5,090 research outputs found

    Feature detection using spikes: the greedy approach

    Full text link
    A goal of low-level neural processes is to build an efficient code extracting the relevant information from the sensory input. It is believed that this is implemented in cortical areas by elementary inferential computations dynamically extracting the most likely parameters corresponding to the sensory signal. We explore here a neuro-mimetic feed-forward model of the primary visual area (VI) solving this problem in the case where the signal may be described by a robust linear generative model. This model uses an over-complete dictionary of primitives which provides a distributed probabilistic representation of input features. Relying on an efficiency criterion, we derive an algorithm as an approximate solution which uses incremental greedy inference processes. This algorithm is similar to 'Matching Pursuit' and mimics the parallel architecture of neural computations. We propose here a simple implementation using a network of spiking integrate-and-fire neurons which communicate using lateral interactions. Numerical simulations show that this Sparse Spike Coding strategy provides an efficient model for representing visual data from a set of natural images. Even though it is simplistic, this transformation of spatial data into a spatio-temporal pattern of binary events provides an accurate description of some complex neural patterns observed in the spiking activity of biological neural networks.Comment: This work links Matching Pursuit with bayesian inference by providing the underlying hypotheses (linear model, uniform prior, gaussian noise model). A parallel with the parallel and event-based nature of neural computations is explored and we show application to modelling Primary Visual Cortex / image processsing. http://incm.cnrs-mrs.fr/perrinet/dynn/LaurentPerrinet/Publications/Perrinet04tau

    Support Recovery of Sparse Signals

    Full text link
    We consider the problem of exact support recovery of sparse signals via noisy measurements. The main focus is the sufficient and necessary conditions on the number of measurements for support recovery to be reliable. By drawing an analogy between the problem of support recovery and the problem of channel coding over the Gaussian multiple access channel, and exploiting mathematical tools developed for the latter problem, we obtain an information theoretic framework for analyzing the performance limits of support recovery. Sharp sufficient and necessary conditions on the number of measurements in terms of the signal sparsity level and the measurement noise level are derived. Specifically, when the number of nonzero entries is held fixed, the exact asymptotics on the number of measurements for support recovery is developed. When the number of nonzero entries increases in certain manners, we obtain sufficient conditions tighter than existing results. In addition, we show that the proposed methodology can deal with a variety of models of sparse signal recovery, hence demonstrating its potential as an effective analytical tool.Comment: 33 page

    An MDL framework for sparse coding and dictionary learning

    Full text link
    The power of sparse signal modeling with learned over-complete dictionaries has been demonstrated in a variety of applications and fields, from signal processing to statistical inference and machine learning. However, the statistical properties of these models, such as under-fitting or over-fitting given sets of data, are still not well characterized in the literature. As a result, the success of sparse modeling depends on hand-tuning critical parameters for each data and application. This work aims at addressing this by providing a practical and objective characterization of sparse models by means of the Minimum Description Length (MDL) principle -- a well established information-theoretic approach to model selection in statistical inference. The resulting framework derives a family of efficient sparse coding and dictionary learning algorithms which, by virtue of the MDL principle, are completely parameter free. Furthermore, such framework allows to incorporate additional prior information to existing models, such as Markovian dependencies, or to define completely new problem formulations, including in the matrix analysis area, in a natural way. These virtues will be demonstrated with parameter-free algorithms for the classic image denoising and classification problems, and for low-rank matrix recovery in video applications

    Orthogonal Matching Pursuit: A Brownian Motion Analysis

    Full text link
    A well-known analysis of Tropp and Gilbert shows that orthogonal matching pursuit (OMP) can recover a k-sparse n-dimensional real vector from 4 k log(n) noise-free linear measurements obtained through a random Gaussian measurement matrix with a probability that approaches one as n approaches infinity. This work strengthens this result by showing that a lower number of measurements, 2 k log(n - k), is in fact sufficient for asymptotic recovery. More generally, when the sparsity level satisfies kmin <= k <= kmax but is unknown, 2 kmax log(n - kmin) measurements is sufficient. Furthermore, this number of measurements is also sufficient for detection of the sparsity pattern (support) of the vector with measurement errors provided the signal-to-noise ratio (SNR) scales to infinity. The scaling 2 k log(n - k) exactly matches the number of measurements required by the more complex lasso method for signal recovery with a similar SNR scaling.Comment: 11 pages, 2 figure
    • …
    corecore