533 research outputs found

    Development and demonstration of an on-board mission planner for helicopters

    Get PDF
    Mission management tasks can be distributed within a planning hierarchy, where each level of the hierarchy addresses a scope of action, and associated time scale or planning horizon, and requirements for plan generation response time. The current work is focused on the far-field planning subproblem, with a scope and planning horizon encompassing the entire mission and with a response time required to be about two minutes. The far-feld planning problem is posed as a constrained optimization problem and algorithms and structural organizations are proposed for the solution. Algorithms are implemented in a developmental environment, and performance is assessed with respect to optimality and feasibility for the intended application and in comparison with alternative algorithms. This is done for the three major components of far-field planning: goal planning, waypoint path planning, and timeline management. It appears feasible to meet performance requirements on a 10 Mips flyable processor (dedicated to far-field planning) using a heuristically-guided simulated annealing technique for the goal planner, a modified A* search for the waypoint path planner, and a speed scheduling technique developed for this project

    Robust Execution of Bipedal Walking Tasks From Biomechanical Principles

    Get PDF
    PhD thesisEffective use of robots in unstructured environments requires that they have sufficient autonomy and agility to execute task-level commands successfully. A challenging example of such a robot is a bipedal walking machine. Such a robot should be able to walk to a particular location within a particular time, while observing foot placement constraints, and avoiding a fall, if this is physically possible. Although stable walking machines have been built, the problem of task-level control, where the tasks have stringent state-space and temporal requirements, and where significant disturbances may occur, has not been studied extensively. This thesis addresses this problem through three objectives. The first is to devise a plan specification where task requirements are expressed in a qualitative form that provides for execution flexibility. The second is to develop a task-level executive that accepts such a plan, and outputs a sequence of control actions that result in successful plan execution. The third is to provide this executive with disturbance handling ability.Development of such an executive is challenging because the biped is highly nonlinear and has limited actuation due to its limited base of support. We address these challenges with three key innovations. To address the nonlinearity, we develop a dynamic virtual model controller to linearize the biped, and thus, provide an abstracted biped that is easier to control. The controller is model-based, but uses a sliding control technique to compensate for model inaccuracy. To address the under-actuation, our system generates flow tubes, which define valid operating regions in the abstracted biped. The flow tubes represent sets of state trajectories that take into account dynamic limitations due to under-actuation, and also satisfy plan requirements. The executive keeps trajectories in the flow tubes by adjusting a small number of control parameters for key state variables in the abstracted biped, such as center of mass. Additionally, our system uses a novel strategy that employs angular momentum to enhance translational controllability of the systemÂs center of mass. We evaluate our approach using a high-fidelity biped simulation. Tests include walking with foot-placement constraints, kicking a soccer ball, and disturbance recovery

    Transportation Mission-Based Optimization of Heavy Combination Road Vehicles and Distributed Propulsion, Including Predictive Energy and Motion Control

    Get PDF
    This thesis proposes methodologies to improve heavy vehicle design by reducing the total cost of ownership and by increasing energy efficiency and safety.Environmental issues, consumers expectations and the growing demand for freight transport have created a competitive environment in providing better transportation solutions. In this thesis, it is proposed that freight vehicles can be designed in a more cost- and energy-efficient manner if they are customized for narrow ranges of operational domains and transportation use-cases. For this purpose, optimization-based methods were applied to minimize the total cost of ownership and to deliver customized vehicles with tailored propulsion components that best fit the given transportation missions and operational environment. Optimization-based design of the vehicle components was found to be effective due to the simultaneous consideration of the optimization of the transportation mission infrastructure, including charging stations, loading-unloading, routing and fleet composition and size, especially in case of electrified propulsion. Implementing integrated vehicle hardware-transportation optimization could reduce the total cost of ownership by up to 35% in the case of battery electric heavy vehicles. Furthermore, in this thesis, the impacts of two future technological advancements, i.e., heavy vehicle electrification and automation, on road freight transport were discussed. It was shown that automation helps the adoption of battery electric heavy vehicles in freight transport. Moreover, the optimizations and simulations produced a large quantity of data that can help users to select the best vehicle in terms of the size, propulsion system, and driving system for a given transportation assignment. The results of the optimizations revealed that battery electric and hybrid heavy combination vehicles exhibit the lowest total cost of ownership in certain transportation scenarios. In these vehicles, propulsion can be distributed over different axles of different units, thus the front units may be pushed by the rear units. Therefore, online optimal energy management strategies were proposed in this thesis to optimally control the vehicle motion and propulsion in terms of the minimum energy usage and lateral stability. These involved detailed multitrailer vehicle modeling and the design and solution of nonlinear optimal control problems

