196 research outputs found

    Towards the reduction of greenhouse gas emissions : models and algorithms for ridesharing and carbon capture and storage

    Full text link
    Avec la ratification de l'Accord de Paris, les pays se sont engagés à limiter le réchauffement climatique bien en dessous de 2, de préférence à 1,5 degrés Celsius, par rapport aux niveaux préindustriels. À cette fin, les émissions anthropiques de gaz à effet de serre (GES, tels que CO2) doivent être réduites pour atteindre des émissions nettes de carbone nulles d'ici 2050. Cet objectif ambitieux peut être atteint grâce à différentes stratégies d'atténuation des GES, telles que l'électrification, les changements de comportement des consommateurs, l'amélioration de l'efficacité énergétique des procédés, l'utilisation de substituts aux combustibles fossiles (tels que la bioénergie ou l'hydrogène), le captage et le stockage du carbone (CSC), entre autres. Cette thèse vise à contribuer à deux de ces stratégies : le covoiturage (qui appartient à la catégorie des changements de comportement du consommateur) et la capture et le stockage du carbone. Cette thèse fournit des modèles mathématiques et d'optimisation et des algorithmes pour la planification opérationnelle et tactique des systèmes de covoiturage, et des heuristiques pour la planification stratégique d'un réseau de captage et de stockage du carbone. Dans le covoiturage, les émissions sont réduites lorsque les individus voyagent ensemble au lieu de conduire seuls. Dans ce contexte, cette thèse fournit de nouveaux modèles mathématiques pour représenter les systèmes de covoiturage, allant des problèmes d'affectation stochastique à deux étapes aux problèmes d'empaquetage d'ensembles stochastiques à deux étapes qui peuvent représenter un large éventail de systèmes de covoiturage. Ces modèles aident les décideurs dans leur planification opérationnelle des covoiturages, où les conducteurs et les passagers doivent être jumelés pour le covoiturage à court terme. De plus, cette thèse explore la planification tactique des systèmes de covoiturage en comparant différents modes de fonctionnement du covoiturage et les paramètres de la plateforme (par exemple, le partage des revenus et les pénalités). De nouvelles caractéristiques de problèmes sont étudiées, telles que l'incertitude du conducteur et du passager, la flexibilité de réappariement et la réservation de l'offre de conducteur via les frais de réservation et les pénalités. En particulier, la flexibilité de réappariement peut augmenter l'efficacité d'une plateforme de covoiturage, et la réservation de l'offre de conducteurs via les frais de réservation et les pénalités peut augmenter la satisfaction des utilisateurs grâce à une compensation garantie si un covoiturage n'est pas fourni. Des expériences computationnelles détaillées sont menées et des informations managériales sont fournies. Malgré la possibilité de réduction des émissions grâce au covoiturage et à d'autres stratégies d'atténuation, des études macroéconomiques mondiales montrent que même si plusieurs stratégies d'atténuation des GES sont utilisées simultanément, il ne sera probablement pas possible d'atteindre des émissions nettes nulles d'ici 2050 sans le CSC. Ici, le CO2 est capturé à partir des sites émetteurs et transporté vers des réservoirs géologiques, où il est injecté pour un stockage à long terme. Cette thèse considère un problème de planification stratégique multipériode pour l'optimisation d'une chaîne de valeur CSC. Ce problème est un problème combiné de localisation des installations et de conception du réseau où une infrastructure CSC est prévue pour les prochaines décennies. En raison des défis informatiques associés à ce problème, une heuristique est introduite, qui est capable de trouver de meilleures solutions qu'un solveur commercial de programmation mathématique, pour une fraction du temps de calcul. Cette heuristique comporte des phases d'intensification