “full coverage” is obtained.

The results are then compared to the support-confidence function (i.e. equation

(3.7)), as the support-confidence framework (Lu & Traore, 2004; Gong et al., 2005)

is the most commonly used fitness function in the literature.
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Supposing a rule is in the form of if A then B, the support-confidence framework is

defined as follows:

support = |A&B|/N

confidence = |A&B|/|A|

fitness = w1 ∗ support + w2 ∗ confidence

(3.7)

where support is the ratio of the number of records covered by the ruleset to the total

number of records in the dataset and confidence factor is calculated by dividing the

number of records covered by the ruleset by the number of records that only match

the condition A. To control the balance between the two metrics, w1 and w2 are

used in the fitness equation. Two sets of values are used for w1 and w2 in the liter-

ature (Pal & Hasan, 2012; Pawar & Bichkar, 2014; Jadhav & Gaikwad, 2014; Gong

et al., 2005; Zuo et al., 2002), when the support-confidence framework is utilised

for designing an IDS: w1=0.2, w2=0.8 and w1=0.5, w2=0.8 respectively. There-

fore, these two sets of weights are used and evaluated against the fitness functions

proposed in this research.

Since the support-confidence function rewards the rules with best coverage and least

errors, it will be useful in problems where the goal is to find a set of high quality rules

and the interaction among the rules is not important. However, ESR-NID searches

for a set of rules, which cooperatively work well together. Thus, in fitness function

(2) and (3), those rules that detect anomalies which were not detected by other rules,

will be rewarded. To also control the balance of data, some weightings on scores and

errors are considered in the functions. Below, using the scenarios in Table 3.1, the

proposed fitness functions were evaluated against the support-confidence framework.

A fundamental goal of IDSs is to increase detection rate and decrease false alarm

rate. Accordingly, ESR-NID should generate a set of rules with good coverage of

abnormal records (high detection rate) and the least coverage of normal instances

(low false positive rate).
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Table 3.1: A comparison of fitness functions for different scenarios.

Scenario description

Rule Support-

confidence

framework

fitness

function

(2)

fitness

function

(3)

w1=0.2

w2=0.8

w1=0.5

w2=0.8

Green 0.72 0.78 25 13

Blue 0.70 0.75 22 12

Red 0.82 0.86 18 10

Green 0.83 0.88 21 11

Blue 0.66 0.70 14 6

Red 0.81 0.83 7 3

Green 0.83 0.88 21 11

Blue 0.66 0.70 14 6

Red 0.81 0.83 7 3
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Black 0.82 0.86 46 22

Pink 0.82 0.86 44 20

Yellow 0.90 0.65 44 14

Green 0.80 0.81 12 6

Purple 0.42 0.46 20 -4

Blue 0.50 0.65 72 -18

Red 0 0 -105 -105

Purple 0.54 0.56 17.8 7.8

Red 0.80 0.81 10 5

Black 0.24 0.26 14 4

Green 0 0 -1.2 -1.2

Yellow 0.12 0.13 1.8 -3.2

Blue 0.16 0.21 19 -6
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In the first scenario, a balanced dataset is provided for a sample binary classification

problem. It is assumed that the system produced a ruleset of three rules with a good

coverage of abnormal instances and 2 misclassified normal records. The aim in this

scenario is to see how different fitness functions ranked the rules considering the

their cooperation in the classification task. A rule that detects abnormal instances,

which were not identified by others should be ranked higher. In this scenario, the

green rule has the best coverage (6 abnormal instances, which includes 4 unique

points that were not detected by any other rules) with only one false positive among

other rules. As an example, details of the calculations of fitness for the green rule

in the first scenario are explained below:

• support = |A&B|/N

confidence = |A&B|/|A|

Support-confidence framework = w1*support+w2*confidence

for w1 = 0.2, w2 = 0.8,

Support-confidence framework = 0.2 ∗ 6

30
+ 0.8 ∗ 6

7
= 0.72

for w1 = 0.5, w2 = 0.8,

Support-confidence framework = 0.5 ∗ 6

30
+ 0.8 ∗ 6

7
= 0.78

• p = 3

no.ofabnormalInstances = 15

no.ofnormalInstances = 15

no.ofInstancesCorrectlyDetectedby1rule = 4

no.ofInstancesCorrectlyDetectedby2rule = 2

no.ofInstancesCorrectlyDetectedbyAllrule = 0

no.ofErrors = 1

fitness function(2) = (2*3-1)* 4

+ (2*3-2)* 2

+ (2*3-3)* 0

- 3*
15

15
*1 = 25
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• fitness function(3) = 3*4

+ 2*2

+ 1*0

- 3*
15

15
*1 = 13

This has been found by the proposed fitness functions, whereas the support-confidence

fitness function ranked the green rule as the second best rule. This is because the

support fitness function aims to find the rule with maximum detection rate and min-

imum false positive rate. The cooperation between rules is not considered in this

function and thus the blue rule which classifies more unique abnormal instances and

only produces one error is ranked after the red and green rules. This becomes more

problematic in the second scenario by rewarding a redundant rule which classifies

the instances being already detected by some other rules.

The second scenario is presenting a situation with a redundant rule. In this scenario,

the green and blue rules are providing the same coverage as offered by three rules

together. Thus, the red rule would be redundant. Since the cooperation of rules

is one of the main factors considered in designing ESR-NID fitness function, in

this scenario, different functions are tested to see how they rank a redundant rule.

The aim is to decrease the size of the optimised ruleset generated by ESR-NID by

eliminating the redundant rules. This can be done with a fitness function that gives

a lower rank to those rules. According to the proposed fitness functions, the green

and blue rules are ranked first and the red rule is the last. On the other hand, in the

support-confidence framework, the red rule is ranked before the blue rule because

the cooperation of rules is not considered in this framework.

In the third scenario, there is a ruleset of three rules, which misclassifies about half

of the normal instances. As mentioned before, a good classification system should

prevent a high false positive rate. Based on ESR-NID’s objectives, in this scenario,

the green rule with an acceptable coverage of abnormal instances and only one false

positive should be the best among others. Secondly, between the blue and red

rules, the system should pick the blue one because of the higher number of unique

abnormal records detected. As shown in the results, this ranking of rules is obtained
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through the use of all four fitness functions (i.e. support-confidence framework with

two different set of weights, fitness function (2) and fitness function (3)).

The fourth scenario is prepared to test some special cases like the blue rule that

will just randomly guess the class of instances and yet appears to provide a full

coverage of all abnormal records. A well-designed fitness function should not reward

a rule like this. In this scenario, fitness function (3) still provides reasonable results

by considering the two important factors of detection and false alarm rate and the

cooperation of rules by prioritising the following rules: black, pink, yellow, green

and purple. The blue and red rules should be the worst because the blue rule

indiscriminately classifies all the instances as abnormal and the red one produces a

high false positive rate. Although the latter has been taken into account in all four

functions, the former is an issue in fitness function (2). Between the two variations

of support-confidence functions, this is more problematic in the second one which

similarly ranked the blue and yellow rules as the fourth best. This is in contrast to

the first support-confidence function that ranked the yellow rule as the best among

all the rules. All in all, in prioritising the best rules and penalising the worst,

first support-confidence function and fitness function (3) provided more acceptable

results than the other two functions.

Finally, all the above mentioned aspects should be considered in situations with

imbalanced data. Thus, in the fifth scenario, these functions are examined on an

imbalanced dataset. As it can be seen from the results, fitness function (3) accurately

chooses the purple, red and black rules as the best and the imperfect blue rule is

the lowest-ranked rule. However, this is an issue in fitness function (2) which ranked

the blue rule as the best among the six rules. This is less problematic in the two

variations of support-confidence function that ranked the blue rule as the fourth

best rule. Similar results were produced when an experiment was conducted on

an imbalanced dataset with more abnormal instances (25 instances) than normal

records (5 instances) and the same issue of prioritising the imperfect blue rule has

been raised in the case of using fitness function (3) and support-confidence functions.
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Figure 3.7: A sample of sorted population based on the fitness value in genera-
tion0.

While the fitness value indicates the quality of a rule, it is not sufficient for mak-

ing a decision on which set of rules are able to cooperatively cover the search space.

Therefore, a performance function is adopted to evaluate the performance of a group

of rules for detection, which will be introduced next. Through this two-stage eval-

uation process, ESR-NID is able to find a set of classification rules for the specific

dataset.

Performance Evaluation: The performance function helps the system find the

optimal set of cooperating rules through the process explained below:

The generational EA in ESR-NID sorts the population of individuals by fitness in

each generation (see Figure 3.7) and then using the Algorithm 4, the best value of

n and the corresponding performance value will be found.

For evaluating a classifier system, a confusion matrix, which includes true positive,

true negative, false positive, and false negative is usually calculated. The aim is often

to maximize the true positive and true negative rates and minimize the false positive

and false negative rates. There are different metrics in the literature for evaluation

of classifiers including accuracy, precision, recall, F-value and g-performance (Weng
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Algorithm 4 Finding best value of n

perfMax = 0
for n from 1 to popSize do

if performance(first n rules) > perfMax then
perfMax← performance(first n rules)
best-n← n

end if
n← n + 1

end for
return best-n
return perfMax

& Poon, 2008; Sokolova et al., 2006; Seliya et al., 2009; Kotsiantis et al., 2006).

Any of these functions can be used as a performance function in the ESR-NID

framework depending on the nature of the problem and the given data. For example,

in network intrusion detection, the number of intrusive instances is typically a very

small fraction of the total network traffic records. Similarly, in medical databases,

for classifying the cancerous pixels from normal ones in mammogram images, the

cancerous instances represent only a very small fraction of the entire image (Chawla

et al., 2003). A fairly high detection rate of the minority class is required in these

applications because, for example, the cost of misclassifying a patient with cancer

as non-cancerous can be very high or missing an attack (i.e. a false negative) can

cause serious damage to an organization. Therefore, ESR-NID should aim to evolve

a set of rules with high true positive and true negative rates. In these cases, if

ESR-NID, for example, uses accuracy as a performance function, a ruleset which

labels everything with the majority class can achieve high accuracy and this will not

improve the search process in ESR-NID. Therefore, for domains with imbalanced

data, classification accuracy is not an appropriate performance measurement.

By providing this flexibility in the choice of performance function, ESR-NID can be

configured specifically to meet the domain-specific requirements for different prob-

lems. This option can not be found in other machine learning techniques and thus

makes ESR-NID a more flexible model.

In this research, to address the problem of balance in datasets, the g-performance is

used as a performance function. The g-performance is calculated by the geometric
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mean of the accuracies on positive and negative examples (g =
√
a+ ∗ a-) to avoid

the poor behaviour of some learners under the circumstances of having imbalanced

datasets. This metric was used in Kubat & Matwin (1997); Garćıa & Herrera (2009)

and Barandela et al. (2003) to measure the performance of classification over im-

balanced datasets. Evolving the system using this measure allows the classifier to

maximize the true positive and true negative rates at the same time.

performancefunction =
√

TPrate ∗ TNrate (3.8)

where TPrate is the percentage of true positive cases correctly classified as positive,

and TNrate is the percentage of true negative cases correctly classified as negative.

The range of values for g-performance is between 0 and 1, where in the case of an

ideal classifier it has a value of 1.

As explained before, depending on the application domain and the system designer’s

needs and preferences, the performance function in ESR-NID can be changed to

evolve a more specific set of rules. For instance, another performance function

utilised in this research is:

performancefunction = 3
√

TPrate ∗ TPrate ∗ TNrate (3.9)

which puts more emphasis on detection of anomalous records than normal instances.

Using this function, one can provide higher detection rate of one class if not missing

records of this class is really critical in an application.

The two-stage evaluation component of ESR-NID makes it a flexible and customis-

able model by providing the ability to change the fitness function and performance

function based on the designer’s needs and preferences. Therefore, variants of clas-

sifiers can be generated by ESR-NID for different problems. This will be shown in

the experiments conducted in Section 4.10.
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3.1.2.5 Reproduction of A New Generation

In this section, the reproduction of a new population of individuals is explained.

This process is implemented using two modules: selection and breeder. The former

is responsible for choosing the individuals for reproduction based on their fitness

values and the latter uses two operators (crossover and mutation) to create offspring

by mixing and altering the genes of parents.

As an operational characteristic of GAs, elitism ensures that the best chromosome(s)

are passed, unchanged, to the next generation and the EA does not waste time re-

discovering previously discarded good candidates. This will often improve the EA

performance (Reed et al., 2001; Dumitrescu et al., 2000).

Initially, ESR-NID was designed with a fixed elitism mechanism. In the fixed elitism

scheme, the number of elites can be set as an input parameter (breed.elite.0 = 10 ),

that is the number of candidates in a generation that should be sent to the next

generation, rather than created via evolution. Alternatively the number of elites can

be defined as a proportion of the population: breed.elite-fraction.0 = 0.25. In both,

in each generation, the EA sends a fixed number of individuals to the next generation.

Through this process, some potential individuals may be lost. To overcome this

issue, further investigation is needed on the behaviour of the EA in each generation.

Later, in Section 4.4.3, the proposed adaptive approach to address this issue will be

explained. This approach aims to adaptively adjust the number of elites copied to

each new generation.

The new population will consist of these individuals (elite) from the previous gen-

eration and popSize-elite newly bred individuals. The newly bred individuals are

created through a chain of selection and breeding operators (Figure 3.8). Among

all the available selection methods such as Random Selection, Fitness-Proportionate

Selection, Stochastic Universal Sampling and Tournament Selection, the Tourna-

ment Selection method is used in ESR-NID (Goldberg & Deb, 1991). This method

first chooses T individuals randomly, where T is the tournament size. Then, among

those T individuals, it will return the fittest one. The most common setting for T
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Figure 3.8: The breeding procedure (Luke et al., 2006).

as well as the chosen value for ESR-NID, is two. In Figure 3.8, the leaves of the

tree (green boxes) are selection methods, responsible for choosing individuals from

the old population. These individuals are then handed to the breeding operators

(crossover and mutation). Finally the breeder module will send the new individuals

to the new population.

In ESR-NID, a two-point crossover, with the crossover points restricted to the bound-

aries between fields, is used in the breeder component. As can be seen from Figure

3.9, two crossover points are selected randomly. To create the next generation, the

field(s) from the beginning of the chromosome to the first crossover point is copied

from parent A. Then the field(s) from the first to the second crossover point is copied

from parent B and finally the rest of field(s) are copied from the first parent. All
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Figure 3.9: Two point crossover

the individuals used by the breeder module undergo a two-point crossover in the

ESR-NID framework.

Additionally, depending on which gene is to be mutated, different mutation operators

are also used. The upper and lower bound values are mutated by Uniform mutation.

However, each gene is only mutated with a certain probability, which is defined as

an input parameter to the algorithm (i.e. mutation probability). Uniform mutation

sets the gene to a random value between its minimum and maximum legal values.

On the other hand, the regulatory value, which has a binary value, is mutated by

bit-flipping. The bit-flipping mutation simply flips a randomly selected bit.

3.1.3 Post-processing

As explained before, in each generation of the evolutionary process, the best per-

forming ruleset can be found using a two-stage evaluation method. When the evolu-

tionary process ends, the optimal performance value achieved along the generations

will be found and the corresponding ruleset will be reported as the output of the

second stage in ESR-NID. However, to produce a more concise ruleset for the use
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of IDS, similar rules are removed from the final optimised ruleset through a post-

processing step. Similarity between rules is determined by comparing the values of

their active features, using a user-defined cut-off for the number of digits of precision

in floating-point numbers as features in our approach are continuous real values. An

example of this process is shown in Figure 3.10. A cut-off point of 2 digits is defined

to remove similar rules from the generated optimal ruleset by ESR-NID. As can

be seen from this figure, first, rule0 in the optimised ruleset is moved to the final

ruleset. Then, rule1 in the optimised ruleset will be checked against the current

rule(s) in the final ruleset (i.e. only rule0) and because the ranges of active features

up to two decimal points in rule1 are similar to rule0 in the final ruleset, rule1 will

be removed. This process continues until all the rules in the optimised ruleset are

checked and consequently either moved to the final ruleset or removed.

3.2 Summary

In this chapter, a GA-based framework, called ESR-NID, was introduced for generat-

ing optimised rulesets for network intrusion detection. The input data to ESR-NID

first goes through a pre-processing stage which prepares the data for the evolution-

ary stage. At the starting point of the evolutionary process, the seed selection and

initializer modules are responsible for creating some initial individuals for the EA.

If the number of selected individuals by seed selection is less than the predefined

population size, the initializer is set to randomly generate the rest of individuals in

the population. Next, for a fixed number of generations (i.e. the termination con-

dition of EA), the evaluator, selection and breeder modules will iteratively attempt

to find the best solutions to the problem. One of the contributions in this work

is the new form of individual representation using the regulatory genes to repre-

sent statistical detector rules for IDSs. The binary regulatory value for each feature

in the chromosome enhances the evolutionary algorithm by allowing it to find the

required features to solve the problem. ESR-NID also contributes to the genetic

based machine learning techniques by proposing a two-stage evaluation process to

derive a set of classification rules from the provided data. In the first stage, the
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Figure 3.10: Post-processing of final optimised ruleset.
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best individual rules in the population are found based on a fitness value. Then, in

the second stage, the best ruleset will be found using a performance function. For

this, ESR-NID uses a Michigan style rule discovery method, where each individual is

evaluated in cooperation with other individuals and the best set of rules are found.

Toward implementation of this two-stage evaluation process, three fitness functions

were proposed. These functions were designed to address the challenges involved in

this research including the class imbalance in data and a tool to measure the degree

of cooperation between the rules.

As discussed, the two distinct features of ESR-NID were an advanced two-stage

evaluation approach and an adaptive elitism mechanism. These make ESR-NID a

flexible model that can automatically derive a set of classification rules from the

provided dataset.

In the next chapter, a better understanding of the behaviour of the proposed system

will be obtained and its rule generation ability will be tested on some synthetic data.



Chapter 4

Performance Evaluation of

ESR-NID on Synthetic Problems

4.1 Introduction

For evaluation, training and testing of detection and classification systems, it is

essential to have suitable data. When synthetic data is generated to evaluate an

approach, the properties of data can be controlled to meet various conditions and

as the ground truth is known, the performance of the proposed approach can be

validated rigorously.

