991 research outputs found

    VERTICAL REPLENISHMENT BY UNMANNED AERIAL VEHICLES.

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Who's Got the Bridge? - Towards Safe, Robust Autonomous Operations at NASA Langley's Autonomy Incubator

    Get PDF
    NASA aeronautics research has made decades of contributions to aviation. Both aircraft and air traffic management (ATM) systems in use today contain NASA-developed and NASA sponsored technologies that improve safety and efficiency. Recent innovations in robotics and autonomy for automobiles and unmanned systems point to a future with increased personal mobility and access to transportation, including aviation. Automation and autonomous operations will transform the way we move people and goods. Achieving this mobility will require safe, robust, reliable operations for both the vehicle and the airspace and challenges to this inevitable future are being addressed now in government labs, universities, and industry. These challenges are the focus of NASA Langley Research Center's Autonomy Incubator whose R&D portfolio includes mission planning, trajectory and path planning, object detection and avoidance, object classification, sensor fusion, controls, machine learning, computer vision, human-machine teaming, geo-containment, open architecture design and development, as well as the test and evaluation environment that will be critical to prove system reliability and support certification. Safe autonomous operations will be enabled via onboard sensing and perception systems in both data-rich and data-deprived environments. Applied autonomy will enable safety, efficiency and unprecedented mobility as people and goods take to the skies tomorrow just as we do on the road today

    An Overview of Drone Energy Consumption Factors and Models

    Full text link
    At present, there is a growing demand for drones with diverse capabilities that can be used in both civilian and military applications, and this topic is receiving increasing attention. When it comes to drone operations, the amount of energy they consume is a determining factor in their ability to achieve their full potential. According to this, it appears that it is necessary to identify the factors affecting the energy consumption of the unmanned air vehicle (UAV) during the mission process, as well as examine the general factors that influence the consumption of energy. This chapter aims to provide an overview of the current state of research in the area of UAV energy consumption and provide general categorizations of factors affecting UAV's energy consumption as well as an investigation of different energy models

    2014 Annual Report of the Graduate School of Engineering and Management, Air Force Institute of Technology

    Get PDF
    The Graduate School\u27s Annual Report highlights research focus areas, new academic programs, faculty accomplishments and news, and provides top-level sponsor-funded research data and information

    Armstrong Flight Research Center Research Technology and Engineering 2017

    Get PDF
    I am delighted to present this report of accomplishments at NASA's Armstrong Flight Research Center. Our dedicated innovators possess a wealth of performance, safety, and technical capabilities spanning a wide variety of research areas involving aircraft, electronic sensors, instrumentation, environmental and earth science, celestial observations, and much more. They not only perform tasks necessary to safely and successfully accomplish Armstrong's flight research and test missions but also support NASA missions across the entire Agency. Armstrong's project teams have successfully accomplished many of the nation's most complex flight research projects by crafting creative solutions that advance emerging technologies from concept development and experimental formulation to final testing. We are developing and refining technologies for ultra-efficient aircraft, electric propulsion vehicles, a low boom flight demonstrator, air launch systems, and experimental x-planes, to name a few. Additionally, with our unique location and airborne research laboratories, we are testing and validating new research concepts. Summaries of each project highlighting key results and benefits of the effort are provided in the following pages. Technology areas for the projects include electric propulsion, vehicle efficiency, supersonics, space and hypersonics, autonomous systems, flight and ground experimental test technologies, and much more. Additional technical information is available in the appendix, as well as contact information for the Principal Investigator of each project. I am proud of the work we do here at Armstrong and am pleased to share these details with you. We welcome opportunities for partnership and collaboration, so please contact us to learn more about these cutting-edge innovations and how they might align with your needs

