685 research outputs found

    A video compression-based approach to measure music structural similarity

    No full text
    International audienceThe choice of the distance measure between time-series representations can be decisive to achieve good classification results in many content-based information retrieval applications. In the field of Music Information Retrieval, two-dimensional representations of the music signal are ubiquitous. Such representations are useful to display patterns of evidence that are not clearly revealed directly in the time domain. Among these representations, self-similarity matrices have become common representations for visualizing the time structure of an audio signal. In the context of organizing recordings, recent work has shown that, given a collection of recordings, it is possible to to group performances of the same musical work based on the pairwise similarity between structural representations of the audio signal. In this work, we introduce the use of the Campana- Keogh distance, a video compression-based measure, to compare musical items based on their structure. Through extensive experiments, we show that the use of this distance measure outperforms the results of previous work using similar approaches but other distance measures. Along with quantitative results, detailed examples are provided to to illustrate the benefits of using the newly proposed distance measure

    Audio-Based Retrieval of Musical Score Data

    Get PDF
    Given an audio query, such as polyphonic musical piece, this thesis address the problem of retrieving a matching (similar) musical score data from a collection of musical scores. There are different techniques for measuring similarity between any musical piece such as metadata based similarity measure, collaborative filtering and content-based similarity measure. In this thesis, we use the information in the digital music itself for similarity measures and this technique is known as content-based similarity measure. First we extract chroma features to represents musical segments. Chroma feature captures both melodic information and harmonic information and is robust to timbre variation. Tempo variation in the performance of a same song may cause dissimilarity between them. In order to address this issue we extract beat sequences and combine them with chroma features to obtain beat synchronous chroma features. Next, we use Dynamic Time Warping (DTW) algorithm. This algorithm first computes the DTW matrix between two feature sequences and calculates the cost of traversing from starting point to end point of the matrix. Minimum the cost value, more similar the musical segments are. The performance of DTW is improved by choosing suitable path constraints and path weight. Then, we implement LSH algorithm, which first indexes the data and then searches for a similar item. Processing time of LSH is shorter than that of DTW. For a smaller fragment of query audio, say 30 seconds, LSH outperformed DTW. Performance of LSH depends on the number of hash tables, number of projections per table and width of the projection. Both algorithms were applied in two types of data sets, RWC (where audio and midi are from the same source) and TUT (where audio and midi are from different sources). The contribution of this thesis is twofold. First we proposed a suitable feature representation of a musical segment for melodic similarity. And then we apply two different similarity measure algorithms and enhance their performances. This thesis work also includes development of mobile application capable of recording audio from surroundings and displaying its acoustic features in real time

    Computational Methods for the Alignment and Score-Informed Transcription of Piano Music

    Get PDF
    PhDThis thesis is concerned with computational methods for alignment and score-informed transcription of piano music. Firstly, several methods are proposed to improve the alignment robustness and accuracywhen various versions of one piece of music showcomplex differences with respect to acoustic conditions or musical interpretation. Secondly, score to performance alignment is applied to enable score-informed transcription. Although music alignment methods have considerably improved in accuracy in recent years, the task remains challenging. The research in this thesis aims to improve the robustness for some cases where there are substantial differences between versions and state-of-the-art methods may fail in identifying a correct alignment. This thesis first exploits the availability of multiple versions of the piece to be aligned. By processing these jointly, the alignment process can be stabilised by exploiting additional examples of how a section might be interpreted or which acoustic conditions may arise. Two methods are proposed, progressive alignment and profile HMM, both adapted from the multiple biological sequence alignment task. Experiments demonstrate that these methods can indeed improve the alignment accuracy and robustness over comparable pairwise methods. Secondly, this thesis presents a score to performance alignment method that can improve the robustness in cases where some musical voices, such as the melody, are played asynchronously to others – a stylistic device used in musical expression. The asynchronies between the melody and the accompaniment are handled by treating the voices as separate timelines in a multi-dimensional variant of dynamic time warping (DTW). The method measurably improves the alignment accuracy for pieces with asynchronous voices and preserves the accuracy otherwise. Once an accurate alignment between a score and an audio recording is available, the score information can be exploited as prior knowledge in automatic music transcription (AMT), for scenarios where score is available, such as music tutoring. Score-informed dictionary learning is used to learn the spectral pattern of each pitch that describes the energy distribution of the associated notes in the recording. More precisely, the dictionary learning process in non-negative matrix factorization (NMF) is constrained using the aligned score. This way, by adapting the dictionary to a given recording, the proposed method improves the accuracy over the state-of-the-art.China Scholarship Council

