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Abstract

This thesis presents a novel framework for safe online trajectory planning of unmanned
vehicles through partially unknown environments. The basic planning problem is formulated
as a receding horizon optimization problem using mixed-integer linear programming (MILP)
to incorporate kino-dynamic, obstacle avoidance and collision avoidance constraints. Agile
vehicle dynamics are captured through a hybrid control architecture that combines several
linear time-invariant modes with a discrete set of agile maneuvers. The latter are represented
by affine transformations in the state space and can be described using a limited number
of parameters. We specialize the approach to the case of a small-scale helicopter flying
through an urban environment.

Next, we introduce the concept of terminal feasible invariant sets in which a vehicle can
remain for an indefinite period of time without colliding with obstacles or other vehicles.
These sets are formulated as affine constraints on the last state of the planning horizon and
as such are computed online. They guarantee feasibility of the receding horizon optimization
at future time steps by providing an a priori known backup plan that is dynamically feasible
and obstacle-free. Vehicle safety is ensured by maintaining a feasible return trajectory at
each receding horizon iteration. The feasibility and safety constraints are essential when
the vehicle is maneuvering through environments that are only partially characterized and
further explored online. Such a scenario was tested on an unmanned Boeing aircraft using
scalable loiter circles as feasible invariant sets.

The terminal feasible invariant set concept forms the basis for the construction of a
provably safe distributed planning algorithm for multiple vehicles. Each vehicle then only
computes its own trajectory while accounting for the latest plans and invariant sets of the
other vehicles in its vicinity, i.e., of those whose reachable sets intersect with that of the
planning vehicle. Conflicts are solved in real-time in a sequential fashion that maintains
feasibility for all vehicles over all future receding horizon iterations. The algorithm is applied
to the free flight paradigm in air traffic control and to a multi-helicopter relay network aimed
at maintaining wireless line of sight communication in a cluttered environment.

Thesis Supervisor: Eric Feron
Title: Associate Professor of Aeronautics and Astronautics

Thesis Supervisor: Jonathan P. How
Title: Associate Professor of Aeronautics and Astronautics

Thesis Supervisor: Munther Dahleh
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

1.1 Autonomous Trajectory Planning

1.1.1 Unmanned Vehicles

In recent years, autonomous vehicles have become increasingly important assets in various
civilian and military operations. A wide variety of robotic vehicles is currently in use
or being developed, ranging from unmanned fixed-wing aircraft, helicopters, blimps and
hovercraft to ground and planetary rovers, earth-orbiting spacecraft and deep-space probes.
Although the level of autonomy differs among the types of vehicles and the missions they
are used for, many such systems require no or minor human control from a base or ground
station. The primary reason for deploying autonomous vehicles is often a reduction in cost
or elimination of human risk associated with a particular mission: unmanned systems do
not require operator safety and life support systems, and can therefore be made smaller
and cheaper than their manned counterparts. Furthermore, autonomous vehicles enable
operations in remote or harsh environments and often possess the capability to operate
continuously or complete missions that are of longer duration than ones manned systems
are capable of.

In this dissertation, we are mainly interested in autonomous rotorcraft and fixed-wing
aircraft, or so-called unmanned aerial vehicles (UAVs). One such vehicle, Boeing’s UCAV,
is pictured in Figure 1-1. Although their development has primarily been motivated by
military needs [101], such as unmanned combat missions and reconnaissance and surveillance
operations, there are many civilian applications of interest. They include search and rescue
operations, surveillance of natural disaster sites such as (possibly remote) areas hit by
an earthquake or flood, and inspection of environments that are typically inaccessible to
humans, such as active volcanic craters or sites where high radioactive radiation is present.
Other applications are urban surveillance, traffic monitoring, weather observation, freight
services, and the creation of spectacular camera shots in the movie and advertising industry.
Some of these might require cooperative behavior between multiple vehicles. For example,
in an urban environment where wireless line of sight communication with a ground station is
obstructed by buildings, a team of multiple vehicles can act as an autonomous relay network.
Finally, autonomy technologies developed for UAVs can contribute to the improvement or
automation of the commercial air traffic management system.

17



Figure 1-1: Boeing’s Unmanned Combat Aerial Vehicle (UCAV)

1.1.2 Trajectory Planning Problem

Most UAVs that are currently operational, however, are flown remotely by a human pilot
or track predetermined waypoint plans. The operating costs can be further decreased and
the flexibility required in handling volatile or unexpected situations significantly improved
by increasing the level of autonomy. An essential part of that vehicle autonomy consists
of a trajectory planning and guidance system that enables it to safely maneuver through
a particular environment. This environment may contain obstacles and zones that the
vehicle is not allowed to enter and may not be fully characterized at the start of a mission.
Obstacles may be detected as the vehicle moves through the environment or their location
may change over time. A special case of non-stationary obstacles are other autonomous
agents with which collisions should be avoided. The vehicle should thus have the capability
to compute or update its path in real-time, i.e., as the mission unfolds, thereby accounting
for its dynamic and kinematic properties.

This thesis tackles various problems associated with online trajectory planning of UAVs
through cluttered environments and as such contributes to the desired increase in vehicle
autonomy. A precise mathematical definition of the trajectory planning problem will be
given in the next chapter, but for now the following less formal description suffices:

Trajectory Planning Problem: Given the present state of a single vehicle or team of
vehicles and a map of the environment, compute a trajectory towards a desired goal state
or configuration in real-time that optimizes a certain objective function while respecting the
kino-dynamic properties of the vehicle(s) and avoiding obstacles and collisions.

In what follows, we will also refer to trajectory planning as trajectory optimization, path
planning, or motion planning.

The specific characteristics of various vehicle types pose different challenges to the tra-
jectory optimization. For example, a ground vehicle and helicopter have the ability to stop
and go backwards, whereas a fixed-wing aircraft has to maintain a minimum velocity. Some
rovers and helicopters can make quick turns on the spot, but have a slower turn rate when
moving forward. Reconfiguring satellite clusters or spacecraft maneuvering around the In-
ternational Space Station have the additional requirement to avoid plume impingement on
solar panels when firing their thrusters. The framework presented in this dissertation will
be able to accommodate such vehicle-specific constraints.

Although the trajectory planning methodology developed in this thesis can be applied
to many autonomous vehicle types, we will focus on applications and scenarios for aerial
vehicles. Among the various types of UAVs, miniature helicopters form a special class and
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are particularly interesting for operations in cluttered environments. Besides their ability
to hover at a fixed location, fly at low speeds, and turn on the spot, they can exhibit very
agile behavior enabling quick obstacle avoidance in changing environments and fast nap
of-the-earth flight. Taking advantage of these capabilities in an automated fashion is one
of the problems tackled in this thesis.

1.1.3 Guidance System Hierarchy

To situate the trajectory planning problem more precisely, we consider a hierarchical de-
composition of an autonomous guidance system into three decision and control layers [89].
These can be viewed as levels of abstraction encapsulating the physical capabilities of the
vehicle and enabling an operator to interface with the vehicle at the mission assignment
level. In this hierarchy, shown in Figure 1-2, the lowest level consists of the physical control
layer. It stabilizes the vehicle dynamics and augments them with either an autopilot acting
as a waypoint follower or with a velocity control system tracking velocity and turn rate
commands. The waypoints or velocity commands are the output of the intermediate level,
which is the trajectory or motion planning layer. This layer is responsible for guiding the
vehicle from its present state to its desired location while optimizing a certain cost func-
tion, such as minimizing time, fuel or visibility, or maximizing the area explored in a search
operation. The obstacle and collision avoidance requirements, together with a closed-loop
model of the dynamics resulting from the lower control layer, thereby enter as constraints
in the trajectory optimization problem.

The third layer and highest level of abstraction is the overall mission planner. It lays out
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u x

u x

xd Updates

Mission Planning Level

Stabilizing Control Level

Human Operator

Physical Environment
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Figure 1-2: Hierarchical decomposition of a guidance system into three decision and control
layers
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a sequence of task waypoints that accomplish the particular mission and act as subsequent
goal locations at the intermediate trajectory planning level. Examples of such higher level
missions are the UAV applications given above. In case multiple vehicles are involved, this
layer is also responsible for the individual task assignment [130, 6, 113, 78]. To remain com-
putationally tractable, simplified descriptions of the environment and the vehicle’s physical
capabilities resulting from the lower levels are typically used when generating the mission
plan [27, 28, 99]. However, the various models used in this hierarchy should be consistent,
i.e. the behaviors commanded by the higher decision layers should be executable by the
lower layers [104, 105].

We can now say more specifically that this dissertation develops the intermediate trajec-
tory design level assuming that both the higher mission planning and lower physical control
layers are in place.

1.2 Literature Overview

Motion planning has been an important research topic in the field of robotics and arti-
ficial intelligence for several decades. The earliest methods tackled trajectory planning
for holonomic systems operating in an environment without obstacles and were based on
optimal control [1, 24] and nonlinear programming techniques [16]. A survey of such nu-
merical methods can be found in [20]. In this dissertation, however, we are interested
in tackling the motion planning problem in the presence of obstacles and other vehicles.
Many methods have been developed, and it is not our ambition to give a thorough sur-
vey of all of these. Instead, we will broadly distinguish between recent techniques based
on model predictive control (MPC) and earlier methods, many of which were developed
in the artificial intelligence community and some of which yielded fundamental complexity
results [110, 49, 111, 26].

1.2.1 Non-MPC Trajectory Planning Methods

The classic monograph by Latombe [72] presents many of the basic concepts and complexity
results related to robot motion planning. A more recent book by LaValle [74] also covers
the latest methods in the field. Other survey works include the papers by Schwartz and
Sharir [132, 133], Hwang and Narendra [54], and Latombe [73]. An overview of specific
methods for spacecraft formation flying and reconfiguration can be found in the work of
Sharf et al. [123, 124]. In addition, Frazzoli [35] gives a classification of the various kino-
dynamic motion planning problems in free or obstacle environments in terms of nonlinear
control problems.

Among the basic concepts in motion planning is the notion of the configuration space,
in which the size of the vehicle is added to the obstacles [80, 52]. As such, the vehicle
itself is reduced to a point mass. In case the orientation of the vehicle is of importance to
being able to pass an obstacle, e.g., in the so-called piano mover’s problem [110, 131, 77],
an extra dimension is introduced in which the size of the obstacle changes with the vehicle’s
orientation. The configuration space is generally used in the various algorithmic motion
planning methods.

The first methods developed in the artificial intelligence community were based on dy-
namic programming algorithms [17, 138] for graph searching formulations of the motion
planning problem. Among those are cell decomposition or surface covering methods in
which the configuration space is partitioned into a finite number of regions and the motion
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planning problem is reduced to finding a sequence of neighboring cells [80, 81]. Other graph
searching methods are so-called roadmap techniques where a network of feasible paths is
constructed among which a sequence of connecting paths between the initial and final con-
figuration is selected. Visibility graphs [82] and Voronoi diagrams [30] are examples of such
roadmap constructions.

Most of these early methods, however, use simplified kinematic models of the vehicles
or robots, which may lead to conservative results. For example, the full dynamic capa-
bilities may not be exploited, or a safety margin may have to be included that accounts
for uncertainties in the actual motion when the kinematic reference trajectory is tracked
by a lower level control law. Although they were initially used with kinematic models as
well [65, 151, 3], artificial potential field methods do allow to account for the dynamics of
the vehicle [92, 11, 119]. In these methods, obstacles and other vehicles are modeled as
repelling forces in a potential field by being embedded as peaks in a potential function.
Using numerical optimization techniques, the gradient of the latter is then used to steer the
vehicle towards the global minimum of the function corresponding to the desired state.

Although potential function methods can produce smooth, dynamically feasible trajec-
tories, they have several disadvantages. A first problem is that the vehicle might get trapped
in a local minimum. A second issue arises from the fact that obstacles are not modeled
as hard constraints. In addition, obstacles typically have to be modeled as continuous and
differentiable functions, leading to an imprecise description of the obstacle’s shape and di-
mensions. Especially when the vehicle has to maneuver through tight environments, these
soft constraints cannot provide hard avoidance guarantees.

Alternative methods that produce dynamically feasible trajectories with hard avoidance
guarantees are based on so-called rapidly-exploring random trees (RRTs) [75, 60]. These
trees consist of feasible trajectories that are built online by extending branches towards
randomly generated target states. The RRT methods form a subset of the larger class of
stochastic optimization [88] and randomized motion planning algorithms [61, 2], the first of
which were probabilistic roadmap (PRM) planners [62, 63, 51, 21]. PRM algorithms combine
an offline construction of a roadmap with a randomized online selection of an appropriate
path from the roadmap. Unlike RRT methods, however, these algorithms cannot be applied
in rapidly changing environments due to the offline construction of the roadmap.

Randomized algorithms were introduced to circumvent the intrinsic exponential com-
plexity of the motion planning problem. Reif [110] indeed showed that the problem of finding
a path for a robot consisting of several polyhedral parts through an environment with poly-
hedral obstacles is PSPACE-hard. Schwartz and Sharir [131] constructed an algorithm for
non-polyhedral obstacles whose time complexity is twice exponential in the dimension n
of the configuration space and polynomial in the number and degree of polynomial con-
straints describing the obstacles. Canny [26] found a more efficient algorithm that is single
exponential in n. Fundamental complexity results for problems involving multiple robots
were derived by Hopcroft et al. [49] and Reif and Sharir [111]. A topological approach to
establish the complexity of nonholonomic motion planning was carried out by Jean [58].

To further reduce the complexity associated with including the detailed vehicle dynamics
in the problem formulation, methods using motion primitives were introduced. Marigo and
Bicchi [87] used control quanta, whereas Frazzoli [35, 36] proposed the concept of a maneuver
automaton. The latter consists of a discrete set of trim conditions and transitions between
these trims that are called maneuvers. Using dynamic programming, a value function is
computed offline that gives the optimal time between a particular vehicle state and a desired
state, whereby the trajectories consist of a sequence of trims and maneuvers. The value
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function is used in an online control policy and obstacle avoidance is obtained using rapidly-
exploring random trees. In this dissertation, we will generalize this automaton framework to
an approach that includes continuous trim modes and permits to include obstacle avoidance
directly in the optimization.

Other recent methods that account for precise nonlinear dynamics are based on iterative
methods using splines [95, 79] or nonlinear programming [53, 108]. To be applicable in real-
time, however, they must be combined with a receding horizon planning strategy as is
discussed next.

1.2.2 MPC-based Trajectory Planning

The trajectory planning methodology and concepts that are developed in this thesis belong
to the class of model predictive control-based motion planning. Similarly to the randomized
and motion primitive approaches described above, these algorithms aim at reducing the
complexity of the planning problem and do so by repeatedly solving online a constrained
optimization problem over a finite planning horizon. At each iteration, a segment of the
total path is computed using on a dynamic model of the vehicle that predicts its future
behavior. More specifically, a sequence of control inputs and resulting vehicle states is
generated that meet the kino-dynamic and environment constraints and that optimize some
performance objective. Only a subset of these inputs is actually implemented, however, and
the optimization is repeated as the vehicle maneuvers and new measurements of the vehicle
states and the environment are obtained. As such, this approach is especially useful when
the environment is explored online.

Model predictive control (MPC) or receding horizon control (RHC) originated in the
process industry a few decades ago, and has since received wide attention in the broader
field of control theory and other applications. The benefits of the approach is that it allows
to naturally handle multivariable sytems, can systematically take actuator limitations into
account, and allows a system to operate closer to its constraints, therefore often resulting
in better performance [85]. The survey papers by Garcia et al. [38], Morari and Li [98],
Mayne et al. [91, 90], and Rawlings [109] offer a good introduction to the field.

Because of this flexibility, in recent years, receding horizon control has been introduced
to the problem of trajectory planning as well. Initially, most work only tackled problems
in obstacle-free environments [48, 57] or was limited to tracking predetermined trajectories
around obstacles [139]. However, Bemporad et al. [11] have used potential functions to
model obstacles and Dunbar et al. [32] have used splines to produce collision-free trajecto-
ries.

In [125, 127] an alternative receding horizon approach based on mixed-integer linear
programming (MILP) was introduced. MILP is a powerful optimization framework that
allows inclusion of integer variables and discrete logic in a continuous linear optimization
problem. These variables can be used to model logical constraints such as obstacle and
collision avoidance rules, while the dynamic and kinematic properties of the vehicle are
formulated as continuous constraints. An overview of applications and algorithms to solve
MILP problems can be found in [33]. It is still an active research topic in the field of
Operations Research [144, 152], and the state of the art in cutting plane methods, branch-
and-bound algorithms, integral basis methods, and approximation algorithms is covered in
the recent book by Bertsimas and Weismantel [19].

The main advantage of using MILP for trajectory planning is that it can systemati-
cally handle hard obstacle and collision avoidance constraints and allows to include other
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decision features such as task assignment into the optimization problem. Moreover, the
algorithms are complete, i.e., they give a feasible solution if one exists. Although devel-
oped independently in [127], the MILP-based trajectory planning approach is a special
case of the broader class of control for mixed logical dynamical (MLD) systems, developed
by Bemporad and Morari in [12]. They provide a general method for formulating hybrid
system dynamics in a mathematical framework using a combination of real and binary
variables. Explicit solutions for piecewise linear optimal controllers were later derived via
off-line multi-parametric MILP [9, 22]. Such controllers divide the space into polyhedral
regions in which different linear controllers are optimal. The results for MLD systems ex-
tended earlier results for discrete-time linear time-invariant systems that were based on
multi-parametric quadratic [14] and linear programming [10] for finding the optimal MPC
controllers explicitly.

Unfortunately, although these methods provide an elegant solution to the general prob-
lem, they cannot handle the computational complexity of a typical trajectory planning
problem and are not very useful in dynamic environments. Online optimization of a less
general (i.e., smaller) problem for specific initial vehicle states is therefore of more interest.
As demonstrated by the results in [116] and [129], thanks to the increase in computer speed
and implementation of powerful state of the art algorithms in software packages such as
CPLEX [56], MILP has become a feasible option for real-time path planning. Throughout
this dissertation, we will provide more references to ongoing research and work on related
topics and alternative approaches that was done in parallel at MIT and other universities.

1.3 Statement of Contributions

This thesis presents several new concepts for receding horizon trajectory planning of both
single and multiple vehicles. The majority of the ideas and algorithms that are introduced
can be considered independent of the underlying optimization method and as such can be
generally used with path planning techniques other than MILP. Furthermore, some of the
concepts fit within the broader field of MPC of hybrid systems. In this dissertation, however,
we restrict ourselves to guidance problems and choose to illustrate the theory using MILP
as the implementation framework. The contributions of this thesis can then be stated as
follows:

• We introduce a general hybrid dynamic model for trajectory planning of highly agile
vehicles. The proposed control architecture combines a velocity control system con-
sisting of various continuous linear time-invariant modes with a discrete set of agile
maneuvers. The latter are represented by affine transformations in the state space
and can be described using a limited number of parameters such as the maneuver
duration, displacement, and ingress and egress conditions such as entrance and exit
velocity. The model efficiently captures the agile, nonlinear capabilities of the vehicle
in a way that is well-suited for real-time trajectory planning using MILP. Compared
to the maneuver automaton from [35], the required library of LTI modes and agile
maneuvers is much smaller, more precise navigation is possible and obstacle avoid-
ance constraints can be directly included in the trajectory optimization. We specialize
the approach to a model of a small-scale rotorcraft based on MIT’s aerobatic X-Cell
helicopter.

• We extend the principle of receding horizon trajectory planning by including feasibil-
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ity and safety guarantees in the problem formulation. We introduce the concept of a
terminal feasible invariant set in which the vehicle can safely remain for an indefinite
period of time. These sets are expressed as collections of affine transformations of the
last state in the planning horizon and as such are computed online. Constraining the
receding horizon trajectory computed at each iteration to terminate in such an invari-
ant set guarantees nominal feasibility of the optimization problem at all future time
steps. Safety is ensured by maintaining an a priori known backtrack trajectory that
is updated at each receding horizon iteration. The feasibility and safety constraints
are essential when maneuvering through environments that are only partially char-
acterized and further explored online. Unlike other approaches such as [4, 146] our
formulation does not require intensive off-line computations of fixed invariant sets. As
such, it allows for more flexible and less conservative solutions for maintaining vehicle
safety through cluttered environments.

• We use the terminal feasible invariant set concept for single vehicles to develop a
new and fast algorithm for provably safe distributed trajectory planning for multiple
vehicles. All vehicles that are within a certain conflict zone of each other will subse-
quently update and broadcast their paths. Each vehicle thereby only plans its own
trajectory using a receding horizon strategy that accounts for the latest plans of all
other vehicles in the conflict zone. The algorithm is applied to multiple aircraft where
future feasibility of the planning problem is guaranteed by maintaining dynamically
feasible trajectories for all aircraft that terminate in non-intersecting loiter patterns.
Besides maintaining feasibility, if the problem is too complex to be solved within the
time constraints of a real-time system, our approach also provides a priori safe rescue
solutions for each vehicle. The algorithm is also applicable to maintaining nominal
feasibility of a general distributed planning problem and can be used with any tra-
jectory optimization technique that has collision avoidance guarantees. We present a
MILP implementation and corresponding collision avoidance constraints.

• A proof-of-concept application is given of MILP-based multi-vehicle receding horizon
path planning with feasibility guarantees. The problem of interest is to maintain
wireless communication between a ground station and a vehicle that is performing a
mission in a cluttered environment. Relay agents are therefore introduced that must
be positioned throughout the environment in such a way that an indirect line of sight
connection with the ground station is always maintained. We present a centralized
and a distributed receding horizon algorithm that achieves such cooperation in a way
that is more flexible than existing approaches. Feasibility at future time steps is
ensured by using hover states as terminal feasible invariant sets. Obstacle avoidance,
connectivity and collision avoidance constraints are again formulated using MILP. A
first-time flight-test of multi-vehicle online MILP-based trajectory planning with two
helicopters through a real obstacle environment was performed.

• Successful implementation and flight-test demonstration of single vehicle MILP-based
receding horizon trajectory planning were done using an autonomous T-33 aircraft. In
cooperation with Boeing Phantom Works and as part of DARPA’s Software Enabled
Control Program, a mission was flown through a partially unknown environment.
Obstacle-free trajectories with feasibility guarantees were computed on-board the ve-
hicle in real-time, adapting the flight path to pop-up no-fly zones and changing mission
tasks.
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• Numerous improvements to the basic MILP path planning formulation as introduced
in [127, 125] are made. An efficient representation of arbitrarily shaped non-convex
obstacles is developed that requires fewer binary variables and inequalities. Several
vehicle models with new kino-dynamic constraints are introduced that capture heli-
copter and fixed-wing dynamics more precisely than the basic double integrator model.
Alternative cost functions are presented for minimum time trajectories that yield com-
parable results but are much faster than exact shortest time formulations and allow for
shorter planning horizons. Finally, several simplifications and heuristics are discussed
that reduce the computational requirements in practical implementations.

1.4 Thesis Outline

The dissertation is organized as follows. Chapter 2 formalizes the basic receding horizon
trajectory planning problem for single and multiple vehicles. The corresponding MILP for-
mulation and various example scenarios for navigation through a cluttered environment are
given. Chapter 3 then presents a hybrid control architecture for agile vehicles that enables
inclusion of nonlinear maneuvers in the receding horizon optimization problem. Next, Chap-
ter 4 extends the basic receding horizon strategy to include feasibility and safety constraints.
It introduces the concept of a terminal feasible invariant set that is computed online and
should be reachable from all states along the trajectory. Various simulation scenarios in
which the feasibility and/or safety constraints prove to be essential are presented. Chap-
ter 5 then uses the terminal feasible invariant set principle for a single vehicle to construct
a safe distributed planning algorithm for multiple vehicles. A detailed description of the
algorithm along with a formal feasibility proof and simulation results for multiple aircraft
are given. In Chapter 6, the concepts of the previous chapters are combined and applied to
the problem of multi-vehicle path planning for maintaining indirect line of sight communi-
cation between vehicles in a cluttered environment. Simulation, hardware in the loop and
flight-test results of a two-helicopter mission are given. Next, Chapter 7 presents another
flight-test demonstration involving a piloted F-15 and an autonomous T-33 aircraft guided
by a MILP-based trajectory planner. An overview of the software architecture and natural
language interface between the vehicles is given, and details and results of the MILP-based
guidance system are discussed. Chapter 8 then concludes the thesis and outlines some topics
for future work.
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Chapter 2

Receding Horizon Trajectory
Planning

This chapter presents the basic trajectory planning problem for single and multiple vehicles
using a receding horizon planning strategy. A high-level mathematical problem statement
is given in the form of an online optimization problem for which a mixed-integer program-
ming implementation is worked out in detail. Constraints for general obstacle and collision
avoidance are presented and a cost function is introduced that automatically switches from
an approximate to an exact minimum time objective once the goal is within reach. The
generality and flexibility of the MILP-based trajectory planning approach are illustrated
through several single and multi-vehicle scenarios.

2.1 Introduction

As discussed in Chapter 1, over the last decade, both civilian and military institutions
have expressed increased interest in the use of fully autonomous aircraft and helicopters or
so-called unmanned aerial vehicles (UAVs) [101]. Such systems need no, or minor, human
control from a ground station, thereby reducing operating costs and enabling missions in
harsh or remote environments. A significant part of the vehicle autonomy consists of its
path planning capabilities: the problem is to guide the vehicle through an obstacle field
while accounting for its dynamic and kinematic properties.

In many applications, a detailed map of the environment is not available ahead of
time, and obstacles are detected while the mission is carried out. In this chapter, we
consider scenarios where the environment is only known within a certain detection radius
around the vehicle. We assume that within that region, the environment is static and fully
characterized. The knowledge of the environment could either be gathered through the
detection capabilities of the vehicle itself, or result from cooperation with another, more
sophisticated agent [94, 149].