In this chapter, first, the choice of dataset is introduced. There are four different

scenarios designed to generate data for system evaluation. After introducing the

evaluation strategy used in this chapter, ESR-NID will be evaluated against the first

dataset generated for a medium size problem. Through this preliminary investigation

of the performance of ESR-NID, an adaptive elitism mechanism is proposed for

enhancing the proposed algorithm.

Next, an algorithm tuning process is conducted in order to find the best fitness func-

tion and GA parameter settings for ESR-NID. The chosen fitness function and the

best values found for GA parameters are then used for all subsequent experiments.

81
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In the experiments in this chapter, five machine learning methods from the liter-

ature were also used for comparing the performance of ESR-NID. These are C4.5

(a decision tree learner), IB1 (an instance based learner) and RIPPER (a rule in-

duction method) from the category of non-GA-based algorithms and Genetic Al-

gorithm based Classifier System with Adaptive Discretization Intervals (GASSIST-

ADI) (Bacardit & Garrell, 2003) and Memetic Pittsburgh Learning Classifier System

(MPLCS) (Bacardit & Krasnogor, 2009b) from the category of GA-based rule learn-

ing techniques. For the first three classifiers, the Weka version of the C4.5 algorithm,

known as J48, an implementation of RIPPER called JRip, and kNN, a linear near-

est neighbours search algorithm were used. The other two classifiers, GASSIST-ADI

and MPLCS, are provided by the KEEL software (Alcala-Fdez et al., 2009). For each

of these five algorithms, parameter tuning is also carried out to find the respective

best performing model.

4.2 Choice of Dataset

The synthetic data used in all the experiments in this chapter is generated using a

Python script, which provides the ability to easily generate data for more complex

classification problems by only modifying the input parameters such as the number

of data points, the dimensionality, and the number of clusters needed for evaluating

the proposed system. Moreover, as the final optimised rulesets generated by ESR-

NID are small for these simple to complex scenarios, they can be evaluated against

the ground truth.

The four scenarios designed for evaluating ESR-NID in this chapter are listed below:

• A 3-dimensional medium size problem with one normal cluster and two anoma-

lous clusters.

• A 3-dimensional problem with two normal clusters and five anomalous clusters.

• A problem with 6 input features (6-dimension).
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• A problem with 12 input features (12-dimension).

More details of these scenarios are explained in the following sections.

4.2.1 A 3-Dimensional Medium Size Problem

As depicted in Figure 4.1, a three dimensional problem is designed in this section to

evaluate ESR-NID. Using three features, the generated data can be easily visualised

for the preliminary experiments. This is not possible for higher dimension data used

in subsequent experiments.

In this problem, 500 data points for normal records (lighter green area) and two

clusters of 250 points for anomalous records (darker red area) with some overlap

with the green region, are generated to test the accuracy of ESR-NID in detecting

the anomalous records. The overlap between the normal and anomalous clusters is

provided to simulate the similarities between normal and abnormal behaviours in

real-world problems. The rules used to generate the data for the problem in Figure

4.1 are as follows:

Green: if f1 ∈ [0, 0.3] and f2 ∈ [0.3, 0.6] and f3 ∈ [0, 0.2] then normal

Red: if f1 ∈ [0, 0.3] and f2 ∈ [0, 0.2] and f3 ∈ [0.4, 0.8] then anomaly

if f1 ∈ [0, 0.1] and f2 ∈ [0.5, 0.9] and f3 ∈ [0, 0.3] then anomaly

As there are only two clusters of anomalous records in this problem, ESR-NID does

not require a large set of rules for generating an acceptable classification rate and

thus the generated rules by the system and their feature boundaries can be easily

compared to the above listed rules for the Red regions.

4.2.2 A 3-Dimensional Problem with More Clusters of Hits

To test the ability of ESR-NID to generate an adequate number of rules when there

are more clusters of hits (anomalous records), a problem with two clusters of normal
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Figure 4.1: A medium-size problem. Red (darker) data points represent
“anomalous” records, and green (lighter) points are “normal”.

records (lighter green area) and five clusters of anomalous records (darker red area),

is constructed as shown in Figure 4.2.

Figure 4.2: A problem to test the performance of ESR-NID in detection of more
clusters of hits. This problem includes two “normal” clusters and five “anomalous”

clusters.

To generate this dataset, the following rules were the input to the Python script

used for data generation in this chapter:
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Green: if f1 ∈ [0, 0.3] and f2 ∈ [0.3, 0.6] and f3 ∈ [0.7, 0.8] then normal

if f1 ∈ [0, 0.3] and f2 ∈ [0.3, 0.6] and f3 ∈ [0, 0.2] then normal

Red: if f1 ∈ [0, 0.1] and f2 ∈ [0.4, 0.7] and f3 ∈ [0, 0.3] then anomaly

if f1 ∈ [0, 0.1] and f2 ∈ [0, 0.2] and f3 ∈ [0, 0.3] then anomaly

if f1 ∈ [0.5, 0.8] and f2 ∈ [0.6, 0.7] and f3 ∈ [0.6, 0.7] then anomaly

if f1 ∈ [0.1, 0.2] and f2 ∈ [0.2, 0.4] and f3 ∈ [0.6, 0.8] then anomaly

if f1 ∈ [0.7, 0.9] and f2 ∈ [0.1, 0.2] and f3 ∈ [0.6, 0.7] then anomaly

4.2.3 Problems With More Input Features

In 2- or 3-dimensional spaces, it is usually relatively easy to understand the prop-

erties of data and thus they are easier problems for the classifiers. To get a deeper

understanding of the behaviour of ESR-NID on high-dimensional real-valued data,

two sets of synthetic data were generated for problems with 6 and 12 input fea-

tures. The aim is to evaluate the performance of ESR-NID to generate classification

rules for more complex problems. High dimensional data points are typically de-

rived from complex real-world objects such as images (Hinneburg et al., 2000). In

the computer security research community, researchers tend to use two well-known

datasets for the evaluation of their techniques for intrusion detection problem: the

DARPA-Lincoln dataset and the KDD99 dataset (Shafi, 2008). Investigation on the

number of attributes being used in these research activities showed that a high di-

mensional dataset in this area consists of 41 features (i.e. the number of features for

each vector in KDD99 dataset). Since several features have higher possibilities to

be involved in network intrusions, some select a smaller set of features for intrusion

detection. For example, in Depren et al. (2005), six basic features of KDD99 dataset

were used and Gong et al. (2005) utilised seven features of the DARPA dataset in

their GA-based classification approaches.
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The following two datasets are generated for the evaluation of ESR-NID against

problems with more input features to show that the proposed system can also be

used on higher dimensional datasets.

First, the following rules were used to generate a dataset with 6 input features:

Green: if f1 ∈ [0, 0.3] and f2 ∈ [0.3, 0.6] and f3 ∈ [0, 0.2] and f4 ∈ [0, 0.3] and f5

∈ [0.3, 0.6] and f6 ∈ [0, 0.2] then normal

Red: if f1 ∈ [0, 0.3] and f2 ∈ [0, 0.2] and f3 ∈ [0.4, 0.8] and f4 ∈ [0, 0.3] and f5 ∈

[0, 0.2] and f6 ∈ [0.4, 0.8] then anomaly

if f1 ∈ [0, 0.1] and f2 ∈ [0.5, 0.9] and f3 ∈ [0, 0.3] and f4 ∈ [0, 0.1] and f5 ∈ [0.5,

0.9] and f6 ∈ [0, 0.3] then anomaly

Then, a more complex problem with 12 features was designed using the following

rules. In this problem, 2 clusters of normal records and 3 clusters of anomalous

records were considered.

Green: if f1 ∈ [0, 0.1] and f2 ∈ [0.1, 0.2] and f3 ∈ [0.2, 0.3] and f4 ∈ [0.3, 0.4] and

f5 ∈ [0.5, 0.6] and f6 ∈ [0.1, 0.2] if f7 ∈ [0, 0.5] and f8 ∈ [0, 0.3] and f9 ∈ [0, 0.5]

and f10 ∈ [0, 0.3] and f11 ∈ [0.9, 1] and f12 ∈ [0.6, 0.9] then normal

if f1 ∈ [0.2, 0.3] and f2 ∈ [0.2, 0.3] and f3 ∈ [0.2, 0.4] and f4 ∈ [0.3, 0.8] and f5 ∈

[0.4, 0.7] and f6 ∈ [0.6, 0.7] if f7 ∈ [0.7, 0.9] and f8 ∈ [0.8, 0.9] and f9 ∈ [0.9, 1] and

f10 ∈ [0.1, 0.2] and f11 ∈ [0.1, 0.6] and f12 ∈ [0, 0.2] then normal

Red: if f1 ∈ [0, 0.3] and f2 ∈ [0.3, 0.5] and f3 ∈ [0.1, 0.3] and f4 ∈ [0.3, 0.4] and f5

∈ [0.6, 0.9] and f6 ∈ [0.7, 0.9] if f7 ∈ [0.1, 0.3] and f8 ∈ [0.1, 0.3] and f9 ∈ [0.1, 0.3]

and f10 ∈ [0.1, 0.3] and f11 ∈ [0.1, 0.7] and f12 ∈ [0.1, 0.3] then anomaly

if f1 ∈ [0, 0.5] and f2 ∈ [0, 0.2] and f3 ∈ [0.1, 0.5] and f4 ∈ [0.2, 0.6] and f5 ∈ [0.5,

0.7] and f6 ∈ [0.5, 0.6] if f7 ∈ [0.7, 0.9] and f8 ∈ [0.8, 0.9] and f9 ∈ [0.9, 1] and f10

∈ [0, 0.2] and f11 ∈ [0.1, 0.2] and f12 ∈ [0.1, 0.2] then anomaly

if f1 ∈ [0, 0.1] and f2 ∈ [0.1, 0.2] and f3 ∈ [0.2, 0.3] and f4 ∈ [0.3, 0.4] and f5 ∈

[0.5, 0.6] and f6 ∈ [0.1, 0.2] if f7 ∈ [0, 0.5] and f8 ∈ [0, 0.3] and f9 ∈ [0, 0.5] and

f10 ∈ [0, 0.3] and f11 ∈ [0.8, 1] and f12 ∈ [0.6, 0.9] then anomaly



Chapter 4. Experiments On Synthetic Problems 87

4.3 Evaluation Strategy Against Synthetic Datasets

In the experiments in this chapter, to provide an accurate estimate of classification

rate, a standard k -fold cross-validation technique is used. In k -fold cross-validation,

the dataset is randomly split into k mutually exclusive subsets of approximately

equal size. A predictive model is thus trained and tested k times; each time, it is

trained on k -1 subsets and tested on the remaining one subset. Finally, the k results

from the folds can be averaged to produce a single estimation. For this research,

the number of folds (k) is set to 10 (i.e. a common value used in the literature) and

the folds are stratified so that they contain approximately the same proportions of

two types of class labels as the original dataset. This is called a stratified cross-

validation. Additionally, the evaluation method used 3 different seeds to provide a

total of 30 runs using the 10 folds.

For the experiments conducted in this chapter, the seed selection module in the ESR-

NID framework was not used and the initial population of individuals was randomly

generated by setting seed selection to “random”.

4.4 Preliminary Experiments for Performance Eval-

uation

In this section, the performance of ESR-NID is tested against the first problem de-

picted in Figure 4.1 (i.e. a 3-dimensional medium size problem). These preliminary

experiments were carried out to identify and rectify any performance issue. As will

be seen, it was found that a better elitism mechanism was needed.

4.4.1 Parameter Settings

For the experiments in this section, ESR-NID is configured using the following set-

tings:
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• Fitness Function = fitness function (3) (Equation (3.6))

• Performance function =
√
TPrate ∗ TNrate

• Mutation probability = 0.1

• Population size = 10

• Generations = 300

• Elite = 25%

• Seed selection: random

• Number of runs = 30

Some preliminary experiments were conducted to find a suitable value for the num-

ber of generations and the results did not show any improvements in the system

performance when the number of generations is increased.

4.4.2 System Performance

As explained before, a two-stage evaluation process is deployed in ESR-NID, where

the fitness value is used for ranking the individuals in each generation and a perfor-

mance function is responsible for finding the best set of individuals who are working

well cooperatively to cover the search space. At the end of the evolutionary run, the

ruleset that produced the best performance value will be reported as the optimised

ruleset.

Figure 4.3, shows the performance of ESR-NID during the learning stage for only one

fold of the dataset generated for the problem shown in Figure 4.1. A performance

value of nearly 58% is seen for the initial population of rules (i.e. generation 1). As

shown by the graph, there is a lot of fluctuation in the performance of ESR-NID in

the first 100 generations. This issue will be explained next.

As initial ESR-NID uses a fixed elitism approach, in each generation, a proportion

of the population (elite = 25%) will be sent to next generation. Consequently, this
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may lead to loss of some of the individuals from the best performing set of rules

between generations (found using the performance function value). To provide an

illustrative example of this issue, a fixed elitism mechanism is applied to a population

of individuals in Figure 4.4. In this example, a population of 20 individuals is sorted

in descending order of fitness. To produce the next generation of individuals, a fixed

elitism approach used by the algorithm loads the first five individuals from initial

generation into next generation. However, the best performing ruleset found using

the performance function in this example is a set consisting of the first 10 rules in

the population. Therefore, in using a fixed elitism approach, half of the individuals

in the best performing ruleset are lost. This is the reason that performance of the

proposed evolutionary algorithm fluctuates with generations in Figure 4.3. To solve

this issue, a more accurate approach is needed, which in each generation decides how

many individuals are needed to be sent to next generation. For this, the performance

value of the best ruleset in each generation would be a good indication of which

individuals are good to keep and send to next generation.

Figure 4.3: Performance of ESR-NID on the problem shown in Figure 4.1 vs
generations for only one fold.

Next, the proposed adaptive elitism approach will be introduced to address the issue

found in the above experiment. By adaptively adjusting the number of elites copied
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Figure 4.4: Fixed elitism approach (population-size=20 and elite=25%).

into each new generation, this ensures that cooperating rules are kept together and

not lost from one generation to the next.

4.4.3 Adaptive Elitism Mechanism

In this section, the proposed adaptive approach to address the problem of losing

good rules from a previous generation is described. The aim is to adaptively adjust

the number of elites copied into each new generation. This also means that there is

no need to select some arbitrary number of elites apriori. Thus, in each generation,

the top n rules are designated elite, where n is chosen to maximize the performance

measure as shown in Algorithm 5. A sorted population (sortedPop) of individuals

based on the fitness value will be given to this algorithm, which in a loop with a

maximum of popSize iterations checks the performance of first n rules in the sorted

population. n is initialized to one and will be incremented by one in each iteration.

If the performance of first n rules is greater than the perfMax (i.e. initialized to

zero), the performance of first n rules will be assigned to the perfMax and the elite
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value will be equal to n. Finally, the elite value will be returned as the output of

the algorithm.

Algorithm 5 Finding elite value

sortedPop = sorted population pop based on fitness values
perfMax = 0
for n from 1 to popSize do

if performance(first n rules in sortedPop) > perfMax then
perfMax← performance(first n rules in sortedPop)
elite← n

end if
n← n + 1

end for
return elite

After finding the elite value (the value of n that gives the best performance), the

breeder module will use this number to populate the next generation. The new

population will consist of n best individuals from previous generation and popSize-n

newly bred individuals. The newly bred individuals are created through a chain of

selection and breeding operators.

To compare ESR-NID using the new adaptive elitism mechanism with the fixed

approach used in the previous section, the algorithm is configured as before (refer

to the parameter settings in Section 4.4.1) and is applied to the same problem (i.e.,

shown in Figure 4.1). Figure 4.5 shows the performance of ESR-NID during the

learning phase for only a single fold. To provide a fair comparison with the previous

experiment, the same fold is selected for presenting the results. As can be observed,

the performance value is increased to more than 94% in the new enhanced system

and less fluctuation across generations is seen in the performance figure.

As explained before, in ESR-NID framework, the final ruleset to be used in a clas-

sification task is the best performing ruleset found after the post-processing stage.

The maximum performance value, which is the ultimate goal, indicates which rule-

set in which generation is the best. Here, a final ruleset of four rules with 94.5%

performance at generation 96 is the final output of ESR-NID.

As can be seen in Figure 4.5, the performance value decreases in generation 147. In

ESR-NID, the breeder module uses the elite value found by Algorithm 5 to copy
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Figure 4.5: Performance of the enhanced ESR-NID on the problem shown in
Figure 4.1 vs generations for only one fold.

the elite-best individuals from the previous generation. Because it is not possible to

check the performance of all combinations of individuals in a population, ESR-NID

can not always assure to send the optimal combination to the next generation. To

provide a clearer understanding of this issue, the process of finding the elites for the

next generation in ESR-NID is depicted in the top row of Figure 4.6 in contrast to

a resource-consuming process in the bottom row.

In this figure, the elite value found by Algorithm 5, is five, which means the next

generation (i.e. generation1) will receive the 5-best individuals (i.e. ranked based

on fitness value) from the current generation (i.e. generation0). Among these five

individuals, individual1 is not contributing much to the optimised ruleset. By look-

ing at the ranges of features, it can be concluded that rule1 is a more general version

of rule0. As the proposed fitness function is designed to reward unique rules, rule0

(i.e. a more specific rule) received a higher fitness value compared to rule1, which

is more general. But rule1 (with a good fitness value) is not necessarily assisting

the other rules to provide the best performance value. This is because of some false

positives (and as a result an inferior true negative rate) produced by rule1. If there

were no limitations on computational resources, one could try all the combinations

of individuals to find the best performing ruleset, which consists of individual0,
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individual2, individual3, and individual4. However ESR-NID will not consider this

combination, so some decreases of performance value may be seen in some genera-

tions. Although performance can drop in some generations, ESR-NID chooses the

ruleset from the generation with the best performance.
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Figure 4.6: Adaptive elitism approach. Individuals are sorted in descending
order of fitness values. Performance(Ind0, Ind2, Ind3, Ind4)>Performance(Ind0,

Ind1, Ind2, Ind3, Ind4).

Now, to provide the final evaluation results for 30 runs, Figure 4.7 compares the

performance of the enhanced evolutionary algorithm to the original algorithm, which

uses the fixed elitism approach. A box plot, that shows minimum, lower quartile,

median, upper quartile, and maximum performance values over the 30 runs is utilised

for describing the results. As can be seen in Figure 4.7, a better performance value

(ranged between 86% and 96%) is obtained when the adaptive mechanism is used.
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Figure 4.7: Comparing the performance of ESR-NID using fixed elitism and
adaptive elitism mechanisms (the results are for a total of 30 runs).