et de diversification, une génération améliorée de solutions réalisables par programmation dynamique, et une étape finale de raffinement basée sur un modèle restreint. Dans l'ensemble, les contributions de cette thèse sur le covoiturage et le CSC fournissent des modèles de programmation mathématique, des algorithmes et des informations managériales qui peuvent aider les praticiens et les parties prenantes à planifier des émissions nettes nulles.With the ratification of the Paris Agreement, countries committed to limiting global warming to well below 2, preferably to 1.5 degrees Celsius, compared to pre-industrial levels. To this end, anthropogenic greenhouse gas (GHG) emissions (such as CO2) must be reduced to reach net-zero carbon emissions by 2050. This ambitious target may be met by means of different GHG mitigation strategies, such as electrification, changes in consumer behavior, improving the energy efficiency of processes, using substitutes for fossil fuels (such as bioenergy or hydrogen), and carbon capture and storage (CCS). This thesis aims at contributing to two of these strategies: ridesharing (which belongs to the category of changes in consumer behavior) and carbon capture and storage. This thesis provides mathematical and optimization models and algorithms for the operational and tactical planning of ridesharing systems, and heuristics for the strategic planning of a carbon capture and storage network. In ridesharing, emissions are reduced when individuals travel together instead of driving alone. In this context, this thesis provides novel mathematical models to represent ridesharing systems, ranging from two-stage stochastic assignment problems to two-stage stochastic set packing problems that can represent a wide variety of ridesharing systems. These models aid decision makers in their operational planning of rideshares, where drivers and riders have to be matched for ridesharing on the short-term. Additionally, this thesis explores the tactical planning of ridesharing systems by comparing different modes of ridesharing operation and platform parameters (e.g., revenue share and penalties). Novel problem characteristics are studied, such as driver and rider uncertainty, rematching flexibility, and reservation of driver supply through booking fees and penalties. In particular, rematching flexibility may increase the efficiency of a ridesharing platform, and the reservation of driver supply through booking fees and penalties may increase user satisfaction through guaranteed compensation if a rideshare is not provided. Extensive computational experiments are conducted and managerial insights are given. Despite the opportunity to reduce emissions through ridesharing and other mitigation strategies, global macroeconomic studies show that even if several GHG mitigation strategies are used simultaneously, achieving net-zero emissions by 2050 will likely not be possible without CCS. Here, CO2 is captured from emitter sites and transported to geological reservoirs, where it is injected for long-term storage. This thesis considers a multiperiod strategic planning problem for the optimization of a CCS value chain. This problem is a combined facility location and network design problem where a CCS infrastructure is planned for the next decades. Due to the computational challenges associated with that problem, a slope scaling heuristic is introduced, which is capable of finding better solutions than a state-of-the-art general-purpose mathematical programming solver, at a fraction of the computational time. This heuristic has intensification and diversification phases, improved generation of feasible solutions through dynamic programming, and a final refining step based on a restricted model. Overall, the contributions of this thesis on ridesharing and CCS provide mathematical programming models, algorithms, and managerial insights that may help practitioners and stakeholders plan for net-zero emissions