Since the environment is explored online, a trajectory from a start to a destination lo-
cation typically needs to be computed gradually over time, i.e., while the mission unfolds.
This calls for a receding horizon strategy, in which a new segment of the total path is
computed at each time step by solving a constrained optimization problem over a limited
horizon. In [125, 127] a receding horizon approach based on mixed-integer linear program-
ming was introduced that provides hard obstacle and collision avoidance guarantees, and
allows inclusion of other non-convex state and input constraints. The basic MILP receding
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horizon formulation presented in [127] was extended to account for local minima in [7]. In
the latter, a cost-to-go function was introduced based on a graph representation of the whole
environment between start and end point that guaranteed stability in the sense of reaching
the goal. The approach has been further extended to account for turn rate constraints
in [68] and for planning through three dimensional environments in [69].

In this chapter, however, we assume that the environment is not fully characterized
before the mission. As such, a visibility graph as in [7] can only be constructed locally using
a line of sight approximation of the distance to the goal beyond the detection radius. Such a
heuristic will be used in Chapter 7. Here we will instead return to the basic formulation and
focus on the dynamic, kinematic, obstacle avoidance and collision avoidance constraints. An
extended MILP formulation for avoidance of arbitrarily shaped non-convex obstacles and
a new switching cost function for guiding a vehicle to its goal state in a fast way are
introduced.

2.2 Problem Formulation

2.2.1 Problem Setup

This section presents the basic trajectory planning problem for a team of vehicles that
was outlined in Chapter 1 more formally. Let the various agents be denoted by an index
i = 1, . . . , V . For optimization purposes, the dynamics of each vehicle are characterized by
discrete-time, linear state space models as follows:

xi(t + 1) = Aixi(t) + Biui(t), i = 1, . . . , V (2.1)

where xi(t) ∈ R
Nx is the state vector and ui(t) ∈ R

Nu is the input vector at the tth time
step. The state vector xi(t) is typically made up of the position and velocity in a 3D inertial
coordinate frame (east, north, altitude), respectively denoted by pi(t) ≡ [xi(t) yi(t) zi(t)]

′ ∈
R

3 and vi(t) ≡ [ẋi(t) ẏi(t) żi(t)]
′ ∈ R

3. A trajectory will then consist of a sequence of states
xi(t) ≡ [p′

i(t) v′
i(t)]

′ or generalized waypoints that the vehicle must follow.

Depending on the particular model, the input vector ui(t) is a 3D inertial acceleration
or reference velocity vector. In both cases, however, combined with additional constraints
on xi(t) and ui(t), the state space model (2.1) must capture the closed-loop dynamics that
result from augmenting the vehicle with a waypoint or velocity tracking controller. These
constraints should capture kinematic and dynamic properties such as maximum speed,
acceleration and turn rate, and will be denoted as follows: xi(t) ∈ Xi(t) and ui(t) ∈ Ui(t).
Note that the constraint sets Xi(t) and Ui(t) are time-dependent, which accommodates the
use of robust planning approaches such as constraint tightening [46, 115].

Accounting for the vehicle dynamics in the trajectory planning problem will ensure
that the trajectories are dynamically feasible, i.e., that the vehicles can execute or track
them. Besides the dynamics, feasibility will be affected by the presence of obstacles in the
environment, such as buildings, hills or other no-fly zones. We define the set Oi ⊂ R

3 of all
obstacles that are relevant to vehicle i as the regions in the inertial space that the vehicle is
forbidden to enter: pi(t) /∈ Oi. By “relevant” we mean that the sets Oi include all obstacles
that are located within the distance that is reachable from the initial position of vehicle i
over one planning horizon. If the environment within that radius is only partially-known,
the unknown areas should be modeled as obstacles too. The features of the environment
beyond this planning radius are irrelevant for the trajectory optimization at time t.
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As is common practice in the field of robot motion planning, the actual obstacles are
enlarged with the dimensions of the vehicle, such that the vehicle itself can be treated as a
point in this so-called configuration space [72, 52]. We summarize as follows:

Definition 2.1 (Obstacle Avoidance): We say that there is obstacle avoidance for
vehicle i if pi(t) /∈ Oi, where pi(t) ∈ R

3 is the inertial position and Oi ⊂ R
3 represents the

set of all forbidden regions in the environment that are relevant for vehicle i. The members
of Oi are the actual obstacles enlarged with the largest dimension of the vehicle.

Furthermore, in order to avoid collisions, the vehicles should remain at a safe distance
dsafe from each other at all time. In general, this distance may be different for each vehicle,
but for simplicity of notation, we consider it the same for all. The collision avoidance
requirement can thus be expressed as follows:

Definition 2.2 (Collision Avoidance): We say that there is collision avoidance if the
Euclidean separation distance between all pairs of vehicles (i, j), i = 1, . . . , V − 1, j > i, is
greater than or equal to a certain safety margin dsafe: dij = ‖pi − pj‖ ≥ dsafe.

The overall goal of the trajectory planning problem is then for the vehicles to perform
a certain task while satisfying the preceding constraints and optimizing an associated cost.
The cost function can be a measure of time, fuel or a more sophisticated criterion such as
visibility w.r.t. a threat or radar. The task for each vehicle i will typically be specified as
having to fly to a certain waypoint of interest, denoted as the final state xf,i ≡ [p′

f,i v′
f,i]

′.
This waypoint could be an intermediate state along a more elaborate flight plan or mission
that was designed by a higher level decision unit [5, 89, 130]. In that case, the path planner
will consider the subsequent waypoints as a series of independent tasks that are only cou-
pled by the entry/exit conditions at each waypoint. As such, we are assuming that the task
assignment and trajectory planning problems are decoupled, which – for reasons of compu-
tational tractability– is standard practice in the UAV and robotics literature [6, 78, 113].
An example of how a choice of target states can be incorporated in the optimization prob-
lem can be found in [117]. Finally, in this chapter, we focus on a centralized approach, in
which one entity (e.g., a ground station) computes trajectories for all vehicles simultane-
ously. An extension to distributed strategies where each agent optimizes its own trajectory
is presented in Chapter 5.

2.2.2 Receding Horizon Planning

Depending on the number of vehicles and the distance they have to travel, computing
complete trajectories from start to finish at once might be computationally too expensive.
Indeed, it is known that, even for a single vehicle, motion planning is a PSPACE-hard
problem [110, 49]. Moreover, the environment is only partially-known and further explored
in real-time. The trajectories will therefore have to be computed gradually over time while
the mission unfolds. This can be accomplished using an online receding horizon strategy,
in which partial trajectories from the current states xi(t) towards the goal states xf,i are
computed by solving the trajectory optimization problem over a limited horizon of T time
steps. This provides a sequence of T new states/waypoints and corresponding control
inputs for each of the vehicles. However, only a subset of the control sequence is actually
implemented: e.g., only the first waypoint of each vehicle is given to the respective waypoint
controllers, or the first velocity command is executed. The process is then repeated at the
next time step t + 1, and so on until the vehicles reach their respective goals. As such, new
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measurements of the states of the vehicles and new information about the environment can
be taken into account at each iteration.

Let the sequence of T steps starting at time t be denoted by indices (t + k|t). For
each vehicle i = 1, . . . , V , the corresponding state and control sequence is then given by
xi(t + k|t), k = 0, . . . , T and ui(t + k|t), k = 0, . . . , T − 1. Because of the computation
delay, however, the trajectories starting at time step t must be computed during time step
t − 1, i.e., when the helicopters are on their way to the initial states xi(t + 0|t) of the new
optimization problem. Hence, the initial states xi(t|t) should be predictions x̂i(t|t − 1) =
[p̂′

i(t|t − 1) v̂′
i(t|t − 1)]′ made during the previous time step t − 1 of what the position and

velocity of the vehicles will be when the plan is actually implemented at the start of time
step t. In the nominal case, where no disturbances are acting on the vehicles and there
are no uncertainties in the dynamic model (2.1), the predicted state is identical to the first
state xi(t|t − 1) of the previous plan: xi(t|t) = x̂i(t|t − 1) ≡ xi(t|t − 1). We will make this
assumption throughout the remainder of this and the next chapters. Alternatively, this is
equivalent to assuming that the vehicles are equipped with accurate waypoint controllers
that can exactly track the desired trajectories. Including robustness against disturbances
could be done using constraint tightening methods [46, 71, 112]; accounting for uncertainties
in the vehicle models is still a topic of ongoing research.

2.2.3 Optimization Problem

Multiple Vehicles

As discussed previously, the primary objective of the trajectory optimization problem is to
guide the vehicles to their goal states xf,i, thereby optimizing a certain performance criterion
and avoiding obstacles and collisions. To capture the actions of all vehicles simultaneously,
we introduce an objective function JT of the following form:

JT =
V

∑

i=1

T−1
∑

k=0

ℓi,k(xi(t + k|t), ui(t + k|t), xf,i) + fT,i(xi(t + T |t), xf,i) (2.2)

in which ℓi,k(·) indicates the stage cost associated with vehicle i at the kth time step, and
fT,i(·) represents a terminal cost function.

According to Bellman’s principle of optimality [8], the ideal terminal cost is the exact
cost-to-go (e.g., time-to-go) from the last state xi(t + T |t) in the planning horizon to the
desired state xf,i. However, computing the exact cost-to-go generally requires solving a fixed
horizon problem from the last state in the planning horizon, thus defeating the benefits of
using a receding horizon policy. Moreover, the exact cost-to-go might be unknown if the
environment is not fully characterized. Hence, heuristic methods are often used to generate
estimates of the cost-to-go that guarantee some form of stability (e.g., reaching the goal
without getting trapped in local minima of the cost function) and some level of performance
(e.g., bounds on suboptimality) [7, 91].

The centralized multi-vehicle trajectory optimization problem at time t can now be
formulated as:

J∗
T = min

xi(·),ui(·)

V
∑

i=1

T−1
∑

k=0

ℓi,k(xi(t + k|t), ui(t + k|t), xf,i) + fT,i(xi(t + T |t), xf,i) (2.3)
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subject to: ∀i = 1, . . . , V :

xi(t + k + 1|t) = Aixi(t + k|t) + Biui(t + k|t), k = 0, . . . , T − 1 (2.4)

xi(t|t) = x̂i(t|t − 1) (2.5)

xi(t + k|t) ∈ Xi(k), k = 1, . . . , T (2.6)

ui(t + k|t) ∈ Ui(k), k = 0, . . . , T − 1 (2.7)

pi(t + k|t) /∈ Oa,i(t), k = 1, . . . , T (2.8)

‖pi(t + k|t) − pj(t + k|t)‖ ≥ dsafe, j ≥ i + 1, k = 1, . . . , T (2.9)

Since the problem only makes sense if the initial states xi(t|t) are feasible, the state con-
straints on the first time step were removed: if they did not hold, the optimization problem
would be infeasible from the start. Furthermore, to prevent the discrete-time trajectories
from cutting corners of obstacles in between two time steps, the obstacle sets Oa,i contain
the actual obstacles enlarged with a safety envelope. The trajectories may then cut through
the envelope instead, but will avoid the actual obstacles.

Single Vehicle

For a single vehicle, the trajectory optimization (2.3)-(2.9) reduces to the following problem:

J∗
T = min

T−1
∑

k=0

ℓk(x(t + k|t), u(t + k|t), xf ) + fT (x(t + T |t), xf ) (2.10)

subject to:

x(t + k + 1|t) = Ax(t + k|t) + Bu(t + k|t), k = 0, . . . , T − 1 (2.11)

x(t|t) = x̂(t|t − 1) (2.12)

x(t + k|t) ∈ X (k), k = 1, . . . , T (2.13)

u(t + k|t) ∈ U(k), k = 0, . . . , T − 1 (2.14)

p(t + k|t) /∈ Oa(t), k = 1, . . . , T (2.15)

which now only contains obstacle avoidance constraints.

2.3 MILP Formulation

The optimization problem outlined above lends itself well to be formulated as a mixed-
integer linear program. Mixed-integer linear programming (MILP) is a powerful optimiza-
tion framework that allows inclusion of integer variables and discrete logic in a continuous
linear optimization problem. An overview of applications and algorithms to solve such
problems can be found in [33]. MILP is still an active research topic in operations re-
search [144, 152], and the state of the art in cutting plane methods, integral basis methods,
enumerative methods, and approximation algorithms is covered in the recent book by Bert-
simas and Weismantel [19].
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2.3.1 Mixed Integer Linear Programming

As an illustration of how logical decisions can be incorporated in an optimization problem,
consider the following example. Assume that a cost function J(x) needs to be minimized
subject to either one of two constraints ℓ1(x) and ℓ2(x) on the continuous decision vector
x:

min
x

J(x)

subject to:
ℓ1(x) ≤ 0

OR ℓ2(x) ≤ 0

(2.16)

By introducing a large positive number M and a binary variable b, this optimization problem
can equivalently be formulated as follows:

min
x

J(x)

subject to:
ℓ1(x) ≤ Mb

AND ℓ2(x) ≤ M(1 − b)
b ∈ {0, 1}

(2.17)

When b = 0, constraint ℓ1(x) must be satisfied, whereas ℓ2(x) is relaxed. Namely, if M
is chosen sufficiently large, ℓ2(x) ≤ M(1 − b) is always satisfied independent of the value
of x. The situation is reversed when b = 1. Since b can only take the binary values 0 or
1, at least one of the constraints ℓ1(x) and ℓ2(x) will be satisfied, which is equivalent to
the original “OR”-formulation (2.16). In the special case where J(x), ℓ1(x) and ℓ2(x) are
(affine) linear expressions, problem (2.17) is a MILP.

The formulation can easily be extended to account for multiple constraints ℓk(x), k =
1, . . . , K, out of which at least N must be satisfied simultaneously. This is done as follows:

min
x

J(x)

subject to:
ℓk(x) ≤ Mbk, k = 1, . . . , K
∑

k

bk ≤ K − N

bk ∈ {0, 1}

(2.18)

The additional summation constraint ensures that at least N of the binary variables bk are 0,
thus guaranteeing that at least N of the inequalities ℓk(x) ≤ 0 are satisfied simultaneously.
More generally, using a vector b of binary variables, any polyhedron or intersection of
polyhedra described by linear constraints on a continuous decision vector x can then be
described as follows:

Lx + Mb + k ≤ 0 (2.19)

The constant matrix M and vector k contain large numbers M and integer constants K
and N that can encode any binary logic such as that of problem (2.18).

2.3.2 Vehicle Dynamics

In the trajectory planning problem, the continuous optimization is done over the states
and inputs, while binary variables are introduced to capture non-convex constraints such
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Figure 2-1: Approximation of minimum and maximum velocity bounds by polygons.

as obstacle avoidance, collision avoidance and minimum velocity requirements. Since the
structure of the optimization problem is the same at every receding horizon iteration, in
what follows, we will shorten the time step index (t + k|k) to k to simplify the notation.

Although it is possible to use more complicated models, for the basic problem presented
in this chapter, it is sufficient to approximate the vehicle dynamics by a double integrator
model with constraints on speed and acceleration. Alternative models will be introduced
in later chapters. The 3D discrete-time, unconstrained double integrator dynamics used for
now are the following:

[

pi(k + 1)
vi(k + 1)

]

=

[

I3 ∆tI3

O3 I3

] [

pi(k)
vi(k)

]

+

[

(∆t)2

2 I3

∆tI3

]

ai(k) (2.20)

where ai(k) ≡ [ẍi(k) ÿi(k) z̈i(k)]′ is the inertial acceleration vector, ∆t is the time dis-
cretization step, and I3 and O3 represent identity and zero matrices of size 3x3.

We use the above dynamic model for both fixed-wing aircraft and rotorcraft scenarios.
In the fixed-wing case, however, we will only consider 2D scenarios with corresponding 2D
double integrator dynamics. Limiting the magnitude of the planar velocity and acceler-
ation vectors can then be accomplished by approximating their 2-norms ‖[ẋi(k) ẏi(k)]′‖
and ‖[ẍi(k) ÿi(k)]′‖ by the edges of an N -sided polygon (see Figure 2-1). This yields the
following set of linear inequalities:

ẋi(k) sin

(

2πn

N

)

+ ẏi(k) cos

(

2πn

N

)

≤ vmax,i, n = 1, . . . , N, k = 1, . . . , T (2.21)

ẍi(k) sin

(

2πn

N

)

+ ÿi(k) cos

(

2πn

N

)

≤ amax,i, n = 1, . . . , N, k = 0, . . . , T − 1(2.22)

For coordinated turns, inequalities (2.22) also implicitly express a constraint on the maxi-
mum turn rate ωmax,i: it is limited to amax,i/vmax,i at the maximum speed and to amax,i/vmin,i

at the minimum speed [114].

Since a fixed-wing aircraft has to produce enough lift to keep flying, it must maintain
a minimum velocity vmin. As shown in Figure 2-1, this requirement can be expressed by
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forcing the velocity vector to lie outside a circle of radius vmin. By again approximating the
circle by an N -sided polygon, this non-convex constraint can be captured by the following
inequalities [125, 114]:

ẋi(k) sin

(

2πn

N

)

+ ẏi(k) cos

(

2πn

N

)

≥ vmin,i − Mcin(k), n = 1 . . . N, k = 1 . . . T(2.23)

N
∑

n=1

cin(k) ≤ N − 1 (2.24)

cin(k) ∈ {0, 1} (2.25)

where cin(k) are binary variables and M is a sufficiently large constant number. As in
problem (2.18), these constraints ensure that the velocity vector lies in at least one of the
outer halfplanes defined by the edges of the polygon, as opposed to lying in all of the inner
halfplanes as for the convex maximum speed constraint. Inequalities (2.21) and (2.23)-(2.24)
on the one hand, and (2.22) on the other hand, then respectively express the non-convex
state and convex input constraint sets Xi(k) and Ui(k) for the 2D fixed-wing UAV.

For the 3D helicopter case, the altitude dynamics can typically be considered decoupled
from the planar x-y ones [39]. The limits on climb/descend rate and acceleration can then
be expressed as follows:

żmin,i ≤ żi(k) ≤ żmax,i, k = 1, . . . , T (2.26)

z̈min,i ≤ z̈i(k) ≤ z̈max,i, k = 0, . . . , T − 1 (2.27)

Moreover, since a helicopter has the ability to hover, no minimum speed constraints must be
accounted for in the trajectory planning problem. The state constraint sets Xi(k) are now
given by inequalities (2.21) and (2.26), the input sets Ui(k) are formed by constraints (2.22)
and (2.27).

2.3.3 Obstacle Avoidance

Let an index o denote the individual obstacles in Oa,i ⊂ R
3, with Oa,i the set of enlarged

obstacles that are within reach of vehicle i at the current planning iteration. Since our
objective is to use linear optimization techniques, an arbitrarily shaped obstacle o is first
approximated by a (possibly non-convex) polyhedron Pio. Next, we construct the convex
hull of Pio and denote each of the resulting faces by an index e, e = 1, . . . , Hio. A sufficient
condition for obstacle avoidance is then that all points along the planned trajectory of vehicle
i lie outside this convex hull, i.e., in at least one of the outer halfspaces determined by the
faces e. Let these halfspaces be described by uioex+vioey+wioez +hioe ≤ 0, e = 1, . . . , Hio.
Avoidance of obstacle o by vehicle i can then be expressed as:

∀k = 1, . . . , T : uio1xi(k) + vio1yi(k) + wio1zi(k) + hio1 ≤ 0
OR uio2xi(k) + vio2yi(k) + wio2zi(k) + hio2 ≤ 0

...
...

OR uioHio
xi(k) + vioHio

yi(k) + wioHio
zi(k) + hioHio

≤ 0

(2.28)
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To capture these logical OR constraints in a mathematical fashion, we introduce binary
variables bioe(k) ∈ {0, 1}, e = 1, . . . , Hio, and modify expressions (2.28) as follows:

∀k = 1, . . . , T : uio1xi(k) + vio1yi(k) + wio1zi(k) + hio1 ≤ Mbio1(k)
AND uio2xi(k) + vio2yi(k) + wio2zi(k) + hio2 ≤ Mbio2(k)

...
...

AND uioHio
xi(k) + vioHio

yi(k) + wioHio
zi(k) + hioHio

≤ MbioHio
(k)

AND

Hio
∑

e=1

bioe(k) ≤ Hio − 1

(2.29)

Here M is again an arbitrary constant that is larger than any of the values the left-hand
sides of the inequalities can take in the current planning problem. Then, if bioe(k) =
1 for a particular e, the corresponding inequality is relaxed and always satisfied. As in
problem (2.18), the last constraint ensures that at least one of the binaries bioe(k) is 0, such
that at least one of the original OR inequalities holds and obstacle avoidance is guaranteed.

For example, for a rectangular obstacle that is aligned with the xyz-coordinate frame,
the avoidance constraints can be expressed as:

∀k = 1, . . . , T : xi(k) ≤ xo,min + Mbio1(k)
yi(k) ≤ yo,min + Mbio2(k)
zi(k) ≤ zo,min + Mbio3(k)

−xi(k) ≤ −xo,max + Mbio4(k)
−yi(k) ≤ −yo,max + Mbio5(k)
−zi(k) ≤ −zo,max + Mbio6(k)

6
∑

e=1

bioe(k) ≤ 5

(2.30)

where (xo,min, yo,min, zo,min) and (xo,max, yo,max, zo,max) respectively denote the vertices

(a) Actual obstacle shape (b) Polytopic approximation

Figure 2-2: Approximation of an arbitrary 2D obstacle by its convex hull and with convex
polygons filling up the concavities. The vehicle is allowed to be inside the red areas, but
must stay outside the grey area.
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with the smallest and largest coordinates in each direction. In case zo,min equals the ground
level z0, the corresponding inequality can be dropped and replaced by zi(k) ≥ z0. Accord-
ingly, the sum of the 5 remaining binaries should then be less than 4.

If the surrounding polyhedron Pio is nonconvex, trajectory points can also lie inside
concavities that are reachable from the outside. By partitioning each concavity into convex
polyhedral parts c, c = 1, . . . , Cio, an additional binary b̂ioc(k) for each of these parts can be
introduced that captures several inequalities at once. Figure 2-2 shows an example of such
a partitioning. Let the faces g and corresponding inner halfspaces of each of the convex
parts c be described by ûg

iocx + v̂g
iocy + ŵg

iocz + ĥg
ioc ≤ 0, g = 1, . . . , Gioc. The avoidance

logic (2.28) can then be extended as follows:

∀k = 1, . . . , T : uio1xi(k) + vio1yi(k) + wio1zi(k) + hio1 ≤ 0
OR uio2xi(k) + vio2yi(k) + wio2zi(k) + hio2 ≤ 0

...
...

OR uioHio
xi(k) + vioHio

yi(k) + wioHio
zi(k) + hioHio

(k) ≤ 0

OR û1
io1xi(k) + v̂1

io1yi(k) + ŵ1
io1zi(k) + ĥ1

io1 ≤ 0

AND û2
io1xi(k) + v̂2

io1yi(k) + ŵ2
io1zi(k) + ĥ2

io1 ≤ 0
...

...

AND ûGio1

io1 xi(k) + v̂Gio1

io1 yi(k) + ŵGio1

io1 zi(k) + ĥGio1

io1 ≤ 0
...

...

OR û1
ioCio

xi(k) + v̂1
ioCio

yi(k) + ŵ1
ioCio

zi(k) + ĥ1
ioCio

≤ 0

AND û2
ioCio

xi(k) + v̂2
ioCio

yi(k) + ŵ2
ioCio

zi(k) + ĥ2
ioCio

≤ 0
...

...

AND û
GioCio

ioCio
xi(k) + v̂

GioCio

ioCio
yi(k) + ŵ

GioCio

ioCio
zi(k) + ĥ

GioCio

ioCio
≤ 0

(2.31)
The corresponding relaxed constraints become:

∀k = 1, . . . , T : uio1xi(k) + vio1yi(k) + wio1zi(k) + hio1 ≤ Mbio1(k)
AND uio2xi(k) + vio2yi(k) + wio2zi(k) + hio2 ≤ Mbio2(k)

...
...

AND uioHio
xi(k) + vioHio

yi(k) + wioHio
zi(k) + hioHio

(k) ≤ MbioHio
(k)

AND û1
io1xi(k) + v̂1

io1yi(k) + ŵ1
io1zi(k) + ĥ1

io1 ≤ Mb̂io1(k)

AND û2
io1xi(k) + v̂2

io1yi(k) + ŵ2
io1zi(k) + ĥ2

io1 ≤ Mb̂io1(k)
...

...

AND ûGio1

io1 xi(k) + v̂Gio1

io1 yi(k) + ŵGio1

io1 zi(k) + ĥGio1

io1 ≤ Mb̂io1(k)
...

...

AND û1
ioCio

xi(k) + v̂1
ioCio

yi(k) + ŵ1
ioCio

zi(k) + ĥ1
ioCio

≤ Mb̂ioCio
(k)

AND û2
ioCio

xi(k) + v̂2
ioCio

yi(k) + ŵ2
ioCio

zi(k) + ĥ2
ioCio

≤ Mb̂ioCio
(k)

...
...

AND û
GioCio

ioCio
xi(k) + v̂

GioCio

ioCio
yi(k) + ŵ

GioCio

ioCio
zi(k) + ĥ

GioCio

ioCio
≤ Mb̂ioCio

(k)

AND

Hio
∑

e=1

bioe(k) +

Cio
∑

c=1

b̂ioc(k) ≤ Hio + Cio − 1

(2.32)
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The last inequality now ensures that at time step k, vehicle i will either be outside the
convex hull or inside one of the concavities of obstacle o.

As discussed earlier, the actual obstacles are enlarged by the dimensions of the vehicle
and an additional safety envelope that compensates for the discrete-time nature of the
trajectories. The latter should have at least an xy-thickness of (

√

(2)/2)vmax∆t and a
z-dimension of max(żmax, |żmin|)∆t. If this envelope is too large compared to the size
of the obstacles, additional avoidance checks can be carried out for linearly interpolated
positions between the waypoints along the trajectory. The vehicle coordinates pi(k) ≡
[xi(k) yi(k) zi(k)]′ in constraints (2.28)-(2.32) should then be replaced by:

pi(k − 1) +
l

La

(pi(k) − pi(k − 1)) , l = 1, . . . , La (2.33)

where La indicates the number of interpolation points and additional binary variables should
be introduced accordingly.