Through the previous preliminary experiments, the performance of ESR-NID was

evaluated for a medium size problem and after fixing one issue (elitism), it showed

promising results for the classification task. Therefore, for the rest of experiments,

the adaptive elitism approach will be used. However, more investigation is needed to

find the best parameter settings for the algorithm. In the following section, through

the process of algorithm tuning, the impact of proposed fitness functions on the

performance of ESR-NID will also be evaluated.

4.5 Algorithm Tuning

In this section, the three fitness functions introduced before (equations (3.4), (3.5),

(3.6)) and different combinations of mutation probabilities and population sizes are

investigated for ESR-NID configuration. This step is required to identify a suitable

configuration of ERS-NID for future experiments in this research. The synthetic data

generated for the medium size problem in Figure 4.1 is again used in this section. The

experiments are completed based on Algorithm 6, which facilitates the selection of

best fitness function and set of GA parameters for use in later experiments. To keep

the total number of evaluations the same (15000 evaluations) in all the experiments,

when the population size increases, the number of generations will be decreased.
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Algorithm 6 Algorithm tuning process

for each fitness function ff in (equations (3.4), (3.5), (3.6)) do
for each mutation probability mu in (0.1, 0.3, 0.5) do

for each population size popSize in (50, 100, 200) do
run EA

end for
end for

end for
return best combination of ff, mu, popSize

The results obtained from different combinations of mutation probabilities and pop-

ulation sizes for three different fitness functions used in ESR-NID are outlined in

Figures 4.8-4.10. The performance figure is the g-performance function introduced

in Equation 3.8. A box plot is used to show minimum, lower quartile, median,

upper quartile, and maximum performance values over the runs. For ESR-NID, 3

runs for each of the 10 folds resulted in 30 runs for each combination of mutation

rate and population size. In addition to performance figures, the average number of

rules needed in ESR-NID is also presented in these figures. In each figure, the best

configuration of ESR-NID is selected and marked based on the five values used for

presenting the results. When the performance range is wide for a specific combina-

tion of fitness function, mutation probability and population size, that combination

is considered less reliable as it does not provide an acceptable performance value for

all the runs.

Based on the results presented in Figure 4.8, by using fitness function (1) in ESR-

NID, a quite wide range of performance values, with minima between about 74%

and 89%, can be seen. The average number of rules also varies between 7 and 12

rules. The results are dependent on the choice of mutation rate and population size.

Comparing all the nine configurations, the fourth one is chosen as the best when

ESR-NID uses fitness function (1).

The variability of performance values and the average number of rules become less

when using fitness function (2). As can be seen in Figure 4.9, the minimum per-

formance value is between about 87% and 91%, depending on mutation rate and

population size. The average number of rules in this figure is between 2 and 3 rules.
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In this figure, the sixth combination of mutation probability and population size is

considered the best when ESR-NID uses the second fitness function.

Finally, the variability of performance value using fitness function (3) is less than that

for the other two fitness functions, with minima consistently around 90%, regardless

of mutation rate and population size. The average number of rules here is between 3

and 4 rules. Among all the combinations of mutation probability and population size,

the first configuration (mu=0.1, popSize=50 and generations=300) is considered the

most reliable one for ESR-NID using fitness function (3).

Figure 4.8: Performance of ESR-NID using fitness function (1). Left y-axis
shows the performance value and right y-axis presents the number of rules used
for classification. On x-axis, different combinations of mutation probabilities and
population sizes for ESR-NID are depicted. As explained before, when the popu-
lation size increases, the number of generations will be decreased to keep the total

number of evaluations the same in all the experiments.
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Figure 4.9: Performance of ESR-NID using fitness function (2) and different
combinations of mutation probabilities and population sizes.

Figure 4.10: Performance of ESR-NID using fitness function (3) and different
combinations of mutation probabilities and population sizes.

Now, to decide on the best fitness function and GA parameters, Figure 4.11 compares

the best results found in each experiment on the three fitness functions. As can be

seen, the least performance range is for the fitness function (1) with bigger evolved

rulesets than the other two functions. These issues are solved by enhancing the

fitness function. Less variation of performance values and smaller rulesets are the

results achieved by fitness functions (2) and (3). However, fitness functions (3)

provided better performance result than fitness function (2) and thus it can be

concluded that the fitness function (3) is the most reliable among the three tested

functions. Therefore, for the subsequent experiments, ESR-NID will be configured
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with fitness function (3), mutation probability of 0.1 and population size of 50 and

the evolutionary process will be running for 300 generations.

Figure 4.11: Performance of ESR-NID using different fitness functions.

Next, the process of parameter tunning will be done for the other three comparison

methods and then the results from the best configuration of ESR-NID found in this

section will be compared to the best outputs of other machine learning approaches.

4.6 Parameter Tuning for Other Classifiers

In order to properly evaluate the performance of ESR-NID and allow fair compari-

son between different approaches, a parameter tuning process is also carried out for

J48, kNN, JRip, GASSIST-ADI and MPLCS. Since there are many possible com-

binations of parameter values to test, manually setting and searching for optimal

values would be very time consuming. For the first three algorithms, Weka’s inbuilt

cross-validated parameter selection facility (CVParameterSelection) was used. CV-

ParameterSelection uses internal cross-validation to find the best values for one or

more parameters within a specified range (Sönströd et al., 2009). For the other two

GA-based techniques, the parameter tuning was limited to crossover probability and

population size. The parameter tuning process here is done against the medium size

problem shown in Figure 4.1.
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For J48, five parameters listed in Table 4.1, which might have influence on resulting

decision tree (Koblar, 2012), were optimised. Table 4.1 also provides the tested

values in this work, Weka’s default values and the best values obtained for designing

a decision tree model for the introduced synthetic classification task.

Table 4.1: Parameters of the J48 machine learning algorithm used in optimiza-
tion.

Parameters Tested values Default values Best value
Minimum number of instances in a leaf (M) [1..4] step size:1 2 1
Use of pruned trees (U) yes/no no no
Confidence factor used in postpruning (C) [0.02..0.5] step size:0.02 0.25 0.02
Subtree raising operation in postpruning (S) yes/no yes no
Use of binary splits (B) yes/no no no

Similarly, for kNN, the number of neighbours, k, and the weighting technique are the

two evaluated parameters for kNN configurations (as presented in Table 4.2). Two

weighting methods included in Weka implementation are inverse-distance weighting

(weight neighbours by the inverse of their distance) and similarity weighting (weight

neighbours by 1-their distance). However, the default technique used in Weka is

the equal weighting (weight neighbours by their distance) (Lavesson & Davidsson,

2006).

Table 4.2: Parameters of the kNN machine learning algorithm used in optimiza-
tion.

Parameters Tested values Default values Best value
Neighbors (k) [1..80] step size:1 1 56
Weighting equal, inverse-distance, similarity equal equal

Moreover, as presented in Table 4.3, five parameters of JRip algorithm according to

MeeraGandhi et al. (2010), were optimised.

Finally, the best values found through optimization for the two parameters of GASSIST-

ADI and MPLCS are presented in Table 4.4.
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Table 4.3: Parameters of the JRip machine learning algorithm used in optimiza-
tion.

Parameters Tested values Default values Best value
Number of folds for reduced error pruning (F) [1..10] step size:1 3 3
Minimal weight of instances within a split (N) [1..10] step size:1 2 3
Number of runs of optimisations (O) [1..10] step size:1 2 4
The seed of randomization (S) [1..10] step size:1 1 5
Not use pruning (P) yes/no no no

Table 4.4: Parameters of GASSIST-ADI and MPLCS used in optimization.

Parameters Tested values Default values Best value
Crossover probability 0.2, 0.4, 0.6, 0.8 0.6 0.6
Population size 100, 300, 500, 1000 300 300

4.7 Performance Comparison

In this section, the performance of ESR-NID is compared to five classifiers using

their best configurations found in section 4.5 and 4.6, respectively. For J48, kNN and

JRip, which are deterministic, 10 runs for 10 folds are conducted and for GASSIST-

ADI and MPLCS, 3 runs for each of the 10 folds resulted in 30 runs. Similarly for

the proposed algorithm, for each combination of mutation rate and population size,

30 runs were carried out. Thus, the maximum and minimum values for GASSIST-

ADI, MPLCS and the proposed EA can be expected to show slightly wider spread

than for J48, kNN and JRip. As can be seen in Figure 4.12 and Table 4.5, ESR-

NID, kNN, JRip and GASSIST-ADI provided similar performance results whereas

MPLCS performed slightly better and J48 slightly worse than the other methods.

The specification of each model provided in Table 4.5 shows that the complex-

ity of ESR-NID model is also comparable to other rule-based models (J48, JRip,

GASSIST-ADI and MPLCS).

Additionally, an example of a final rule set generated by ESR-NID compared to J48,

JRip, GASSIST-ADI and MPLCS outputs, is presented in Table 4.6. The outputs

are interpreted to match the format that ESR-NID uses for the representation of

rules. As can be seen, all three input features were needed for classification of

instances in these approaches. ESR-NID generated a concise ruleset similar to JRip
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Figure 4.12: Performance of ESR-NID using the best configuration found com-
pared to J48, kNN, JRip, GASSIST-ADI and MPLCS approaches.

Table 4.5: Details of the results presented in Figure 4.12.

Classifier Specifications Performance
min q1 median q3 max

ESR-NID number of rules: 3 91.3 92.8 94.5 96.4 98.4
J48 size of tree: 7

number of leaves: 4
90.5 92.7 93.3 93.8 94.8

kNN k = 56 91.9 93.4 94.9 96 98
JRip number of rules: 3 91.9 92.8 94.3 95.7 96.9
GASSIST-ADI number of rules: 4 88 93.1 94.8 95.9 97.9
MPLCS number of rules: 4 90.5 94.1 95.4 95.9 97.9

output, without having redundancy, as opposed to J48 and GASSIST-ADI outputs.

J48 algorithm checks the F3 condition repeatedly for both leaves and GASSIST-ADI

has three similar rules with approximately the same ranges for F1 and F2 conditions.

Based on the preliminary experimental findings and the satisfactory outcome of

performance comparison of ESR-NID against other machine learning methods, for

the subsequent experiments, ESR-NID will be configured as follows:

• Fitness Function = fitness function (3) (Equation (3.6))

• Performance Function =
√
TPrate ∗ TNrate

• Mutation probability = 0.1

• Population size = 50
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Table 4.6: Comparing the final ruleset generated by ESR-NID, J48, JRip,
GASSIST-ADI and MPLCS.

Approach Output
The rules used to generate
the anomalous records for
the problem in Figure 4.1

rule1: if F1 ∈ [0, 0.3] and F2 ∈ [0, 0.2] and
F3 ∈ [0.4, 0.8] then anomaly
rule2: if F1 ∈ [0, 0.1] and F2 ∈ [0.5, 0.9] and
F3 ∈ [0, 0.3] then anomaly

ESR-NID rule1: if F3 ∈ [0.20, 0.82] then anomaly
rule2: if F1 ∈ [0, 0.10] and F2 ∈ [0.57, 0.95]
then anomaly

J48 (with interpretation)
F3 <= 0.19
| F1 <= 0.09
| | F2 <= 0.50: Normal
| | F2 > 0.50: Anomaly
| F1 > 0.09: Normal
F3 > 0.19: Anomaly
rule1: if F3 ∈ [0.19, 1] then anomaly
rule2: if F1 ∈ [0, 0.09] and F2 ∈ [0.50, 1]
and F3 ∈ [0, 0.19]then anomaly

JRip (with interpretation)
(F3 >= 0.20): Anomaly
(F2 >= 0.59) and (F1 <= 0.09): Anomaly
Others: Normal
rule1: if F3 ∈ [0.20, 1] then anomaly
rule2: if F1 ∈ [0, 0.09] and F2 ∈ [0.59, 1]then
anomaly

GASSIST-ADI (with interpretation)
F3 is [> 0.19] | Anomaly
F1 is [< 0.01] | F2 is [> 0.53] | Anomaly
F1 is [< 0.06] | F2 is [> 0.55] | Anomaly
F1 is [< 0.11] | F2 is [> 0.59] | Anomaly
Default rule − > Normal
rule1: if F3 ∈ [0.19, 1] then anomaly
rule2: if F1 ∈ [0, 0.01] and F2 ∈ [0.53, 1]then
anomaly
rule3: if F1 ∈ [0, 0.06] and F2 ∈ [0.55, 1]then
anomaly
rule4: if F1 ∈ [0, 0.11] and F2 ∈ [0.59, 1]then
anomaly

MPLCS (with interpretation)
F2 is [> 0.78] | Anomaly
F3 is [> 0.19] | Anomaly
F1 is [< 0.10] | F2 is [> 0.58] | Anomaly
Default rule − > Normal
rule1: if F2 ∈ [0.78, 1] then anomaly
rule2: if F3 ∈ [0.19, 1] then anomaly
rule3: if F1 ∈ [0, 0.10] and F2 ∈ [0.58, 1]then
anomaly
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• Generations = 300

and the other comparison methods will also be designed with the parameters best

values found in Table 4.1, 4.2 and 4.3.

In the next two sections, to evaluate the performance of ESR-NID on more complex

problems, further experiments are conducted against the other synthetic datasets

introduced in Section 4.2.2 and 4.2.3: a 3-dimensional problem with more clusters

of hits and two problems with 6 and 12 input features.

4.8 Performance Evaluation of ESR-NID against

a 3-Dimensional Problem with More Clusters

of Hits

Similar to the previous experiments, ESR-NID and the other comparison methods

are tested against the problem shown in Figure 4.2 with two clusters of normal

records and five clusters of anomalous instances. The results are presented in Fig-

ure 4.13. Additionally, Table 4.7 provides more details of the five values used for

presenting the box plot. The results show that a final rule set of 6 rules (on aver-

age) provided by ESR-NID is comparable in performance and reliability to the other

methods. The median performance for ESR-NID is slightly better than GASSIST-

ADI, the same as J48 and slightly worse than kNN, JRip and MPLCS. The minimum

performance provided by ESR-NID, J48 and JRip methods is more than 90% but

for kNN, GASSIST-ADI and MPLCS, this is between about 87% and 90%.

To present the simplicity and readability of ESR-NID output, Table 4.8 compares

an example of a final ruleset generated by ESR-NID to J48, JRip, GASSIST-ADI

and MPLCS outputs. ESR-NID only uses two input features (F2 and F3) for clas-

sification of anomalous records, while the other methods needed three of the input

features to produce a similar performance value.



Chapter 4. Experiments On Synthetic Problems 104

Figure 4.13: Performance of different techniques on the problem shown in Fig-
ure 4.2. Six rules are produced by ESR-NID, J48 and JRip for classification of

anomalous records.

Table 4.7: The performance of different techniques on the problem shown in
Figure 4.2.

Classifier Specifications Performance
min q1 median q3 max

ESR-NID average number of rules: 6 90 91.5 92.9 94.3 95.7
J48 size of tree: 11

number of leaves: 6
90.5 91.9 92.9 93.8 95

kNN - 89.4 91.6 93.3 93.8 96.3
JRip number of rules: 6 91 91.4 93.8 94.2 95.8
GASSIST-ADI number of rules: 4 89.9 91.3 92.3 93.7 96.9
MPLCS number of rules: 5 87.3 90.4 93.1 93.7 95.9

Additionally, in Figure 4.14, the six rules generated by ESR-NID are plotted on

the seven clusters of data shown in Figure 4.2 (i.e. five anomalous and two normal

clusters). This shows the coverage of anomalous instances by the generated ruleset,

that results in a performance value of about 93%.
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Table 4.8: Comparing the final ruleset generated by ESR-NID, J48, JRip,
GASSIST-ADI and MPLCS.

Approach Output

ESR-NID rule1: if F3 ∈ [0.20, 0.31] then anomaly

rule2: if F2 ∈ [0.03, 0.40] and F3 ∈ [0.42, 0.69] then anomaly

rule3: if F2 ∈ [0.03, 0.27] then anomaly

rule4: if F2 ∈ [0.05, 0.29] then anomaly

rule5: if F2 ∈ [0.60, 0.79] then anomaly

rule6: if F2 ∈ [0.01, 0.09] then anomaly

J48 F2 <= 0.30: Anomaly

F2 > 0.30

| F3 <= 0.69

| | F3 <= 0.19

| | | F1 <= 0.09

| | | | F2 <= 0.40: Normal

| | | | F2 > 0.40: Anomaly

| | | F1 > 0.09: Normal

| | F3 > 0.19: Anomaly

| F3 > 0.69: Normal

JRip rule1: (F2 <= 0.30): Anomaly

rule2: (F2 >= 0.60): Anomaly

rule3: (F1 <= 0.09) and (F3 <= 0.29) and (F3 >= 0.19):

Anomaly

rule4: (F1 <= 0.16) and (F3 <= 0.69) and (F3 >= 0.61):

Anomaly

rule5: (F2 <= 0.41) and (F3 >= 0.60) and (F3 <= 0.69):

Anomaly

rule6: Others: Normal
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GASSIST-ADI rule1: F3 is [0.20, 0.69] | Anomaly

rule2: F1 is [< 0.19] | F2 is [< 0.30] | Anomaly

rule3: F1 is [< 0.10] | F2 is [> 0.49] | F3 is [< 0.63] | Anomaly

rule4: F1 is [< 0.10] | F2 is [> 0.40] | F3 is [0.05, 0.64] |

Anomaly

rule5: Default rule − > Normal

MPLCS rule1: F1 is [< 0.10] | F2 is [< 0.20][> 0.49] | F3 is [0.03,

0.15] | Anomaly

rule2: F1 is [< 0.10] | F2 is [< 0.30][0.40, 0.49] | F3 is [0.10,

0.30] | Anomaly

rule3: F2 is [< 0.30][> 0.59] | Anomaly

rule4: F3 is [0.20, 0.69] | Anomaly

rule5: Default rule − > Normal

Figure 4.14: The final ruleset evolved by ESR-NID for classifying the anomalous
records in the problem shown in Figure 4.2. f1, f2 and f3 are the three features in

the dataset generated by the rules in Section 4.2.1.
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Comparing the output of ESR-NID, J48 and JRip, some similarities can be found

between the rulesets. For example the highlighted conditions in the JRip rules are

relatively equivalent to ESR-NID rules as shown below:

• (F2 <= 0.30): Anomaly −→ rule3, rule4 and rule6 in ESR-NID

• (F2 >= 0.60): Anomaly −→ rule5 in ESR-NID

• (F1 <= 0.09) and (F3 <= 0.29) and (F3 >= 0.19): Anomaly −→ rule1 in ESR-

NID

• (F1 <= 0.16) and (F3 <= 0.69) and (F3 >= 0.61): Anomaly

• (F2 <= 0.41) and (F3 >= 0.60) and (F3 <= 0.69): Anomaly −→ rule2 in ESR-

NID

• Others: Normal

For example, the coverage area provided by the first rule in JRip, (F2 <= 0.30):

Anomaly, is approximately the same as rule3: if F2 ∈ [0.03, 0.27] then anomaly,

rule4: if F2 ∈ [0.05, 0.29] then anomaly and rule6: if F2 ∈ [0.01, 0.09] then anomaly

in the ESR-NID final ruleset.