    Music Synchronization, Audio Matching, Pattern Detection, and User Interfaces for a Digital Music Library System

    Get PDF
    Over the last two decades, growing efforts to digitize our cultural heritage could be observed. Most of these digitization initiatives pursuit either one or both of the following goals: to conserve the documents - especially those threatened by decay - and to provide remote access on a grand scale. For music documents these trends are observable as well, and by now several digital music libraries are in existence. An important characteristic of these music libraries is an inherent multimodality resulting from the large variety of available digital music representations, such as scanned score, symbolic score, audio recordings, and videos. In addition, for each piece of music there exists not only one document of each type, but many. Considering and exploiting this multimodality and multiplicity, the DFG-funded digital library initiative PROBADO MUSIC aimed at developing a novel user-friendly interface for content-based retrieval, document access, navigation, and browsing in large music collections. The implementation of such a front end requires the multimodal linking and indexing of the music documents during preprocessing. As the considered music collections can be very large, the automated or at least semi-automated calculation of these structures would be recommendable. The field of music information retrieval (MIR) is particularly concerned with the development of suitable procedures, and it was the goal of PROBADO MUSIC to include existing and newly developed MIR techniques to realize the envisioned digital music library system. In this context, the present thesis discusses the following three MIR tasks: music synchronization, audio matching, and pattern detection. We are going to identify particular issues in these fields and provide algorithmic solutions as well as prototypical implementations. In Music synchronization, for each position in one representation of a piece of music the corresponding position in another representation is calculated. This thesis focuses on the task of aligning scanned score pages of orchestral music with audio recordings. Here, a previously unconsidered piece of information is the textual specification of transposing instruments provided in the score. Our evaluations show that the neglect of such information can result in a measurable loss of synchronization accuracy. Therefore, we propose an OCR-based approach for detecting and interpreting the transposition information in orchestral scores. For a given audio snippet, audio matching methods automatically calculate all musically similar excerpts within a collection of audio recordings. In this context, subsequence dynamic time warping (SSDTW) is a well-established approach as it allows for local and global tempo variations between the query and the retrieved matches. Moving to real-life digital music libraries with larger audio collections, however, the quadratic runtime of SSDTW results in untenable response times. To improve on the response time, this thesis introduces a novel index-based approach to SSDTW-based audio matching. We combine the idea of inverted file lists introduced by Kurth and MĂĽller (Efficient index-based audio matching, 2008) with the shingling techniques often used in the audio identification scenario. In pattern detection, all repeating patterns within one piece of music are determined. Usually, pattern detection operates on symbolic score documents and is often used in the context of computer-aided motivic analysis. Envisioned as a new feature of the PROBADO MUSIC system, this thesis proposes a string-based approach to pattern detection and a novel interactive front end for result visualization and analysis

    Creating music by listening

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2005.Includes bibliographical references (p. 127-139).Machines have the power and potential to make expressive music on their own. This thesis aims to computationally model the process of creating music using experience from listening to examples. Our unbiased signal-based solution models the life cycle of listening, composing, and performing, turning the machine into an active musician, instead of simply an instrument. We accomplish this through an analysis-synthesis technique by combined perceptual and structural modeling of the musical surface, which leads to a minimal data representation. We introduce a music cognition framework that results from the interaction of psychoacoustically grounded causal listening, a time-lag embedded feature representation, and perceptual similarity clustering. Our bottom-up analysis intends to be generic and uniform by recursively revealing metrical hierarchies and structures of pitch, rhythm, and timbre. Training is suggested for top-down un-biased supervision, and is demonstrated with the prediction of downbeat. This musical intelligence enables a range of original manipulations including song alignment, music restoration, cross-synthesis or song morphing, and ultimately the synthesis of original pieces.by Tristan Jehan.Ph.D
    • …
    corecore