2.3.4 Collision Avoidance

The collision avoidance constraints (2.9) are also non-convex and again require the use
of binary variables. To reduce the complexity of the optimization problem, the 2-norm
distance is approximated by the 1-norm. This comes down to considering an avoidance box
of size 2dsafe around each vehicle, which must at least account for the distance the vehicles
can cover within one time-step: dsafe > vmax∆t. The avoidance constraints for all pairs of
vehicles (i, j), j = 0, j ≥ i + 1, can then be formulated as follows:

∀k = 1, . . . , T : |xi(k) − xj(k)| ≥ dsafe

OR |yi(k) − yj(k)| ≥ dsafe

OR |zi(k) − zj(k)| ≥ dsafe

(2.34)

By introducing binaries d̂ijr(k) for each pair (i, j) and each time step k, the above OR-
constraints are transformed into:

∀k = 1, . . . , T : −xi(k) + xj(k) ≤ −dsafe + Md̂ij1(k)

−xj(k) + xi(k) ≤ −dsafe + Md̂ij2(k)

−yi(k) + yj(k) ≤ −dsafe + Md̂ij3(k)

−yj(k) + yi(k) ≤ −dsafe + Md̂ij4(k)

−zi(k) + zj(k) ≤ −dsafe + Md̂ij5(k)

−zj(k) + zi(k) ≤ −dsafe + Md̂ij6(k)
6

∑

r=1

d̂ijr(k) ≤ 5

(2.35)

where M is again a sufficiently large number [127].

2.4 Example Scenarios

2.4.1 Example 1: UAV in 2D

As an illustration of the MILP approach, consider the following 2D example of a small
autonomous aircraft with the following parameters: vmax = 4 m/s, vmin = 2 m/s and
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Figure 2-3: Example 1: The aircraft is initially in the origin, flying east at 4 m/s, and has
to maneuver to position (70, 57) m. The goal is reached after 28 s.

ωmax = 30 deg/s corresponding to amax = ωmaxvmax = 2.09 m/s2. The planning horizon T
contains 6 time steps of 1 s each and N = 8 for the polygonal approximation of the speed and
acceleration constraints. The scenario is illustrated in Figure 2-3: the aircraft is initially in
the origin, flying east at 4 m/s, and needs to maneuver to position (70, 57) m. The following
cost function aims at proceeding towards the goal, while minimizing the applied thrust:

min
p(k),u(k)

JT =

T−1
∑

k=0

(

q′|p(k) − pf | + r′|u(k)|
)

+ s′|p(T ) − pf | (2.36)

Here p(k) denotes the position (x(k), y(k)) of the aircraft, and q, r and s are appropriate
weighting vectors. The absolute values in the cost function can be handled by introducing
auxiliary variables and additional constraints according to the following principle. Using
an auxiliary variable z, the problem min |x| is equivalent to (see [18]):

min z
s.t. x ≤ z

−x ≤ z.
(2.37)

2.4.2 Example 2: Multiple UAVs in 2D

The second scenario, plotted in Figure 2-4, involves three aircraft (V = 3) flying at 150 m/s
that are initially positioned along a circle. They have to move to the opposite sides (e.g.,
because their individual reference trajectories are straight lines through the origin) and
will therefore cross in the middle. All aircraft are identical with the following parameters:
T = 10 with ∆t = 5 s, vmax = 160 m/s, vmax = 130 m/s, ωmax = 5 deg/s, dsafe = 2 km,
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Figure 2-4: Example 2: The aircraft are initially positioned along a circle and need to fly
to the opposite side. A conflict in the middle is avoided thanks to the collision avoidance
constraints.

and N = 8. A multi-vehicle version of cost function (2.36) was used:

min
p(k),u(k)

JV =

V
∑

i=1

T−1
∑

k=0

(

q′|pi(k) − pf,i| + r′|ui(k)|
)

+ s′|pi(T ) − pf,i| (2.38)

where the weight vectors q and r where set to 1 and s to 100. The trajectories clearly
indicate the effect of the collision avoidance constraints: two of the aircraft change their
heading in order to maintain a safe distance near the origin.

2.4.3 Example 3: Helicopter in 3D

In the last example, shown in Figures 2-5 and 2-6, a helicopter with vmax = 20 m/s,
amax = 3 m/s2, żmax = |żmin| = 4 m/s and z̈max = |z̈min| = 2 m/s2 has to fly through a
3D urban environment. It starts in from hover at location (30,−60, 8) m and must fly to
hover in (125, 60, 10) m. The planning horizon consists of T = 10 time steps of 1 s each,
thus resulting in a 20 m separation between trajectory points if flying at the maximum
speed. Since this would give large safety envelopes compared to the size of the obstacles, 4
interpolation points are used (La = 4).

The cost function used in this example automatically switches from a 1-norm minimizing
one to a minimum time objective once the goal is within reach of the planning horizon. This
is done as follows:

J∗
T = min

T
∑

k=1

q′|x(k) − xf | +
T−1
∑

k=0

r′|u(k)| +
T

∑

k=1

Mt(T − k)t̂(k) (2.39)
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Figure 2-5: Example 3: The helicopter is initially hovering in position (30,−60, 8) m, and
has to maneuver to hover in position (125, 60, 10) m. The goal is reached after 14 s.

subject to:

x(k) − xf ≤ Mtt̂(k), k = 1, . . . , T (2.40)

xf − x(k) ≤ Mtt̂(k), k = 1, . . . , T (2.41)

where t̂(k) are binary variables and Mt is a sufficiently large number again. However, this
time that number should also be greater than any of the values the 1-norm terms in the cost
function can take. In that case, if the goal is within reach, the optimal solution will have as
many binaries t̂(k) as possible set to 0, enforcing the vehicle to reach the goal state xf as
quickly as possible. In the example, the desired hover position is reached after 14 s. If the
final speed was not constrained, the helicopter would fly through the point at maximum
speed, eventually trying to return to it to further minimize the cost. In the example, Mt

was set to 10000 and q and r were set respectively to 1 and 10−3.
Finally, it is worthwhile to mention that the preceding scenarios were computed in real-

time, i.e., all iterations terminated well within the time step duration of 1 s in examples
1 and 3, and within 5 s in example 2. The computations were done using MATLAB and
CPLEX 8.1 on a Pentium 4 PC with 2 GHz clock speed.

2.5 Conclusion

This chapter presented the mathematical problem formulation of the trajectory planning
problem for single and multiple vehicles using a receding horizon optimization strategy.
Mixed-integer linear programming was used as the implementation framework and con-
straints ensuring dynamic feasibility, avoidance of arbitrarily shaped obstacles and of colli-
sions were developed in detail. Three scenarios were presented, illustrating the generality
and flexibility of the MILP approach and introducing various cost functions.
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Figure 2-6: Two-dimensional projection of Example 3
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Chapter 3

Hybrid Model for Agile Vehicles

This chapter presents a hybrid model and control architecture for trajectory planning of
agile vehicles. A velocity control system providing the ability to accurately track trajectories
is combined with a maneuver scheduler that enables execution of pre-programmed agile
maneuvers. The closed-loop dynamics under this control architecture are described by a
simple hybrid model, consisting of a set of constrained, linear time-invariant modes and
discrete fixed-duration transitions in the state space. Given these dynamics, mixed-integer
linear programming is again used to compute optimal trajectories in cluttered environments.
Continuous constraints and binary logic are combined to model the constraints governing
the dynamics, to formulate switching rules between different velocity modes, to encode
execution of agile maneuvers, and to account for obstacle avoidance. Both offline time-
optimal planning and online receding horizon formulations are presented. The framework
is applied in detail to a small-scale helicopter, for which several receding horizon results are
given. A discussion about practical considerations regarding a real-time implementation
concludes the chapter.

3.1 Introduction

Taking advantage of the full range of vehicle maneuverability in an autonomous fashion is
key to a number of potential UAV tasks. Examples include tracking of moving targets, flying
through cluttered (e.g., urban) environments, and tactical flight, such as nap of the earth.
In these applications, autonomous agile maneuvering can either be necessary – for instance
to effectively avoid pop-up obstacles– or may represent a competitive advantage. However,
as discussed earlier, it is known that motion planning is intrinsically PSPACE-hard [110, 49]
and that its complexity grows with that of the vehicle dynamics and the environment in
which the vehicle has to operate. For vehicles with fast and complex dynamics, such as small-
scale rotorcraft [43], it is therefore impractical to consider the full equations of motion in
the development of an autonomous trajectory planning system. For such vehicles, the state
space and the set of possible control actions are extremely large, requiring simplifications
to reduce the dimensionality when a solution has to be computed in real-time.

A well-established idea to reduce the complexity is to first organize the vehicle dynamics
through some form of control augmentation, such as velocity controllers, and to then design
the guidance system using the simpler closed-loop dynamics. However, for highly agile
vehicles, such an approach might restrict the performance. An alternative method is to
use a “maneuver automaton” as was introduced by Frazzoli et al. [36]. The framework
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was later applied to an X-Cell miniature helicopter as described in [93] and [128]. With
this approach, the vehicle is modeled as a hybrid automaton, consisting of a set of discrete
equilibrium trim conditions and transitions between these trims, called maneuvers. By
choosing an appropriate set of such motion primitives, the state space can be significantly
reduced without giving up the key performance and maneuverability of the vehicle. Optimal
trajectories are obtained in real-time by evaluating the possible discrete actions at each time
step, i.e., to stay on the current trim trajectory or to execute a maneuver. The decision is
made according to an optimal policy operating on a value function, which results from a
dynamic program that is solved offline by value iteration [17].

The maneuver automaton as described above, however, has several drawbacks. These
are primarily related to the fact that the vehicle dynamics are constrained to a finite set of
motion primitives. Namely, velocity is discretized into several trims with constant speeds,
thus restricting the vehicle’s behavior to one of these. The lack of continuous velocity modes
and the discretization used in the value function can be a problem when precise navigation
is required, as illustrated by our results in [93, 128]. Moreover, since one operating region is
typically discretized into multiple trim conditions with corresponding transition maneuvers,
the complexity of the maneuver automaton and corresponding dynamic program increases
significantly with the resolution of the discretization.

This chapter presents an alternative approach based on a hybrid architecture that com-
bines a velocity control system and a maneuver scheduler. Using this framework, opti-
mal trajectory design can again be formulated as a mixed-integer linear program. Besides
allowing for obstacle and collision avoidance, in this specific case, MILP is used to opti-
mally switch between various velocity control modes and to incorporate the binary decisions
whether or not to execute a maneuver. As such, this chapter extends the basic trajectory
planning formulation presented in Chapter 2 by accounting for more agile dynamics than
the ones used before. We will specialize the approach to the case of a small-scale rotorcraft
using a MILP model based on MIT’s aerobatic X-Cell helicopter.

The chapter is organized as follows. Section 3.2 presents the hybrid control architecture
and a corresponding high-level dynamic model. Given these dynamics, Section 3.3 outlines
the use of MILP for optimal guidance. In Section 3.4, the framework is applied to guidance of
a small-scale helicopter, for which simulation results are presented in Section 3.5. Section 3.6
then discusses some practical considerations regarding a real-time implementation.

3.2 Hybrid Control Architecture for Guidance

3.2.1 Automatic Control of Agile Vehicles

The control architecture presented in this chapter is based on the analysis of human control
of highly agile, small-scale helicopters [40]. It shows two distinct operating regimes: tracking
of trim trajectories and maneuvering. The two modes are distinctly set apart in terms of
control strategy and dynamic conditions:

• Tracking operations take place around trim trajectories. Control around these trajec-
tories involves continuous feedback, and the dynamics are approximately linear.

• Maneuvering actions are of finite duration and start and end on trim trajectories.
The control activity typically involves large amplitude input commands that exploit
the extreme performance of the vehicle and result in large changes of its state. The
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dynamics across this range are typically nonlinear. Control is dominated by feed-
forward actions; feedback may include discrete switching events triggered by state
thresholds.

Tracking trim trajectories is a well-researched area; automatic maneuvering, however,
is more challenging due the highly nonlinear dynamics [48]. Instead of applying traditional
nonlinear control methods such as feedback linearization [140], a control logic inspired
by the above human strategies was recently developed for an autonomous miniature heli-
copter [44]. It combines angular rate controllers and a timing logic that enables tracking
of pre-programmed reference trajectories. The amplitude and timing of these trajectories
or maneuvers were extracted from piloted flight-test experiments. Prior to and upon exit
from a maneuver, gain-scheduled linear quadratic trim tracking controllers are used. Using
this approach, several aerobatic maneuvers were successfully implemented, including a snap
roll, a hammerhead, and a split-S [41].

A block diagram of the switching control architecture is shown in Figure 3-1. The
velocity controllers enable the vehicle to accurately track trajectories throughout a large
region of the flight envelope, whereas the maneuvers take the helicopter through its extreme
range of performance. Under this control architecture, the closed-loop dynamics of the agile
vehicle can be accurately described by a combination of low-order, linear time-invariant
(LTI) equations of motion and discrete state transitions. An abstract representation of this
structure is given in Figure 3-2: it shows that maneuvers start and end in the linear velocity
control regime.

More generally, for any type of unmanned agile vehicle, the combination of gain-scheduled
LTI modes and a finite number of fast, pre-programmed maneuvers enables a broad range of
behaviors that can be exploited when designing mission-specific trajectories. The benefits
of this approach are several. First, the model allows for precise navigation in the veloc-
ity control mode, without compromising on agility when extreme transitions are required,
such as during reactive threat or obstacle avoidance. Second, compared to the maneuver
automaton approach [36], the architecture significantly simplifies the development of a mo-
tion primitive library: the problem is reduced to selecting a few LTI modes and a small
set of agile maneuvers. In what follows, we formalize this control structure in a mathe-
matical framework, which can then be used to effectively formulate trajectory optimization
problems.

3.2.2 Velocity Control System

Assume that the gain-scheduled velocity controllers result in L distinct, mutually exclusive
LTI modes or operating regions. In general, each LTI mode l corresponds to a discrete-
time state space model x(k + 1) = Alx(k) + Blu(k) in some vector space R

ns , where the
index k again indicates the discrete time step. As was discussed in Chapter 2, the state
vector x ∈ R

ns typically contains velocity and position components in either a body-fixed
and/or inertial coordinate frame. The input vector u ∈ R

nu generally consists of reference
velocity commands or accelerations, again in either coordinate frame. The key requirement
is that the state space models describe the closed-loop dynamics of the vehicle in a form
that is compatible with the type of desired guidance. For example, if a waypoint follower is
available, a closed-loop model incorporating this controller could be considered that takes
inertial positions as inputs. Alternatively, it may be desirable to directly steer the vehicle
using body-fixed frame velocity commands. Since the formulation that we will present can
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Figure 3-1: Hybrid control architecture: the helicopter can be controlled through a velocity
control system, or through a maneuver scheduler that allows the implementation of agile
maneuvers taken from a library.

Linear Controllers

hammer-
head

split-
S

quick-
turn

dash

quick-
stop

Figure 3-2: Abstract representation of the control architecture. The linear controllers allow
continuous motion, the maneuvers are discrete transitions.

capture both coordinate frames or a combination thereof, we will make abstraction of this
distinction. Using the state space model, the solution to the trajectory planning algorithm
will consist of a sequence of inputs in the appropriate form.

Besides the state space matrices (Al, Bl), each operating region l is characterized by a
set of feasible states Xl ⊆ R

ns and feasible inputs Ul ⊆ R
nu , such that when x ∈ Xl, the

vehicle is in mode l and only inputs u ∈ Ul are allowed. Among other, these constraint
sets capture bounds on velocity, acceleration, and turn rate for each LTI mode, as well as
obstacle avoidance requirements, which, for brevity of notation, we now include in the state
constraint set Xl. The overall constraint sets Xl and Ul are typically non-convex (e.g. be-
cause of the presence of obstacles in the environment), but subsets of these constraints,
such as maximum speed, may be convex. Hence, the sets can always be approximated by
a combination of polyhedral regions and intersections of polyhedra, and be described as
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follows:

Xl =

{

xT f c
l,1 ≤ 0 and xT f c

l,2 ≤ 0 . . . and xT f c
l,Lc

f
≤ 0

xT fn
l,1 ≥ 0 or xT fn

l,2 ≥ 0 . . . or xT fn
l,Ln

f
≥ 0

(3.1)

Ul =

{

uT gc
l,1 ≤ 0 and uT gc

l,2 ≤ 0 . . . and uT gc
l,Lc

g
≤ 0

uT gn
l,1 ≥ 0 or uT gn

l,2 ≥ 0 . . . or uT gn
l,Ln

g
≥ 0

(3.2)

Here, the vectors f c
l,· and fn

l,· denote the coefficients of the linear inequalities that respec-
tively capture the convex and non-convex state constraints associated with the operating
region l. Similarly, the vectors gc

l,· and gn
l,· define the convex and nonconvex input con-

straints.

Summarizing, when moving according to a particular LTI mode l, the dynamics are
given by:















x(k + 1) = Alx(k) + Blu(k)
t(k + 1) = t(k) + ∆t

x(k) ∈ Xl

u(k) ∈ Ul

(3.3)

where we introduced an explicit time evolution equation using the discretization step ∆t.
After applying the control input u(k), the next state x(k +1) can lie in the same operating
region l or the vehicle may have transitioned to another mode l′.

3.2.3 Maneuver Scheduler

As mentioned before, the maneuver scheduler allows the execution of pre-programmed ma-
neuvers that can result in rapid and extreme changes of the vehicle’s state. Consider a
library of P individually designed maneuvers with fixed durations ∆Tm and fixed spatial
displacements with respect to the vehicle’s body frame. For trajectory planning purposes,
each maneuver m can then be characterized by a discrete state update equation in the
appropriate reference system, as follows:







x(k + 1) = Cmx(k) + dm

t(k + 1) = t(k) + ∆Tm

x(k) ∈ Xm

(3.4)

Here, Cm is a fixed matrix and dm a fixed vector describing the maneuver as an affine
transformation of the feasible ingress state x(k) ∈ Xm. Namely, a particular maneuver
m can only be initiated when the state lies within certain bounds described by Xm. For
example, a pre-programmed hammerhead maneuver can only be executed above a certain
speed. In general, the feasible entry conditions can again be approximated by a set of linear
inequalities, capturing both convex and nonconvex constraints on the entry state:

Xm =

{

xT f c
m,1 ≤ 0 and xT f c

m,2 ≤ 0 . . . and xT f c
m,Mc

f
≤ 0

xT fn
m,1 ≥ 0 or xT fn

m,2 ≥ 0 . . . or xT fn
m,Mn

f
≥ 0

(3.5)

Here, the vectors f c
m,· and fn

m,· again denote the coefficients of the linear inequalities cor-
responding to the convex and nonconvex constraints associated with maneuver m. The
entry state x(k) and exit state x(k +1) must lie in the operating region of some LTI mode,
which can be identical, adjacent, or non-adjacent in case of a large jump in the state space.
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Typically, the ingress constraint set Xm is a subset of only one LTI operating region Xl.

Notice that we did not consider a set of feasible control inputs corresponding to a
maneuver. Since it is pre-programmed, the only relevant control input associated with a
maneuver is the binary decision whether to initiate it or not. This decision is ultimately
taken by the trajectory optimization algorithm. Since any details about the physical control
variables will be hidden to the optimization problem, the maneuver can be abstracted as a
state transition without input.

3.2.4 LTI-Maneuver Automaton

With the corresponding operating and entry constraints, the closed-loop dynamics consist-
ing of the combination of LTI modes and finite duration maneuvers constitute a hybrid
input/output automaton [84], which we will call an LTI-maneuver automaton (LTI-MA).
A graph representation of this LTI-MA is given in Figure 3-3. During each time step, the
vehicle is either in an LTI mode or executing a maneuver. State transitions between two LTI
modes, i.e., those described by equations (3.3), take a regular time interval ∆t; transitions
resulting from performing a particular maneuver m have a duration ∆Tm.

hover

fast
cruise

transition
cruise

hammerhead

LTI Modes

Maneuvers

dash

quick-stop 2

LTI mode transitions

quick-turn 2
split-S

quick-turn 1

quick-stop 1

Figure 3-3: Graph representation of the LTI-maneuver automaton. The vehicle is either in
an LTI mode, or executing a finite duration maneuver.

3.3 Trajectory Optimization with the LTI-MA

3.3.1 Sequential decision process

Given the LTI-MA framework described above, our goal is to compute optimal trajectories
between two waypoints corresponding to an initial and a final state. An optimal trajectory
consists of a sequence of dynamically feasible states and corresponding inputs that satisfy
the constraints imposed by the environment, and minimize a certain performance criterion
captured by a cost function. The latter can be a measure of time or fuel, or a more complex
criterion such as visibility or risk. The waypoints are typically provided by a higher level
planning algorithm that optimizes a specific task or mission criterion [89, 130, 6, 113]. We
will assume here that such a higher planning level is in place.

Given the LTI-MA architecture, trajectory design can be viewed as a sequential decision
process, where at the start of each decision step, the helicopter is flying in one of the LTI
modes. The guidance problem then comes down to deciding at each decision step whether
to stay in the current LTI mode l, to transition to a neighboring mode l′, or to execute a
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certain maneuver m. However, the last option is only available if the entry conditions Xm

for that maneuver are satisfied. Furthermore, when the vehicle is in the LTI-regime, the
decision steps correspond to normal, discrete time steps. In the maneuver execution mode,
on the other hand, the single decision step in which a maneuver is executed, corresponds to
a number of time steps equivalent to the actual duration of the maneuver. When optimizing
time, this difference should be accounted for in the formulation of the trajectory planning
problem.

The guidance decision logic just outlined lends itself well to being formulated as a mixed-
integer linear program again. The continuous optimization is now done over the states and
inputs that are associated with the various LTI modes. The discrete logic and decisions
result from partitioning the state space into the distinct LTI modes and from the option of
executing maneuvers when the corresponding entry conditions are satisfied. In what follows,
we repeatedly apply the general MILP constraint principles (2.18) and (2.19) to derive the
trajectory planning formulation with the LTI-MA dynamics.

3.3.2 Trajectory Optimization Using MILP

Operating Region Bounds

We begin by introducing binary variables to capture the and/or logic in the convex and
nonconvex constraints (3.1), (3.2), and (3.5), respectively describing the feasible state and
input sets of the LTI modes and the feasible entry states of the maneuvers. They can be
captured in the matrix form of inequality (2.19). As such, for each LTI mode l, we obtain:















x(k + 1) = Alx(k) + Blu(k)
t(k + 1) = t(k) + ∆t

0 ≥ F c
l x(k) + F b

l yl(k) + f l

0 ≥ Gc
l u(k) + Gb

l wl(k) + gl

(3.6)

where yl(k) and wl(k) are binary vectors. The matrix F c
l combines the coefficients f c

l,· and

fn
l,· of the state inequalities (3.1), while matrix F b

l and vector f l encode the corresponding
nonconvexities using binary logic. Similarly, matrix Gc

l combines the coefficients gc
l,· and

gn
l,· of the input inequalities (3.2), and matrix Gb

l and vector gl encode the associated
nonconvexities.

For the maneuver entry conditions (3.5), the same principle yields:







x(k + 1) = Cmx(k) + dm

t(k + 1) = t(k) + ∆Tm

0 ≥ F c
mx(k) + F b

mzm(k) + fm

(3.7)

where zm(k) is again a binary vector, F c
m combines the coefficients f c

m,· and fn
m,·, and F b

m

and fm encode the nonconvex structure of the entry constraints (3.5).

LTI Mode Switching

At the beginning of each decision step, the vehicle is in exactly one LTI mode l. Hence, with
every decision step k, we can associate a binary variable bl(k) that equals 1 if the vehicle is
flying in mode l at the start of that decision step. Since the L modes are mutually exclusive,
only one bl(k) variable out of L can be 1 at each step k. The non-active LTI modes must
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then be “switched off”. Using principle (2.18), this can be expressed as follows:

∀l ∈ [1, . . . , L] :















x(k + 1) − Alx(k) − Blu(k) ≤ M(1 − bl(k))1
−x(k + 1) + Alx(k) + Blu(k) ≤ M(1 − bl(k))1

F c
l x(k) + F b

l yl(k) + f l ≤ M(1 − bl(k))1

Gc
l u(k) + Gb

l wl(k) + gl ≤ M(1 − bl(k))1

(3.8a)

t(k + 1) − t(k) − ∆t ≤ 0
−t(k + 1) + t(k) + ∆t ≤ 0

∑L
l=1 bl(k) = 1

(3.8b)

where 1 represents a unity vector of appropriate length. Notice that the state space equality
constraints of the LTI mode dynamics (3.6) have been replaced by a pair of positive and
negative inequalities, such that they can be relaxed if the vehicle is not in mode l (i.e., when
bl(k) = 0). Since the time evolution equation is the same for all LTI modes, however, the
corresponding inequalities need not be relaxed.