Similarly, in Figure 4.15, the highlighted parts of the tree from J48 provide approx-

imately the same coverage as the one produced by ESR-NID rules.
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F2

F3

F3

F1

F2

Anomaly

Normal

Anomaly

Normal

Anomaly Normal

rule3, rule4 and rule6 in ESR-NID

rule2 in ESR-NID

rule1 in ESR-NID

rule5 in ESR-NID

Figure 4.15: Comparing the output of J48 to the ruleset generated by ESR-NID.

Finally, some similarities can be seen between ESR-NID output and GASSIST-ADI

and MPLCS final rulesets as shown below:

(GASSIST-ADI)

• F3 is [0.20, 0.69] | Anomaly −→ rule1 and rule2(cond2) in ESR-NID

• F1 is [< 0.19] | F2 is [< 0.30] | Anomaly −→ rule3, rule4 and rule6 in ESR-NID

• F1 is [< 0.10] | F2 is [> 0.49] | F3 is [< 0.63] | Anomaly −→ rule5 and rule1 and

rule2(cond2) in ESR-NID

• F1 is [< 0.10] | F2 is [> 0.40] | F3 is [0.05, 0.64] | Anomaly −→ rule5 and rule1

and rule2(cond2) in ESR-NID

• Default rule − > Normal
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(MPLCS)

• F1 is [< 0.10] | F2 is [< 0.20][> 0.49] | F3 is [0.03, 0.15] | Anomaly −→ rule5,

rule6 and rule1 in ESR-NID

• F1 is [< 0.10] | F2 is [< 0.30] [0.40, 0.49] | F3 is [0.10, 0.30] | Anomaly −→ rule3,

rule4, rule6 and rule1 in ESR-NID

• F2 is [< 0.30][> 0.59] | Anomaly −→ rule3, rule4, rule5 and rule6 in ESR-NID

• F3 is [0.20, 0.69] | Anomaly −→ rule1 and rule2(cond2) in ESR-NID

• Default rule − > Normal

As an example, the first rule in GASSIST-ADI ruleset, F3 is [0.20, 0.69] | Anomaly,

provides approximately the same coverage as the combination of rule1: if F3 ∈

[0.20, 0.31] and cond2 in rule2: F3 ∈ [0.42, 0.69] provides in ESR-NID model.

4.9 Performance Evaluation of ESR-NID against

a Problem with More Input Features

In this section, ESR-NID is evaluated on problems with more features. For this,

two sets of synthetic data were generated for problems with 6 and 12 input features.

Similar to the previous section, the results from J48, kNN, JRip, GASSIST-ADI and

MPLCS were compared to the result obtained from ESR-NID.

Figure 4.16 and Table 4.9 illustrate the performance of these techniques on a problem

with 6 features. Less variation of performance values can be seen from ESR-NID,

J48, kNN, GASSIST-ADI and MPLCS classifiers compared to JRip. Comparing

the size of generated ruleset for classification, ESR-NID, JRip, GASSIST-ADI and

MPLCS are the best with 5 rules. Therefore, considering the performance value and

simplicity of the output, ESR-NID and GASSIST-ADI can be ranked as the best

ones between the five rule-based classifiers.
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When the data is more complex with 12 input features, as can be seen from Figure

4.17 and Table 4.10, J48, JRip, GASSIST-ADI and MPLCS performed slightly bet-

ter than ESR-NID and kNN performed slightly worse. All the rule-based classifiers

produced the same size output of 5 rules. This concludes that ESR-NID can be used

in higher dimensions by producing an optimised ruleset of reasonable size with an

acceptable performance value.

Figure 4.16: Performance of different techniques on a problem with 6 features.

Table 4.9: Performance of different techniques on a problem with 6 features.

Classifier Specifications Performance
min q1 median q3 max

ESR-NID average number of rules: 5 94.7 97.2 98.9 98.9 99.9
J48 size of tree: 13

number of leaves: 7
95.7 97.9 99.1 99.5 99.8

kNN - 96 98 99 99.2 100
JRip number of rules: 5 92 97.2 97.9 99.7 99.9
GASSIST-ADI number of rules: 5 96.9 97.9 98.9 100 100
MPLCS number of rules: 5 94.8 96.9 97.9 99.7 100

4.10 Using a Different Performance Function

Throughout this chapter ESR-NID was configured using g-performance, calculated

as
√
TPrate ∗ TNrate. To present one of the advantages of ESR-NID as opposed to
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Figure 4.17: Performance of different techniques on a problem with 12 features.

Table 4.10: Performance of different techniques on a problem with 12 features.

Classifier Specifications Performance
min q1 median q3 max

ESR-NID average number of rules: 5 84 86 88 89 92
J48 size of tree: 9

number of leaves: 5
87.7 89.5 90.5 91.4 92.3

kNN - 83.1 86 86.7 88 89.3
JRip number of rules: 5 87.3 89 89.5 90.6 92.3
GASSIST-ADI number of rules: 5 84.4 89.3 89.5 91.2 92.3
MPLCS number of rules: 5 88.3 89.1 90.1 91.3 92.8

other tested techniques, in this section, another performance metric is used. By

providing the ability to change the performance function, ESR-NID generates vari-

ants of classifiers for different problems. Here, classification accuracy is used as the

performance function in ESR-NID.

The classification accuracy can be reported using the standard confusion matrix

approach. This metric is the most commonly used measure for evaluating the per-

formance of classifiers (Alpaydin, 2004; Witten & Frank, 2005). A confusion matrix

for a two-class problem is illustrated in Table 4.11.

Based on the confusion matrix in Table 4.11, accuracy is defined as follows:
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Table 4.11: Confusion matrix for a two-class problem.

Predicted
Normal Attack

Actual
Normal a b
Attack c d

accuracy =
a + d

a + b + c + d
(4.1)

The customised ESR-NID using accuracy as the performance function is evaluated

against the latest synthetic problem with 12 input features. To provide a better com-

parison, first, Table 4.12 and Figure 4.18 show the g-performance results achieved

using the g-performance function and then Table 4.13 and Figure 4.19 present the

classification accuracy results. As can be seen from the results, the customised ESR-

NID is performing approximately the same as the default configuration of ESR-NID

using g-performance in terms of both g-performance and classification accuracy. The

customised ESR-NID, however, in this problem produced more rules compared to

ESR-NID and other rule-based methods. Therefore, for this specific problem (i.e. a

balanced problem with 12 input features), either of these functions would provide

an acceptable performance result. This may be because, on a balanced dataset g-

performance and accuracy would be expected to rank classifiers similarly. Therefore,

in the next subsection, the case of imbalanced datasets is considered.

Table 4.12: Performance of different techniques on a problem with 12 features.

Classifier Specifications g-performance
min q1 median q3 max

ESR-NID average number of rules: 5 84 86 88 89 92
Customised ESR-NID average number of rules: 7 84.1 85.9 88.3 90 92
J48 size of tree: 9

number of leaves: 5
87.7 89.5 90.5 91.4 92.3

kNN - 83.1 86 86.7 88 89.3
JRip number of rules: 5 87.3 89 89.5 90.6 92.3
GASSIST-ADI number of rules: 5 84.4 89.3 89.5 91.2 92.3
MPLCS number of rules: 5 88.3 89.1 90.1 91.3 92.8
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Figure 4.18: Performance of different techniques on a problem with 12 features.

Figure 4.19: Accuracy of different techniques on a problem with 12 features.
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Table 4.13: Accuracy of different techniques on a problem with 12 features.

Classifier Specifications Performance (accuracy)
min q1 median q3 max

ESR-NID average number of rules:5 85.1 86.8 89 89.4 92.1
Customised ESR-NID average number of rules: 7 85 86 88.5 90.4 92.1
J48 size of tree: 9

number of leaves: 5
88 89.5 91 91.2 92.5

kNN - 83.7 87 87.1 88.2 89.5
JRip number of rules: 5 87.9 89.4 89.9 90.8 92.5
GASSIST-ADI number of rules: 5 84.8 90 90.2 91.9 93.2
MPLCS number of rules: 5 89 89.9 90.5 92 93.5

4.10.1 Imbalanced Dataset

In this section, to present the influence of use of a different performance function on

the output of ESR-NID, an imbalanced dataset with 12 input features is generated

using the same rules utilised to generate the complex problem with 12 features in

Section 4.2.3. In this imbalanced problem, 1000 data points for normal records

and 20 points for anomalous instances are generated. The classification task is only

carried out using the default version of ESR-NID (using g-performance function) and

the customised ESR-NID (using accuracy). Tables 4.14 and 4.15 show minimum,

lower quartile, median, upper quartile, and maximum performance values over the

30 runs.

To provide a more detailed comparison of the two configurations of ESR-NID, in

addition to the average values of g-performance and accuracy for 30 runs, the av-

erage of true positive and true negative rates are also presented in Tables 4.16 and

4.17. In this experiment, the default configuration of ESR-NID outperformed the

customised ESR-NID in terms of true positive rate and as a result, it produced bet-

ter g-performance as can be seen from the results. This is because accuracy does

not differentiate between the number of correct classification of different classes and

its erroneous conclusions on imbalanced datasets derive a set of rules with lower

true positive rate. For example, if the ratio of imbalance in a dataset is 1:100 (i.e.

1 positive instance versus 99 negatives), if a classifier produces 99% of accuracy, it

is not actually accurate if it does not correctly classify the only positive instance
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in the dataset. The use of geometric mean of the true rates instead of utilising

accuracy has been studied in the past to address the problem of balance in datasets

(Fernández et al., 2010).

Table 4.14: Performance of two configurations of ESR-NID on an imbalanced
problem with 12 features.

Classifier g-performance
min q1 median q3 max

ESR-NID 86.6 100 100 100 100
Customised ESR-NID 86.6 86.6 100 100 100

Table 4.15: Accuracy of two configurations of ESR-NID on an imbalanced prob-
lem with 12 features.

Classifier Performance (accuracy)
min q1 median q3 max

ESR-NID 99.5 100 100 100 100
Customised ESR-NID 99.5 99.5 100 100 100

Table 4.16: Average performance of ESR-NID against an imbalanced problem
with 12 input features.

g-performance accuracy True positive rate True negative rate
97.3 99.9 95 100

Table 4.17: Average performance of customised ESR-NID against an imbalanced
problem with 12 input features.

g-performance accuracy True positive rate True negative rate
93.7 99.7 88.3 100

Since the default configuration of ESR-NID, which is configured using g-performance

function, produced acceptable classification results in both cases of balanced and

imbalanced problems, this configuration will be used for the rest of experiments in

this thesis except in Section 5.4, where further experiments explore the idea of using

different performance functions in another context (i.e. detecting normal instances).
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4.11 Summary

This chapter evaluated ESR-NID using some synthetic datasets, that can be easily

constructed and manipulated to create classification problems with desired features.

After preliminary evaluations of the method, an adaptive elitism mechanism was

introduced, which adaptively adjusts the number of elites copied into each new

generation. This ensures that cooperating rules are kept together and not lost from

one generation to the next. This also means that there is no need to select some

arbitrary number of elites a priori. Next, some experiments were conducted to

evaluate three different fitness functions: a näıve one and two advanced ones, in

which the rules can evolve cooperatively to provide a final optimised ruleset that

covers the area of search precisely. The fitness functions have also been designed with

the aim of reducing the number of rules needed for classification problems. Through

these experiments, the impact of GA parameters on the performance of the enhanced

ESR-NID were also investigated. The results obtained from ESR-NID along with the

five comparison methods, J48, kNN, JRip, GASSIST-ADI and MPLCS showed that

the fitness function (3), introduced in Equation (3.6), is the most reliable function

among the three tested fitness functions. These results also suggested the best set of

GA parameters to fix the system for further experiments. Next, to test the accuracy

of ESR-NID further, some experiments on a set of more complex synthetic datasets

were conducted. The results showed that ESR-NID worked effectively compared

to other comparison machine learning techniques by generating small and easily

understood rulesets. The size of generated rulesets by ESR-NID was always equal

or less than the other comparing rule-based methods. This difference becomes more

pronounced for real complex problems as shall be seen later.

In the next chapter, ESR-NID will be tested within the context of a real-world prob-

lem. This will show the flexibility of ESR-NID to be applied on different problems

with continuous-valued features.



Chapter 5

Performance Evaluation of

ESR-NID on Network Intrusion

Detection Problems

5.1 Introduction

In the previous chapter, a number of synthetic datasets were used to evaluate ESR-

NID to see if the proposed approach can handle:

• The similarity of normal and anomalous records in the dataset

• The increasing number of clusters of anomalous records

• The increasing complexity in feature space

To demonstrate the flexibility of ESR-NID when applied to a real world problem,

this chapter describes a set of experiments conducted to test the system as a network

intrusion detection system.

Similar to the previous chapter, the performance of ESR-NID is compared to five

machine learning methods from two categories of GA-based and non-GA-based al-

gorithms: J48, kNN and JRip (non-GA-based) and GASSIST-ADI and MPLCS

117
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(GA-based). As before, the goal is to evaluate the accuracy, reliability and the

understandability of the rules of the resulting rule-based classifier.

For this, standardized sets of data that evaluate the effectiveness and efficiency of

IDSs are needed. Section 5.2, introduces the existing choices with the focus on the

NSL-KDD dataset (Tavallaee et al., 2009) and a combined DARPA/CAIDA dataset,

which are used for the experiments in this chapter.

5.2 Choice of Dataset

Based on the reviewed research work, there are two publicly available datasets that

have been widely used in either signature-based or anomaly-based detection system

evaluations: the DARPA-Lincoln datasets and the KDD99 dataset.

The first Intrusion Detection Evaluation (IDEVAL) program was run in 1998 by

the MIT Lincoln Lab under the sponsorship of DARPA and US Air Force Research

Labs (AFRL). The 1998 off-line evaluation included 10 systems, 38 attack types,

weeks of background traffic, which resulted in a database of attacks and background

traffic (seven weeks of training data and two weeks of test data captured by a

program named tcpdump (Jacobson et al., 1989)). This evaluation was limited to

only one intrusion detection system developed under DARPA’s sponsorship, only

attacks against UNIX hosts and background traffic similar to that of one Air Force

base. Moreover, in 1999, further off-line and real-time evaluations were conducted

by AFRL based on recommendations from 1998 to enhance the analysis and cover

more attack types. Major changes in the 1999 evaluation are (Haines et al., 2001;

Lippmann et al., 2000):

• Addition of a Windows NT workstation as a victim

• Addition of an inside tcpdump sniffer machine

• Collection of both Windows NT audit events and inside tcpdump sniffing data
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• Focusing on determining the ability of systems to detect unseen attacks and

analysing why systems miss new attacks

The attacks found in these datasets fall into four major categories: Denial of Service

(DoS), User to Root (U2R), Remote to Local (R2L) and probing. Additionally, some

scenario specific datasets, which include the network traffic collected from both the

DMZ and the inside part of the evaluation network, were also distributed in 2000

(MIT Lincoln Laboratory, 2000).

A processed version of the 1998 DARPA dataset, the KDD99 dataset, was also dis-

tributed as part of a competition (1999 KDD Cup competition) sponsored by the

International Conference on Knowledge Discovery in Databases. The task for this

contest was to learn a predictive model (i.e. a classifier) that is able to distinguish

between legitimate and illegitimate connections in a computer network. The KDD99

dataset consists of a large number of network connections, both normal and attacks.

This data is partitioned into about five million records of training data and approxi-

mately 0.3 million records of test data. A connection corresponds to a time-stamped

session of data transfer between two computers. Each connection in KDD99 has 41

features (32 continuous and 9 discrete) and is labeled as normal or a specific attack

type as presented in Table 5.1. These features can be broken down into the following

four categories (Stolfo et al., 2000; Stewart, 2009; Shafi, 2008):

• Basic features (presented in Table 5.2): the features that are common to all

network connections such as duration and protocol type. These features could

help in detection of attacks targeting protocol and service vulnerabilities.

• Traffic features based on a time window (presented in Table 5.3): the features

that are measured using a two-second time window. The time window is

used to examine the connections in the past two seconds which have the same

destination host or the same service as that of the current connection.

• Host based traffic features (presented in Table 5.4): similar to the previous

category, host based traffic features capture the number of connections to the

same host, port or service by a destination host in the past 100 connections.
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• Connection-based content features based on domain knowledge (presented in

Table 5.5): this category of features may or may not be useful in detecting

malicious activities and is based on domain knowledge. This category is usually

used in detecting R2L and U2R attacks by monitoring statistics disclosed in

the audit logs or in the payload section of the packets.

Table 5.1: Attack types in KDD99 dataset and their categorisation.

Category Attack type
Probe ipsweep, mscan, nmap, portsweep, satan, saint
DoS apache2, back, land, mailbomb, neptune, pod, pro-

cesstable, smurf, teardrop, udpstorm
U2R buffer overflow, loadmodule, perl, ps, rootkit, sqlattack,

xterm
R2L ftp write, guess passwd, httptunnel, imap, multihop,

named, phf, sendmail, snmpgetattack, snmpguess, spy,
warezclient, warezmaster, worm, xlock, xsnoop

Table 5.2: Basic features in KDD99 dataset.