    Integrated production and inventory routing planning of oxygen supply chains

    Get PDF
    In this work, we address a production and inventory routing problem for a liquid oxygen supply chain comprising production facilities, distribution network, and distribution resources. The key decisions of the problem involve production levels of production plants, delivery schedule and routing through heterogeneous vehicles, and inventory strategies for national stock-out prevention. Due to the problem complexity, we propose a two-level hybrid solution approach that solves the problem using both exact and metaheuristic methods. At the upper level, we develop a mixed-integer linear programming (MILP) model that determines production and inventory decisions and customer allocation. In the lower level, the original problem is reduced to several multi-trip heterogeneous vehicle routing problems by fixing the optimal production, inventory, and allocation decisions and clustering customers. A well-recognised metaheuristic, guided local search method, is adapted to solve the low-level routing problems. A real-world case study in the UK illustrates the applicability and effectiveness of the proposed optimisation framework

    Enhanced Iterated local search for the technician routing and scheduling problem

    Full text link
    Most public facilities in the European countries, including France, Germany, and the UK, were built during the reconstruction projects between 1950 and 1980. Owing to the deteriorating state of such vital infrastructure has become relatively expensive in the recent decades. A significant part of the maintenance operation costs is spent on the technical staff. Therefore, the optimal use of the available workforce is essential to optimize the operation costs. This includes planning technical interventions, workload balancing, productivity improvement, etc. In this paper, we focus on the routing of technicians and scheduling of their tasks. We address for this purpose a variant of the workforce scheduling problem called the technician routing and scheduling problem (TRSP). This problem has applications in different fields, such as transportation infrastructure (rail and road networks), telecommunications, and sewage facilities. To solve the TRSP, we propose an enhanced iterated local search (eILS) approach. The enhancement of the ILS firstly includes an intensification procedure that incorporates a set of local search operators and removal-repair heuristics crafted for the TRSP. Next, four different mechanisms are used in the perturbation phase. Finally, an elite set of solutions is used to extensively explore the neighborhood of local optima as well as to enhance diversification during search space exploration. To measure the performance of the proposed method, experiments were conducted based on benchmark instances from the literature, and the results obtained were compared with those of an existing method. Our method achieved very good results, since it reached the best overall gap, which is three times lower than that of the literature. Furthermore, eILS improved the best-known solution for 3434 instances among a total of 5656 while maintaining reasonable computational times.Comment: Submitted manuscript to Computers and Operations Research journal. 34 pages, 7 figures, 6 table

    The Incremental Cooperative Design of Preventive Healthcare Networks

    Get PDF
    This document is the Accepted Manuscript version of the following article: Soheil Davari, 'The incremental cooperative design of preventive healthcare networks', Annals of Operations Research, first published online 27 June 2017. Under embargo. Embargo end date: 27 June 2018. The final publication is available at Springer via http://dx.doi.org/10.1007/s10479-017-2569-1.In the Preventive Healthcare Network Design Problem (PHNDP), one seeks to locate facilities in a way that the uptake of services is maximised given certain constraints such as congestion considerations. We introduce the incremental and cooperative version of the problem, IC-PHNDP for short, in which facilities are added incrementally to the network (one at a time), contributing to the service levels. We first develop a general non-linear model of this problem and then present a method to make it linear. As the problem is of a combinatorial nature, an efficient Variable Neighbourhood Search (VNS) algorithm is proposed to solve it. In order to gain insight into the problem, the computational studies were performed with randomly generated instances of different settings. Results clearly show that VNS performs well in solving IC-PHNDP with errors not more than 1.54%.Peer reviewe

    Exact and heuristic methods for optimization in distributed logistics

    Get PDF
    Increasing sustainability in the transportation and logistics sector is a key element in achieving energy transition goals set internationally (UN), continentally (EU), and nationally. This thesis discusses two challenges related to this energy transition.First, I study how offshore wind can become an attractive alternative to traditional energy producers. I investigate how the maintenance of offshore wind farms can be organized more efficiently. Think of smartly coordinating technicians, maintenance tasks, spare parts, and a fleet of vessels. Our new algorithms ensure that the relatively polluting visits to the wind farm can be reduced, which directly causes a reduction of CO2 emmision and an increased sustainable energy production.Second, I focus on a different sustainability challenge in the logistics sector: How to handle the enormous amounts of product returns from and to (web)shops. We study how to incorporate these product returns in regular operations, instead of treating them distinct from current operations. In this way, we can reuse already existing capital, leading significant cost decreases. This directly increases sustainability of the e-commerce sector.Although both challenges are structurally different from a practical point of view, from an applied mathematician’s perspective this is not true. Our smart plannings algorithms are broadly applicable, and can be used to resolve major questions on how to increase sustainability in the transportation and logistics sector

    Multiperiod Dispatching and Routing for On-Time Delivery in a Dynamic and Stochastic Environment

    Full text link
    On-demand delivery has become increasingly popular around the world. Brick-and-mortar grocery stores, restaurants, and pharmacies are providing fast delivery services to satisfy the growing home delivery demand. Motivated by a large meal and grocery delivery company, we model and solve a multiperiod driver dispatching and routing problem for last-mile delivery systems where on-time performance is the main target. The operator of this system needs to dispatch a set of drivers and specify their delivery routes in a stochastic environment, in which random demand arrives over a fixed number of periods. The resulting dynamic program is challenging to solve due to the curse of dimensionality. We propose a novel approximation framework to approximate the value function via a simplified dispatching program. We then develop efficient exact algorithms for this problem based on Benders decomposition and column generation. We validate the superior performance of our framework and algorithms via extensive numerical experiments. Tested on a real-world data set, we quantify the value of adaptive dispatching and routing in on-time delivery and highlight the need of coordinating these two decisions in a dynamic setting. We show that dispatching multiple vehicles with short trips is preferable for on-time delivery, as opposed to sending a few vehicles with long travel times
    • …
    corecore