Maneuver Execution

Similarly, we introduce a binary selection variable dm(k) for each maneuver m at each
decision step k, which equals 1 if the maneuver is executed:

∀m ∈ [1, . . . , P ] :























x(k + 1) − Cmx(k) − dm ≤ M (1 − dm(k))1
−x(k + 1) + Cmx(k) + dm ≤ M (1 − dm(k))1

F c
mx(k) + F b

mzm(k) + fm ≤ M (1 − dm(k))1
t(k + 1) − t(k) − ∆Tm ≤ M (1 − dm(k))

−t(k + 1) + t(k) + ∆Tm ≤ M (1 − dm(k))

(3.9a)

∑P
m=1 dm(k) ≤ 1 (3.9b)

The inequality
∑P

m=1 dm(k) ≤ 1 ensures that at most one maneuver is performed at a
time. This implies that if the initial conditions F c

mx(k) + F b
mzm(k) + fm ≤ 0 for a certain

maneuver m are satisfied, it does not necessarily have to be executed: dm(k) can still be
set to 0. However, if it is initiated, the state- and time update inequalities of the LTI mode
constraints (3.8a) and (3.8b) must be relaxed, since they are in that case determined by
equations (3.4). We therefore extend constraints (3.8a) and (3.8b) as follows:

∀l ∈ [1, . . . , L] :















x(k + 1) − Alx(k) − Blu(k) ≤ M(1 − bl(k))1 + M(
∑P

m=1 dm(k))1

−x(k + 1) + Alx(k) + Blu(k) ≤ M(1 − bl(k))1 + M(
∑P

m=1 dm(k))1

F c
l x(k) + F b

l yl(k) + f l ≤ M (1 − bl(k))1

Gc
l u(k) + Gb

l wl(k) + gl ≤ M (1 − bl(k))1

(3.10a)

t(k + 1) − t(k) − ∆t ≤ M
∑P

m=1 dm(k)

−t(k + 1) + t(k) + ∆t ≤ M
∑P

m=1 dm(k)
∑L

l=1 bl(k) = 1

(3.10b)

If no maneuver is performed, the extra relaxation term M(
∑P

m=1 dm(k))1 will equal 0.
Since all maneuvers start and end in one of the LTI modes, the LTI operating bounds need
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not be relaxed by the maneuver selection variables: even if a maneuver is executed, the
vehicle will still be in some LTI mode l at the start of decision step k.

3.3.3 Planning Strategies

Given the preceding LTI-MA dynamics, our next step is to compute an optimal trajectory
from an initial state xinit to a desired final state xf . As discussed before, these states
are typically positions with associated speeds and heading angles provided in an inertial
coordinate frame. The desired state xf will again be provided by a higher level task- or
mission design algorithm that we assume is in place. Depending on the operational objective
and the available computational resources, we can consider different planning strategies.

Fixed Horizon Planning

A first approach is to solve one (off-line) MILP problem over a fixed number of decision
steps, with the constraint that the vehicle must have arrived within some bound of the
final state by the end of the planning horizon. This approach requires that all relevant
information about the mission and environment is known ahead of time, and that during
execution of the plan, the trajectory can be accurately tracked. Introducing a planning
horizon of T decision steps and an arrival tolerance ǫ, the optimization problem has the
following general form:

minJfh =
T−1
∑

k=0

(

ℓk(x(k), u(k), b(k)) +
L

∑

l=1

bl(k)ℓkl +
P

∑

m=1

dm(k)ℓkm

)

(3.11a)

subject to























(3.9a), (3.9b), k = 0, . . . , T − 1
(3.10a), (3.10a), k = 0, . . . , T − 1
x(T ) − xf ≤ ǫ

−x(T ) + xf ≤ ǫ

x(0) = xinit

(3.11b)

Here, ℓk(x(k), u(k), b(k)) is a general (piece-wise) linear cost term associated with the kth

decision step, with b(k) some binary decision vector. ℓkl and ℓkm are constant cost factors,
respectively associated with being in LTI mode l or executing maneuver m during decision
step k. For the problem to be feasible, the horizon length T must be an upper bound on
the number of steps needed to reach the desired state.

Shortest Arrival Time

A special case of a fixed horizon planning problem is to compute the shortest time trajectory
between the states xinit and xf . The shortest time corresponds to the minimum weighted
number of decision steps in which the final state can be reached. The weight of each step
is the actual duration of the action taken during that step. To minimize the arrival time,
we can then introduce binary variables r(k) that select the step at which the final state is
reached. In addition, an extra equality constraint is needed that enforces the helicopter to
actually reach the desired state at one of the decision steps in the planning horizon [114].

We again consider an horizon of T decision steps and an arrival treshold ǫ. A shortest
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time trajectory can then be computed as follows:

min Jst =
T

∑

k=0

r(k)k ∆t +
T−1
∑

k=0

P
∑

m=1

dm(k)(∆Tm − ∆t) (3.12a)

subject to































(3.9a), (3.9b), k = 0, . . . , T − 1
(3.10a), (3.10a), k = 0, . . . , T − 1
x(k) − xf ≤ ǫ + M(1 − r(k))1, k = 0, . . . , T

−x(k) + xf ≤ ǫ + M(1 − r(k))1, k = 0, . . . , T
∑T

k=0 r(k) = 1
x(0) = xinit

(3.12b)

Since only one of the r(k) binary variables equals 1, the first term in the cost function yields
the optimal number of decision steps needed to reach the final state, weighted by ∆t. If
the optimal action at the kth decision step is to stay in the LTI regime, the weight of the
step corresponds to the discretization step ∆t. However, if the optimal action is to perform
a maneuver (dm(k) = 1), the weight of the decision step is the maneuver duration ∆Tm.
Since the first term in Jst already accounts for a weight ∆t, the latter is subtracted from
the actual maneuver time ∆Tm.

Receding Horizon Planning

Although it is intrinsic to the motion planning problem as well, a drawback of MILP is
that the computation time increases at least polynomially with the number of variables and
constraints. Therefore, the fixed horizon approach is mainly suited for offline computation of
trajectories. For real-time applications, it can only be applied to relatively small problems,
i.e., to problems with a reduced set of LTI modes and maneuvers and/or a limited number
of decision steps in which the final state can be reached. Even then, however, offline
trajectory planning has several disadvantages. First, once the trajectory has been computed,
it does not allow for changes in the vehicle dynamics or for modifications in the environment
during execution of the plan. As such, a nominal offline planning strategy is not robust
to uncertainties or disturbances. Moreover, all necessary information has to be available
beforehand, i.e., before the vehicle starts its mission. This is often impossible and would
exclude applications such as reconnaissance or terrain exploration. In addition, it is our
intention to use the LTI-MA framework in a real-time guidance loop, where the full range
of the vehicle’s dynamic capabilities can be exploited in a reactive fashion.

As discussed in Chapter 2, the above limitations can be effectively addressed using a
receding horizon planning strategy. The path of the vehicle is then computed iteratively and
composed of a sequence of locally (time-)optimal segments. The length T of the planning
horizon should be chosen as a function of the available computational resources and the
distance over which the environment is fully characterized (e.g, as resulting from onboard
sensor information). New information about the environment can be incorporated in the
optimization problem at each iteration, thus enabling reactive planning capabilities that
are crucial when the environment changes or is explored in real-time.

If the length of the planning horizon is relatively short and the problem complexity low
enough to solve the fixed horizon problem (3.11a)-(3.11b) or (3.12a)-(3.12b) in real-time,
a first approach to a receding horizon implementation is to solve a fixed horizon problem
at each time step. As the vehicle moves closer to the goal, the upper bound T on the
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number of required decision steps can then be reduced at each iteration. If the waypoints
are relatively far apart, however, and the horizon length is consequently relatively long, this
method becomes computationally too expensive for use in real-time.

Therefore, at a certain iteration with current state xinit, we use the following, more
general form for the receding horizon optimization problem with the LTI-MA dynamics
over T decision steps:

minJrh =
T−1
∑

k=0

(

ℓk(x(k), u(k), b(k)) +
L

∑

l=1

bl(k)ℓkl +
P

∑

m=1

dm(k)ℓkm

)

+ ℓT (x(T ), xf , b(T ))

(3.13a)

subject to







(3.9a), (3.9b), k = 0 . . . T − 1
(3.10a), (3.10a), k = 0 . . . T − 1
x(0) = xinit

(3.13b)

Since the final state xf may not be reachable within T decision steps from the current
state xinit, the arrival constraints are replaced by a terminal cost ℓT (x(T ), xf , b(T )) in the
objective function. To be applicable to the MILP framework, the terminal cost must have
a piece-wise linear or piece-wise constant form. For a discussion on the role of this cost, we
refer the reader back to Chapter 2.

3.4 Small-Scale Helicopter Example

We now apply the mathematical framework from Section 3.3 to a small-scale rotorcraft
modeled after MIT’s aerobatic X-Cell helicopter [142]. To keep the formulation concise,
we present an approximate inertial frame model. A physically more comprehensive ap-
proach using body-fixed velocities can be found in [126], in which additional binary logic is
introduced to encode the associated nonlinear kinematics.

3.4.1 Helicopter LTI Modes

Continuous-Time Version

The velocity control augmentation system of the X-Cell is described in [43] and features
the following command variables: body axis forward velocity ucmd and side velocity vcmd,
climb rate ḣcmd and yaw rate rcmd. The yaw rate command is mechanized to work as a
turn rate command, both at hover and forward flight. In hover, the helicopter uses tail
rotor control to turn on the spot. In forward flight, lateral cyclic and tail rotor control are
mixed by the control law to achieve coordinated turns, i.e., turns with zero side-slip. The
control system uses gain scheduling to linearize the closed-loop dynamics around several
operating velocities, resulting in different LTI modes. As such, the closed-loop dynamics
of the X-Cell in each LTI mode l can be accurately modeled by the following decoupled,
first-order differential equations [39]:

u̇ = − 1
τul

u + 1
τul

ucmd

v̇ = − 1
τvl

v + 1
τvl

vcmd

ḧ = − 1
τ
ḣl

ḣ + 1
τ
ḣl

ḣcmd

ṙ = − 1
τrl

r + 1
τrl

rcmd

(3.14)
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Figure 3-4: Example of operating regions of the velocity control mode, shown in function
of the body axis forward (u) and lateral velocity (v).

in which u is the body-fixed forward velocity, v is the body-fixed lateral or side-slip velocity,
ḣ is the climb rate, and r is the turn rate. Each operating region l is characterized by specific
time constants τ·l and limits on speed, acceleration and control variables. For example, the
turn rate response is quicker in hover than in forward flight, and side-slip velocities are not
permitted in cruise mode. Figure 3-4 shows a graphical example of this partitioning: the
three principal regions are 1) the hover mode, where side-slip and turns on the spot are
allowed, 2) the transition mode, where a small amount of side-slip is tolerated, and 3) the
cruise mode, where turns are fully coordinated.

Unfortunately, the inertial kinematics associated with this model are nonlinear. We
therefore approximate the body-fixed dynamics (3.14) by the following model in an inertial
(x, y, z) coordinate frame, in which x and y are the coordinates in the horizontal plane and
z is the altitude:

ẍ(t) = − 1
τl

ẋ(t) + kl

τl
ẋcmd(t)

ÿ(t) = − 1
τl

ẏ(t) + kl

τl
ẏcmd(t)

z̈(t) = − 1
τz

ż(t) + kz

τz
żcmd(t)

(3.15)

Each LTI mode l is characterized by a time constant τl and gain kl associated with the
planar motion. For the vertical motion, we consider the same time constant τz and gain kz

for all modes, indicating that there is only one climb/descent mode which is fully decoupled
from the horizontal motion. In state space form ẋ(t) = Aclx(t) + Bclu(t), we obtain:

















ẋ(t)
ẏ(t)
ż(t)
ẍ(t)
ÿ(t)
z̈(t)

















=



















0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 − 1

τl
0 0

0 0 0 0 − 1
τl

0

0 0 0 0 0 − 1
τz



































x(t)
y(t)
z(t)
ẋ(t)
ẏ(t)
ż(t)

















+



















0 0 0
0 0 0
0 0 0

kl

τl
0 0

0 kl

τl
0

0 0 kz

τz























ẋcmd(t)
ẏcmd(t)
żcmd(t)



 (3.16)

The input vector u now contains inertial reference speeds ẋcmd, ẏcmd, and żcmd, instead of
body-fixed velocities; the state vector x is composed of the inertial position vector [x y z]′
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and velocity vector [ẋ ẏ ż]′. Accordingly, after discretizing time, the control sequence corre-
sponding to a trajectory will consist of inertial reference velocities that can be transformed
into equivalent body-fixed velocity commands. Alternatively, the resulting inertial positions
can be given as inputs to a waypoint tracking controller.

Notice, however, that the planar dynamics are isotropic in both coordinates and ignore
limits on side-slip and turn rate. To correct for this and distinguish between the different
operating regions, we introduce additional constraints x ∈ X and u ∈ U on the state and
input vectors respectively. First, the different LTI modes are scheduled with the magnitude
of the planar inertial velocity vector v = [ẋ ẏ]′. Each operating region l is thus delimited
by a minimum speed vmin,l and a maximum speed vmax,l:

vmin,l ≤ ||v|| ≤ vmax,l (3.17)

where for the hover mode (l = 1), we have vmin,1 = 0. The magnitude of the horizontal
velocity command vector vcmd = [ẋcmd ẏcmd]

′, however, is the same for all modes:

0 ≤ ||vcmd|| ≤ vmax (3.18)

where vmax is the overall maximum velocity of the helicopter. Similarly, the bounds on the
climb rate command żcmd and the resulting acceleration z̈ are identical for all LTI modes:

żmin ≤ żcmd ≤ żmax (3.19a)

z̈min ≤ z̈ ≤ z̈max (3.19b)

where żmin and z̈min are negative numbers corresponding to descent.
Second, each LTI mode is characterized by specific bounds on turn rate and side slip.

In hover mode, quick turns are possible and the limits on forward and lateral acceleration
are of similar magnitude. In cruise mode, however, the helicopter flies in an airplane-like
fashion in which no side-slip is permitted and the achievable turn rate is much lower. The
latter is then inversely proportional to the forward velocity. Both slide-slip and turn rate
constraints, however, can be captured by one mode-dependent geometric profile in which
the horizontal inertial acceleration vector a = [ẍ ÿ]′ must lie.

A reasonably good approximation is to consider elliptical areas that – in the most general
case– are delimited along their principal axes by mode-dependent maximum forward and
lateral accelerations (afwd,max,l and alat,max,l). For the hover mode, this ellipse will be
approximately circular. In cruise, however, afwd,max,l is typically larger than alat,max,l,
corresponding to the fact that a helicopter can typically accelerate or decelerate faster than
it can turn. This results in a long and narrow ellipse. Assuming coordinated turns, the
ellipse should at all times be aligned with the planar velocity vector v, such that it tracks
changes in heading. This can be achieved by approximating the ellipse as the intersection
of two circles whose centers lie along the line that goes through the origin and is parallel to
the orthogonal complement v⊥ = [−ẏ ẋ]′ of v. The geometric construction is illustrated in
Figure 3-5 for the cruise flight case afwd,max,l ≥ alat,max,l. Using appropriate parameters αl

and βl for each LTI mode l, these circles can be formulated as:

||a − αl

v⊥

||v|| || ≤ βl (3.20a)

||a + αl

v⊥

||v|| || ≤ βl (3.20b)

55



v v

a
fwd,max

a

T

b

-a

T

|v |

|v|
__

lat,max

Figure 3-5: Two circle approximation of the elliptic constraint on forward and lateral ac-
celeration.

where – using basic geometry,– αl and βl are determined by the values of afwd,max,l and
alat,max,l as follows:

αl =
a2

fwd,max,l − a2
lat,max,l

2alat,max,l

(3.21a)

βl =

√

√

√

√

(

a2
fwd,max,l − a2

lat,max,l

2alat,max,l

)2

+ a2
fwd,max,l =

√

α2 + a2
fwd,max,l (3.21b)

In case afwd,max,l ≤ alat,max,l, v⊥ should be replaced by v in equalities (3.20a-b) and the
role of afwd,max,l and alat,max,l be interchanged in equations (3.21a-b). When afwd,max,l =
alat,max,l, the previous expressions result in a circular acceleration profile.

Discrete-Time Version

To make use of the above dynamics in our MILP framework, the state space models (3.16)
need to be discretized. Using the bilinear transform with a sample time ∆t, the discrete
state space model for each LTI mode l becomes: x(k + 1) = Alx(k) + Blu(k), with

Al =
(

I − ∆t
2 Acl

)−1 (

I + ∆t
2 Acl

)

Bl =
(

I − ∆t
2 Acl

)−1
Bcl.

(3.22)

Next, as depicted in Figure 3-6, and similar to the double integrator model from Chapter 2,
all nonlinear inequality constraints characterizing each LTI mode l are approximated by N -
sided polygons. The upper bounds of the velocity constraints (3.17)-(3.18) then correspond
to the vectors lying inside such a polygon, which can be expressed as follows:

∀n ∈ [1, . . . , N ] : ẋ(k) sin

(

2πn

N

)

+ ẏ(k) cos

(

2πn

N

)

≤ vmax,l (3.23)

ẋcmd(k) sin

(

2πn

N

)

+ ẏcmd(k) cos

(

2πn

N

)

≤ vmax (3.24)

56



y

x

v

v                            vmax,l                                   max,l+1

vmin,l

•

•

Figure 3-6: Polygonal approximation of minimum and maximum velocity bounds delimiting
the various LTI-modes.

As in (2.23)-(2.24), the minimum velocity vmin,l delimiting mode l from below in con-
straint (3.17) can be handled by ensuring that the speed vector lies outside the correspond-
ing polygon. By introducing N binary variables cln(k) and applying principle (2.18), we
can encode this nonconvex constraint as follows:

∀n ∈ [1, . . . , N ] : ẋ(k) sin

(

2πn

N

)

+ ẏ(k) cos

(

2πn

N

)

≥ vmin,l − Mcln(k) (3.25a)

N
∑

n=1

cln(k) ≤ N − 1 (3.25b)

where M is again a sufficiently large number.

For the climb and descent acceleration constraints (3.19b), we use an Euler discretization
of the derivative:

z̈min ≤ ż(k + 1) − ż(k)

∆t
≤ z̈max (3.26)

Applying the same principle and the polygonal approximation to the planar inertial con-
straints (3.20a-b), we obtain:

∀n ∈ [1, . . . , N ] :

(

ẋ(k + 1) − ẋ(k)

∆t
+ αl

ẏ(k)

v(0)

)

sin

(

2πn

N

)

+

(

ẏ(k + 1) − ẏ(k)

∆t
− αl

ẋ(k)

v(0)

)

cos

(

2πn

N

)

≤ βl

(3.27a)
(

ẋ(k + 1) − ẋ(k)

∆t
− αl

ẏ(k)

v(0)

)

sin

(

2πn

N

)

+

(

ẏ(k + 1) − ẏ(k)

∆t
+ αl

ẋ(k)

v(0)

)

cos

(

2πn

N

)

≤ βl

(3.27b)
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Because these constraints will typically be formulated over a receding planning horizon T ,
the unknown magnitude of the velocity vector v(k) = [ẋ(k) ẏ(k)]′ is replaced by v(0), the
known horizontal speed at the initial time step in the horizon (except when v(0) = 0). As a
result, when ||v(k)|| > v(0) the circles will lie further away from each other, thus reducing
the feasible region and corresponding maximum forward and lateral acceleration. On the
other hand, if ||v(k)|| < v(0), the circles will move closer together, thereby increasing the
allowable accelerations. However, since only the action corresponding to the first decision
step will be implemented (at which the acceleration constraints are exact), this under- or
overestimation of the available acceleration in the remaining steps will be compensated for
at the next iteration. In the fixed arrival time case, v(0) could be replaced by vl, the forward
velocity around which the dynamics are linearized in mode l (except for hover, for which
vl = 0).

Still, if this reshaping of the acceleration profile increases the bounds on forward or
lateral acceleration by too much, the following magnitude constraint ||a|| ≤ max (afwd,max,l,
alat,max,l) can be added:

∀n ∈ [1, . . . , N ] :

(

ẋ(k + 1) − ẋ(k)

∆t

)

sin

(

2πn

N

)

+

(

ẏ(k + 1) − ẏ(k)

∆t

)

cos

(

2πn

N

)

≤ max (afwd,max,l, alat,max,l)

(3.28)

3.4.2 Helicopter Maneuvers

Maneuvers are designed to exploit the extreme performance and agility of the vehicle: they
typically take advantage of the full control input range and result in large state excursions.
The availability of such maneuvers plays an essential role in reactive threat and obstacle
avoidance. Table 3.4.2 gives an overview of maneuvers that could be designed; Figure 3-7
shows the corresponding trajectories. Both split-S and hammerhead have already been im-
plemented on MIT’s helicopter [41, 42]. Other maneuvers that have since been considered
include dash, quick-stop (or deceleration) and quick-turn maneuvers. The split-S and ham-
merhead can be used to quickly reverse the direction of flight; compared to a level-flight
U-turn, they are faster and require no lateral displacements. However, both require a min-
imum entry speed, whereas a U-turn can be performed at any velocity. Also, the split-S
results in an altitude drop, while the hammerhead typically ends at the initial or a higher
altitude.

Each maneuver m is characterized by its duration ∆Tm, entry and exit speed vin,m

and vex,m, resulting spatial displacement [∆xh ∆yh ∆z]′m and change in heading ∆ψm. As

Maneuver Usage

Dash to cruise rapid acceleration from hover to one of the cruise conditions
Quick-stop rapid transition from cruise to a full stop (hover)
Quick-turn rapid turn resulting in a pre-determined heading change
Split-S reversal of the flight direction with altitude loss
Hammerhead reversal of the flight direction with altitude gain or zero altitude change

Table 3.1: Description of sample maneuvers that could be implemented on a rotorcraft-type
vehicle.
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Figure 3-7: Helicopter trajectories for sample maneuvers.

shown in Figure 3-8, the displacement [∆xh ∆yh]′m and heading change ∆ψm are defined
with respect to the body-fixed frame at the start of the maneuver. From these body frame
parameters, a fixed affine transformation of the inertial state vector can be extracted for
each maneuver. Assuming that a maneuver can only be initiated in level flight with żi = 0
and zero side-slip, the characterizing constants derived from the body frame parameters
are:

γm = − arctan

(

∆xh,m

∆yh,m

)

δm = −∆ψm

cm =

√

(∆xh,m)2 + (∆yh,m)2

vinit,m

dm =
vex,m

vin,m

with γm defined between −180◦ and 180◦. The state transition resulting from maneuver m
is then given by the following affine transformation:
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(3.29)

which combines rotation, scaling and translation to express the exit state x(k + 1) as a
function of the entry state x(k). The entry conditions x(k) ∈ Xm of maneuver m are a
fixed planar initial speed ||v(k)|| = vin,m, zero acceleration a(k), and zero climb rate ż(k).
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Figure 3-8: Change in helicopter position and orientation resulting from a maneuver (shown
in dashed line), as observed from the body-fixed frame

The entry velocity constraint can be expressed as follows:

∀n ∈ [1, . . . , N ] : ẋ(k) sin

(

2πn

N

)

+ ẏ(k) cos

(

2πn

N

)

≤ vin,m (3.30a)

ẋ(k) sin

(

2πn

N

)

+ ẏ(k) cos

(

2πn

N

)

≥ vin,m − Mcmn(k)(3.30b)

N
∑

n=1

cmn(k) ≤ N − 1 (3.30c)

with cmn(k) binary variables. The acceleration and climb rate conditions become:

ẋ(k) − ẋ(k − 1) ≤ 0
−ẋ(k) + ẋ(k − 1) ≤ 0

ẏ(k) − ẏ(k − 1) ≤ 0
−ẏ(k) + ẏ(k − 1) ≤ 0

ż(k) ≤ 0
−ż(k) ≤ 0

(3.31)

which are relaxed by M
(

1 − ∑P
m=1 dm(k)

)

if no maneuver is executed.

3.4.3 Obstacle Avoidance

As was shown in Chapter 2, by constraining the trajectory points to lie outside polyhedral
regions, obstacle avoidance can be handled by mixed-integer linear constraints as well.
Although any obstacle shape approximated by polyhedrons can be dealt with, for simplicity
of exposition, we here only consider rectangular obstacles o that are aligned with the axis
frame. We again denote the lower left corners by (xo,min, yo,min, zo,min) and upper right
corners by (xo,max, yo,max, zo,max). As mentioned before, only obstacles that lie within the
maximum distance the helicopter can travel over the duration of the planning horizon should
be accounted for. Denote the number of these relevant obstacles as S. Then, introducing
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binary variables fon(k) for each time step k and each obstacle o, we repeat the avoidance
constraints (2.30) as follows:

∀o ∈ [1, . . . , S] : x(k) ≤ xo,min + Mfo1(k)
y(k) ≤ yo,min + Mfo2(k)
z(k) ≤ zo,min + Mfo3(k)

−x(k) ≤ −xo,max + Mfo4(k)
−y(k) ≤ −yo,max + Mfo5(k)
−z(k) ≤ −zo,max + Mfo6(k)

6
∑

e=1

foe(k) ≤ 5

(3.32)

Remember that these inequalities encode the requirement that each trajectory point
(x(k), y(k), z(k)) must lie in at least one of the outer halfspaces defined by the faces of the
S obstacles.

Again, because the trajectory consists of a discrete sequence of positions, however, there
is no guarantee that the corresponding continuous path does not intersect with the obstacles
between two subsequent points, e.g., during a maneuver. The obstacles must therefore be
extended by a safety boundary that corresponds to the largest distance that can be traveled
during a decision step. If vmax∆t is large or when maneuvers with big displacements are
considered, this safety envelope can be relatively large compared to the size of the obstacles,
thus making the obstacle environment denser than might be acceptable. If the vehicle is
in the LTI regime, the boundary can be reduced by determining intermediate trajectory
points through linear interpolation as in expressions (2.33). For maneuver transitions,
an additional avoidance check can be carried out for J sample points along the actual
maneuver trajectory. Although these points are not known a priori, they can be expressed
as affine transformations of the position vector p(k) = [x(k) y(k) z(k)]′ and horizontal
inertial velocity v(k) = [ẋ(k) ẏ(k)]′ at the start of the maneuver. Let p̃mj be the jth

point along the trajectory of maneuver m. Similarly to equation (3.29), by introducing a
maneuver-specific constant matrix P mj and constant vector pmj for each sample point p̃mj ,
we can write:

p̃mj = P mj

[

p

v

]

+ pmj (3.33)

in which [p′ v′]′ is the entry state of the maneuver. At each decision step k, the obstacle
avoidance check for maneuver m and obstacle o can then be expressed as follows:

∀o ∈ [1, . . . , S], j ∈ [1, . . . , J ] : P mj

[

p(k)
v(k)

]

+ pmj ≤
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−P mj
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

 + M
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fjo4(k)
fjo5(k)
fjo6(k)
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

6
∑

e=1

fjoe(k) ≤ 5 (3.34)

where the same binaries are used for each maneuver m. By adding terms M(1 − dm(k)),
the constraints will be relaxed if the maneuver is not executed.
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When multiple vehicles are considered, equation (3.33) can also be used to express
collision avoidance constraints. By substituting the coordinates in inequalities (2.35) by the
sample points (3.33) for each vehicle pair, collision avoidance during execution of maneuvers
can be guaranteed. Naturally, the safety distance dsafe must then account for the distance
traveled between two subsequent maneuver sample points. Because of the large number of
binaries that are introduced, however, it is more efficient to tackle collision avoidance in a
distributed fashion, as will be discussed in Chapter 5. A particular vehicle then knows a
priori whether another one is planning to execute a maneuver. As such, that vehicle can
consider the corresponding maneuver sample points of all other vehicles as fixed obstacles
and use expressions (3.34) accordingly.