Feature Name Description Type
duration length of the connection in seconds continuous
protocol type type of protocol, e.g., tcp, udp, etc. nominal
service network service on the destination, e.g.,

http, telnet, etc.
nominal

src bytes number of data bytes from source to des-
tination

continuous

dst bytes number of data bytes from destination to
source

continuous

flag normal or error status of the connection nominal
land 1 if connection is from/to the same host/-

port; 0 otherwise
binary

wrong fragment number of ”wrong” fragments continuous
urgent number of urgent packets continuous
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Table 5.3: Traffic features using two-second time windows in KDD99 dataset.

Feature Name Description Type
count number of connections to the same host

as the current connection in the past two
seconds

continuous

serror rate % of same host connections that have
“SYN” errors

continuous

rerror rate % of same host connections that have
“REJ” errors

continuous

same srv rate % of same host connections to the same
service

continuous

dif srv rate % of same host connections to different
services

continuous

srv count number of connections to the same service
as the current connection in the past two
seconds

continuous

srv serror rate % of same service connections that have
“SYN” errors

continuous

srv rerror rate % of same service connections that have
“REJ” errors

continuous

srv diff host rate % of same service connections to different
hosts

continuous

Table 5.4: Traffic features using windows of 100 connections in KDD99 dataset.

Feature Name Description Type

dst host count number of connections to the same host in

the past 100 connections

continuous

dst host serror rate % of connections that have “SYN” errors continuous

dst host rerror rate % of connections that have “REJ” errors continuous

dst host same srv rate % of connections to the same service continuous

dst host dif srv rate % of same host connections to different

services

continuous

dst host srv count number of connections to the same service

in the past 100 connections

continuous

dst host srv serror rate % of same service connections that have

“SYN” errors

continuous

dst host srv rerror rate % of same service connections that have

“REJ” errors

continuous

dst host srv diff host rate % of same service connections to different

hosts

continuous

dst host same src port rate % of connections from the same source

port

continuous



Chapter 5. Experiments on Intrusion Detection 122

Table 5.5: Connection-based content features based on domain knowledge in
KDD99 dataset.

Feature Name Description Type
hot hot indicators e.g., access to system di-

rectories, creation, and execution of pro-
grams, etc.

continuous

num failed logins number of failed login attempts continuous
logged in 1 if successfully logged in; 0 otherwise binary
num compromised number of compromised states on the des-

tination host (e.g., file/path “not found”
errors, and “Jump to” instructions, etc.)

continuous

root shell 1 if root shell is obtained; 0 otherwise binary
su attempted 1 if “su root” command attempted; 0 oth-

erwise
binary

num root number of “root” accesses continuous
num file creations number of file creation operations continuous
num shells number of shell prompts continuous
num access files number of operations on access control

files
continuous

num outbound cmds number of outbound commands in an ftp
session

continuous

is host login 1 if the login belongs to the “host” list; 0
otherwise

binary

is guest login 1 if the login is a “guest” login; 0 otherwise binary

5.2.1 NSL-KDD dataset

Although the KDD99 dataset has been widely used for evaluation of IDSs, it has two

major issues which affect the performance of evaluated systems. First, KDD99 con-

tains a large number (over 75%) of repeated records. Secondly, the dataset is very

asymmetric, containing disproportionately more records that are “easy” to classify.

This large number of redundant records and low average level of difficulty results

in high detection rates (about 98%) even for very simple machine learning meth-

ods. These two problems were addressed with a new version of KDD99 proposed

by Tavallaee et al. (2009), NSL-KDD. First, NSL-KDD does not include redundant

(repeated) records. Second, records from KDD99 are resampled based on an esti-

mate of how difficult each record is to classify. To decide on the difficulty of the

records, 7 learners, each trained 3 times over three subsets of the KDD99 training

set, were employed to label the KDD99 training and test sets. Using these learn-

ers, 21 predicted labels were provided for each record. A #successfulPrediction
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value, initialised to zero, is also assigned to each record of the dataset. Since the

KDD99 dataset provides the correct label for each record, if a specific learner cor-

rectly predicted the label of a given record, its #successfulPrediction value will be

incremented. Therefore, using this process, the number of learners correctly label

that given record was calculated. Finally, the #successfulPrediction values for

the KDD99 dataset records were grouped into 5 difficulty groups: 0-5, 6-10, 11-15,

16-20 and 21 (i.e. the highest value for #successfulPrediction and coveys the fact

that all learners correctly label a given record). The results showed that 97.97% and

86.64% of the records in the KDD99 training and test sets were correctly labelled

by all 21 classifiers. To create a more challenging subset of the KDD99 dataset, the

number of selected records from each difficulty group is inversely proportional to the

percentage of records in the original dataset (so records that are difficult to classify

are selected more often). These changes allow for greater discrimination between

performance levels of different algorithms. Additionally, the number of records in

the training and test datasets is not too large, which enables researchers to run

experiments on the complete set and avoids the need to randomly select a small

portion of the much larger KDD99 for training and testing, as has been done in the

past. Table 5.6 and 5.7 illustrate the statistics of the reduction of repeated records

in the KDD99 train and test sets, respectively.

Table 5.6: Statistics of redundant records in the KDD99 training set (Tavallaee
et al., 2009).

Original Records Distinct Records Reduction Rate
Attacks 3,925,650 262,178 93.32%
Normal 972,781 812,814 16.44%
Total 4,898,431 1,074,992 78.05%

Table 5.7: Statistics of redundant records in the KDD99 test set (Tavallaee
et al., 2009).

Original Records Distinct Records Reduction Rate
Attacks 250,436 29,378 88.26%
Normal 60,591 47,911 20.92%
Total 311,027 77,289 75.15%
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Due to the easy access to these datasets, they are still being used by many researchers

for IDS evaluation. Therefore, for the first set of experiments in this chapter, NSL-

KDD will form the basis of the training and testing data.

5.2.2 Combined DARPA/CAIDA dataset

As KDD99 and NSL-KDD datasets are now more than a decade old and are not

considered standard and appropriate by some members of the community due to

their inclusion of old attacks (Sommer & Paxson, 2010), an alternative method that

has been used by other researchers in this domain (Bhatia et al., 2011; Xiang et al.,

2011; Bhuyan et al., 2014), can be considered for IDS evaluation. By combining

the new attack traces found in the low-rate DDoS attack scenario from CAIDA

DDoS 2007 (CAIDA, 2007) with the MIT Lincoln Laboratory Scenario (attack-free)

inside tcpdump dataset as the normal network traffic, two newer sets of training and

testing datasets are produced to test the proposed algorithm further. The normal

traffic scenario is the data from Thursday in the third training week, which does not

contain any attacks. A selected sampling period of this traffic is shown in Figure

5.1.

Figure 5.1: Normal traffic scenario from MIT Lincoln Laboratory.

Additionally, the CAIDA dataset contains 5 minutes (i.e., 300 s) of anonymized

traffic of a DDoS attack on August 4, 2007. Non-attack traffic has been removed as

much as possible from this data. According to Moore et al. (2006), if there are more

than 10000 packets per second over the network, a high-rate attack is achieved and

with about 1000 packets per second, only 60% of full attack is achievable and it is

called a low-rate attack. As a result, CAIDA DDoS attack scenario is categorised
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under low-rate attacks category as can be seen in Figure 5.2. More details of traffic

feature of the CAIDA low-rate DDoS attack scenario can be found in Table 5.8.

Figure 5.2: Low-rate DDoS attack scenario from CAIDA.

Table 5.8: Traffic features and details of CAIDA DDoS attack scenario (Moore
et al., 2006; Xiang et al., 2011).

Maximum capture length for interface 0: 65000
First timestamp: 1186260576.487629000
Last timestamp: 1186260876.482457000
Unknown encapsulation: 0
IPv4 bytes: 37068253
IPv4 pkts: 166448
IPv4 traffic: 8079
Unique IPv4 addresses: 136
Unique IPv4 source addresses: 132
Unique IPv4 destination addresses: 136
Unique IPv4 TCP source ports: 4270
Unique IPv4 TCP destination ports: 3348
Unique IPv4 UDP source ports: 1
Unique IPv4 UDP destination ports: 1
Unique IPv4 ICMP type/codes: 2

5.2.3 Features

Identifying suitable features that provide worthwhile information for intrusion de-

tection is a challenging task. A combination of features extracted from raw packets

(packet level data) or a set of attributes related to a particular network flow col-

lected over a short period of time (flow level data), have been previously used in

the literature as the input to detection systems to classify incoming packets or flow

of traffic (Wang & Stolfo, 2004; Bhuyan et al., 2015). These features are usually
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categorised into basic, time-based, connection-based and content-based features (ex-

amples can be found in Tables 5.2, 5.3, 5.4 and 5.5). Additionally, some statistical

approaches such as entropy-based and volume-based methods have been proposed

in the past for identifying malicious activities in network traffic. Entropy-based de-

tectors are of particular interest in this study. They are simple statistical measures,

which discriminate DDoS traffic from legitimate (Xiang et al., 2011; Feinstein et al.,

2003; Zhang et al., 2010; Zi et al., 2010; Sqalli et al., 2011). Simple calculation, high

sensitivity, low false positive rate are the advantages of entropy-based approaches

(Zhang et al., 2010). As an example, Figure 5.3 illustrates the effect of an attack on

the entropy of IP source addresses in a time window of 10000 packets.

Figure 5.3: Entropy for a brief distributed denial of service attack (Feinstein
et al., 2003)

NSL-KDD is a processed dataset based on the data captured in DARPA’98 IDS

evaluation program and it consists of single connection vectors each of which contains

41 features and a class label (i.e. normal or attack). Thus, for evaluation of IDSs,

any subset of these features can be utilised. For the experiments in this chapter,

32 continuous features of NSL-KDD (i.e. listed in Table 5.9) are used as ESR-NID

is designed to classify instances based on the provided continuous input features.

Additionally, all continuous values are scaled linearly between 0 and 1.
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Table 5.9: KDD99 continuous features.

ID Feature Name

1 duration

4 src bytes

5 dst bytes

8 wrong fragment

9 urgent

10 hot

11 num failed logins

13 num compromised

16 num root

17 num file creations

18 num shells

19 num access files

20 num outbound cmds

23 count

24 serror rate

25 rerror rate

26 same srv rate

27 diff srv rate

28 srv count

29 srv serror rate

30 srv rerror rate

31 srv diff host rate

32 dst host count

33 dst host srv count

34 dst host same srv rate

35 dst host diff srv rate

36 dst host same src port rate

37 dst host diff host rate

38 dst host serror rate

39 dst host srv serror rate

40 dst host rerror rate

41 dst host srv rerror rate
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However, for the combined DARPA/CAIDA dataset, the captured raw network

traffic will be preprocessed to extract suitable features. For this, using an entropy-

based approach, entropy of selected packet attributes are calculated for a time-

window of 10 seconds. These are Entropy of source IP address, Entropy of source

port number, Entropy of destination port number, Entropy of packet type and Entropy

of packet size. Entropy is a measure of the uncertainty associated with a random

variable. The entropy H (that can be computed on a sample of consecutive packets)

is defined as follows (Shannon, 1948):

H = −
n∑

i=1

pi log2 pi (5.1)

Here, an information source has n independent symbols and each of them with

probability of choice pi.

After calculating the entropy values, the features were scaled linearly between 0 and

1 to be used by ESR-NID.

5.3 Experiments for Network Intrusion Detection

In this section, for evaluating the proposed algorithm for intrusion detection, ESR-

NID is tested on the NSL-KDD dataset and the combined DARPA/CAIDA dataset

using the tuned parameters found in Chapter 4 and then the results are analysed

by comparing against five well-known machine learning techniques (J48, kNN, JRip,

GASSIST-ADI and MPLCS). For these experiments, two separate sets of data are

used for training and testing phases. Since the proposed algorithm is stochastic,

each experiment is repeated 30 times with a different seed and the average results

are reported. Similarly, for GASSIST-ADI and MPLCS, average values for 30 runs

are presented. J48, kNN and JRip are deterministic, so only the value from a single

run is reported for each test.
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5.3.1 Parameter Settings

As mentioned before, no specific parameter tuning was carried out for ESR-NID

when applied to these datasets. Instead the following settings that were found to be

most reliable in the experiments with synthetic datasets were used.

• Fitness function = (p) ∗ no.ofInstancesCorrectlyDetectedby1rule

+ (p− 1) ∗ no.ofInstancesCorrectlyDetectedby2rules

+ ... + (1) ∗ no.ofInstancesCorrectlyDetectedbyAllRules

− (p) ∗ (no.ofabnormalInstances
no.ofnormalInstances

) ∗ no.ofErrors

, where p is the number of individuals (rules) in the population and no.ofErrors

is the number of normal instances incorrectly detected as anomalies.

• Mutation probability = 0.1

• Generations = 300

• Population size = 50

• Performance Function = g-performance

• Number of runs = 30

For the experiments in this chapter, the seed selection module was utilised to insert

a set of rules as a proportion (20%) of the initial population. This enables the

algorithm to evolve faster than with random initialisation.

For the other algorithms used for comparison, the best values found through param-

eter optimisation in section 4.6 are used in these experiments.

5.3.2 Experiments with NSL-KDD Dataset

As part of the proposed framework, a feature selection module can be optionally

applied to input features to find the most relevant ones. To identify the impor-

tant input features in the NSL-KDD dataset for building an efficient and effective
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IDS, Mukherjee & Sharma (2012) investigated three feature selection methods im-

plemented in WEKA 3.6: Correlation-based Feature Selection (CFS), Information

Gain (IG) and Gain Ratio (GR). The result showed that the feature subset identified

by CFS gave better classification accuracy than IG and GR. While a CFS method

measures the individual predictive ability of each attribute along with the degree

of redundancy between them, the Consistency Subset Evaluator (CSE) measures

the inconsistency of a feature set given different class labels. With the former ap-

proach, the BestFirst search method is used, which performs greedy hill climbing

with backtracking, whereas with CSE approach, the GreedyStepwise searches greed-

ily through the space of attribute subsets. The CSE and CFS approaches were used

in Khor et al. (2010) for finding relevant features for classifying network intrusions.

The classification accuracy obtained using a Näıve Bayes Classifier (NBC) based on

feature sets generated by these approaches were compared and NBC utilizing CSE

showed better performance results. Both Mukherjee & Sharma (2012) and Khor

et al. (2010) conducted their experiments on the KDD dataset.

In this section, three sets of experiments are carried out based on the three sets

of features selected from NSL-KDD dataset: 8 continuous features (chosen by CFS

method), 15 continuous features (chosen by CSE method) and all 32 continuous

features (although some continues features in this dataset represent finite sets of

values, the ranges of values are large enough to be treated as continues features).

Table 5.10 and 5.11, show the 8 and 15 continuous attributes selected by CFS and

CSE approaches, respectively.

Table 5.10: Eight features extracted using CFS and BestFirst.

Feature Name
src bytes
dst bytes
num root
same srv rate
diff srv rate
srv serror rate
dst host srv diff host rate
dst host srv serror rate
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Table 5.11: Fifteen features extracted using CSE and GreedyStepwise.

Feature Name
duration
src bytes
dst bytes
count
srv diff host rate
dst host count
dst host srv count
dst host same srv rate
dst host diff srv rate
dst host same src port rate
dst host diff host rate
dst host serror rate
dst host srv serror rate
dst host rerror rate
dst host srv rerror rate

In these experiments, the proposed system is trained using the pre-processed NSL-

KDD training dataset and then the learned model (i.e., the optimised ruleset) is

used for the classification of the test data, as this is the common practice in studies

using NSL-KDD in the literature.

Table 5.12 presents the results obtained using ESR-NID, J48, JRip, kNN, GASSIST-

ADI and MPLCS when applied to the NSL-KDD dataset with 8 features. For each

classifier, in addition to the evaluation metrics (i.e. accuracy and number of rules

for rule-based methods), g-performance value, true negative rate (TNrate) and true

positive rate (TPrate) are also provided. As can be seen from the results, ESR-

NID has similar performance (76.5%) to the other algorithms except that kNN does

slightly better with 77% accuracy.

Table 5.12: Comparing the performance of ESR-NID on the NSL-KDD dataset
with 8 features with J48, kNN, JRip, GASSIST-ADI and MPLCS performances.

Classifier Specifications g-performance TNrate TPrate Accuracy
J48 Size of tree: 245

number of leaves: 123
76.3 96.6 60.3 76

kNN 1 nearest neighbour 77.6 97 62.2 77
JRip number of rules: 39 76.4 96.5 60 76.1
GASSIST-ADI number of rules: 5 76.1 97 59.8 76
MPLCS number of rules: 5 76 97 59.6 76
ESR-NID number of rules: 9 76.5 96.5 60.8 76.2
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Additionally, Table 5.13, 5.14 and 5.15 illustrate examples of the final rulesets gen-

erated by ESR-NID, GASSIST-ADI and MPLCS for classification of the NSL-KDD

dataset with 8 features. In contrast to these, the outputs of the JRip and J48 cannot

be presented due to their complexity (39 rules for JRip and 123 rules for J48).