    AFIT UAV Swarm Mission Planning and Simulation System

    Get PDF
    The purpose of this research is to design and implement a comprehensive mission planning system for swarms of autonomous aerial vehicles. The system integrates several problem domains including path planning, vehicle routing, and swarm behavior. The developed system consists of a parallel, multi-objective evolutionary algorithm-based path planner, a genetic algorithm-based vehicle router, and a parallel UAV swarm simulator. Each of the system\u27s three primary components are developed on AFIT\u27s Beowulf parallel computer clusters. Novel aspects of this research include: integrating terrain following technology into a swarm model as a means of detection avoidance, combining practical problems of path planning and routing into a comprehensive mission planning strategy, and the development of a swarm behavior model with path following capabilities

    Robust execution of bipedal walking tasks from biomechanical principles

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.Includes bibliographical references (p. 348-352).Effective use of robots in unstructured environments requires that they have sufficient autonomy and agility to execute task-level commands successfully. A challenging example of such a robot is a bipedal walking machine. Such a robot should be able to walk to a particular location within a particular time, while observing foot placement constraints, and avoiding a fall, if this is physically possible. Although stable walking machines have been built, the problem of task-level control, where the tasks have stringent state-space and temporal requirements, and where significant disturbances may occur, has not been studied extensively. This thesis addresses this problem through three objectives. The first is to devise a plan specification where task requirements are expressed in a qualitative form that provides for execution flexibility. The second is to develop a task-level executive that accepts such a plan, and outputs a sequence of control actions that result in successful plan execution. The third is to provide this executive with disturbance handling ability. Development of such an executive is challenging because the biped is highly nonlinear and has limited actuation due to its limited base of support. We address these challenges with three key innovations.(cont.) To address the nonlinearity, we develop a dynamic virtual model controller to linearize the biped, and thus, provide an abstracted biped that is easier to control. The controller is model-based, but uses a sliding control technique to compensate for model inaccuracy. To address the under-actuation, our system generates flow tubes, which define valid operating regions in the abstracted biped. The flow tubes represent sets of state trajectories that take into account dynamic limitations due to under-actuation, and also satisfy plan requirements. The executive keeps trajectories in the flow tubes by adjusting a small number of control parameters for key state variables in the abstracted biped, such as center of mass. Additionally, our system uses a novel strategy that employs angular momentum to enhance translational controllability of the system's center of mass. We evaluate our approach using a high-fidelity biped simulation. Tests include walking with foot-placement constraints, kicking a soccer ball, and disturbance recovery.by Andreas G. Hofmann.Ph.D

    An Intelligent Architecture for Legged Robot Terrain Classification Using Proprioceptive and Exteroceptive Data