3.4.4 Receding Horizon Formulation

Given the above helicopter model, we are interested in guiding the helicopter between way-
points in the fastest possible way, thereby avoiding obstacles. The exact shortest time
between two states can be computed using the fixed arrival time approach and objective
function (3.12a). However, for real-time applications, we resort to a receding horizon strat-
egy using the following heuristic piece-wise linear cost function. It aims at designing a fast
trajectory between the initial waypoint pinit = p(0) in the horizon and the desired one pf ,
mimicking a shortest time objective:

min Jh =
T

∑

k=0

−qv′(k)(pf − pinit) + r|p(T ) − pf | (3.35)

The first term tries to maximize the scalar product of the inertial velocity with the vector
that is pointing from the initial position to the desired one. The effect is twofold: it will
speed the helicopter up, while turning it toward the right direction. In addition, the term
r|p(T ) − pf | tries to minimize the 1-norm distance towards the goal from the last position
in the planning horizon. Both terms thus work towards attaining the same goal, with q and
r weight factors emphasizing either effect.

Since the position error term only accounts for the final step of the planning horizon,
the helicopter is allowed to speed up away from the goal to enable the execution of a
maneuver that will eventually bring it closer than a regular coordinated turn would. This
trade-off between acting immediately or “investing” in an overall more efficient maneuver
is also captured by the scalar product. For example, consider a case in which the helicopter
must reverse direction as quickly as possible, e.g., because of a pop-up threat ahead of
it. Assume that it can either make a U-turn or perform a hammerhead. Since the latter
requires a minimum entrance speed, depending on the initial velocity, one action may be
faster than the other. First speeding up in a straight line to perform the hammerhead will
generate scalar product terms that initially increase the objective function, but enable a
sudden decrease when the maneuver is executed. Making a U-turn, on the other hand,
involves only cost-decreasing terms, but might be slower overall. When there is a bound on
lateral displacement, however, e.g., when flying through a street lined with buildings, the
nominally fastest action might be infeasible. The trajectory will then be optimized over the
alternatives.

Using cost function (3.35), the full MILP problem that must be solved at each receding
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horizon iteration becomes:

minJh =

T
∑

k=0

−qv′(k)(pf − p(0)) + r|p(T ) − pf |

subject to:
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x(k + 1) − Alx(k) − Blu(k) ≤ M(1 − bl(k) +
∑P

m=1 dm(k))1 l = 1, . . . , L, k = 0, . . . , T − 1

−x(k + 1) + Alx(k) + Blu(k) ≤ M(1 − bl(k) +
∑P

m=1 dm(k))1 l = 1, . . . , L, k = 0, . . . , T − 1
x(k + 1) − Cmx(k) − dm ≤ M(1 − dm(k))1 m = 1, . . . , P, k = 0, . . . , T − 1

−x(k + 1) + Cmx(k) + dm ≤ M(1 − dm(k))1 m = 1, . . . , P, k = 0, . . . , T − 1
∑L

l=1 bl(k) = 1 k = 0, . . . , T − 1
∑P

m=1 dm(k) ≤ 1 k = 0, . . . , T − 1
x(0) = xinit

(3.19a) k = 0, . . . , T − 1
(3.23) + M(1 − bl(k)) l = 1, . . . , L, k = 0, . . . , T − 1
(3.24) k = 0, . . . , T − 1
(3.25a), (3.25b) + M(1 − bl(k)) l = 1, . . . , L, k = 0, . . . , T − 1
(3.26) k = 0, . . . , T − 1

(3.27a), (3.27b), (3.28) + M(1 − bl(k)) + M
∑P

m=1 dm(k) l = 1, . . . , L, k = 0, . . . , T − 1
(3.30a), (3.30b), (3.30c) + M(1 − dm(k)) m = 1, . . . , P, k = 0, . . . , T − 1

(3.31) + M(1 − ∑P
m=1 dm(k)) k = 1, . . . , T − 1

(3.32) k = 1, . . . , T
(3.34) + M(1 − dm(k)) m = 1, . . . , P, k = 0, . . . , T − 1

(3.36)

3.5 Results

3.5.1 Helicopter and Problem Parameters

We now use the full receding horizon MILP formulation (3.36) to compute real-time refer-
ence trajectories for some example scenarios. The helicopter parameters for the LTI modes
and maneuvers are based on those of MIT’s X-Cell and are given in Tables 3.2 and 3.3.
We considered two LTI regimes: 1) a hover mode with forward and lateral velocities up to
3 m/s, and 2) a forward flight cruise mode up to 20 m/s, in which no side-slip is allowed.
The maximum forward acceleration for both modes was set to 3 m/s2, the maximum lat-
eral acceleration for hover and cruise to 3.14 m/s2 and 3.49 m/s2 respectively. The latter
correspond to maximum turn rates of 60 deg/s and 10 deg/s at the limiting velocities of
3 m/s and 20 m/s.

The maneuver library contains a hammerhead and a split-S with entry speeds of 15 m/s

Mode vmin (m/s) vmax (m/s) afwd,max (m/s2) alat,max (m/s2) τ (s) k

Hover 0 3 3 3.14 1 1
Cruise 3 20 3 3.49 1 1

Table 3.2: Parameters of LTI modes
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Maneuver ∆xh(m) ∆yh(m) ∆z (m) ∆ψ (deg) ∆T (s) vin(m/s) vex (m/s)

Split-S 6.5 10 -30 180 5 15 18
Hammerhead -20 -6 0 180 7 18 18

Table 3.3: Parameters of pre-programmed maneuvers

and 18 m/s respectively. The body-fixed parameters describing them were obtained by
averaging the actual values resulting from autonomous executions of these maneuvers on the
X-Cell. Notice that an ideal execution would not exhibit a lateral displacement. However,
we chose to keep them because these imperfect maneuvers clearly illustrate the trade-off
decisions the MILP optimization makes in the various scenarios. In addition, we focused
on 2D trajectory planning and ignored the changes in altitude resulting from a maneuver,
thus assuming that the helicopter is flying sufficiently high.

A planning horizon of T = 5 decision steps was used with ∆t = 1 s. As such, each
iteration of the planning problem had to be solved within a second. Using CPLEX 9.0 on
a Pentium 4 with 2.2 GHz clock frequency, optimal or good suboptimal feasible solutions
could always be found within this hard real-time limit. The computation times ranged from
0.3 s to the full 1.0 s, but were about 0.6 s on average. The settings of other parameters
were as follows: N = 16 for the polygonal approximation of circular constraints, J = 3 for
the obstacle avoidance checks between trajectory points, a 5 m safety boundary around the
obstacles, and q = r = 1 for the weights in the cost function.

3.5.2 Scenarios

In each of the following scenarios, the helicopter is initially in the origin (0 m, 0 m), flying
east at 6 m/s or 12 m/s through a corridor such as a street lined with buildings. It is then
given the task to reverse its direction of flight and fly towards location (-100 m, 0 m) as
quickly as possible. This command would typically be issued by a higher level decision unit,
and could for example result from the detection of a threat ahead of the helicopter.

In the first scenario, depicted in Figure 3-9, the vehicle is flying at 12 m/s. The optimal
course of action is to speed up to 15 m/s and execute the split-S, resulting in a quick
direction reversal with a 18 m/s exit speed. Conformable to the LTI-MA dynamics, the
maneuver is considered as a discontinuous displacement, shown in dashed line. Upon exiting
the split-S, the helicopter further accelerates to its maximum speed of 20 m/s. The full
sequence to get near the waypoint at (-100 m, 0 m) takes 12 s. Solving once for the exact
shortest time trajectory using strategy (3.12a)-(3.12b) yielded the same result. However,
the computation took 310 s (for a T = 14 step horizon), making the approach inapplicable
to online optimization.

In the second scenario, shown in Figure 3-10, the initial speed is 6 m/s. The helicopter
now decides to slow down to the hover mode in which it can turn around faster. It now
takes 6 s to make the full U-turn and 10 s total to reach the waypoint at a speed of 20 m/s.
The exact time-optimal trajectory looked very similar and lasted equally long, but took
471 s to compute (again using 14 decision steps as an upper bound).

Next, we considered two scenarios in which an additional obstacle was placed in the
environment. The resulting trajectories are plotted in Figures 3-11 and 3-12, for the two
starting velocities of 12 m/s and 6 m/s respectively. Because of the restrictive bound on
turn rate in the cruise mode, executing the split-S as in scenario 1 would prohibit the
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Figure 3-9: Scenario 1: The helicopter is initially in (0, 0) flying at 12 m/s and needs to
reverse direction towards (−100, 0) as quickly as possible. It decides to execute the split-S.
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Figure 3-10: Scenario 2: The helicopter is initially in (0, 0) flying at 6 m/s and needs to
reverse direction towards (−100, 0) as quickly as possible. It decides to make a U-turn.

vehicle from safely avoiding the obstacle (which is enlarged with a 5 m safety boundary):
the helicopter would be facing it with a speed of 18 m/s and insufficient distance to turn
away. The trajectory optimization therefore results in the vehicle changing heading during
the first time step. That way it is not pointing towards the obstacle after executing the
split-S, and has enough space to turn around it. In addition, the helicopter slows down
to avoid the southern wall. In the U-turn case of Figure 3-12, the vehicle simply makes a
wider coordinated turn.

65



−100 −80 −60 −40 −20 0 20 40

−50

−40

−30

−20

−10

0

10

20

30

40

50

x−East (m)

y−
N

or
th

 (
m

)

Split−S with Extra Obstacle

u = 12 m/s 
Split−S 

u = 20 m/s 

Figure 3-11: Scenario 3: The helicopter is initially in (0, 0) flying at 12 m/s and needs
to reverse direction towards (−100, 0) as quickly as possible. To avoid the obstacle in the
middle, it decides to change heading before executing the split-S.
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Figure 3-12: Scenario 4: The helicopter is initially in (0, 0) flying at 6 m/s and needs to
reverse direction towards (−100, 0) as quickly as possible. To avoid the obstacle in the
middle, it decides to make wider a U-turn.

In the last two examples, shown in Figures 3-13 and 3-14, we narrowed the width of
the corridor to 20 m and 10 m respectively. The helicopter starts at 12 m/s in both cases.
In the 20 m scenario, the vehicle first turns northeast such that it can still safely execute
the split-S. In the 10 m scenario, however, because of the 5 m safety boundaries along the
walls, the only feasible option is to slow down and make a turn on the spot.
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Figure 3-13: Scenario 5: The helicopter is initially in (0, 0) flying at 12 m/s and needs to
reverse direction towards (−100, 0) as quickly as possible. Because of the narrower corridor,
the vehicle first turns northeast before executing the split-S.
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Figure 3-14: Scenario 6: The helicopter is initially in (0, 0) flying at 12 m/s and needs to
reverse direction towards (−100, 0) as quickly as possible. The only feasible option is to
slow down and make a turn on the spot.

Notice that in the above examples, the vehicle was not constrained to hit the waypoint
exactly. If desired, however, this could be achieved by switching to a different cost function
and/or by including additional arrival constraints as soon as the waypoint is reachable
within the planning horizon. The option of changing cost functions between two iterations
is discussed in more detail in Section 3.6 about different planning modes.
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Figure 3-15: Hardware in the loop experiments. The helicopter is flying between two obsta-
cles, initially heading east at 10 m/s. Figure (a) shows the helicopter reversing direction by
slowing down till hover and turning on the spot. In Figure (b), it performs a hammerhead.
The different actions depend on the width of the corridor.

3.5.3 Hardware in the Loop Experiments

The optimal turn-around scenario was also implemented in the X-Cell’s hardware-in-the-
loop simulator. For the experiments we considered one LTI-mode up to 18 m/s and the
hammerhead as the only agile maneuvering option. The reason for this restricted library
was the limited computation power of the onboard computer and the use of the open
source MILP solver GLPK [86], which is less powerful than CPLEX. The GLPK solver
was integrated with the helicopter guidance and flight control software in the real-time
operating system QNX 4.25. It ran on a DSP Design TP400B single board computer with
a National Semiconductor Geode GX1 chip, operating at 300 MHz. The MILP solver was
implemented as an independent low priority process, which interacted with the remaining
flight code through shared memory. This architecture ensured that the primary flight control
system was not affected by the computationally demanding solver.

Figure 3-15 shows two real-time trajectories resulting from when the helicopter is initially
flying east at 10 m/s. In the first scenario, the lateral displacement was limited to 10 m,
while in the second, it was allowed to be 30 m. The plots start at the time at which the
threat is detected, and end when the helicopter reaches 14 m/s in the opposite direction.
In the first case, the helicopter opted for a turn on the spot, while in the second scenario,
the fastest action was to accelerate and perform the hammerhead.

3.6 Practical Considerations

When planning in a receding horizon fashion, it may be possible to take some decisions
outside of the actual trajectory optimization problem. Decoupling specific elements of the
planning problem by introducing a decision hierarchy can save significant computation time.
This can be performed by tailoring the formulation of the trajectory optimization to the
requirements set by a specific context. In some situations, it may indeed be possible to
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recognize a priori certain features of the planning problem based on the vehicle’s operating
condition and aspects of the environment. For example, in scenario 6 from above, the split-S
could be ruled out as a feasible option and removed from the problem formulation ahead of
time. More generally, if it is possible to determine whether the vehicle state and environment
preclude certain types of maneuvers or LTI conditions, a planning mode with a pruned set of
maneuvers and LTI modes can be used, thus reducing the problem complexity and required
computation time. Furthermore, an appropriate discretization level can be used, depending
on whether the context requires less or more precise trajectories.

These considerations are of importance in the implementation of a real-time guidance
system. Exploiting a priori knowledge can also be used in the computation of a heuris-
tic cost-to-go function. We believe that the most effective implementation will be one in
which an online receding horizon approach is combined with an offline cost-to-go calcu-
lation. Several (parameterized) cost-to-go functions could be pre-computed for different,
often recurring situations, such as turning around a street corner in an urban environment.
These cost-to-go functions can then be incorporated in the online optimization problem as
terminal costs at the end of the planning horizon.

Such different planning modes would also allow the trajectory generation software to
switch between inertial and body-fixed frame models of the vehicle. An inertial model, for
instance, could be used to compute “high resolution” waypoints in a cluttered environment,
which are then followed by solving MILP problems in a body-fixed reference frame. The
MILP optimization itself could then act as the waypoint controller.

3.7 Conclusion

This chapter presented a hybrid control architecture and model for autonomous trajectory
planning of agile vehicles by combining multiple velocity control modes with a maneuver
scheduler. The former provide the flexibility to precisely navigate between waypoints in a
cluttered environment, while the latter enables execution of pre-programmed maneuvers at
the limit of the vehicle capabilities. The closed-loop dynamics under this control architec-
ture were described by a simple hybrid model consisting of a set of LTI modes and discrete,
fixed-duration state transitions. Using this description of the dynamics, optimal trajec-
tory planning through a cluttered environment was formulated as a mixed-integer linear
program. The framework was worked out in detail for the case of a small-scale helicopter
model based on MIT’s aerobatic X-Cell. Results for several receding horizon scenarios were
presented that illustrate the real-time applicability of the approach. In addition, some
practical considerations regarding an efficient implementation were discussed.
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Chapter 4

Trajectory Planning with
Feasibility and Safety Guarantees

This chapter extends the basic receding horizon trajectory problem presented in Chapter 2
to account for feasibility and safety guarantees. We consider the case of a single vehicle
navigating through a cluttered environment which is only known within a certain detection
radius around the vehicle. A receding horizon strategy is presented with hard terminal
constraints that guarantee feasibility of the trajectory planning problem at all future time
steps. The trajectory computed at each iteration is constrained to end in a feasible invariant
set, in which the vehicle can remain for an indefinite period of time. These invariant sets
need not be known ahead of time and are implicitly computed online. The principle is
applied to the case of a UAV with limited turn rate and minimum speed requirements, for
which feasible invariant sets are derived in the form of loiter circles. Safety is guaranteed
by further constraining the terminal feasible invariant set to contain an entry state to a
backtrack pattern that brings the vehicle back to where it started. Example scenarios are
presented that illustrate the necessity of the feasibility and safety constraints when the
knowledge of the environment is limited and/or hard real-time restrictions are given.

4.1 Introduction

In scenarios where the environment is not fully characterized before the mission and explored
online, the basic trajectory planning problem presented in Chapter 2 may not always have a
feasible solution. Indeed, despite the hard obstacle and collision avoidance constraints, the
basic receding horizon strategies (2.3)-(2.9) and (2.10)-(2.15) for multiple and single vehicles
respectively have no safety guarantees regarding avoidance of obstacles and collisions in the
future. Namely, the algorithm may fail to provide a solution in future time steps due to
obstacles and other vehicles that are located beyond the planning radius of the vehicle. For
example, the trajectory planned at the current iteration may approach an unknown obstacle
that is located just outside its detection radius or planning horizon too closely, and may
not have sufficient braking power or turn capacity to compensate for it over the next time
steps. This translates into the optimization problem becoming infeasible at a certain time
step in the future, indicating that the vehicle is on a collision course.

This chapter therefore develops additional constraints that guarantee feasibility and
safety of the receding horizon planning problem at all future iterations. The constraints are
expressed as affine transformations of the last state in the planning horizon, and, as such, are
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implicit to the optimization problem. They imply the existence of an invariant set [64] that
is parameterized in terms of the terminal state of the trajectory at each receding horizon
iteration but is not pre-computed. In this respect, our method to maintaining feasibility and
safety is fundamentally different from the existing approaches in the literature [120, 146,
102]. These methods are based on constraining the online trajectory to end in a reachable
invariant set that is computed offline [83, 97], for example by solving a Hamilton-Jacobi
equation [4, 96]. As such, the environment must either be known ahead of time or the
sets must be conservative to handle the uncertainty in the environment. Our method does
not require any off-line computation, is more flexible in its formulation and allows for less
conservative trajectories. Furthermore, at each time step it will provide an a priori known
trajectory that can serve as a safe backup plan in case a new solution cannot be found in
time. This “rescue” trajectory will be updated at each receding horizon iteration.

The type of feasibility that will be ensured by our formulation is feasibility with respect
to geometric constraints that are imposed by the environment. This is different from the
robust model predictive control literature which mainly studies the problem of maintaining
feasibility against model uncertainties or external disturbances acting on the vehicle. A
survey of such methods can be found in [13]. Among the existing methods, we mention min-
max approaches [134] and the use of linear matrix inequalities [66]. Although such methods
could be used to guarantee additional robust feasibility against disturbances, throughout
this chapter, we only consider the nominal planning problem. Robust feasibility of the basic
trajectory planning using constraint tightening [46] is covered in [112], whereas robustness of
the safe planning formulation developed in this chapter is still a topic of ongoing research [71,
70].

Furthermore, unlike other constrained model predictive control formulations and prob-
lems [29, 136, 135, 91], feasibility of the receding horizon trajectory planning problem
through a partially unknown environment does not automatically imply stability in the
sense of reaching the goal. Unknown obstacles in the environment may indeed prevent the
vehicle from reaching its desired location. Stability is therefore an issue related to the envi-
ronment modeling and cost-to-go formulation [7] rather than a constraint related problem.
As such, our primary concern in this chapter is to guarantee safety of a mission rather than
completion of the mission, which may be infeasible.

The outline of the chapter is as follows. Section 4.2 first presents some scenarios that
highlight the need for safety constraints in the basic receding horizon formulation. Sec-
tion 4.3 then defines the concept of a terminal feasible invariant set and introduces a reced-
ing formulation with feasibility guarantees. Next, an example in the form of loiter circles
is given in Section 4.4, along with simulation results. Section 4.5 then defines safety and
introduces additional constraints to obtain a safe receding horizon planning strategies.

4.2 Unsafe Scenarios

Consider Example 1 from Section 2.4 again. Assume that the vehicle has a detection radius
of 30 m and that obstacles beyond that radius are unknown. As depicted in Figure 4-1,
consider now the case where the corridor through which the aircraft is flying is obstructed.
Then, because of its 30 m detection radius and corresponding limited knowledge of the
obstacle field, the MILP optimization guides the vehicle into the concavity from which it
cannot exit. This is due to its limitation on turn rate and minimum speed, resulting in a
minimum turn radius that is larger than the available maneuver space. This observation
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Figure 4-1: The aircraft is initially in the origin, flying east at 4 m/s, and has to maneuver to
position (70, 57) m. After 17 s, the MILP becomes infeasible, corresponding to the aircraft
colliding with the obstacles.

translates into the MILP becoming infeasible after 17 s and a crash of the aircraft against
an obstacle.

In the multi-vehicle scenario from Section 2.4 (Example 2), decreasing the number of
time steps accounted for in the cost function while keeping the number of constraints the
same also results in an infeasibility of the collision avoidance constraints. The cost function
will drive the vehicles too close to each others until they can no longer turn away fast
enough. This is shown in Figure 4-2: just before halfway towards the destination points,
the problem becomes infeasible and an intersection of the avoidance zones can no longer be
avoided. The multi-vehicle safety problem will be tackled in Chapter 5; in this chapter, we
will first discuss the single vehicle case.

4.3 Feasibility Constraints

4.3.1 Feasible Invariant Sets

The preceding examples indicate that when a vehicle is maneuvering through an environ-
ment that is only partially known, additional constraints are needed that guarantee its
safety at future time steps. One could claim that by choosing a more sophisticated cost-to-
go function that assigns a higher cost to unsafe regions in the state space, situations as the
ones described above could be avoided automatically. However, our assumption is that no
or only partial information about the environment is known beyond the detection region of
the vehicle. As such, a cost-to-go construction based on knowledge of all obstacles as in [7]
can only be applied locally, without guarantees for the future.

To precisely capture what we understand by safety and how it is related to the feasibility
of the trajectory planning problem, we introduce some definitions:
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Figure 4-2: The aircraft are initially positioned along a circle and need to fly to the opposite
side. Near the origin, the MILP becomes infeasible: the aircraft have approached each other
too closely and an intersection of their avoidance zones cannot be avoided.

Definition 4.1 (Feasible Invariant Set): We define a feasible invariant set S(t) as a
state or periodic sequence of Ip < ∞ states starting at time t that is dynamically feasible,
obstacle-free, and in which the vehicle can remain for an indefinite period of time: S(t) =
{x(t+ s|t) ∈ R

n, s = 0, . . . , Ip | x(t+ s|t) ∈ X (t), x(t+ s|t) /∈ O(t), x(t+ Ip|t) = x(t|t),∀s <
Ip ∃u(t + s|t) ∈ U(t − 1) : x(t + s + 1|t) = Ax(t + s|t) + Bu(t + s|t)}.

Examples of such feasible invariant sets are stop states for a ground rover, hover for a
helicopter, and loiter patterns for fixed-wing UAVs that lie in a region of the environment
that is fully characterized and will remain free of obstacles in the future. Regardless of how
such a set is determined, it is clear that once the vehicle enters the safe invariant set, there
will always exist a dynamically feasible, obstacle-free trajectory at all future time steps.
Therefore, if at each receding horizon iteration, the trajectory of the vehicle is constrained
to terminate in such a set, (nominal) feasibility at the next time step will be guaranteed.
We call this set a terminal feasible invariant set:

Definition 4.2 (Terminal Feasible Invariant Set): We define a terminal feasible in-
variant set S(t + T |t) as a feasible invariant set starting at the last state x(t + T |t) of the
receding horizon trajectory planning problem at time t: S(t + T |t) = {xS(t)(t + T + s|t) ∈
R

n, s = 0, . . . , Ip | xS(t)(t + T |t) ≡ x(t + T |t), xS(t)(t + T + s|t) ∈ X (T ), xS(t)(t + T + s|t) /∈
O(t), xS(t)(t + T + Ip|t) = xS(t)(t + T |t),∀s < Ip ∃uS(t)(t + T + s|t) ∈ U(T − 1) : xS(t)(t +
T + s + 1|t) = AxS(t)(t + T + s|t) + BuS(t)(t + T + s|t)}.

Notice that the kino-dynamic constraint sets X (T ) and U(T − 1) for the terminal feasible
invariant set are now the ones corresponding to the last state and input of the planning
horizon. The obstacle set O(t) is still the one as characterized at time t, because that is
when the trajectory terminating in S(t + T |t) is planned.
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4.3.2 Feasible Receding Horizon Planning Problem

Accounting for the terminal feasible invariant set in the receding horizon trajectory opti-
mization yields the following extended formulation of the basic planning problem (2.10)-
(2.15):

J∗
T = min

T−1
∑

k=0

ℓk(x(t + k|t), u(t + k|t), xf ) + fT (x(t + T |t), xf ) (4.1)

subject to:

x(t + k + 1|t) = Ax(t + k|t) + Bu(t + k|t), k = 0, . . . , T − 1 (4.2)

x(t|t) = x̂(t|t − 1) (4.3)

x(t + k|t) ∈ X (k) ⊇ X (k + 1), k = 1, . . . , T (4.4)

u(t + k|t) ∈ U(k) ⊇ U(k + 1), k = 0, . . . , T − 1 (4.5)

p(t + k|t) /∈ Oa(t), k = 1, . . . , T (4.6)

x(t + T |t) ∈ S(t + T |t) (4.7)

It will be referred to as PF (x(t),X (k),U(k),O(t),S(t+T |t)). Notice the additional superset
structure X (k) ⊇ X (k + 1) and U(k) ⊇ U(k + 1) for the state and input constraint sets.
Together with the terminal feasible invariant set, these additional requirements are needed
to maintain a priori feasibility of the optimization problem PF (x(t + 1),X (k),U(k), O(t +
1),S(t + 1 + T |t + 1)) at the next receding horizon iteration. The feasibility property is
formalized in the following theorem:

Theorem 4.1: Feasibility of the trajectory optimization problem PF (x(t),X (k),U(k),O(t),
S(t + T |t)) at time t implies feasibility of the problem PF (x(t + 1),X (k),U(k),O(t + 1),
S(t + 1 + T |t + 1)) at time t + 1.