    Adaptive Airborne Separation to Enable UAM Autonomy in Mixed Airspace

    Get PDF
    The excitement and promise generated by Urban Air Mobility (UAM) concepts have inspired both new entrants and large aerospace companies throughout the world to invest hundreds of millions in research and development of air vehicles, both piloted and unpiloted, to fulfill these dreams. The management and separation of all these new aircraft have received much less attention, however, and even though NASAs lead is advancing some promising concepts for Unmanned Aircraft Systems (UAS) Traffic Management (UTM), most operations today are limited to line of sight with the vehicle, airspace reservation and geofencing of individual flights. Various schemes have been proposed to control this new traffic, some modeled after conventional air traffic control and some proposing fully automatic management, either from a ground-based entity or carried out on board among the vehicles themselves. Previous work has examined vehicle-based traffic management in the very low altitude airspace within a metroplex called UTM airspace in which piloted traffic is rare. A management scheme was proposed in that work that takes advantage of the homogeneous nature of the traffic operating in UTM airspace. This paper expands that concept to include a traffic management plan usable at all altitudes desired for electric Vertical Takeoff and Landing urban and short-distance, inter-city transportation. The interactions with piloted aircraft operating under both visual and instrument flight rules are analyzed, and the role of Air Traffic Control services in the postulated mixed traffic environment is covered. Separation values that adapt to each type of traffic encounter are proposed, and the relationship between required airborne surveillance range and closure speed is given. Finally, realistic scenarios are presented illustrating how this concept can reliably handle the density and traffic mix that fully implemented and successful UAM operations would entail

    Autonomous Drone Landings on an Unmanned Marine Vehicle using Deep Reinforcement Learning

    Get PDF
    This thesis describes with the integration of an Unmanned Surface Vehicle (USV) and an Unmanned Aerial Vehicle (UAV, also commonly known as drone) in a single Multi-Agent System (MAS). In marine robotics, the advantage offered by a MAS consists of exploiting the key features of a single robot to compensate for the shortcomings in the other. In this way, a USV can serve as the landing platform to alleviate the need for a UAV to be airborne for long periods time, whilst the latter can increase the overall environmental awareness thanks to the possibility to cover large portions of the prevailing environment with a camera (or more than one) mounted on it. There are numerous potential applications in which this system can be used, such as deployment in search and rescue missions, water and coastal monitoring, and reconnaissance and force protection, to name but a few. The theory developed is of a general nature. The landing manoeuvre has been accomplished mainly identifying, through artificial vision techniques, a fiducial marker placed on a flat surface serving as a landing platform. The raison d'etre for the thesis was to propose a new solution for autonomous landing that relies solely on onboard sensors and with minimum or no communications between the vehicles. To this end, initial work solved the problem while using only data from the cameras mounted on the in-flight drone. In the situation in which the tracking of the marker is interrupted, the current position of the USV is estimated and integrated into the control commands. The limitations of classic control theory used in this approached suggested the need for a new solution that empowered the flexibility of intelligent methods, such as fuzzy logic or artificial neural networks. The recent achievements obtained by deep reinforcement learning (DRL) techniques in end-to-end control in playing the Atari video-games suite represented a fascinating while challenging new way to see and address the landing problem. Therefore, novel architectures were designed for approximating the action-value function of a Q-learning algorithm and used to map raw input observation to high-level navigation actions. In this way, the UAV learnt how to land from high latitude without any human supervision, using only low-resolution grey-scale images and with a level of accuracy and robustness. Both the approaches have been implemented on a simulated test-bed based on Gazebo simulator and the model of the Parrot AR-Drone. The solution based on DRL was further verified experimentally using the Parrot Bebop 2 in a series of trials. The outcomes demonstrate that both these innovative methods are both feasible and practicable, not only in an outdoor marine scenario but also in indoor ones as well

    Standardization Roadmap for Unmanned Aircraft Systems, Version 2.0

    Get PDF
    This Standardization Roadmap for Unmanned Aircraft Systems, Version 2.0 (“roadmap”) is an update to version 1.0 of this document published in December 2018. It identifies existing standards and standards in development, assesses gaps, and makes recommendations for priority areas where there is a perceived need for additional standardization and/or pre-standardization R&D. The roadmap has examined 78 issue areas, identified a total of 71 open gaps and corresponding recommendations across the topical areas of airworthiness; flight operations (both general concerns and application-specific ones including critical infrastructure inspections, commercial services, and public safety operations); and personnel training, qualifications, and certification. Of that total, 47 gaps/recommendations have been identified as high priority, 21 as medium priority, and 3 as low priority. A “gap” means no published standard or specification exists that covers the particular issue in question. In 53 cases, additional R&D is needed. As with the earlier version of this document, the hope is that the roadmap will be broadly adopted by the standards community and that it will facilitate a more coherent and coordinated approach to the future development of standards for UAS. To that end, it is envisioned that the roadmap will continue to be promoted in the coming year. It is also envisioned that a mechanism may be established to assess progress on its implementation
    corecore