Table 5.13: A ruleset generated by ESR-NID for the NSL-KDD dataset with 8
features.

rule1: if diff srv rate ∈ [0.04 0.29] then anomaly
rule2: if dst bytes ∈ [0 1261360321] and num root ∈ [0 149] and srv serror rate ∈ [0 0.53] and

dst host srv serror rate ∈ [0.34 1] then anomaly
rule3: if srv serror rate ∈ [0.98 1] and dst host srv diff host rate ∈ [0 0.02] and

dst host srv serror rate ∈ [0 0.10] then anomaly
rule4: if dst bytes ∈ [0 26198748] and num root ∈ [0 149] srv serror rate ∈ [0.47 1] and

same srv rate ∈ [0 0.93] and dst host srv serror rate ∈ [0 0.75] then anomaly
rule5: if dst host srv diff host rate ∈ [0.23 0.93] and dst host srv serror rate ∈ [0 0.97] then

anomaly
rule6: if dst bytes ∈ [0 26198748] and srv serror rate ∈ [0.61 0.92] and

dst host srv diff host rate ∈ [0 0.02] then anomaly

Table 5.14: A ruleset generated by GASSIST-ADI for the NSL-KDD dataset
with 8 features.

rule1: Att dst host srv serror rate is [>0.57] | anomaly
rule2: Att dst bytes is [<436645800] | Att dst host srv diff host rate is [>0.25] | anomaly
rule3: Att srv serror rate is [>0.11] | Att dst host srv diff host rate is [<0.09] | anomaly
rule4: Default rule − > normal

Table 5.15: A ruleset generated by MPLCS for the NSL-KDD dataset with 8
features.

rule1: Att num root is [<2800.5] | Att dst host srv diff host rate is [>0.25] | anomaly
rule2: Att num root is [<5974.4] | Att same srv rate is [<0.96] | Att diff srv rate is [<0.12] |

Att dst host srv diff host rate is [<0.5] | Att dst host srv serror rate is [<0.95] | anomaly
rule3: Att srv serror rate is [>0.16] | Att dst host srv diff host rate is [<0.04] | anomaly
rule4: Att srv serror rate is [<0.5] | Att dst host srv serror rate is [>0.8] | anomaly
rule5: Default rule − > normal

The second sets of experiments are against the NSL-KDD dataset with 15 features

chosen by CSE method. Table 5.16 illustrates the results obtained from ESR-NID,

J48, kNN and JRip methods against the NSL-KDD dataset with 15 features. This

time, the proposed algorithm performed slightly better than the kNN, GASSIST-

ADI and MPLCS and slightly worse than the J48 and JRip. The complexity of the

ESR-NID model will be medium and it sits between GASSIST-ADI and MPLCS

with low complexity and J48 and JRip with high complexity.
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Table 5.16: Comparing the performance of ESR-NID on the NSL-KDD dataset
with 15 features with J48, kNN, JRip, GASSIST-ADI and MPLCS performances.

Classifier Specifications g-performance TNrate TPrate Accuracy
J48 Size of tree: 371

number of leaves: 186
78.4 97.2 63.3 77.9

kNN 1 nearest neighbour 75 93.4 60.3 74.6
JRip number of rules: 46 77.8 96.1 63.1 77
GASSIST-ADI number of rules: 6 75.3 92.1 61.6 74.7
MPLCS number of rules: 6 73.3 91.4 58.8 72.8
ESR-NID number of rules: 18 76.4 92.7 63.3 75.9

Finally, the ESR-NID is evaluated against the NSL-KDD dataset with all 32 contin-

uous features and the results are presented in Table 5.17. In this set of experiments,

ESR-NID performed slightly better than kNN, JRip, GASSIST-ADI and MPLCS

and slightly worse than J48. Similar to the previous experiments (i.e. with 15

features) the complexity of the ESR-NID model is in between the GASSIST-ADI,

MPLCS and J48, KNN.

Table 5.17: Comparing the performance of ESR-NID on the NSL-KDD dataset
with all 32 continuous features with J48, kNN, JRip, GASSIST-ADI and MPLCS

performances.

Classifier Specifications g-performance TNrate TPrate Accuracy
J48 Size of tree: 323

number of leaves: 162
82.8 95 72.3 82

kNN 1 nearest neighbour 75.2 93 60.9 75.1
JRip number of rules:38 76.3 95 61.3 76.8
GASSIST-ADI number of rules: 6 74.9 93.4 60.2 74.5
MPLCS number of rules: 5 75.5 90.8 62.9 74.9
ESR-NID number of rules: 19 78.1 87 70 78

In conclusion, the results indicate that ESR-NID has similar performance to the

other algorithms in all cases, except that J48 does slightly better when there are

many more features, and kNN, JRip, GASSIST-ADI and MPLCS do slightly worse.

In all cases, ESR-NID discovers rulesets up to an order of magnitude smaller than

those found by J48, and having only 23-50% as many rules as JRip. When the

input data is more complex and includes all the attributes, although GASSIST-ADI

and MPLCS generated less rules than ESR-NID, this decreased the effectiveness of
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the system in detection of anomalous records (and as a result the accuracy of the

system) as can be seen from the true positive rates in Table 5.17.

5.3.3 Experiments with DARPA/CAIDA Dataset

This section presents the results obtained from the experiments on the combined

DARPA/CAIDA dataset. As can be seen from Table 5.18, in this classification

problem, ESR-NID, kNN, GASSIST-ADI and MPLCS produced better results than

J48 and JRip classifiers. The complexity of the ESR-NID model is also low and

comparable to other classifiers as can be seen in Table 5.19. ESR-NID and GASSIST-

ADI are similarly using two features from the collected statistical attributes (i.e.

Entropy of source IP address, Entropy of source port number) while J48, JRip and

MPLCS are only utilising Entropy of source IP address. In the GASSIST-ADI

ruleset, one redundant rule can be seen because the instances that can be detected

by Entropy of source IP address is [> 0.37] | anomaly rule could also be classified

using Entropy of source IP address is [> 0.43] | anomaly rule. As a result, ESR-

NID ruleset is considered a more compact model. The J48 approach partitioned

only one attribute (i.e. Entropy of source IP address) range into two intervals using

a single cut point. This resulted into a poor classification accuracy of 84%. This

is in contrast to JRip and MPLCS approaches, which provided several intervals of

the same feature using a set of cut points and thus generated better classification

accuracy.

As the complexity of these rulesets is low, the attributes ranges can be easily com-

pared among different approaches. For example, both ESR-NID and GASSIST-ADI

generated approximately the same range for the Entropy of source port number (i.e.

[0.09, 0.32] in ESR-NID ruleset and [0.09, 0.29] in GASSIST-ADI ruleset).
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Table 5.18: Comparing the performance of ESR-NID on the combined DARPA/-
CAIDA dataset with J48, kNN, JRip, GASSIST-ADI and MPLCS performances.

Classifier Specifications g-performance TNrate TPrate Accuracy
J48 Size of tree: 3

number of leaves: 2
81.9 86.7 77.4 84

kNN 1 nearest neighbour 98.3 100 96.7 98
JRip number of rules:3 96.7 100 93.5 97.9
GASSIST-ADI number of rules: 4 99.2 100 98.5 98.9
MPLCS number of rules: 4 98.3 100 96.7 98.9
ESR-NID number of rules: 2 97.8 99.7 96 98.4

Table 5.19: Comparing the final ruleset generated by ESR-NID, J48, JRip,
GASSIST-ADI and MPLCS.

Approach Output
ESR-NID rule1: if Entropy of source IP address ∈ [0.38, 0.50]

then anomaly
rule2: if Entropy of source port number ∈ [0.09, 0.32]
then anomaly

J48 Entropy of source IP address > 0.37: anomaly
Entropy of source IP address <= 0.37: normal

JRip (Entropy of source IP address >= 0.39): anomaly
(Entropy of source IP address <= 0.27) and (Entropy
of source IP address >= 0.17): anomaly
Others: normal

GASSIST-ADI Entropy of source port number is [0.09, 0.29] | anomaly
Entropy of source IP address is [> 0.43] | anomaly
Entropy of source IP address is [> 0.37] | anomaly
Default rule − > normal

MPLCS Entropy of source IP address is [> 0.44] | anomaly
Entropy of source IP address is [0.10, 0.32] | anomaly
Entropy of source IP address is [> 0.39] | anomaly
Default rule − > normal

5.4 ESR-NID for Detecting Normal Instances

In this section, a set of experiments will be conducted to explore the use of ESR-NID

for detecting normal instances. When there is not enough knowledge about attacks

in the captured data, it would be more useful to utilise ESR-NIS as an anomaly
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detector to generate rules for normal background traffic. Any deviation from the

normal model will be detected as an attack and as a result ESR-NID will fire an

alarm showing suspicious behaviour in the network.

In this experiment, the NSL-KDD training and testing datasets with all continuous

features are used and the results are compared against the other machine learning

methods. Here, the positive examples are the normal records. Table 5.20 summarizes

the results. The accuracy of the J48 model is the best but this model is very complex

with 162 leaves. After J48, kNN and JRip provide slightly better results than ESR-

NID, GASSIST-ADI and MPLCS with approximately similar classification accuracy

values. If the aim in designing a classifier for detection of normal instances is to

make it more accurate in matching normal cases (positives), then TPrate can also

be used as a metric for evaluating the approaches. Here, J48 and kNN produced

higher TPrates than ESR-NID while kNN, GASSIST-ADI and MPLCS provided less

values. Among the tested rule-based methods, the complexity of ESR-NID model is

medium as it is between GASSIST-ADI and MPLCS with low complexity and JRip

and J48 with high complexity.

Comparing Table 5.17 and 5.20 results, when the classifiers were designed for de-

tection of anomalies, less rules were generated by JRip, GASSIST-ADI, MPLCS

and ESR-NID approaches. However, this is not the case for J48 since in both ex-

periments for detection of anomalies and normal instances, the complexity of the

generated models is the same (size of tree: 323, number of leaves: 162). Moreover,

the JRip, GASSIST-ADI, MPLCS and ESR-NID classifiers produced higher accu-

racy results for detecting intrusions compared to the results achieved for detecting

normal instances.

Since the aim of the experiments in this section is to develop a model that matches

maximum number of normal instances, a system designer might need to put more

emphasis on detection of these input records. One of the aspects of ESR-NID is its

flexibility on the choice of fitness and performance functions. In this section, ESR-

NID will be evaluated with a different performance function with the aim of providing

better true positive rate. A better true positive rate increases the sensitivity of the
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Table 5.20: Performance of ESR-NID for detecting normal instances.

Classifier Specifications g-performance TNrate TPrate Accuracy
J48 Size of tree: 323

number of leaves: 162
83.5 72 97 83

kNN 1 nearest neighbour 75.6 60.9 93.9 75.1
JRip number of rules:41 74.9 57.7 97.4 74.7
GASSIST-ADI number of rules:7 72.9 56.9 93.4 72.6
MPLCS number of rules:7 73.7 58.3 93.3 73.4
ESR-NID number of rules:22 72.3 55.9 95.1 72.3

detection system to match most of the input normal records. For this purpose, the

following performance function is used:

performancefunction = 3
√

TPrate ∗ TPrate ∗ TNrate (5.2)

As can be seen from Table 5.21, the true positive rate increases when a different

performance function with more emphasis on this metric (TPrate) is used in the

design of IDS. Although the customised model produced more rules compared to

the previous model, it provided a more accurate classifier with 75.4% accuracy. It

also outperformed kNN, JRip, GASSIST-ADI and MPLCS in terms of accuracy.

Table 5.21: Performance of customised ESR-NID as an anomaly detection sys-
tem.

Classifier Specifications g-performance TNrate TPrate Accuracy
J48 Size of tree: 323

number of leaves: 162
83.5 72 97 83

kNN 1 nearest neighbour 75.6 60.9 93.9 75.1
JRip number of rules:41 74.9 57.7 97.4 74.7
GASSIST-ADI number of rules:7 72.9 56.9 93.4 72.6
MPLCS number of rules:7 73.7 58.3 93.3 73.4
ESR-NID (Performance function 3.8) number of rules:22 72.3 55.9 95.1 72.3
Customised ESR-NID (Performance function 5.2) number of rules:25 76.3 58.8 99.2 75.4
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5.5 Summary

This chapter evaluated ESR-NID on network intrusion detection problems. For this,

the existing publicly available datasets and the selected ones for this study were in-

troduced. NSL-KDD and a combined DARPA/CAIDA datasets are the selected

datasets for the experiments in this chapter. Since ESR-NID is designed to classify

examples based on the provided continuous input features, some statistical features

of network traffic were used for the classification task. Processed NSL-KDD dataset

has 32 continuous and 9 discrete features. Therefore, 32 continuous attributes were

selected. Additionally, a feature selection module was applied to the continuous fea-

tures of NSL-KDD dataset to reduce the size of search space by selecting the most

relevant attributes. Two different feature selection methods were used in this chap-

ter: Correlation-based Feature Selection (CFS) and Consistency Subset Evaluator

(CSE). These two methods selected 8 and 15 attributes of the NSL-KDD dataset

with 32 continuous features. In addition to evaluation of ESR-NID on the NSL-

KDD dataset with 8 and 15 features, it was also evaluated on the data with all

the 32 features. For the combined DARPA/CAIDA dataset, the raw network traffic

should be pre-processed to extract suitable features for intrusion detection. In this

study, entropy of selected packet attributes are calculated over a time-window of 10

seconds. These are Entropy of source IP address, Entropy of source port number,

Entropy of destination port number, Entropy of packet type and Entropy of packet

size. For both datasets, in the pre-processing stage of ESR-NID framework, the in-

put continuous values were scaled linearly between 0 and 1. For these experiments,

ESR-NID was configured using the tuned parameters found in the previous chap-

ter. The performance of ESR-NID was compared against five well-known machine

learning techniques. These techniques are from two categories of GA-based and

non-GA-based algorithms: J48, kNN and JRip (non-GA-based) and GASSIST-ADI

and MPLCS (GA-based). The results showed that the performance of ESR-NID is

comparable to the other tested methods and produces compact, easily understood

rulesets.

Additionally, ESR-NID was evaluated for generating an effective model for detecting
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normal instances. This can be a useful method when there is not enough informa-

tion about attacks in the captured data. One of the advantages of ESR-NID is that

depending on the problem domain and the characteristics of the dataset, it is cus-

tomisable by changing the fitness and performance function to provide customised

optimal results. This option can not be found in other techniques and thus makes

ESR-NID a more flexible model. This has been shown in an experiment, where the

aim is to increase the true positive rate. Thus, a new performance function was in-

troduced, which puts more emphasis on detection of hits (i.e. normal records in this

experiment). The use of ESR-NID as an anomaly detector is an area that requires

further investigation in the future.





Chapter 6

Adaptation in a Dynamic

Environment

6.1 Introduction

This chapter presents how ESR-NID can be utilised for incremental learning in

a dynamic environment. Using the proposed approach, ESR-NID will be able to

frequently update its database of rules to detect new attacks.

The real environment in which an IDS is deployed is continuously changing be-

cause of network topology and technology changes (Kuwatly et al., 2004) and cer-

tain worms or attacks gain and lose popularity or new attacks come into existence

(Pietraszek, 2004). High false positive and false negative rates produced by deployed

IDSs can be the result of such changes in the environment. This has been considered

as one of the challenging problems in the community and thus requires attention from

intrusion detection analysts (Pietraszek, 2004). An IDS should be able to adapt to

the changing environment with the least amount of manual intervention. Various

approaches have been suggested in the literature for learning new information when

new training data becomes available. With the increasing and diverse types of novel

network attacks, researchers attempt to use incremental learning in IDSs to enable

141
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them to adapt themselves to new attacks without forgetting previously learned infor-

mation. This also increases IDS’s performance, efficiency and sustainability (Nasr

et al., 2014). For example, one approach is to discard the existing classifier and

retrain using the entire accumulated training data. However, it would be very ex-

pensive to rebuild the classifier after each new input instance becomes available. To

address this problem, a batch incremental learning approach can be used to handle

training examples in batches. The size of these batches can be decided based on a

constant value or depending on the current performance of the classifier (Pietraszek,

2004; Polikar et al., 2001). This approach, however, suffers from the drawback that

the size of the training dataset grows infinitely over time and as a result the training

time increases.

To address this issue, in this chapter, an incremental learning technique is incorpo-

rated into ESR-NID that meets the following criteria:

• preserves previously acquired knowledge (i.e. rules)

• does not require access to the original data used to train the current classifier

• learns additional information from new data and updates the database of sig-

natures with the new information

The proposed framework for ESR-NID to make it adaptable to environment changes

is explained in the next section.

6.2 Incremental Learning for ESR-NID

An effective IDS should be able to incrementally learn and adapt to changes in the

environment, the behaviour of users and the pattern of attacks. In this section,

an incremental learning approach is proposed for enhancing ESR-NID. Figure 6.1

gives an overview of the proposed incremental learning model. It consists of two

phases: startup/classification phase and update phase. The startup phase (shown
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Figure 6.1: Incremental learning used in ESR-NID.

in the upper box in Figure 6.1) is the stage that an IDS is designed to perform

classification in its intended environment for the first time. In the startup phase,

an initial set of training examples is collected and given to ESR-NID to generate a

classification model for the given environment.

Once the startup phase is accomplished, the existing model will operate continuously

in the classification mode. However, further learning might be needed from time to

time, as defined by network administrators.

In the update phase, ESR-NID updates its database of rules (signatures) using the

new batch of data accumulated over the pre-defined time window. ESR-NID uses

this new training data to generate some new rules. These rules are added to the

current database of signatures to constitute a new model for classification. The new

model then go through a post-processing stage (similar to the one in Section 3.1.3)

to produce a more concise ruleset for the use of IDS. In the post-processing stage

similar rules are removed. Similarity between rules is determined by comparing the
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values of their active features, using a user-defined cut-off for the number of digits of

precision in floating-point numbers as features are continuous real values. Finally,

the new processed model will be used for classification tasks in the classification

phase.

In this framework, instead of preserving all the training data, only the previous rule-

set is maintained, which is much smaller than the whole training dataset. Another

advantage of this framework is that less time and computational resources will be

needed to train the system on only a batch of new data, compared to learning by

retraining the system using all of the data that has been accumulated thus far.

To evaluate the proposed incremental learning approach for ESR-NID, a set of ex-

periments is carried out using the evaluation strategy explained in the next section.

First, ESR-NID will be trained using the existing training data in the startup phase

to generate a model for classification of normal and attack records. Then, for the

update phase, two different learning techniques are used, which lead to further com-

parisons. These are traditional learning and incremental learning (i.e. the method

used for ESR-NID). For this phase, it is assumed that a new data is captured over

a pre-defined time interval and the system is ready to be updated.