Proof : The proof consists of explicitly constructing a feasible solution to the next op-
timization problem PF (x(t + 1),X (k),U(k),O(t + 1),S(t + 1 + T |t + 1)). Assume that
a feasible solution to PF (x(t),X (k),U(k),O(t),S(t + T |t)) at time t is given by the in-
put sequence u∗(t|t), u∗(t + 1|t), . . . ,u∗(t + T − 1|t) and corresponding state sequence
x∗(t|t), x∗(t + 1|t), . . . ,x∗(t + T − 1|t), x∗(t + T |t), where x∗(t + T |t) ∈ S(t + T |t). Per
definition of S(t+T |t), there exists an input u∗(t+T ) ∈ U(T −1) such that x∗(t+T +1) =
Ax(t + T |t) + Bu∗(t + T ) with x∗(t + T + 1) ∈ X (T ), x∗(t + T + 1) ∈ S(t + T |t) and
x∗(t + T + 1) /∈ O(t). Let a candidate solution to problem PF (·) at time t + 1 then be
given by u∗(t + 1|t + 1) = u∗(t + 1|t) ∈ U(1) ⊂ U(0), u∗(t + 2|t + 1) = u∗(t + 2|t) ∈ U(2) ⊂
U(1), . . . ,u∗(t + T − 1|t + 1) = u∗(t + T − 1|t) ∈ U(T − 1) ⊂ U(T − 2), u∗(t + T |t + 1) =
u∗(t + T ) ∈ U(T − 1) and x∗(t + 1|t + 1) = x∗(t + 1|t), x∗(t + 2|t + 1) = x∗(t + 2|t) ∈
X (2) ⊂ X (1), . . . ,x∗(t + T |t + 1) = x∗(t + T |t) ∈ X (T ) ⊂ X (T − 1), x∗(t + 1 + T |t + 1) =
x∗(t + T + 1) ∈ X (T ). The state space equations and state and input constraints are
thus satisfied. Furthermore, by letting S(t + 1 + T |t + 1) = S(t + T |t), we also have
x∗(t + 1 + T |t + 1) ∈ S(t + 1 + T |t + 1). Finally, because we are assuming a static envi-
ronment and the new trajectory does not reach further in distance than the previous one
(since it terminates in the same feasible invariant set), no new obstacles will have to be ac-
counted for and the avoidance constraints are still satisfied. The candidate solution is thus
feasible which proofs the feasibility of PF (x(t + 1),X (k),U(k),O(t + 1),S(t + 1 + T |t + 1)).
¤
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Given a feasible trajectory at the current time step t, an a priori feasible solution to the
next optimization problem at t + 1 is thus given by the remaining part of the current
trajectory with an additional state in the current terminal feasible invariant set S(t + T |t).
This solution can act as a warm start at the next receding horizon iteration and serve as a
feasible backup plan in case no better trajectory can be found within the real-time limits
of the guidance system. Next, we make the following observation:

Corollary 4.1: By recursion, feasibility of the trajectory optimization problem PF (·) at
t = 0 implies feasibility of PF (·) at all future time steps.

Maintaining feasibility over all time steps is an important property for receding horizon
planning strategies. Besides allowing for warm starts in the optimization, it is fundamental
in the study of robust planning techniques and the correctness proofs thereof [71, 70].

4.4 Feasible Invariant Sets as Affine Transformations

4.4.1 Terminal Feasible Invariant Set Modeling

So far, we have not elaborated on how the terminal feasible invariant sets for problem (4.1)-
(4.7) are determined. In general, they will be expressed as affine transformations on the last
state in the planning horizon. Binary variables are then used again to ensure the associated
obstacle avoidance requirement. In this section, we specialize the approach to the case of
an aircraft that is constrained by the kino-dynamic inequalities (2.21)-(2.23). Because of
the minimum speed constraint, a natural feasible invariant set is a circular loiter pattern. If
the trajectory computed at each time step ends in either a left or right turning loiter circle
that does not intersect any of the obstacles, the optimization problem is guaranteed to be
feasible at each future time step. This implies that the aircraft will be able to physically
avoid all obstacles within its detection radius, and if necessary, be able to transition to and
remain on its obstacle-free loiter circle.

Assuming that the aircraft behaves like a double integrator, the radius R of the smallest
possible loiter circle at a given speed v corresponds to R = cv2. Here c is an aircraft
specific parameter associated with the maximum available lateral acceleration or force. As
depicted in Figure 4-3, to describe the loiter circle as a function of the last state x(T ) =
[x(T ) y(t + T ) ẋ(T ) ẏ(T )]′ in the planning horizon, we need to find the vectors (p(T )− pR)
and (p(T ) − pL). Here, p(T ) = [x(T ) y(T )]′ denotes the ingress position of the loiter, and
pR and pL are the center points of the right and left circle respectively. The latter are scaled
versions αv⊥(T ) and −αv(T )⊥ of the orthogonal complement v⊥(T ) = [−ẏ(T ) ẋ(T )]′ of
v(T ) = [ẋ(T ) ẏ(T )]′.

The scaling factor α has a lower and upper bound, corresponding to the minimum
and maximum allowed ingress velocity. With ||v(T )|| the magnitude of v(T ), we have
α = R

||v(T )|| = c||v(T )|| and thus αmin = cvmin ≤ α ≤ αmax = cvmax. However, to avoid

quadratic constraints on v(T ), we use a constant scaling factor αc. By conservatively setting
αc = αmax, the radius of the loiter circles will be larger than necessary for ingress velocities
lower than vmax, which corresponds to not applying the maximum available lateral thrust.
Since this is an over-approximation of a safety condition, however, we are only giving up
some performance rather than safety.

By introducing a rotation matrix R(θ), any point pR(θ) along the right loiter circle
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Figure 4-3: Safe trajectory ending in either a right or left turning loiter circle.

CR(x(T )) can then be expressed as:

pR(θ) = pR + R(θ)(αcv
⊥(T ))

= (p(T ) − αcv
⊥(T )) + R(θ)(αcv

⊥(T ))
= p(T ) + αc(R(θ) − I)v⊥(T )

=

[

x(T )
y(T )

]

+ αc

[

cos θ − 1 − sin θ
sin θ cos θ − 1

] [

−ẏ(T )
ẋ(T )

]

(4.8)

Similarly, any point pL,θ along the left loiter circle CL(x(T )) is given by:

pL(θ) = pL − R(θ)(αcv
⊥(T ))

= (p(T ) + αcv
⊥(T )) − R(θ)(αcv

⊥(T ))
= p(T ) − αc(R(θ) − I)v⊥(T )

=

[

x(T )
y(T )

]

− αc

[

cos θ − 1 − sin θ
sin θ cos θ − 1

] [

−ẏ(T )
ẋ(T )

]

(4.9)

4.4.2 Sampling Points Requirements

Maintaining feasibility now comes down to ensuring that either the left or right loiter circle
does not overlap with any of the obstacles that are located within the detection radius of
the vehicle. This can be achieved by sampling both circles for fixed values of θ and by
introducing avoidance constraints similar to (2.29). To strictly follow the approach used to
guarantee feasibility in the proof of Theorem 4.1, the sampling points should correspond to
actual time steps ∆t, yielding N∆t = ⌈2π/(ωmax∆t)⌉ points and a sample angle of θs = 2π

N∆t
.

Taking the ceiling in the expression for N∆t is required to guarantee that pL(N∆tθs) = p(T ),
conformable to the definition of a terminal feasible invariant set. However, we could also
sample the loiter patterns geometrically, i.e., with a sampling angle that does not correspond
to an actual time step along the circles. As long as the full circle is obstacle-free, this does
not jeopardize the feasibility of the planning problem at the next time step. Alternatively
speaking, the sampling comes down to a rescaling of the time step once the vehicle is in
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Figure 4-4: Situation where undersampling of the loiter circle leads to a safety violation.
Although the obstacle avoidance constraints for the sample points are satisfied, the circle
intersects the obstacle.

safed

s

Figure 4-5: Situation where the loiter circle cuts the corner of an obstacle. This situation
can be avoided by enlarging the obstacles with a safety boundary dsafe.

the feasible invariant set. It allows us to plan larger invariant sets with a smaller number
of variables.

As before, ensuring obstacle avoidance for sample points along the circle does not guar-
antee that the loiter circle does not intersect obstacles in the segments between the sample
points. Consider for example the situation depicted in Figure 4-4: although the avoidance
constraints for all sample points are satisfied, the circle cuts through the obstacle because
the sample angle spacing is too coarse. This type of under-sampling can be avoided by
choosing a minimum number of sampling points N as follows:

N ≥ Nmin =
π

arcsin( wmin

2rmax
)

(4.10)

Here wmin denotes the width of the narrowest obstacle, and rmax = cv2
max is the radius of

the largest loiter circle. The derivation of this condition is based on the insight that the
maximum spacing in distance between the sample points along the largest circle should not
exceed wmin. As such, (4.10) is only necessary when wmin ≤ 2rmax.

If wmin > 2rmax, a situation like the one in Figure 4-4 cannot occur, and therefore
no minimum number of sample points is required. However, as illustrated in Figure 4-5,
the loiter circles can now cut the corners of obstacles. Nevertheless, avoidance can still be
guaranteed by enlarging the obstacles with a safety boundary dsafe such that the circle can
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enter the boundary, but does not intersect the actual obstacle. Using basic geometry, one
can derive the following expression for dsafe as a function of N :

dsafe(N) =

√
2

2
rmax

(

1 + sin
π

N
− cos

π

N

)

<
√

2rmax

Remember that the enlargement principle also holds for the regular part of the trajectory:
due to the time discretization with step ∆t, each obstacle must be enlarged by dsafe = vmax∆t√

2
.

4.4.3 MILP Formulation

Using the preceding sampling approach, the terminal feasible invariant set constraint (4.7)
can be specified by the following loiter conditions:







CR(x(T )) = {(xRj , yRj)} /∈ Os, j = 1, . . . , N
OR

CL(x(T )) = {(xLj , yLj)} /∈ Os, j = 1, . . . , N
(4.11)

where the index j indicates the sample point on the circle, and Os is the set of obstacles
enlarged with dsafe. By introducing a binary variable d that selects either the right or
left circle, and using (4.8)-(4.9) for the coordinates of the sample points, the avoidance
constraints (4.11) for rectangular obstacles can be explicitly written as follows:

∀l ∈ [l, . . . , L], ∀j ∈ [1, . . . , N ] :















































x(T ) − αc (cos jθs − 1) ẏ(T ) − αc (sin jθs) ẋ(T )
≤ xmin,l + Mblj1 + Md

−x(T ) + αc (cos jθs − 1) ẏ(T ) + αc (sin jθs) ẋ(T )
≤ −xmax,l + Mblj2 + Md

y(T ) − αc (sin jθs) ẏ(T ) + αc (cos jθs − 1) ẋ(T )
≤ ymin,l + Mblj3 + Md

−y(T ) + αc (sin jθs) ẏ(T ) − αc (cos jθs − 1) ẋ(T )
≤ −ymax,l + Mblj4 + Md

(4.12)

AND














































x(T ) + αc (cos jθs − 1) ẏ(T ) + αc (sin jθs) ẋ(T )
≤ xmin,l + Mblj1 + M(1 − d)

−x(T ) − αc (cos jθs − 1) ẏ(T ) − αc (sin jθs) ẋ(T )
≤ −xmax,l + Mblj2 + M(1 − d)

y(T ) + αc (sin jθs) ẏ(T ) − αc (cos jθs − 1) ẋ(T )
≤ ymin,l + Mblj3 + M(1 − d)

−y(T ) − αc (sin jθs) ẏ(T ) + αc (cos jθs − 1) ẋ(T )
≤ −ymax,l + Mblj4 + M(1 − d)

(4.13)

{
∑4

k=1 bljk ≤ 3
bljk, d ∈ {0, 1} (4.14)

Here the index l indicates the obstacles, and θs = 2π
N

is the spacing angle. The obstacle
coordinates (xmin, ymin, xmax, ymax)l are those of the enlarged obstacles.
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Figure 4-6: Receding horizon trajectory with loiter constraints. Because of the loiter con-
straints, the UAV avoids the concavity and chooses an alternative route to reach the goal.

4.4.4 Examples

We now apply the loiter circle constraints to the unsafe example of Section 4.2. The planning
horizon again contains T = 6 time steps of 1 s each. For the loiter circles, we used N = 8
sample points. The result is shown in Figure 4-6. Thanks to the loiter constraints, the UAV
does not fly into the concavity, but chooses an alternative route to reach the goal. As a
result, the MILP remains feasible at all time steps and a crash in the concavity is prevented.
The total trajectory time is now 33 ss. The sequence of partial trajectories computed at
each time step is depicted in Figure 4-7.

Assume now that the width of the concavity is such that the UAV can make a 180◦ turn
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Figure 4-7: Sequence of intermediate receding horizon trajectories ending in loiter circles.
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Figure 4-8: Receding horizon trajectory with loiter constraints. Although the UAV enters
the concavity, it does not crash and the trajectory ends in a loiter.

in it. In this case, the aircraft does fly into the concavity, but can avoid the obstacle by
executing a loiter pattern as displayed in Figures 4-8 and 4-9. Although the mission was
not completed, the aircraft remains safe and the optimization problem feasible at all times.
As was mentioned earlier, when the vehicle starts loitering, it can use higher level decision
logic or an updated cost-to-go function to compute a path out of the concavity.

Finally, Figures 4-10 and 4-11 present a scenario with the same vehicle but with 24
sample points along the loiter circles which are required because of the presence of narrower
obstacles in the environment.
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Figure 4-9: Sequence of intermediate receding horizon trajectories for a wider concavity.
Although the UAV enters the concavity, it does not crash and the trajectory ends in a loiter.

81



0 20 40 60 80 100

−10

0

10

20

30

40

50

60

70

Figure 4-10: Feasible receding horizon trajectory with loiter constraints.
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Figure 4-11: Sequence of intermediate receding horizon trajectories with loiter constraints
consisting of 24 sample points.

4.5 Safety Constraints

4.5.1 Safety Definitions

Although feasibility of trajectory planning problem PF (·) will be guaranteed, actual vehicle
safety may not. Indeed, constraining the trajectory to terminate in a feasible invariant
set may lead to the vehicle being trapped in that set. For example, a fixed-wing UAV
may fly into a concavity in which it can fit a loiter circle without being able to exit from
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Figure 4-12: Scenario in which the terminal feasible invariant set constraints cannot prevent
the UAV from getting trapped inside a concavity. Although feasibility is maintained, actual
vehicle safety is not.

that concavity. Such a scenario is shown in Figures 4-12 and 4-13. The parameters of the
problem are the following: vmax = vmin = 2 m/s, ωmax = 30 deg/s, T = 7 time steps
with ∆t = 0.5 s and Nmin = 24 loiter sample points. The vehicle starts in (-15 m,31 m)
flying east (at 2 m/s) and has to maneuver to (70 m,30 m). Since the cost function is
unaware of the shape of the concavity and the loiter circles fit inside, the aircraft is steered
into the narrow corridor from which it cannot exit. Although it will not hit any obstacles
and feasibility is maintained, it does not have enough space and turn capacity to leave the
concavity and is trapped on the circle (until it runs out of fuel).

An absolutely safe planning formulation should therefore account for the possibility to
leave the terminal feasible invariant set and return to the position from where the vehi-
cle came. To set up such formulation in a rigorous way, two more concepts have to be
introduced:

Definition 4.3 (Return Trajectory): Define the return trajectory T (t) as the sequence
of initial positions of all earlier receding horizons trajectory planning iterations with reversed
velocity vectors: T (t) = {xT (t)(0) ≡ [p′(t|t) − v′(t|t)]′, xT (t)(1) ≡ [p′(t − 1|t − 1) −v′(t −
1|t − 1)]′, . . . ,xT (t)(t) ≡ [p′(0|0) − v′(0|0)]′ ∈ S(0)}. The return trajectory is stored in
memory and gets updated at each receding horizon iteration.

If the environment is static and provided that the vehicle dynamics and kinematics are
symmetric, then, if the vehicle is in one of the states xT (t)(·), the return trajectory provides
an obstacle-free trajectory back to where it started. We will make this assumption about
static environments and vehicle symmetry throughout the remainder of this chapter.

For feasibility reasons that will be explained shortly, the last state of T (t) is constrained
to lie in an initial feasible invariant set. This places an extra condition on the set of feasible
initial states for the trajectory planning problem at time 0. For a helicopter this could
just be a hover state, for a UAV it could be a loiter circle which would be executed in the
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Figure 4-13: Intermediate receding horizon trajectories ending in loiter circles for the sce-
nario in which the UAV gets trapped inside a concavity.

opposite direction if the vehicle decided to return. Next, we must ensure that the return
trajectory is reachable from the terminal feasible invariant set, which is done using the
following concept:

Definition 4.4 (Backtrack Pattern): Define a backtrack pattern B(t + T |t) of length
Q ≤ T as a sequence of Q dynamically feasible, obstacle-free states planned at time t that
provides a transition from the terminal safe invariant set S(t + T |t) to the return tra-
jectory T (t): B(t + T |t) = {xB(t)(q) ∈ R

n, q = 0, . . . , Q | xB(t)(q) ∈ X (T ), xB(t)(q) /∈
O(t), xB(t)(0) ∈ S(t + T |t), xB(t)(Q) ∈ T (t),∀q < Q∃uB(t)(q) ∈ U(T − 1) : xB(t)(q + 1) =
AxB(t)(q) + BuB(t)(q)}.

The backtrack trajectory B(t + T |t) must be planned along with the terminal feasible
invariant set S(t + T |t) during the receding horizon iteration at time t. If both are part of
the optimization problem, the vehicle always has the option to either stay in the feasible
invariant set (e.g., a loiter circle) or to backtrack along its path. Safety can then be defined
as follows:

Definition 4.5 (Safety): The vehicle is in a safe state at time t if that state lies on the
return trajectory T (t) or if from that state there exists a dynamically feasible, obstacle-free
trajectory of length T ending in a terminal feasible invariant set S(t + T |t), from which the
vehicle has the possibility to return to T (t) along a backtrack pattern B(t + T |t). Safety is
then defined as being in such a safe state at all times.

Safety and the concept of a terminal feasible invariant set, a backtrack pattern and the
return trajectory are illustrated in Figure 4-14.
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Figure 4-14: Safe receding horizon trajectory of T time steps ending in a terminal feasible
invariant set S(t+T |t) and with backtrack pattern B(t+T |t) to the return trajectory T (t).

4.5.2 Safe Feasible Receding Horizon Planning Problem

Using the concepts defined above, we can now extend the feasible receding horizon trajectory
planning problem (4.1)-(4.7) to account for safety. Consider the following formulation:

J∗
T = min

T−1
∑

k=0

ℓk(x(t + k|t), u(t + k|t), xf ) + fT (x(t + T |t), xf ) (4.15)

subject to:

x(t + k + 1|t) = Ax(t + k|t) + Bu(t + k|t),
k = 0, . . . , T − 1 (4.16)

x(t|t) = x̂(t|t − 1) (4.17)

x(t + k|t) ∈ X (k) ⊇ X (k + 1),

k = 1, . . . , T (4.18)

u(t + k|t) ∈ U(k) ⊇ U(k + 1),

k = 0, . . . , T − 1 (4.19)

p(t + k|t) /∈ Oa(t), k = 1, . . . , T (4.20)

AND
{

x(t + T |t)
∃s ∈ {0, . . . , Ip − 1} : xS(t)(t + T + s|t)

∈
∈

S(t + T |t)
B(t + T |t) (4.21)

OR

{x(t + T |t) ∈ T (t) (4.22)

where Ip is the period of the terminal feasible invariant set S(t + T |t) of interest. Con-
straints (4.21) express that the vehicle must have the option to leave S(t + T |t) and
transition to the backtrack pattern B(t + T |t) to eventually arrive on the return tra-
jectory T (t). Either the combination of the two constraints (4.21) ‘OR’ the single con-
straint (4.22) must be satisfied to guarantee safety of the vehicle at all future time steps.
Constraint (4.22) is necessary to maintain feasibility of the problem when the vehicle is
already on the return trajectory. Since it may not be able to fit terminal feasible invariant
sets in the environment when it is returning, the return trajectory then still provides the
vehicle with a feasible solution. We denote the above trajectory optimization problem by
PS(x(t),X (k),U(k),O(t),S(t + T |t),B(t + T |t), T (t)).

85



Lemma 4.1: Feasibility of the trajectory optimization problem PS(x(t),X (k),U(k),O(t),
S(t + T |t),B(t + T |t), T (t)) at time t implies that x(t) is a safe state.

Proof : By construction of PS(·) and the definitions of S(t+T |t), B(t+T |t), and T (t), the
existence of a feasible solution implies that the requirements for safety (as stated in Defini-
tion 4.5) of the initial state x(t) are satisfied. ¤

Theorem 4.2: If the initial trajectory optimization problem PS(x(0),X (k),U(k),O(0),
S(T |0),B(T |0), T (0)) at time t = 0 with T (0) = [p′(0) − v′(0)]′ ∈ S(0) is feasible, then
PS(x(t),X (k),U(k),O(t),S(t + T |t),B(t + T |t), T (t)) will have a feasible solution at all
future time steps t.

Proof : We will show that if a feasible solution to the optimization problem exists at time
step t, we can construct a feasible solution for the problem at time step t + 1. Then, by
induction, if the problem is feasible at t = 0, it will be feasible at all future time steps.
Depending on the nature of the solution at t, we distinguish between three cases that span
the space of all alternatives:

1. The planned final state x(t + T |t) lies in S(t + T |t) and there exists a s∗(t) ≥ 1 such
that xS(t)(t + T + s∗(t)|t) ∈ B(t + T |t). The solution to PS(x(t),X (k),U(k),O(t),S(t +
T |t),B(t + T |t), T (t)) is then given by a sequence of states x(t + k|t), k = 0, . . . , T where
x(t+T |t) ∈ S(t+T |t). Let a proposed solution to PS(x(t+1),X (k),U(k),O(t+1),S(t+T +
1|t),B(t+T +1|t+1), T (t+1)) be formed by x(t+1+k|t+1) = x(t+k+1|t), k = 0, . . . , T−1
and x(t+1+T |t+1) = xS(t)(t+T +1|t) ∈ S(t+T |t). This proposed solution thus consists
of the remaining states of the previous trajectory with an additional state in the terminal
feasible invariant set S(t + T |t) computed at time t. Such a state exists per definition of
a feasible invariant set. Hence we can set S(t + 1 + T |t + 1) = S(t + T |t). Furthermore,
because the subsequent constraint sets X (k) and U(k) are supersets of respectively X (k+1)
and U(k + 1), the proposed trajectory still satisfies the kino-dynamic constraints. Also,
because the new trajectory is the remaining part of the previous one and ends in the
previous terminal feasible invariant set S(t + T |t), it lies within the environment as it was
characterized at t, such that new obstacles in Oa(t + 1) will not come into play and the
avoidance constraints are still satisfied. Lastly, there will exist a step s∗(t+1) at which the
vehicle can transition from S(t+1+T |t+1) = S(t+T |t) to B(t+1+T |t+1) = B(t+T |t),
namely s∗(t + 1) = s∗(t) − 1 ≥ 0. Furthermore, because no new obstacles come into play,
B(t+T |t) is still a feasible backtrack pattern at t+1. The proposed trajectory thus satisfies
all constraints of the problem at t + 1 and is therefore a feasible solution.

2. The planned final state x(t + T |t) lies in S(t + T |t) and xS(t)(t + T |t) ∈ B(t + T |t)
with s∗(t) = 0. The reasoning is the same as before, except that now s∗(t + 1) = Ip − 1.
Indeed, since S(t+1+T |t+1) = S(t+T |t) is periodic, there exists a step s∗(t+1) = Ip−1
such that xS(t+1)(t+1+T + Ip − 1|t+1) = xS(t)(t+T |t) ∈ B(t+T |t) = B(t+1+T |t+1).
A feasible solution exists again.

3. The planned final state x(t+T |t) lies on T (t), joining the return trajectory at a state
r∗: x(t + T |t) = xT (t)(r

∗). The proposed solution is again the same as in case 1, except
for the last state which is now: x(t + 1 + T |t + 1) = xT (t)(r

∗ + 1) ∈ T (t) ⊂ T (t + 1). By
definition of T (t), this state is a feasible transition from x(t + T |t) = xT (t)(r

∗). Moreover,
since T (t) ⊂ T (t + 1), the proposed final state also lies in T (t + 1). Hence, a feasible
solution to the trajectory optimization problem PS(x(t+1),X (k),U(k),O(t+1),S(t+T +
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1|t),B(t + T + 1|t + 1), T (t + 1)) exists in this case as well. ¤

Corollary 4.2: By Lemma 4.1 and Theorem 4.1, if a feasible solution to the initial trajec-
tory optimization problem PS(x(0),X (k),U(k),O(0), S(T |0),B(T |0), T (0)) at time t = 0
exists, safety will be maintained at all times.