    Get PDF
    In this thesis, we introduce a novel architecture called Intelligent Architecture for Legged Robot Terrain Classification Using Proprioceptive and Exteroceptive Data (iARTEC ) . The proposed architecture integrates different terrain characterization and classification with other robotic system components. Within iARTEC , we consider the problem of having a legged robot autonomously learn to identify different terrains. Robust terrain identification can be used to enhance the capabilities of legged robot systems, both in terms of locomotion and navigation. For example, a robot that has learned to differentiate sand from gravel can autonomously modify (or even select a different) path in favor of traversing over a better terrain. The same knowledge of the terrain type can also be used to guide a robot in order to avoid specific terrains. To tackle this problem, we developed four approaches for terrain characterization, classification, path planning, and control for a mobile legged robot. We developed a particle system inspired approach to estimate the robot footâ ground contact interaction forces. The approach is derived from the well known Bekkerâ s theory to estimate the contact forces based on its point contact model concepts. It is realistically model real-time 3-dimensional contact behaviors between rigid body objects and the soil. For a real-time capable implementation of this approach, its reformulated to use a lookup table generated from simple contact experiments of the robot foot with the terrain. Also, we introduced a short-range terrain classifier using the robot embodied data. The classifier is based on a supervised machine learning approach to optimize the classifier parameters and terrain it using proprioceptive sensor measurements. The learning framework preprocesses sensor data through channel reduction and filtering such that the classifier is trained on the feature vectors that are closely associated with terrain class. For the long-range terrain type prediction using the robot exteroceptive data, we present an online visual terrain classification system. It uses only a monocular camera with a feature-based terrain classification algorithm which is robust to changes in illumination and view points. For this algorithm, we extract local features of terrains using Speed Up Robust Feature (SURF). We encode the features using the Bag of Words (BoW) technique, and then classify the words using Support Vector Machines (SVMs). In addition, we described a terrain dependent navigation and path planning approach that is based on E* planer and employs a proposed metric that specifies the navigation costs associated terrain types. This generated path naturally avoids obstacles and favors terrains with lower values of the metric. At the low level, a proportional input-scaling controller is designed and implemented to autonomously steer the robot to follow the desired path in a stable manner. iARTEC performance was tested and validated experimentally using several different sensing modalities (proprioceptive and exteroceptive) and on the six legged robotic platform CREX. The results show that the proposed architecture integrating the aforementioned approaches with the robotic system allowed the robot to learn both robot-terrain interaction and remote terrain perception models, as well as the relations linking those models. This learning mechanism is performed according to the robot own embodied data. Based on the knowledge available, the approach makes use of the detected remote terrain classes to predict the most probable navigation behavior. With the assigned metric, the performance of the robot on a given terrain is predicted. This allows the navigation of the robot to be influenced by the learned models. Finally, we believe that iARTEC and the methods proposed in this thesis can likely also be implemented on other robot types (such as wheeled robots), although we did not test this option in our work

    Safe trajectory planning of AV

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2006.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 153-163).This thesis presents a novel framework for safe online trajectory planning of unmanned vehicles through partially unknown environments. The basic planning problem is formulated as a receding horizon optimization problem using mixed-integer linear programming (MILP) to incorporate kino-dynamic, obstacle avoidance and collision avoidance constraints. Agile vehicle dynamics are captured through a hybrid control architecture that combines several linear time-invariant modes with a discrete set of agile maneuvers. The latter are represented by affine transformations in the state space and can be described using a limited number of parameters. We specialize the approach to the case of a small-scale helicopter flying through an urban environment. Next, we introduce the concept of terminal feasible invariant sets in which a vehicle can remain for an indefinite period of time without colliding with obstacles or other vehicles. These sets are formulated as affine constraints on the last state of the planning horizon and as such are computed online. They guarantee feasibility of the receding horizon optimization at future time steps by providing an a priori known backup plan that is dynamically feasible and obstacle-free.(cont.) Vehicle safety is ensured by maintaining a feasible return trajectory at each receding horizon iteration. The feasibility and safety constraints are essential when the vehicle is maneuvering through environments that are only partially characterized and further explored online. Such a scenario was tested on an unmanned Boeing aircraft using scalable loiter circles as feasible invariant sets. The terminal feasible invariant set concept forms the basis for the construction of a provably safe distributed planning algorithm for multiple vehicles. Each vehicle then only computes its own trajectory while accounting for the latest plans and invariant sets of the other vehicles in its vicinity, i.e., of those whose reachable sets intersect with that of the planning vehicle. Conflicts are solved in real-time in a sequential fashion that maintains feasibility for all vehicles over all future receding horizon iterations. The algorithm is applied to the free flight paradigm in air traffic control and to a multi-helicopter relay network aimed at maintaining wireless line of sight communication in a cluttered environment.by Tom Schouwenaars.Ph.D

    Reports on industrial information technology. Vol. 12

    Get PDF
    The 12th volume of Reports on Industrial Information Technology presents some selected results of research achieved at the Institute of Industrial Information Technology during the last two years.These results have contributed to many cooperative projects with partners from academia and industry and cover current research interests including signal and image processing, pattern recognition, distributed systems, powerline communications, automotive applications, and robotics
    corecore