6.3 Evaluation Strategy

In the experiments in this chapter, two sets of data are always provided: old data

and new data. The old data is used in the startup phase for generating a model

for IDS, while it is assumed that the new data is the new incoming flow of network

traffic that has been collected over a pre-defined time interval. As the new data

becomes available, the existing IDS needs to be updated. For the updating phase,

as can be seen in Figure 6.2, the proposed incremental learning approach for ESR-

NID is compared with a traditional learning scheme, which requires the entire old

and new data to adapt to a changing environment.
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Figure 6.2: Evaluation strategy used in the experiments in this chapter.
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To provide an estimate of classification rate, the old and new datasets are divided

into three folds to be used in a reversed 3-fold cross-validation approach, where 2

folds are used to test the fitness of model. However, if there were no time constraints,

more folds could be used to improve performance estimation. The folds are stratified

so that they contain approximately the same proportions of two types of classes as

the original dataset. Additionally, the evaluation method in this chapter used two

different seeds to provide a total of six runs using the three folds of data. Therefore,

the evaluation does not depend on a single outcome. Using the evaluation strategy

presented in Figure 6.2, three different sets of experiments will be conducted for each

scenario in this chapter to compare the performance of traditional and incremental

learning schemes. The first set is designed to generate a model for intrusion detection

based on the existing data (referred to as old data). This set is similar to the

experiments conducted in Chapters 4 and 5 for generating classifiers for different

classification tasks. The other two sets of experiments are related to the update

phase. Two different methods of learning are used in these experiments: traditional

learning and incremental learning. In the traditional learning, the system needs both

old and new datasets because in each run, ESR-NID is trained on one fold of old data

(e.g., fold0) combined with one fold of new data (e.g., N fold0) and tested on the

remaining folds of new data (e.g., N fold1 and N fold2). Therefore, in the traditional

learning experiments, storing the old data is essential for future retraining. On the

other hand, for incremental learning, the system only requires the new data and

previously generated rulesets (e.g., Ruleset old00) in the startup phase. In these

experiments, ESR-NID is trained twice on the three folds of new data using two

different seeds. Then, the produced rulesets (e.g., Ruleset new00) are added to the

rulesets generated for the old data (e.g., Ruleset old00) and after post-processing of

rulesets, they are tested against the folds of new data (e.g., N fold1 and N fold2)

that were kept apart. As the proposed incremental learning approach only stores the

previous acquired rules, it requires less storage compared to the traditional learning

scheme.

In the evaluation strategy presented in Figure 6.2, an average of performance is
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calculated for each set of experiments and thus comparison of traditional and incre-

mental learning approaches is facilitated.

In the following sections, 3 scenarios are defined for experiments on synthetic datasets.

The problem with 6 input features explained in Section 4.2.3 is used as the old data

for these scenarios and additionally 3 new datasets are also generated. Moreover, the

NSL-KDD dataset with 8 features (listed in Table 5.10) is used for the experiments

on the NSL-KDD dataset. This dataset has two separate training and testing data.

The NSL-KDD training data represents the old data and the NSL-KDD testing data

is used as the new incoming data for the experiments in this chapter.

6.3.1 Experiments with Synthetic Datasets

In this section, the problem with 6 input features defined in Chapter 4 for evaluation

of ESR-NID against higher dimensional datasets is used as the old dataset. The

following rules were used to generate this dataset:

Normal: if f1 ∈ [0, 0.3] and f2 ∈ [0.3, 0.6] and f3 ∈ [0, 0.2] and f4 ∈ [0, 0.3] and f5

∈ [0.3, 0.6] and f6 ∈ [0, 0.2] then normal

Attack1: if f1 ∈ [0, 0.3] and f2 ∈ [0, 0.2] and f3 ∈ [0.4, 0.8] and f4 ∈ [0, 0.3] and f5

∈ [0, 0.2] and f6 ∈ [0.4, 0.8] then anomaly

Attack2: if f1 ∈ [0, 0.1] and f2 ∈ [0.5, 0.9] and f3 ∈ [0, 0.3] and f4 ∈ [0, 0.1] and f5

∈ [0.5, 0.9] and f6 ∈ [0, 0.3] then anomaly

Three different scenarios were then designed to generate new datasets for evaluation

of the proposed learning approach for ESR-NID. These are:

• Scenario 1: a new version of an old attack becomes available (old attacks

appear in the new data).

• Scenario 2: a completely new attack becomes available (old attacks appear).
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• Scenario 3: a completely new attack becomes available (old attacks do not

appear).

In the first two scenarios, the new data contains the same normal records (that

existed in the old dataset) and both old and new attacks. However, in the third

one, it is assumed that the old attacks are not popular any more and thus in the

new data, there is no record of previous attacks. The reason to evaluate the system

on synthetic data is that the properties of data can be controlled to meet various

conditions and validation of final rulesets against the rules used to generate the data

can be easily carried out.

After presenting the parameters defined for the experiments in the next section, the

following three sections will explain the experiments in more details and discuss the

classification results for each synthetic problem.

6.3.1.1 Parameter Settings

For the experiments in this section, ESR-NID is configured using the following set-

tings:

• Fitness Function = fitness function (3) (Equation (3.6))

• Performance function = g-performance (
√
TPrate ∗ TNrate)

• Mutation probability = 0.1

• Population size = 50

• Generations = 300

• Number of runs = 6
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6.3.1.2 Scenario 1

This scenario simulates the case of facing a new variation of an existing network

attack in the new flow of network traffic. For generating the data for the first

scenario, the following rules were used:

Normal: if f1 ∈ [0, 0.3] and f2 ∈ [0.3, 0.6] and f3 ∈ [0, 0.2] and f4 ∈ [0, 0.3] and f5

∈ [0.3, 0.6] and f6 ∈ [0, 0.2] then normal

Attack1: if f1 ∈ [0, 0.3] and f2 ∈ [0, 0.2] and f3 ∈ [0.4, 0.8] and f4 ∈ [0, 0.3] and f5

∈ [0, 0.2] and f6 ∈ [0.4, 0.8] then anomaly

Attack2: if f1 ∈ [0, 0.1] and f2 ∈ [0.5, 0.9] and f3 ∈ [0, 0.3] and f4 ∈ [0, 0.1] and f5

∈ [0.5, 0.9] and f6 ∈ [0, 0.3] then anomaly

Attack3 (a new variation of an old attack (i.e. attack1)): if f1 ∈ [0.1, 0.4] and f2 ∈

[0.1, 0.3] and f3 ∈ [0.5, 0.9] and f4 ∈ [0.1, 0.4] and f5 ∈ [0.1, 0.3] and f6 ∈ [0.5, 0.9]

then anomaly

Using the evaluation strategy presented in Figure 6.2, three sets of experiments

were conducted and the average results were calculated. Table 6.1 shows the av-

erage results for different phases. Additionally, the g-performance results (only for

traditional and incremental learning phases) are presented using a box plot in Figure

6.3 (incremental learning has a tighter interquartile range than traditional learning).

To compare the final rulesets generated through traditional and incremental learn-

ing, Table 6.2 provides examples of the old ruleset generated during startup phase

and rulesets obtained from traditional learning and incremental learning when new

training data becomes available. The attacks that can be detected using each rule

are also listed in the third column of Table 6.2. For example, in startup phase, rule1

matches attack number 1 and 2 in the old dataset. In the ruleset produced from

the incremental learning approach, rule3, which was existed in the database of sig-

natures generated during the startup phase, is a general version of rule6. This rule

can be eliminated from the final ruleset by improving the post-processing stage. As

a result, the number of rules can be reduced and less complex model would be pro-

duced for the classification task. However, for the synthetic problems, which are only
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designed for testing and evaluating the proposed system, this extra post-processing

step is not carried out and as will be seen later, this issue (i.e. having redundant

rules) rarely happens in more complicated high dimensional real problems (See the

experiments with NSL-KDD dataset in Section 6.3.2).

The results in Table 6.1 show that the performance of proposed incremental learn-

ing for ESR-NID (97%) is slightly worse than traditional learning (97.35%). The

incremental learning approach also produced more rules compared to the traditional

learning approach because it keeps the previous rules in its database. However,the

incremental learning scheme benefits from less required storage because it only needs

to maintain the database of rules which is much smaller than the whole training data

needed for each re-training phase in the traditional approach. Comparing the true

positive rates, the incremental learning produced a slightly better result (98.1%

compared to 97.1%).

Table 6.1: Average results for startup and update phases in the first scenario.

Phase Number of rules g-performance TNrate TPrate Accuracy

Startup 4 96.7 97.08 96.34 96.67

Traditional Learning (update) 5 97.35 97.52 97.19 97.37

Incremental Learning (update) 7 97 95.8 98.1 96.9

Figure 6.3: Performance of different learning approaches in the first scenario.



Chapter 6. Adaptation in Dynamic Environment 151

Table 6.2: Comparing the final rulesets generated by ESR-NID during startup
and update phases in the first scenario.

Phase Ruleset Attack

Number

Startup rule1: if F3 ∈ [0.19, 0.78] then anomaly

rule2: if F6 ∈ [0.20, 0.79] then anomaly

rule3: if F2 ∈ [0.59, 0.89] then anomaly

rule4: if F5 ∈ [0.60, 0.89] then anomaly

1, 2

1, 2

2

2

Traditional Learning

(Update)

rule1: if F3 ∈ [0.19, 0.89] then anomaly

rule2: if F6 ∈ [0.20, 0.79] then anomaly

rule3: if F2 ∈ [0.60, 0.88] then anomaly

rule4: if F5 ∈ [0.59, 0.88] then anomaly

1, 2, 3

1, 2, 3

2

2

Incremental Learning

(Update)

rule1: if F3 ∈ [0.19, 0.78] then anomaly

rule2: if F6 ∈ [0.20, 0.79] then anomaly

rule3: if F2 ∈ [0.59, 0.89] then anomaly

rule4: if F5 ∈ [0.60, 0.89] then anomaly

rule5: if F3 ∈ [0.22, 0.85] then anomaly

rule6: if F2 ∈ [0.61, 0.89] then anomaly

1, 2, 3

1, 2, 3

2

2

1, 2, 3

2

6.3.1.3 Scenario 2

The second scenario is for the case of seeing a completely new attack in the new

collected data. Here, it is assumed that old attacks are still popular and can be seen

in the new data. So, the following rules were used for generating the data:

Normal: if f1 ∈ [0, 0.3] and f2 ∈ [0.3, 0.6] and f3 ∈ [0, 0.2] and f4 ∈ [0, 0.3] and f5

∈ [0.3, 0.6] and f6 ∈ [0, 0.2] then normal
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Attack1: if f1 ∈ [0, 0.3] and f2 ∈ [0, 0.2] and f3 ∈ [0.4, 0.8] and f4 ∈ [0, 0.3] and f5

∈ [0, 0.2] and f6 ∈ [0.4, 0.8] then anomaly

Attack2: if f1 ∈ [0, 0.1] and f2 ∈ [0.5, 0.9] and f3 ∈ [0, 0.3] and f4 ∈ [0, 0.1] and f5

∈ [0.5, 0.9] and f6 ∈ [0, 0.3] then anomaly

Attack3 (completely new attack): if f1 ∈ [0.5, 0.8] and f2 ∈ [0.2, 0.4] and f3 ∈ [0.8,

1] and f4 ∈ [0.5, 0.7] and f5 ∈ [0.9, 1] and f6 ∈ [0.9, 1] then anomaly

A set of experiments similar to those in the previous section was carried out to

compare the performance of ESR-NID using traditional and incremental learning.

Table 6.3 presents the average results. The g-performance rates for the two different

learning approaches are also demonstrated in Figure 6.4. To provide a more detailed

picture of the final rulesets generated during different phases, Table 6.4 presents the

rulesets and the attacks that each rule is able to detect. As old attacks appear in

the new data, when ESR-NID used traditional learning approach for this problem,

it generated a set of more general rules that are useful for detecting both the old

and new attacks. For example, rule2 in the traditional learning phase is a general

version of rule2 in the startup phase. The wider range produced by traditional

learning for F6 attribute helps the system classify the new attack (Attack3) as well

as the old attacks. Using the incremental learning scheme, ESR-NID utilised the

previous ruleset generated during the startup phase for detecting old attacks and

generated a set of rules, which can be useful for classification of both attacks as the

new data contains all types of attacks.

In this scenario, similar to the previous scenario, the traditional learning produced

slightly better g-performance, accuracy and true negative rates than the incremental

learning. However, the true positive rate for the incremental learning is slightly

better than the traditional learning. Despite the larger ruleset generated by the

incremental learning approach, this method is more desirable and less expensive

because it does not require to maintain the whole training data over time.
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Table 6.3: Average results for startup and update phases in the second scenario.

Phase Number of rules g-performance TNrate TPrate Accuracy

Startup 4 96.7 97.08 96.34 96.67

Traditional Learning (update) 6 98.78 99.79 97.79 98.59

Incremental Learning (update) 8 97.1 95.67 98.63 97.4

Figure 6.4: Performance of different learning approaches in the second scenario.

6.3.1.4 Scenario 3

This section evaluates the use of incremental learning for ESR-NID in a scenario that

a completely new attack becomes available assuming that previous attack types lose

popularity and they will not exist in the new data. For this scenario, the following

rules were used for generating the new training data:

Normal: if f1 ∈ [0, 0.3] and f2 ∈ [0.3, 0.6] and f3 ∈ [0, 0.2] and f4 ∈ [0, 0.3] and f5

∈ [0.3, 0.6] and f6 ∈ [0, 0.2] then normal

Attack3 (completely new attack): if f1 ∈ [0.5, 0.8] and f2 ∈ [0.2, 0.4] and f3 ∈ [0.8,

1] and f4 ∈ [0.5, 0.7] and f5 ∈ [0.9, 1] and f6 ∈ [0.9, 1] then anomaly

The average results are presented in Table 6.5. A box plot is also used to compare

the g-performance of traditional and incremental learning approaches in Figure 6.5.
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Table 6.4: Comparing the final rulesets generated by ESR-NID during startup
and update phases in the second scenario.

Phase Ruleset Attack
Number

Startup rule1: if F3 ∈ [0.19, 0.78] then anomaly
rule2: if F6 ∈ [0.20, 0.79] then anomaly
rule3: if F2 ∈ [0.59, 0.89] then anomaly
rule4: if F5 ∈ [0.60, 0.89] then anomaly

1, 2
1, 2
2
2

Traditional Learning
(Update)

rule1: if F3 ∈ [0.20, 0.98] then anomaly
rule2: if F6 ∈ [0.20, 0.99] then anomaly
rule3: if F2 ∈ [0.60, 0.88] and F5 ∈ [0.34,
0.91] then anomaly
rule4: if F5 ∈ [0.64, 0.99] then anomaly
rule5: if F5 ∈ [0.50, 0.98] then anomaly
rule6: if F5 ∈ [0.64, 0.85] then anomaly

1, 2, 3
1, 2, 3
2, 3
2, 3

2, 3
2

Incremental Learning
(Update)

rule1: if F3 ∈ [0.19, 0.78] then anomaly
rule2: if F6 ∈ [0.20, 0.79] then anomaly
rule3: if F2 ∈ [0.59, 0.89] then anomaly
rule4: if F5 ∈ [0.60, 0.89] then anomaly

rule5: if F3 ∈ [0.20, 0.99] then anomaly
rule6: if F5 ∈ [0.60, 0.99] then anomaly
rule7: if F6 ∈ [0.20, 0.99] then anomaly

1, 2
1, 2
2
2

1, 2, 3
2, 3
1, 2, 3

Additionally, the final rulesets generated from different phases of evaluation process

are demonstrated in Table 6.6. In this scenario, although the average results for

the traditional learning are slightly better than the incremental learning, the same

number of rules is generated for both approaches. As the old attacks do not appear

in the new batch of data, the incremental learning approach generated a set of

new rules (rule5, rule6 and rule7), which are only useful for classifying the new

attack (Attack3). These rules will be added to the previous rules in the database

of signature for future classification. On the other hand, when ESR-NID uses the

traditional learning approach, a set of rules will be generated for the entire data

(both old and new data). Examples of these rules are rule1 and rule2 from the

traditional learning phase, which are useful for all three types of attacks.
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Table 6.5: Average results for startup and update phases in the third scenario.

Phase Number of rules g-performance TNrate TPrate Accuracy

Startup 4 96.7 97.08 96.34 96.67

Traditional Learning (update) 7 99.3 98.8 99.8 99

Incremental Learning (update) 7 98.5 97.3 99.5 98.4

Figure 6.5: Performance of different learning approaches in the third scenario.

6.3.2 Experiments with NSL-KDD Dataset

To evaluate the incremental learning for ESR-NID, a set of experiments is also

conducted using the evaluation strategy presented in Figure 6.2 against the NSL-

KDD dataset with 8 features. The NSL-KDD training dataset includes 21 different

attacks out of the 37 present in the test dataset. Therefore, the NSL-KDD test

dataset contains both old and new attacks and it will be used as the new incoming

data for the experiments in this section. The same settings that were found to

be most reliable in the experiments with synthetic datasets were also used for the

experiments against NSL-KDD dataset.

The average results for different phases of startup, traditional and incremental learn-

ing are presented in Table 6.7. In this real intrusion detection problem, the incremen-

tal learning produced better g-performance, accuracy and true positive rates using
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Table 6.6: Comparing the final rulesets generated by ESR-NID during startup
and update phases in the third scenario.

Phase Ruleset Attack Number
Startup rule1: if F3 ∈ [0.19, 0.78] then anomaly

rule2: if F6 ∈ [0.20, 0.79] then anomaly
rule3: if F2 ∈ [0.59, 0.89] then anomaly
rule4: if F5 ∈ [0.60, 0.89] then anomaly

1, 2 (old)
1, 2 (old)
2 (old)
2 (old)

Traditional
Learning
(Update)

rule1: if F3 ∈ [0.20, 0.99] then anomaly
rule2: if F6 ∈ [0.24, 0.98] then anomaly
rule3: if F5 ∈ [0.61, 0.99] then anomaly
rule4: if F6 ∈ [0.21, 0.85] then anomaly
rule5: if F6 ∈ [0.20, 0.75] then anomaly
rule6: if F2 ∈ [0.62, 0.88] and F5 ∈ [0.08,
0.99]
rule7: if F2 ∈ [0.61, 0.82] and F5 ∈ [0.08,
0.99]

1, 2 (old), 3 (new)
1, 2 (old), 3 (new)
2 (old), 3 (new)
1, 2 (old)
1, 2 (old)
2 (old)

2 (old)

Incremental
Learning
(Update)

rule1: if F3 ∈ [0.19, 0.78] then anomaly
rule2: if F6 ∈ [0.20, 0.79] then anomaly
rule3: if F2 ∈ [0.59, 0.89] then anomaly
rule4: if F5 ∈ [0.60, 0.89] then anomaly

rule5: if F4 ∈ [0.52, 0.69] then anomaly
rule6: if F2 ∈ [0.23, 0.48] and F6 ∈ [0.89,
0.97] then anomaly
rule7: if F3 ∈ [0.81, 0.96] and F5 ∈ [0.84,
0.93] then anomaly

1, 2 (old)
1, 2 (old)
2 (old)
2 (old)

3 (new)
3 (new)

3 (new)

more rules compared to the traditional learning. Comparison of these two learning

approaches is also presented in Figure 6.6 using g-performance box plots. Moreover,

the final rulesets generated from startup and two update phases are demonstrated

in Table 6.7. In these rulesets, there is a less issue of seeing extra rules (i.e. a rule

that is more general than another) compared to the previous synthetic scenarios.