Remarks

1. Notice that the theorem does not provide performance or stability guarantees in the
sense of reaching the goal. We are indeed mainly interested in a problem formulation that
provides feasibility and safety guarantees as a basis before tackling stability. As discussed in
the introduction, the latter is primarily related to the cost-to-go function. The optimization
problem might indeed keep the vehicle trapped in a local minimum corresponding to staying
in the safe invariant set. Furthermore, since at the start of a mission, the environment is
not characterized beyond a certain distance and new obstacles are detected as the vehicle
maneuvers through the environment, the vehicle may only realize along the way that the
goal might actually not be reachable. In both cases, a higher level decision making algorithm
can then decide to let the vehicle transition to its backtrack pattern and return trajectory or
to incorporate new information about destination and obstacles in the cost function. This
could simply consist of a change of pf to p(0), i.e., the position where the vehicle started.
The constraints of the optimization will remain the same, however. Regardless of the actual
cost function, a safe trajectory back to the starting point will always exist.

2. The fact that a feasible solution is known a priori can be exploited when an optimal or
feasible solution cannot be found within the timing constraints of real-time guidance system.
The vehicle can then resort to the a priori solution as a safe backup plan. Moreover, the a
priori solution can be used as a warm start for the optimization routine.

3. We assumed that the environment is static, such that the parts of the environment
that were characterized when the vehicle maneuvered through it do not change. This
assumption was needed to maintain an obstacle-free return trajectory T (t). However, if
the environment is dynamic beyond the current detection region, the vehicle still has the
terminal feasible invariant set S(t + T |t) to resort to. More generally, if the constraints
∃s ∈ {0, . . . , Smax} : xS(t)(t + T + s|t) ∈ B(t + T |t) and x(t + T |t) ∈ T (t) are removed, we
get the original formulation from Section 4.3 again, for which feasibility can still be proved:
the vehicle can always remain in S(t + T |t). However, safety according to Definition 4.5
does not necessarily hold then: as shown in the scenario of Figure 4-12, the vehicle may
get trapped in S(t + T |t). If we are only interested in maintaining feasibility through a
partially-known environment, however, problem formulation (4.1)-(4.7) suffices. We will
call this “minimal safety” and use it for the distributed algorithm in Chapter 5.

4. In practice, the OR-constraint in the optimization could be decided upon by a higher
level planning unit before the next actual receding horizon iteration. Indeed, in case the
vehicle is on its way back, the terminal safe invariant set and backtrack pattern constraints
are not strictly necessary: the vehicle knows it has a safe way back to its starting point. On
the other hand, when still moving towards the goal point, the vehicle should be able to fit
its terminal feasible invariant sets in the environment. In that case, the x(t + T |t) ∈ T (t)
constraint can be removed. Again, the vehicle already knows that it could fly backwards
along a feasible backtrack pattern. The return trajectory constraint is only needed to
maintain feasibility of the same problem formulation in case the vehicle cannot fit terminal
feasible invariant sets in the environment on its way back.
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Figure 4-15: Intermediate receding horizon trajectories with backtrack pattern. The vehicle
now avoids entering and getting trapped in the concavity because the loiter circle with
additional backtrack pattern do not fit inside of it.

4.5.3 Backtrack Pattern

Similarly to terminal feasible invariant sets, states along the backtrack pattern could be
expressed as affine transformations of the final state in the planning horizon. In that case,
the backtrack pattern will have a fixed geometry and the sample points must correspond
to actual time steps. Namely, the timing along the backtrack trajectory B(t + T |t) must
be such that the vehicle leaves the feasible invariant set B(t + T |t) at an exact time step s∗

and reaches the return trajectory T (t) at an exact state xT (t)(t
∗). If the vehicle is flying

at a constant speed, this can for example be accomplished by using a backtrack pattern
consisting of a quarter circle starting at 270 deg along the loiter circle, with the same radius
but reversed turning direction. For the feasible but unsafe scenario from Figure 4-12, this is
shown in Figure 4-15. The vehicle can now not fit the loiter circle and backtrack trajectory
inside the concavity and safely avoids it as a result. Note however, that the vehicle now
gets steered towards the concavity above it, and must incorporate information about the
detected geometry in the cost function to get out of it. However, thanks to the safety
constraints, a feasible path back always exists.

More generally, the geometry of the backtrack trajectory and the state xT (t)(t
∗) where

it joins the return trajectory T (t) do not have to be fixed. The backtrack requirements
can just consist of the kino-dynamic and obstacle avoidance constraints together with a
fixed departure state from the terminal feasible invariant set and a selection of return states
xT (t)(·). All that is required then is a constraint stating that some state along the backtrack
trajectory must join the return trajectory in at least one of the given states xT (t)(·). This
formulation is more flexible but also requires more binary variables. A result for the previous
scenario is plotted in Figure 4-16. It can indeed be seen that the shape of the backtrack
trajectory changes along the trajectory.
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Figure 4-16: Intermediate receding horizon trajectories with backtrack patterns that are
not geometrically constrained and can join the return trajectory in any one state of a given
subset.

4.5.4 Safe Receding Horizon Planning without Feasibility Guarantees

If one is not interested in maintaining feasibility during all the receding horizon iterations,
but only in guaranteeing safety of the vehicle, a practical approach is to simply constrain
the last state of the planning horizon to be the start and end points of a dynamically feasible
pattern with fixed shape. Sample positions along that pattern can again be expressed as
affine transformations of x(t + T |t), either as actual time steps or as regular geometric
points. No invariance property of the pattern is required, which results in loss of feasibility,
but not of safety. Even if the optimization at the next iteration becomes infeasible, the
vehicle still has a safe trajectory available that it can execute and that will bring it back to
where it came from.

A scenario of such setup is given in Figures 4-17 and 4-18. The safety pattern again
consists of the 270 deg part of a circle with a reverse quarter circle attached to it. However,
to ensure that the start and end points of the safety pattern coincide, an additional line
segment is required of length 2αc||v(T )||, i.e., twice the radius of the loiter circle with entry
speed ||v(T )||. The line segment should be placed between the last state x(t + T |t) of the
planning horizon and the first point on the return arcs. Notice that the pattern scales again
with the entry velocity, adapting the latter to the available space in the environment. The
red triangles along the trajectory in 4-17 indicate positions where the optimization became
infeasible: the fixed geometric pattern could not be fitted at the end of the trajectory at
the next step. However, the vehicle could just keep moving along the previous solution. As
a result, feasibility was lost for several time steps, but safety was maintained, eventually
guiding the vehicle past the infeasibilities.
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Figure 4-17: Safe receding horizon trajectory without feasibility guarantees. The red trian-
gles indicate positions where the problem became infeasible (but safety was maintained).
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Figure 4-18: Intermediate receding horizon trajectories with safety patterns that do not
contain a terminal invariant set.
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4.6 Conclusion

This chapter extended the basic receding trajectory optimization problem to account for
feasibility and safety constraints. Feasibility of the optimization problem at all time steps
was ensured by constraining the intermediate receding horizon trajectories to terminate in
feasible invariant sets. These sets can be expressed as affine transformations on the last
state in the horizon and as such are planned online as part of the optimization problem.
Examples of a fixed-wing UAV using left and right turning loiter constraints were given.
Next, safety was ensured by maintaining feasible backtrack patterns to a return trajectory
that will bring the vehicle back to where it started. A safe receding horizon formulation with
feasibility guarantees was then presented for which simulation results were given. Finally,
an alternative safe formulation without feasibility guarantees that is computationally more
efficient was discussed.
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Chapter 5

Safe Distributed Trajectory
Planning for Multiple Vehicles

This chapter presents an algorithm for provably safe distributed trajectory planning of
multiple autonomous vehicles that builds on the feasibility concepts developed in Chapter 4.
Each vehicle plans its trajectory individually using a receding horizon strategy. Safety
is guaranteed by maintaining, at each time step, dynamically feasible trajectories for all
vehicles that terminate in distinct feasible invariant sets. Conflicts between multiple vehicles
are resolved in a sequential, distributed cooperative fashion, in which each vehicle takes
into account the latest trajectory and feasible invariant set of the other vehicles. Besides
maintaining feasibility, the approach also provides an a priori safe rescue solution if the
problem is too complex to be solved within the time constraints of a real-time system. The
algorithm is applied to the case of multiple aircraft using loiter patterns as feasible invariant
sets. Several examples of conflict situations resolved by the proposed method are presented.

5.1 Introduction

The growing complexity of global air traffic has highlighted the shortcomings of the current
air traffic control infrastructure. In the current system, air traffic controllers use predefined
routes and standard procedures to ensure safe separation between the aircraft in their
sector. By doing so, maintaining safety remains a manageable problem for the controller;
however, the routes followed by the individual aircraft are often suboptimal. For example,
the system disallows the aircraft to fly directly to the destination or to take advantage
of favorable winds [147]. With the air space becoming more congested, delays are more
frequent and accidents caused by the air traffic controller more likely to occur.

Therefore, in recent years, the concept of Free Flight has emerged, which allows pi-
lots to choose their own routes, altitude and speed. Safe conflict detection and resolution
schemes constitute the basis of such a system, and have been a topic of active research.
Automating these procedures reduces the risk of human errors and allows for optimization
of the individual aircraft trajectories. Both noncooperative and cooperative conflict reso-
lution methods have been proposed. In the noncooperative case, the aircraft involved in
the conflict do not exchange information on their intentions and do not trust one another.
Hence, a worst-case approach is adopted. Examples include the work of Tomlin et al., in
which a game-theoretic method is outlined [147, 146]. Safe protocol-based maneuvers are
derived by precomputing reachability sets that account for the uncertainty in the actions of
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the other aircraft [96, 4]. Although, theoretically, the method can be applied to any number
of aircraft, the computational requirements for more than three aircraft become prohibitive.

In cooperative conflict resolution schemes, the aircraft do exchange information on their
positions and intentions. Within this class of methods, one can further distinguish be-
tween centralized and distributed techniques, depending on whether the conflict is resolved
by a central supervising controller or by each aircraft individually. In the former case, the
position of each aircraft is known to the central controller who designs the individual trajec-
tories for all aircraft, typically by solving one large optimization problem. Several central-
ized methods with hard anti-collision constraints have been proposed, including approaches
based on semidefinite programming [37], nonlinear programming [108], mixed-integer linear
programming [127, 114, 103], mixed-integer nonlinear programming [102], and variational
analysis [53]. However, since the number of inter-vehicle combinations in the planning
problem increases polynomially as n(n− 1)/2 with the number of aircraft n involved in the
conflict, the computation times of these methods typically scale exponentially.

By using a receding horizon approach, where the problem is solved over a limited time
horizon that is shifted forward at each iteration, the computation time can be decreased.
However, as discussed in Chapter 4, unless the problem is solved to completion at each
iteration – which defeats the purpose of using a receding horizon–, safety is not guaranteed.
Namely, the algorithms may fail to provide a solution in future time steps, due to aircraft
that are located beyond the surveillance and planning radius of the aircraft accounted for
at the current time step. For instance, when the planning horizon is too short and the
maximum turn rate relatively small, the aircraft might approach one another too closely
before accounting for each other in their plans. As a result, they might not be able to turn
away in time, which would translate into the optimization problem becoming infeasible.

The scaling problem is also apparent in the field of unmanned aerial vehicles. In ap-
plications where path planning and coordination of a large fleet of autonomous vehicles is
required, centralized solutions quickly become computationally intractable. Moreover, in
these applications, the planning problem typically needs to be resolved multiple times, as
new information about the environment is often gathered while the mission unfolds. Thus,
a distributed receding horizon planning strategy seems a natural approach to solving the
multi-vehicle trajectory generation problem. One such method is proposed in [137], where
static obstacles and other moving agents are accounted for by potential functions. Although
computationally attractive, the use of potential functions does not guarantee safety: obsta-
cles and other vehicles are captured using soft “constraints” in the cost function. In [55],
an alternative algorithm based on an iterative bargaining scheme is given. However, as
the iteration might converge to an infeasible equilibrium, again only soft safety guarantees
exist.

In this chapter, we present a model predictive control framework for distributed, non-
iterative cooperative path planning of multiple aircraft with hard safety constraints. The
novelty lies in the fact that safety is guaranteed by explicitly computing and maintaining a
safe trajectory for each aircraft, without having to precompute an invariant set. Moreover,
safety can be guaranteed for any number of interacting vehicles. Using the feasible invariant
set principle introduced in Chapter 4, this is achieved by ensuring a priori that each aircraft
can always transition to a dynamically feasible loiter pattern that is computed online. These
loiter patterns act as safe backup paths in case no better solution to a conflict can be found
in time. Conflicts are resolved in a sequential, distributed fashion in which each aircraft
takes into account the latest trajectory and loiter pattern of the other when updating its
own path.

94



Although we are primarily interested in the air traffic control application and the coor-
dination problem of multiple fixed-wing UAVs, we present a safe distributed algorithm for
autonomous vehicles in general. Afterwards, it is applied to the case of multiple aircraft
and MILP is used to compute the trajectories. Note, however, that the algorithm will be
formulated independently of the actual trajectory planning method and as such can be used
with other optimization frameworks as well.

The chapter is organized as follows. Section 5.2 presents the problem formulation and
Section 5.3 provides a high level description of the algorithm. Section 5.4 then gives the
detailed MILP formulation with the aircraft model and the loiter and avoidance constraints.
Next, Section 5.5 applies the framework to some example scenarios.

5.2 Problem Formulation

5.2.1 Receding Horizon Planning

The general problem tackled in this chapter is that of computing optimal trajectories for a
set of (unmanned) vehicles while guaranteeing safety at all times. Each vehicle individually
computes its trajectory towards a destination waypoint, accounting for the intentions of
the other ones. Since information on the other vehicles is gathered online and changes as
they update their trajectories, each vehicle adopts a receding horizon planning strategy.
We again assume that the destination of each vehicle i consists of a final position pi,f and
a corresponding speed vector vi,f with respect to an inertial coordinate frame. As before,
they constitute the final waypoint or state xi,f = [p′

i,f v′
i,f ]′.

We will denote the sequence of T +1 states and T inputs resulting from solving the path
planning problem for vehicle i at a certain time step t respectively as xi(t) and ui(t):

xi(t) =











xi(t|t)
xi(t + 1|t)
...
xi(t + T |t)











, ui(t) =











ui(t|t)
ui(t + 1|t)
...
ui,(t + T − 1|t)











, pi(t) =











pi(t|t)
pi(t + 1|t)
...
pi(t + T |t)











,

where – for notational convenience later on– we denote the position part of the trajectory
separately as pi(t).

As discussed in Chapter 2, the trajectory starting at time step t must be computed
during time step t − 1, i.e., when the vehicle is on its way to xi(t|t). This state is part
of the previous plan, which, as before, we assume to be accurately tracked. As such, the
vehicle will be in xi(t|t) when the next plan is executed. This implies that all vehicles can
reliably assume that all others are exactly following their trajectories as planned. Including
robustness to uncertainties in the latter is a topic of current research [70].

In what follows, we will denote the optimization problem for vehicle i that computes
the trajectory starting at time step t as Mi(t). It accounts for the (predicted) initial state
xi(t|t), the destination waypoint xi,f , and constraints xi(t + k|t) ∈ X (k) on the states and
ui(t+k|t) ∈ U(k) on the input commands. We will call a solution acceptable if it is feasible
and its cost lies within a predefined optimality gap.
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5.2.2 Safety Principle

As was discussed in Chapter 4, feasibility for a single vehicle i can be guaranteed by con-
straining the intermediate trajectory xi(t) computed at each time step t to terminate in a
feasible invariant set Si(t+T |t) that lies outside of any forbidden zones in the environment.
As such, at the next time step t+1, a feasible solution to the trajectory optimization prob-
lem is always available a priori, namely, the remaining part of the previous trajectory xi(t)
with an extra time step in Si(t + T |t). Hence, if at time step t + 1 no acceptable solution
to the trajectory optimization problem can be found within the timing limits of a hard
real-time guidance system, the previous trajectory can be followed as a safe backup plan.
If necessary, the latter can be tracked all the way from time step t to t + T , thus arriving
at the ingress state xi(t + T |t) of the terminal feasible invariant set Si(t + T |t), in which
the vehicle can remain for an indefinite period of time. In this chapter, with a slight abuse
of terminology, we will use the term “safety” for minimal safety, defined as having only a
terminal feasible invariant set constraint to maintain feasibility, i.e., we will not account for
the backtrack pattern and return trajectory:

Definition 5.1 (Minimal Safety): We say that a vehicle is in a minimally safe state at
time t if from that state, there exists a dynamically feasible, obstacle-free trajectory of T
states ending in a terminal feasible invariant set S(t + T |t). Minimal safety is then defined
as being in such a minimally safe state at all times.

5.2.3 Conflict Description

The principle of maintaining a reachable feasible invariant set is key to ensuring (minimal)
safety in case of an encounter between multiple vehicles. It will form the basis of our
distributed algorithm for safe trajectory planning and conflict resolution. For simplicity
of exposition, we will assume that the planning horizons of all vehicles are of equal length
same. Extending the algorithm to the more general case of unequal planning horizons can
be done at the cost of a more complicated notation. We start with some definitions:

Definition 5.2 (Conflict Zone): We denote by Ri(t) ⊂ R
n the subset of the inertial space

with dimension n that encompasses the area in which all dynamically feasible trajectories lie
that start at xi(t|t) = [p′

i(t|t) v′
i(t|t)]′ and end in terminal feasible invariant sets: ∀ui(t) ∈

U = {U(0), . . . ,U(T − 1)} : pi(t) ∪ Si(t + T |t) ⊂ Ri(t). We call Ri(t) the conflict zone of
vehicle i at time step t.

As an initial condition (at t = 0) for the planning and conflict resolution algorithm, we
now assume that none of the conflict zones Ri(0) of the individual vehicles i (i = 1, . . . , K)
overlap. As such, at their initial positions pi(0|0), all vehicles can safely plan their individual
trajectories and terminal feasible invariant sets without accounting for the other vehicles.

Assumption 5.1 (Initial Safety): At t=0, we have R1(0)
⋂R2(0) . . .

⋂RK(0) = ∅.

When the conflict zones of two or more vehicles start to overlap, however, the individ-
ually planned trajectories may intersect and lead to a collision. Therefore, as soon as an
overlap is detected, the corresponding vehicles should account for each other’s trajectories
when updating their plans. We call this a conflict, and define it more formally as follows:

Definition 5.3 (Conflict): We say that vehicle i is involved in a conflict Cij(t) with vehicle
j 6= i at time step t, if Ri(t) ∩Rj(t) 6= ∅.
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Since a vehicle i computes the trajectory that starts at time step t during step t − 1,
Ri(t) needs to be determined at t− 1 as well, based on the prediction of xi(t|t). To denote
the set of vehicles that are then involved in a conflict with vehicle i at time step t and
for which collision avoidance constraints must be formulated, we introduce the following
notation:

Definition 5.4 (Avoidance Set): We denote by Ji(t) ⊂ {1, . . . , K} the subset of all
vehicles j ∈ {1, . . . , K}, j 6= i, for which Ri(t)∩Rj(t) 6= ∅. We call Ji(t) the avoidance set
of vehicle i at time step t.

If two vehicles i and j are involved in a conflict Cij(t), however, their avoidance sets
Ji(t) and Jj(t) are not necessarily the same: vehicle j can be involved in a conflict Cjk(t)
with another vehicle k, but Ri(t) ∩ Rk(t) = ∅. Hence, to maintain safety, vehicle j must
account for both i and k, whereas vehicle i only has to account for j. However, although
they are not directly in conflict, depending on the order in which the conflict is solved, the
trajectory of i may still be influenced by that of k through the effect that k has on the
trajectory of j. We therefore introduce the following set:

Definition 5.5 (Conflict Set): We denote by Di(t) ⊂ {1, . . . , K} the subset of all vehicles
j ∈ {1, . . . , K} for which there exists a vehicle sequence k1, . . . , kS such that Ri(t)∩Rk1

(t) 6=
∅, Rk1

(t) ∩ Rk2
(t) 6= ∅, . . . ,RkD

(t) ∩ Rj(t) 6= ∅. We call Di(t) the conflict set of vehicle i
at time step t.

Note that if j ∈ Di(t), we have Dj(t) = Di(t). Hence, we can define one set D(t) ≡ Di(t)
that groups all vehicles that are connected through a chain of conflicts Cik1

(t), . . . , CkDj(t)
at time step t. Any vehicles that are not do not belong to D(t) will not come into play
in resolving the conflict involving the vehicles in D(t). Hence, without loss of generality,
we can restrict ourselves to solving the case of a single conflict C(t) associated with D(t).
Other conflict sets may exist in the environment that can all be considered independent of
each other.

By considering the vehicles in D(t) as vertices that are connected by an edge if a conflict
Cij(t) between a pair (i, j) exists, a graph can be associated with the conflict set D(t) that
represents the inter-vehicle dependence at time step t. We define this graph as the conflict
graph G(t):

Definition 5.6 (Conflict Graph): We denote by G(t) the connected graph associated with
conflict set D(t) at time step t that results from considering vehicles as vertices and edges as
follows: a pair of vertices (i, j) is connected if there exists a conflict Cij(t) between vehicles
i and j at time step t.

Independent conflict sets thus correspond to disconnected conflict graphs. Note that because
the vehicles are moving, the conflict sets and associated conflict graphs may change at each
time step. The planning algorithm proposed in this chapter will automatically account for
this.

5.2.4 Communication Requirements

To determine the structure of the conflict graph there has to exist a communication network
between the vehicles in the conflict sets. One possible communication strategy is to have
two vehicles communicate with each other as soon as they detect each other within their
conflict zones. Alternatively, all vehicles only communicate with a central hub (either a
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ground station or leader vehicle) that keeps track of the positions pi(t) and conflict zones
Ri(t) of all vehicles i at all time steps t. Using this information it can determine the
conflict set D(t) and corresponding conflict graph G(t), and communicate the avoidance
sets Ji(t) back to the respective vehicles i. An additional benefit is that it can maintain
the clocks of all vehicles synchronized, which will be crucial in the conflict resolution part
of the algorithm.

Assumption 5.2 (Central Hub): We assume that a central hub H is present with which
all vehicles i = 1, . . . , K communicate. It keeps the clocks of all vehicles synchronized, and
determines the avoidance sets Ji(t), the conflict set D(t), and the corresponding conflict
graph G(t).

Although the existence of a central hub is not crucial to our safety framework, it simplifies
the required communication infrastructure and the presentation of the algorithm. The
actual trajectory optimization will still be done in a distributed fashion, regardless of how
information is exchanged between the vehicles. Decentralizing the communication itself is
an ad hoc networking problem for which multiple techniques exist [121, 145].

To avoid collisions, vehicle i needs to account for the position sequence pj(t) of all
vehicles j ∈ Ji(t) when solving its trajectory optimization problem Mi(t). Moreover, to
maintain future feasibility, its terminal feasible invariant set Si(t+T |t) should not intersect
with any of the terminal feasible invariant sets Sj(t + T |t) of the vehicles j ∈ Ji(t). For
MILP-based trajectory planning, it suffices to describe all sets Sj(t+T |t) by the coordinates
of a surrounding rectangular box which will then be considered a forbidden zone by vehicle
i.

To solve its trajectory optimization problem Mi(t), vehicle i thus needs to obtain the
latest trajectory information of all vehicles j ∈ Ji(t), and vice versa, the latter need to
know the trajectory of i. Hence, either communication links between all vehicles in Ji(t)
and vehicle i need to be set up, or the information can be distributed via the central hub.
We now introduce the following notation to capture this trajectory information:

Definition 5.7 (Plan): We denote by Pi(t) the sequence pi(t) of trajectory points starting
at time step t and the coordinates of a rectangular box that surrounds the terminal feasible
invariant set Si(t + T |t) of vehicle i. We call Pi(t) the plan of vehicle i at time step t.

The plans Pj(t) for all vehicles j ∈ Ji(t) can then be included as avoidance constraints in the
trajectory optimization problem Mi(t). We will denote this as the problem Mi(t) s.t. Pj(t),
∀j ∈ Ji(t).

A key step in our conflict resolution algorithm is that the vehicles in D(t) need to decide
on an order O(t) in which each one updates its trajectory at time step t− 1. An important
property of the conflict graph G(t) is that vehicles that are not in direct conflict with each
other, i.e., vehicle vertices that have no edge that directly connects them, can compute
their trajectories simultaneously without affecting each other’s feasibility. Indeed, since
their conflict zones at the current time step do not overlap, their updated trajectories will
not intersect.

In our algorithm, distinct subsets of such unconnected vehicle nodes will be allocated
sequential time slots during which all vehicles of a particular subset optimize their individual
trajectories simultaneously. To allocate as much computation time as possible to each
vehicle, we therefore need to determine the minimum number of such unconnected vehicle
subsets in D(t). This corresponds to a vertex coloring problem for the conflict graph G(t).
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The goal is to assign colors c(i) to each vertex i of G(t) such that no two vertices of the same
color are directly connected while minimizing the number of colors for the entire graph.
Brute-force algorithms could be used to find a minimum coloring, but Brelazs heuristic
algorithm provides a good solution in faster time [23]. We will not elaborate further on
such algorithms – see [70] for more details,– and will assume that the vehicles or the central
hub can determine an appropriate coloring of the conflict graph G(t) and corresponding
partitioning of the conflict set D(t) in subsets Fc(t). Instead, we will focus on the timing
and safety properties of the trajectory planning algorithm. We summarize as follows:

Definition 5.8 (Conflict Subsets): We denote by Fc(t), c = 1, . . . , NG(t) the non-inter-
secting subsets of the conflict set D(t) resulting from solving a vertex coloring problem of
the corresponding conflict graph G(t) at time step t. We call these subsets conflict subsets.
In the minimal case, the number of conflict subsets NG(t) is the chromatic number of the
graph.

Once a coloring and conflict partitioning have been determined, a computation order
and corresponding time slots need to be assigned to the various conflict subsets. At each
time step t, we therefore introduce time slots of length ∆tcomp(t) = ∆t/NG(t) where ∆t is
the discretization step of the receding horizon. In our algorithm, each vehicle will have at
least a time ∆tcomp(t) available to solve its trajectory planning problem. Notice, however,
that some vehicles can make use of more time slots without taking time away from other
vehicles. For example, vehicles i whose avoidance sets Ji(t) contain only vehicle vertices j of
the same color can use the rest of the time step to optimize their trajectories after vehicles
j used the previous time slot. Hence, all vehicles of a particular conflict subset Fc(t) will
thus start optimizing at the same time, but are not necessarily allocated the same number
of time slots. All have at least one slot of length ∆tcomp(t) available, however.