In the presented rulesets in Table 6.8, there is only one example of this case in

the traditional learning phase ruleset. In this ruleset, rule3 is able to classify the

examples that are classified by rule2. Therefore, by removing rule2 from the final

ruleset, the classification rate will not be affected. This can be achieved through an

improved post-processing stage, which leads to a less complex model for the clas-

sification task. Comparing the two models generated from traditional learning and

incremental learning, some similar rules can be found. For example, rule1 from the
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incremental learning is quite similar to rule6 from the traditional learning. Another

example is the combination of rule4 and rule8 from the incremental learning, which

approximately provides the same coverage as rule9 from the traditional learning

model.

Table 6.7: Average results for startup and update phases against the NSL-KDD
dataset.

Phase Number of rules g-performance TNrate TPrate Accuracy

Startup 13 91.59 94.33 88.93 91.82

Traditional Learning (update) 14 80.6 95.92 67.73 79.88

Incremental Learning (update) 20 82.04 73.86 91.53 83.83

Figure 6.6: Performance of different learning approaches against the NSL-KDD
dataset.

6.4 Summary

In this chapter, due to the need for an IDS to adapt to changes in the real en-

vironment, an efficient model was proposed to incrementally update the database

of signatures (rules) in ESR-NID. The proposed framework consists of two phases:

startup/classification phase and update phase. During the startup phase, an initial

set of collected training samples are fed into the ESR-NID to generate an initial

model for the given environment. This initial IDS is able to classify normal and
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Table 6.8: Comparing the final rulesets generated by ESR-NID during startup
and update phases for the NSL-KDD daraset.

Phase Ruleset

Startup rule1: if dst bytes ∈ [0, 130993] and num root ∈ [0, 0.74] and

dst host srv serror rate ∈ [0.39, 1] then anomaly

rule2: if dst bytes ∈ [0, 130993] and diff srv rate ∈ [0.05, 0.46] then anomaly

rule3: if num root ∈ [0, 0.74] and srv serror rate ∈ [0.16, 1] then anomaly

rule4: if num root ∈ [0, 0.74] and srv serror rate ∈ [0.8, 1] and

dst host srv diff host rate ∈ [0, 0.01] then anomaly

rule5: if dst bytes ∈ [0, 139307] num root ∈ [0, 0.74] and srv serror rate ∈

[0.12, 1] and diff srv rate ∈ [0.05, 0.92] and dst host srv serror rate ∈ [0, 0.85]

then anomaly

rule6: if src bytes ∈ [0, 1174619101] and dst bytes ∈ [0, 130993] and

srv serror rate ∈ [0, 0.01] and dst host srv diff host rate ∈ [0.2, 0.86] and

dst host srv serror rate ∈ [1, 0.01] then anomaly

rule7: if same srv rate ∈ [0.72, 0.97] then anomaly

rule8: if num root ∈ [0, 0.74] and srv serror rate ∈ [0.19, 0.36] and

dst host srv diff host rate ∈ [0, 0.01] then anomaly

rule9: if same srv rate ∈ [0.54, 0.63] then anomaly

rule10: if diff srv rate ∈ [0.91, 0.97] and dst host srv diff host rate ∈ [0, 0.22]

then anomaly

rule11: if diff srv rate ∈ [0.79, 0.82] and dst host srv diff host rate ∈ [0, 0.01]

then anomaly

rule12: if dst bytes ∈ [0, 130993] and num root ∈ [0, 0.74] and srv serror rate

∈ [0, 0.04] and same srv rate ∈ [0.05, 0.23] and diff srv rate ∈ [0.52, 0.55] and

dst host srv diff host rate ∈ [0, 0.54] then anomaly
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Traditional

Learning

(Update)

rule1: if dst bytes ∈ [0, 336232536] and if num root ∈ [0, 0.74] and

diff srv rate ∈ [0.03, 0.47] then anomaly

rule2: if num root ∈ [0, 0.74] and diff srv rate ∈ [0.03, 0.58] then anomaly

rule3: if num root ∈ [0, 0.74] and diff srv rate ∈ [0.03, 0.99] then anomaly

rule4: if num root ∈ [0, 0.74] and same srv rate ∈ [0.01, 0.49] then anomaly

rule5: if num root ∈ [0, 0.74] and same srv rate ∈ [0.01, 0.92] and

dst host srv diff host rate ∈ [0, 0.16] then anomaly

rule6: if dst bytes ∈ [0, 130993] and num root ∈ [0, 0.74] and

dst host srv serror rate ∈ [0.17, 1] then anomaly

rule7: if dst bytes ∈ [0, 130993] and dst host srv serror rate ∈ [0.85, 1] then

anomaly

rule8: if dst bytes ∈ [0, 130993] and num root ∈ [0, 0.74] and same srv rate

∈ [0.03, 0.94] and dst host srv diff host rate ∈ [0, 0.16] then anomaly

rule9: if num root ∈ [0, 0.74] and srv serror rate ∈ [0.09, 1] and

dst host srv diff host rate ∈ [0, 0.01] then anomaly

rule10: if dst bytes ∈ [0, 130993] and num root ∈ [0, 0.74] and

dst host srv diff host rate ∈ [0.22, 0.61] then anomaly

rule11: if dst bytes ∈ [0, 1107936940] and srv serror rate ∈ [0.55, 0.90] and

dst host srv diff host rate ∈ [0, 0.03] then anomaly

rule12: if dst bytes ∈ [0, 1107936940] and srv serror rate ∈ [0.33, 0.44] then

anomaly

rule13: if same srv rate ∈ [0.76, 0.98] then anomaly

rule14: if dst host srv serror rate ∈ [0.69, 0.77] then anomaly

rule15: if dst bytes ∈ [4259411, 1013436963] and num root ∈ [0, 0.74] then

anomaly

rule16: if src bytes ∈ [24210394, 1221033923] and num root ∈ [0, 0.74] then

anomaly

rule17: if dst bytes ∈ [0, 879630256] and num root ∈ [0, 0.74] and

dst host srv diff host rate ∈ [0.90, 0.96] then anomaly
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Incremental

Learning

(Update)

rule1: if dst bytes ∈ [0, 130993] and num root ∈ [0, 0.74] and

dst host srv serror rate ∈ [0.39, 1] then anomaly

rule2: if dst bytes ∈ [0, 130993] and diff srv rate ∈ [0.05, 0.46] then anomaly

rule3: if num root ∈ [0, 0.74] and srv serror rate ∈ [0.16, 1] then anomaly

rule4: if num root ∈ [0, 0.74] and srv serror rate ∈ [0.8, 1] and

dst host srv diff host rate ∈ [0, 0.01] then anomaly

rule5: if dst bytes ∈ [0, 139307] num root ∈ [0, 0.74] and srv serror rate ∈

[0.12, 1] and diff srv rate ∈ [0.05, 0.92] and dst host srv serror rate ∈ [0, 0.85]

then anomaly

rule6: if src bytes ∈ [0, 1174619101] and dst bytes ∈ [0, 130993] and

srv serror rate ∈ [0, 0.01] and dst host srv diff host rate ∈ [0.2, 0.86] and

dst host srv serror rate ∈ [1, 0.01] then anomaly

rule7: if same srv rate ∈ [0.72, 0.97] then anomaly

rule8: if num root ∈ [0, 0.74] and srv serror rate ∈ [0.19, 0.36] and

dst host srv diff host rate ∈ [0, 0.01] then anomaly

rule9: if same srv rate ∈ [0.54, 0.63] then anomaly

rule10: if diff srv rate ∈ [0.91, 0.97] and dst host srv diff host rate ∈ [0, 0.22]

then anomaly

rule11: if diff srv rate ∈ [0.79, 0.82] and dst host srv diff host rate ∈ [0, 0.01]

then anomaly

rule12: if dst bytes ∈ [0, 130993] and num root ∈ [0, 0.74] and srv serror rate

∈ [0, 0.04] and same srv rate ∈ [0.05, 0.23] and diff srv rate ∈ [0.52, 0.55] and

dst host srv diff host rate ∈ [0, 0.54] then anomaly

rule13: if dst bytes ∈ [0, 178] then anomaly

rule14: if dst bytes ∈ [0, 1013] and same srv rate ∈ [0, 0.78] then anomaly

rule15: if dst bytes ∈ [0, 1013] and dst host srv serror rate ∈ [0.05, 0.99] then

anomaly

rule16: if dst bytes ∈ [0, 29381] and dst host srv serror rate ∈ [0.05, 0.82]

then anomaly

rule17: if srv serror rate ∈ [0.07, 0.99] then anomaly

rule18: if dst bytes ∈ [8140, 8318] then anomaly

rule19: if num root ∈ [0.5, 583] then anomaly

rule20: if dst bytes ∈ [283505, 284305] then anomaly

rule21: if dst bytes ∈ [386889, 513338] then anomaly
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attack records. Therefore, after the startup phase, the produced model will be de-

ployed in its intended environment to operate in the classification mode. However,

from time to time, the network administrator might need to update the existing

model because of changes in the environment such as modification in the network

topology, technology changes and arrival of new types of attacks. For learning new

information, in the update phase, ESR-NID is exposed to the new collected data

and a new set of rules will be generated and then added to the existing database

of rules. The updated database, however, goes through a post-processing stage,

which results in removing the similar rules from the database. Finally, the existing

model for classification in the startup/classification phase will be replaced by the

new processed database.

Using the proposed incremental learning approach, ESR-NID does not need to store

the entire training data from the startup day until now. This is the issue of tradi-

tional learning, where the system requires huge resources to store the whole training

data accumulated thus far and retrain the classifier on the entire data every time an

update is needed. For evaluating the proposed model, a series of experiments were

carried out when ESR-NID was using the traditional learning and the incremental

learning schemes. These experiments included 3 scenarios of synthetic problems and

a real intrusion detection problem using NSL-KDD dataset. The results from the

experiments against synthetic problems showed that the performance of proposed

incremental learning for ESR-NID is slightly worse than the traditional learning and

the incremental learning also produced more rules compared to the traditional learn-

ing. However, the incremental learning approach benefits from less required storage

because it only keeps the generated rules in its database. This is in contrast to

the infinitely growing size of repository of raw training data required for traditional

learning. Additionally, the results from the experiments against the real intrusion

detection problem using NSL-KDD dataset showed that incremental learning is bet-

ter than traditional learning in terms of g-performance, accuracy, true positive rates

and number of rules. This concludes that incremental learning is more effective and

efficient for intrusion detection problems with large amount of raw data.
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As a future work, some other post-processing methods can be implemented to reduce

the number of rules. For example, one rule might be more general than another,

which can be eliminated from the final ruleset without affecting the classification

rate.
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Conclusions

The detection of network intrusions is a challenging task due to the changes in the

real environment over time and availability of advanced tools to attackers. In order

to deal with this challenge, effective intrusion detection systems that can adapt to

the changes in the environment and variations of attacks are needed.

In this thesis, the selection criteria for intrusion detection systems were reviewed.

Examples of these factors are effectiveness, adaptability, ease of implementation and

installation place. Amongst all, effectiveness, adaptability and flexibility are the

focus of this study. To overcome these challenges in the design and implementation

of IDSs, a nature-inspired machine learning approach is proposed in this dissertation.

The proposed technique, ESR-NID, is used to acquire knowledge of normal and

abnormal behaviour in the form of rules.

ESR-NID uses a genetic algorithm as a base learner to extract signatures for intrusion

detection. The database of signatures should be updated over time to adapt to

environment changes. For this, ESR-NID utilises an incremental learning approach

to incrementally learn the changes in the behaviour of users and the pattern of

attacks.

In a series of experiments against different sources of data, the performance of ESR-

NID is evaluated and compared with five well-known machine learning techniques.

163
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These techniques are from two categories of GA-based and non-GA-based algo-

rithms. The results show that the performance of ESR-NID is comparable to the

other tested methods and produces compact, easily understood rulesets for classifi-

cation problems.

In the next section, a summary of contributions of the proposed approach to both

network intrusion detection and genetic-based machine learning fields are explained.

7.1 Summary of Contributions

The main contributions of this research are outlined as follows:

• Automatic rule creation for intrusion detection:

After reviewing the literature, it was found that construction and maintenance

of rules for signature based intrusion detection systems is a challenging task.

To reduce the cost and time associated with extraction of signatures (rules)

from network data, a genetic based rule learning technique was developed in

this thesis with some new features, which contributes to the field of GBML.

• Use of statistical features for detector rules:

The attack detection process in this thesis is a statistical based approach that

provides the ability to detect a wider range of network intrusions. The use of

statistical measures overcomes the challenge involved in some of the existing

signature based IDSs that are dependent on network packet features such as

source IP address and protocol. These systems are unable to detect flooding

attacks, which send huge amount of normal packets toward victim to disrupt its

services to legitimate users. As the input features to ESR-NID are statistical

measures of network traffic, it used a real-valued chromosome representation.

Accordingly, only the continuous features of NSL-KDD dataset were used in

the intrusion detection process. When a raw network traffic was used for

evaluation of the system (i.e. the combined DARPA/CAIDA dataset), an

extra pre-processing stage was used to extract suitable statistical features.



Chapter 7. Conclusions 165

• Development and analysis of a flexible genetic-based rule learning

technique:

An effective GA-based approach was proposed and developed in this thesis

with two distinct features. These are an advanced two-stage evaluation ap-

proach and an adaptive elitism mechanism. The former makes ESR-NID a

flexible model by giving system designers the choice of selecting appropriate

fitness and performance functions for different application domains. The two-

stage evaluation component in ESR-NID aimed to derive a set of classification

rules from the provided dataset, which can cooperatively provide a good cover-

age of search space. For this, a fitness function was designed for the evaluation

of each rule in the system, which takes the cooperation of rules into considera-

tion. Additionally, a performance function was used in this component, which

operates on a higher level to evolve the rules cooperatively. This resulted into

compact, easily understood rulesets for classification tasks. To show that how

variant classifiers can be produced for different problems, first in Chapter 4,

ESR-NID was configured using a different performance function and tested

against a synthetic problem. Then in Chapter 5, the use of ESR-NID for de-

tecting normal instances was explored and showed how the flexibility aspect

of the proposed model helps the designers to put more emphasis on detection

of instances from the desired class.

The latter feature, adaptive elitism mechanism, was proposed to address the

problem of losing good rules over the generations. This problem was found

through the preliminary experiments conducted for evaluation of ESR-NID

using a fixed elitism mechanism. The proposed elitism mechanism for ESR-

NID adaptively determines the amount of elitism in the selection process.

This ensures that cooperating rules are kept together and not lost from one

generation to the next. This also means that there is no need to find the best

elite value through a trial-and-error method.

• Incremental learning:

Finally, to make ESR-NID adaptable to the environment changes, an incre-

mental learning method was introduced. Using this approach, ESR-NID does
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not need to store the original data used for training the classifier. Instead

it preserves the previously acquired knowledge (i.e. ruleset) and learns ad-

ditional information from new data and updates the database of signatures

with the new information. This addresses the storing of the entire training

data and the increased training time challenges in the traditional learning

approaches. These techniques discard the existing classifier and retrain the

system using the entire accumulated training data. The proposed incremental

learning for ESR-NID consisted of startup/classification and update phases.

During the startup phase, a classification model is designed using the initial

set of training examples. This phase will then be called classification phase

throughout the system life cycle. From time to time, ESR-NID updates the

database of rules during the update phase. This is achieved by retraining the

system on the training data and adding the generated rules to the current

database. Before the new model can be used for classification, the combined

rules go through a post-processing stage to produce a more concise ruleset

for the use of IDS. This is because in most domains, experts are interested in

simple human-understandable models.

7.2 Limitations

There are a number of limitations in the work presented in this thesis, which are

listed below.

• The system is aimed at learning statistical signatures of network traffic to de-

tect a wider range of attacks. Therefore, only real-valued attributes can be

used as the input to ESR-NID.

• The system evaluation on intrusion detection was only limited to the publicly

available datasets that have been used for IDSs evaluations in the literature.

If there were no constraints on the availability of large scale traffic collection
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infrastructure and privacy concerns, additional real network traffic could be

collected for testing the system.

• The final evaluations of the incremental learning approach for ESR-NID is

limited to only six runs per experiment (2 different initial seeds and 3 folds).

Therefore, the performance measure reported is the average across six runs. If

there were no time constraints, more folds and seed values could be used to

improve performance estimation.

7.3 Future Work

Several directions can be taken to extend this work. The potential areas for future

research are summarized below.

• Improving ESR-NID: with some evolved rulesets, the fitness and performance

measurements that drive the algorithm are insensitive to small modifications

to boundary values (because there are no training examples nearby). The next

step is to investigate efficient local generalisation and specialisation operators

that could exploit this fact. For example, they could be used in a memetic

version of the algorithm, combining evolution with local modification.

• Classification of attack types: in this thesis, ESR-NID is used as a binary

classifier to detect network intrusions. However, identifying the type of attacks

is another challenge and hence ESR-NID can be extended to discover rulesets

for multi-class classification problems.

• Improving the incremental learning component: in this thesis, an incremental

learning approach is utilised for ESR-NID to re-train the system once a new

batch of data becomes available. Using this, ESR-NID generates ruleset for

the new data, and then this ruleset will be added to the existing database

of rules. Next, the similar rules will be removed through a post-processing

stage and finally the post-processed ruleset will be used for future classification
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tasks. One step for improving this approach is to extend the post-processing

stage by keeping the general rules and eliminating the more specific ones in

the ruleset without affecting the classification rate. This decreases the size of

ruleset and minimize the complexity of the classification model. The similarity

between rules can be more accurately determined using the Jaccard index (or

Jaccard similarity coefficient) (Real & Vargas, 1996), which is a statistic used

for comparing the similarity and diversity of sample sets. Jaccard index as

a similarity metric describes the degree of overlap between the rules and is

defined as the ratio of the intersection to the union of the pairwise compared

variables (Pang-Ning et al., 2005).

• Applying ESR-NID to other areas: the focus of this research was on intrusion

detection problem, however, this can be extended for other classification prob-

lems. It would be nice to evaluate the developed system with datasets from

other areas.
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