The previous insight leads us to the conclusion that there must exist an optimal order
among the conflict subsets that maximizes the number of vehicles that can be allocated
more than one time slot while ensuring that all vehicles get at least one slot. A good
heuristic is to start with the conflict subset that is the most connected, i.e., the one for
which the union of the avoidance sets of its members is the largest. Note, however, that
this is not necessarily the largest conflict subset. We again assume that the central hub
determines this order of the vehicle subsets and assigns the start and number of time slots
to each individual vehicle:

Assumption 5.3 (Conflict Order): We assume that the central hub H can determine an
order O(t) = {ord(c), c = 1, . . . , NG(t)} among the conflict subsets Fc(t), and a correspond-
ing sequence of non-overlapping time slots {[tord(c),s, tord(c),f + ∆tcomm), c = 1, . . . , NG(t)}
that allocate the start time tord(c),s and end time tord(c),f during which the vehicles in the
conflict set with order number ord(c) should solve their trajectory optimization problems
at time step t − 1. ∆tcomm is the time required to broadcast the plan Pi(t) of a vehi-
cle i ∈ Fc(t) to the vehicles in its avoidance set Ji(t). We assume that this time is the
same for all vehicles. If Ji(t) only contains vehicles j that have ord(c(j)) < ord(c(i))
then vehicle i can occupy the remainder of the time step and will be allocated a time slot
[tord(c(i)),s, (t− 1−∆tcomm) + ∆tcomm). In both cases, we will denote the allocated time slot
for vehicle i as [tord(c(i)),s, ti,f + ∆tcomm).

Since a vehicle may leave the conflict set, or a new one may enter, the central hub must
redetermine D(t) and O(t) at every time step. Using the preceding definitions, we can
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now formulate a distributed optimization strategy for safe trajectory planning and conflict
resolution.

5.3 Safe Trajectory Planning Algorithm

5.3.1 Algorithm

Starting at t = 0, at each following time step t, let all vehicles i in the environment
(i = 1, . . . , K) execute the following planning algorithm:

Start: Start at time t.

• Step 1: Predict the next state xi(t + 1) and send it to the central hub H. Next,
receive the avoidance set Ji(t+1) with conflict order numbers ord(c(j)) of all vehicles
j ∈ Ji(t + 1) and the time slot (tord(c(i)),s, ti,f ) from H.

• Step 2a: If Ji(t + 1) 6= ∅, broadcast the current plan Pi(t) to all vehicles in Ji(t + 1)
and go to Step 3. Else, go to Step 2b.

• Step 2b: Solve Mi(t + 1). If an acceptable solution xi(t + 1) ∪ Si(t + T + 1|t + 1) is
found before time t + 1, let the new plan Pi,t+1 = pi(t + 1)∪Si(t + T + 1|t + 1). Else,
let Pi(t + 1) = Pi(t) \ pi(t). Go to End.

• Step 3: At time tord(c(i)),s, solve Mi(t + 1) s.t. Pj(t + 1), j ∈ Ji(t + 1) : ord(c(j)) <
ord(c(i)) and s.t. Pk(t), k ∈ Ji(t + 1) : ord(c(k)) > ord(c(i)).

• Step 4: If an acceptable solution xi(t + 1)∪Si(t + T + 1|t + 1) is found at ti,f , let the
new plan Pi(t + 1) = pi(t + 1)∪Si(t + T + 1|t + 1) . Else, let Pi(t + 1) = Pi(t) \pi(t).

• Step 5: During (ti,f , ti,f + ∆tcomm), broadcast Pi(t + 1) to all vehicles k ∈ Ji(t + 1) :
ord(c(k)) > ord(c(i)).

End: End by time t + 1, and repeat.

By construction, this algorithm maintains minimal safety for all vehicles: at each time
step, there exists, a priori, a collision-free dynamically feasible trajectory for each vehicle.
Namely, since all other vehicles during their last update accounted for the latest plan of the
vehicle that is currently planning, the remaining part of its previous trajectory ending in a
feasible invariant set can always be used as a safe “backup” plan. We formalize this in the
following theorem:

Theorem 5.1: Given a conflict-free situation at time t = 0 (Assumption 5.1), the above
planning algorithm will maintain minimally safe trajectories (according to Definition 5.1)
for all vehicles i = 1, . . . , K at all time steps.

Proof : We prove the minimal safety property by using a double induction argument over
the sequence of time steps and over the sequence of conflict subsets within a time step. By
Assumption 1, at t = 0, all vehicles are in a minimally safe state (as defined in Definition 5.1)
and

⋂

i=1...K Ri(0) = ∅. Hence, by definition of Ri(0), all vehicles i have non-intersecting
plans at t = 0. They thus all have an a priori minimally safe trajectory available at t = 1,
namely, Pi(0)\pi(0) ending in non-intersecting terminal feasible invariant sets Si(t + T |t)
at time step T , the length of the planning horizon.
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Assume now that at time step t = k, all vehicles have safe plans Pi(k). Before computing
its next plan Pi(k + 1), a particular vehicle i will know whether its avoidance set Ji(k + 1)
is empty or not by communicating with the central hub H (Step 1). In case Ji(k + 1) = ∅,
any feasible solution to Mi(k + 1) will be minimally safe, since the conflict zone Ri(k + 1)
does not intersect with that of any other vehicles. If an acceptable solution cannot be found
in time, Pi(k)\pi(k), i.e. the previous plan excluding the current state, is still valid and
available as a minimally safe backup plan at time step k + 1.

In case Ji(k + 1) 6= ∅, vehicle i will obtain its order number ord(c(i)) ∈ {1 . . . NG(k+1)}
from the central hub H. If ord(c(i)) = 1, vehicle i is the first to update its trajectory at time
step k, along with all other vehicles in the conflict subset Fc(i)(k + 1). Given that the plan
Pi(k) was minimally safe, a minimally safe solution to Mi(k+1) s.t. Pj(k+1),∀j ∈ Ji(k+1)
continues to exist, namely, Pi(k)\pi(k). In the nominal case, Pi(k + 1) will differ from
Pi(k)\pi(k). Since the updated plan Pi(k+1) is constrained to avoid the existing trajectories
Pj(k),∀j ∈ Ji(k +1), all other vehicles in the conflict set D(k +1) remain in minimally safe
states. The same reasoning holds for all other vehicles s in the conflict subset Fc(i)(k + 1).
Since, per definition of Fc(i)(k +1), their avoidance sets Js(k +1) do not contain any of the
other vehicles with ord(c(s)) = 1 = ord(c(i)), their plans will not affect each other.

Now, consider a vehicle i′ with ord(c(i′)) > 1, and assume that it has a minimally safe
backup plan Pi′(k)\pi′(k). It will account 1) for the previous plans Pj′(k) for all following
vehicles j′ ∈ Ji′(k + 1) : ord(c(j′)) > ord(c(i′)) and 2) for the new plans Pl′(k + 1) of
all prior vehicles l′ ∈ Ji′(k + 1) : ord(c(l′)) < ord(c(i′)). Given that a minimally safe
plan Pi′(k)\pi′(k) for vehicle i′ exists, the problem is feasible. Thus 1) all vehicles j′ with
ord(c(j′)) > ord(c(i′)) will still have minimally safe backup plans Pj′(k)\pj′(k) available
when they update their paths, and 2) the new plans Pl′(k + 1) of all vehicles l′ with
ord(c(l′)) < ord(c(i′)) will remain minimally safe. Again, the same reasoning holds for all
other vehicles s′ in the conflict subset Fc(i′)(k + 1). Because their avoidance sets Js′(k + 1)
do not contain any of the other vehicles with ord(c(s′)) = ord(c(i′)), their plans will not
affect each other.

Hence, by induction over the sequence of conflict subsets, minimal safety for all vehicles
is maintained within time step k. As a result, each vehicle is in a minimally safe state at
the start of the next time step k + 1. Thus, using induction once more, given the safety
assumption at t = 0, minimal safety for all vehicles is maintained over the sequence of time
steps.

5.3.2 Remarks

1. Note that the algorithm is not a bargaining or convergence process: at any given time
step, each vehicle contributes only once to the solution of the conflict. As presented here, the
algorithm should cycle through the full conflict set D(t+1) before the next time step t+1, i.e.,
the time at which all vehicles reach the first state in their plans. However, the more vehicles
that are involved in the conflict graph, the longer each vehicle will typically take to solve its
trajectory optimization problem. On the other hand, the allocated computation time scales
inversely with the number of conflict subsets (i.e., colors). Therefore, if necessary, for a
particular cycle of the algorithm, the central hub can distribute the computation times over
several time steps. If during this cycle of longer duration all other vehicles keep tracking the
latest trajectories that they communicated, safety for all vehicles is maintained. This is only
the case, however, if no new vehicles enter the conflict set during that longer cycle. Since
one iteration of the conflict resolution algorithm is now spread over more than one time
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step, this can be guaranteed by computing conflict sets and subsets for longer planning
horizons in Step 1 of the algorithm. Alternatively, the central hub could command the
new vehicle not to update its plan and to keep following its latest trajectory, while it
communicates this latest plan to the other vehicles. The latter can then still include that
plan as an avoidance constraint in their respective trajectory optimizations, without making
the problem infeasible.

2. Worst-case, if many vehicles are involved in the conflict graph, and the problem
becomes too complex to be solved within the timing constraints of the algorithm, the vehicles
will enter their (non-intersecting) terminal feasible invariant sets and may get trapped in
it. This could also happen if the problem has certain geometric symmetries. In both
cases, however, the central hub can then decide on subsequent subsets of the conflict sets
(including the possibility of one by one) and allocate as much time as needed to compute a
way out of the feasible invariant sets or break the symmetry. Such live-lock situations and
the associated instability of not reaching the goal are primarily related to the cost function.
Here, however, we are only concerned about guaranteeing feasibility. Typically, feasibility
needs to be ensured before stability can be tackled and is therefore a problem of interest
by itself. Ensuring stability to build a provably stable algorithm is still a topic of ongoing
research [70].

3. It is natural to assume that the vehicles in the first conflict subset in the conflict order
are favored because they can update their trajectories first. However, in our simulations
this was not necessarily the case: we generally found that most vehicles have to make equal
efforts (in terms of deviating from their nominal trajectories towards their destination) to
resolve the conflict. Depending on the geometry of the individual trajectories, the first
vehicle could even be more constrained than the last one in the order sequence. Moreover,
by randomly changing the conflict subset order at each time step, no single vehicle should
have an a priori advantage over any other.

4. The algorithm is robust to communication failures. As soon as a broken communica-
tion link is detected, the vehicles involved should execute their backup plans: they should
keep following the trajectory that was last broadcast and eventually enter their terminal
feasible invariant sets. The other vehicles can then keep accounting for those same plans
when updating their trajectories.

5. The formulation of the actual trajectory optimization problem should account for
the discrete-time nature of the conflict resolution algorithm: its constraints must guarantee
collision avoidance during the continuous transition between the discrete trajectory sample
points.

5.4 Implementation Using MILP

Although the conflict resolution algorithm can be used with other trajectory optimization
techniques, we use MILP again to formulate the avoidance constraints and express the
requirements for the feasible invariant sets. In the following, the framework is applied to
the case of multiple aircraft using the loiter patterns from Chapter 4 as terminal feasible
invariant sets. To highlight the performance of the conflict resolution algorithm, we present
2D scenarios. However, the algorithm can readily be used with 3D problems as well. The
aircraft would then have an extra degree of flexibility, namely a change in altitude, to plan
non-intersecting loiter patterns.
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5.4.1 Aircraft Model

For our simulations, we use a 2D version of the first-order reference velocity model (3.15)
from Section 3.4 that captures the dynamics of an actual aircraft more accurately than the
double integrator model used in Chapters 2 and 4. Let pi(t) = [xi(t) yi(t)]

′ and vi(t) =
[ẋi(t) ẏi(t)]

′ denote the inertial position and velocity vector again. As in (3.15), let the
control input to aircraft i be the inertial reference speed vector ui(t) = [ẋcmd,i(t) ẏcmd,i(t)]

′.
The 2D version of the velocity control model (3.15) then becomes:

ẍi(t) = − 1
τi

ẋi(t) + ki

τi
ẋcmd,i(t)

ÿi(t) = − 1
τi

ẏi(t) + ki

τi
ẏcmd,i(t)

(5.1)

in which τi is again a time constant and ki is a gain. In state space form, ẋi(t) = Aixi(t)+
Biui(t), we obtain:
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(5.2)

Using the bilinear transform with a discretization step ∆t, the discrete-time model becomes:
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(5.3)

The magnitudes of the reference and actual inertial velocity are again bounded by a
minimum required speed vmin,i and a maximum achievable speed vmax,i:

vmin,i ≤ ||vi(t)|| ≤ vmax,i

vmin,i ≤ ||ui(t)|| ≤ vmax,i
(5.4)

To capture limits on turn rate and differences in the lateral and longitudinal aircraft dy-
namics, we reuse constraints (3.20a-b):

||ai(t) − αi
vi(t)
vi(0)

|| ≤ βi

||ai(t) + αi
vi(t)
vi(0)

|| ≤ βi

||ai(t)|| ≤ alat,max,i

(5.5)

where αi and βi are given by expressions (3.21a-b). Remember that these inequalities
approximate the geometric profile that encompasses all inertial acceleration vectors ai =
[ẍi ÿi]

′ that are dynamically feasible. For the linearized and discrete time version of con-
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straints (5.4) and (5.5), we refer the reader back to Section 3.4.

5.4.2 Loiter Circles

As discussed in Section 5.2, the trajectory at each iteration is constrained to terminate in
a feasible invariant set. Like the examples in Chapter 4, we choose this to be a right or left
turning loiter circle (see Figure 4-3), where the turn direction will be decided upon by the op-
timization problem. Remember that the loiter pattern was described by equally spaced sam-
ple points pR(θ) and pL(θ) along the circles. By introducing a rotation matrix R(θ), these
points were expressed as affine transformations of the last state xi(T ) = [pi(T )′ vi(T )′]′ in
the planning horizon:

pR,i(θ) = pi(T ) + αc,i(R(θ) − I)v⊥
i (T ) (5.6)

pL,i(θ) = pi(T ) − αc,i(R(θ) − I)v⊥
i (T ) (5.7)

The state xi(T ) thus acts as an entry state to the loiter circles of which the radius scales
linearly with the magnitude of the entry velocity vi(T ). As such, by slowing down or
speeding up, the aircraft has the flexibility to adapt the size of its loiter circle to the state
of the environment, i.e., to the trajectories and locations of the loiter patterns of the other
aircraft. In the following, these geometric relations will be used to express the avoidance
constraints.

5.4.3 Avoidance Constraints

We assume here for simplicity that the conflict zone Ri of all aircraft i is a circle of
fixed radius rreach, where rreach is the maximum distance that can be traveled over the
length of the planning horizon, including a margin for the loiter circle. Denoting the ra-
dius of the loiter circle when flying at vmax by rmax, a simple calculation yields rreach =
√

(T∆tvmax + rmax)2 + 4r2
max. Note that this is the most conservative assumption: in gen-

eral, an aircraft might not be able to reach the full area covered by the circle, and the shape
of the conflict zone will typically depend on the initial velocity vi(0). Furthermore, the
radius will be different depending on the length of the planning horizon and the velocity
and turn rate bound.

The avoidance set Ji can then easily be determined: it consists of all aircraft that are
within a distance of 2rreach of aircraft i at time step t. In addition, Assumption 5.1 reduces
to all aircraft being separated by a distance greater than 2rreach: ∀i, j ∈ {1, . . . , K}, i 6= j :
‖pi(0) − pj(0)‖ > 2rreach. As discussed in Steps 2a and 5 of the trajectory planning and
conflict resolution algorithm, when the conflict set D 6= ∅, the aircraft will communicate
their plans P to one another. Since we assumed that all vehicles can accurately follow
the planned trajectories, their waypoints and loiter circles can be considered as translating
obstacles with known motion by the aircraft that is currently planning. These constraints
are now specified in more detail.

Regular Trajectory Points

Each trajectory point pj(k) of aircraft j ∈ Ji is considered an obstacle that is present at
time step k in the planning horizon, if that point lies in the conflict zone Ri of the planning
aircraft i, i.e., when pj(k) ∈ Ri. Denote the set of time steps for which the latter holds
as Tj ⊆ T = [0, . . . , T ]. Due to the discrete-time nature of the trajectories, the waypoints
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are considered square obstacles of dimension 2ds = 2(max(vmax∆t, dsafe)+ vmax∆t), where
dsafe is the required safety distance around each aircraft. The lower left corner of the
waypoint obstacle pj(k) = (xj(k), yj(k)) is then given by (xmin,jk, ymin,jk) = (xj(k) −
ds, yj(k) − ds), the upper right corner by (xmax,jk, ymax,jk) = (xj(k) + ds, yj(k) + ds).

For the trajectory points (xi(k), yi(k)), k ∈ Tj – which include points on the loiter
pattern if the aircraft is using its backup plan,– the required safety distance with all other
aircraft is then guaranteed at all times during the planning horizon, if these points satisfy
the following set of constraints:

∀j ∈ Ji, ∀k ∈ Tj :

xi(k) ≤ xmin,jk + Mbj1(k)
−xi(k) ≤ −xmax,jk + Mbj2(k)

yi(k) ≤ ymin,jk + Mbj3(k)
−yi(k) ≤ −ymax,jk + Mbj4(k)

4
∑

n=1

bjn(k) ≤ 3

bjn(k) ∈ {0, 1}

(5.8)

As in previous chapters, bjn(k) are binary variables and M is a sufficiently large positive
number. The last constraint again ensures that at least one of the inequality constraints is
active, thereby guaranteeing that the trajectory point (xi(k), yi(k)) lies outside the waypoint
obstacles of the other aircraft.

Loiter Points

To ensure that the loiter circle of the planning aircraft i does not intersect with that of any
of the aircraft j ∈ Ji, we derive equivalent constraints for the sample points along the circle.
Assume that there are NL = ⌈2π

θs
⌉ of these, where θs denotes the discretization angle. Let

the loiter circle of each aircraft j ∈ Ji be contained within a square with lower left corner
(xmin,jL, ymin,jL) and upper right corner (xmax,jL, ymax,jL). As discussed in Chapter 4,
these dimensions include a safety boundary that accounts for the continuous segments of
the loiter circle of aircraft i between its discrete sample points. The two corner points,
together with the time step at which the loiter is initiated, is the only information that
needs to be exchanged about the loiter pattern.

The square that needs to be avoided by the loiter points of the planning aircraft i can
now be considered a static obstacle. By introducing a binary variable d that selects either
the right or left circle, and by substituting expressions (5.6)-(5.7) for the sample points in
the avoidance constraints (5.8), we obtain:

∀j ∈ Ji, ∀l ∈ [1, . . . , NL] :















xi(T ) − αc (cos lθs − 1) ẏi(T ) − αc (sin lθs) ẋi(T ) ≤ xmin,jL + Mbjl1 + Md
−xi(T ) + αc (cos lθs − 1) ẏi(T ) + αc (sin lθs) ẋi(T ) ≤ −xmax,jL + Mbjl2 + Md

yi(T ) − αc (sin lθs) ẏi(T ) + αc (cos lθs − 1) ẋi(T ) ≤ ymin,jL + Mbjl3 + Md
−yi(T ) + αc (sin lθs) ẏi(T ) − αc (cos lθs − 1) ẋi(T ) ≤ −ymax,jL + Mbjl4 + Md

(5.9)
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













xi(T ) + αc (cos lθs − 1) ẏi(T ) + αc (sin lθs) ẋi(T ) ≤ xmin,jL + Mbjl1 + M(1 − d)
−xi(T ) − αc (cos lθs − 1) ẏi(T ) − αc (sin lθs) ẋi(T ) ≤ −xmax,jL + Mbjl2 + M(1 − d)

yi(T ) + αc (sin lθs) ẏi(T ) − αc (cos lθs − 1) ẋi(T ) ≤ ymin,jL + Mbjl3 + M(1 − d)
−yi(T ) − αc (sin lθs) ẏi(T ) + αc (cos lθs − 1) ẋi(T ) ≤ −ymax,jL + Mbjl4 + M(1 − d)

(5.10)
4

∑

n=1

bjln ≤ 3

bjln, d ∈ {0, 1}
(5.11)

Here, the index l denotes the angle around the circle, and does not necessarily correspond
to the exact position of the aircraft on the circle after l time steps. Satisfying the above
constraints ensures that no two loiter circles intersect; together with constraints (5.8) and
the backup plan principle, they guarantee (minimal) safety of each aircraft at all times.

5.4.4 Cost Function

Combined with an appropriate (piecewise) linear cost function, the state space equations
(5.3) together with the dynamic and kinematic constraints (3.25a)-(3.28), the avoidance
and loiter constraints (5.8)-(5.11), constitute a MILP again that must be solved online at
each iteration of the safe trajectory planning algorithm as outlined in Section 5.3. In our
simulations, we used the following cost function for each aircraft i separately:

min
xi(k),ui(k)

JT =
T

∑

k=1

(

q′|xi(k) − xf,i|
)

− r(pf,i − pi(0))′vi(k) (5.12)

It aims at proceeding towards the destination by i) minimizing the 1-norm of the difference
with the desired state xf,i, and ii) maximizing the scalar product of the velocity vector
with the vector (pf,i − pi(0)), indicating the direction from the initial position pi(0) to the
destination pf,i. Since the latter remains constant over the planning horizon, the scalar
product is linear. Its effect is twofold: the vehicle will change its heading to aim straight for
the goal while flying as fast as possible. As such, this cost function mimics a minimum time
solution without requiring the desired state to be reachable within the planning horizon, as
is the case for the exact shortest time formulation (see Chapter 3). As such, a significantly
shorter planning horizon can be used, allowing for faster computation and efficient receding
horizon planning over longer distances. Finally, q and r are weights that can be tuned
appropriately.

5.5 Results

We now present some example scenarios to which the proposed trajectory planning al-
gorithm was applied. The parameters of the aircraft used in our simulations were the
following: vmax = 160 m/s, vmin = 130 m/s, τ = 5 s, k = 5, afwd,max = 15 m/s2 and
alat,max = 13.96 m/s2. The latter corresponds to a maximum turn rate of 5 deg/s. We
simulated all trajectories for 30 to 65 iterations of the algorithm with a planning horizon
of T = 5 time steps of ∆t = 5 s each. The number of loiter sample points was set to
NL = 8, the number of linear inequalities to approximate circular constraints to N = 16.
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(a) Safe trajectories of 2 aircraft.
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(b) Safe trajectories of 4 aircraft.

Figure 5-1: Simulation results for distributed conflict resolution of 2 and 4 aircraft for 30
time steps of 5 s each.

For the avoidance constraints, we used a required safety distance of dsafe = 1.5 km for each
aircraft, resulting in square waypoint obstacles of size 2ds = 4.6 km. The simulation results
were again obtained on a Pentium 4 with 2.2 GHz clock speed, using the CPLEX 9.0 MILP
solver [56] with an AMPL [34] and Matlab interface.

In the first scenario (see Figure 5-1a), two aircraft are flying in opposite directions and
are bound to encounter each other in the origin. Aircraft 1 starts in position (−12 km, 0 km)
flying west at 150 m/s, and is headed for a waypoint at (12 km, 0 km). Aircraft 2 does the
opposite and starts at (12 km, 0 km), flying east at 150 m/s. When they encounter each
other in the middle, they safely resolve the conflict by both turning right. Figure 5-2 shows
the computation times of both aircraft at each iteration: with a maximum of 0.77 s, they
are clearly within the timing constraints of the algorithm (tf − ts < ∆t/2 = 2.5 s).

The second scenario (see Figure 5-1b) involves 4 aircraft. Aircraft 3 and 4 are now flying
south and north at 150 m/s, starting in (0 km, 12 km) and (0 km,−12 km) respectively.
Again, the conflict in the middle is safely resolved within the timing constraints of the
algorithm (see Figure 5-3). Theoretically, each aircraft now has at most ∆t/4 = 1.25 s
available, but using a CPLEX computation time limit of 1.0 s, an acceptable solution was
always found within 1.1 s. To illustrate the safety principle, Figure 5-4 displays the (non-
intersecting) loiter boxes of the 4 aircraft for the first 9 time steps (corresponding to 45 s).

Figures 5-5 and 5-6 show similar scenarios, but now with respectively 8 and 10 aircraft
starting on positions evenly distributed around circles of 12 and 24 km. In the 8 vehicle
case, the aircraft have enough time to find a good feasible solution to the problem, whereas
in the 10 vehicle case, some aircraft use their loiter circles as backup plans. From a conflict
resolution point of view, it allows other vehicles to pass, whereas from a computational point
of view, the circles provide a feasible trajectory in case no better solution can found in time.
Even in these fairly complex scenarios, (minimal) safety for all aircraft is maintained at all
times.
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Figure 5-2: Computation times at each iteration for the 2 aircraft scenario of Figure 5-1a.
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Figure 5-3: Computation times at each iteration for the 4 aircraft scenario of Figure 5-1b.

5.6 Conclusion

This chapter presented an algorithm for provably safe, distributed trajectory planning of
multiple autonomous vehicles. A receding horizon strategy was adopted for each vehicle
individually that accounts for the trajectories of the neighboring vehicles. Safety at all times
was guaranteed by constraining the intermediate plans of all vehicles to terminate in feasible
invariant sets that do not intersect. Conflicts between multiple vehicles were resolved in
a distributed fashion while maintaining an a priori feasible backup plan for each vehicle.
The vehicle interdependence and computation time allocation was determined as a graph
coloring problem. The algorithm was implemented for multiple aircraft using loiter circles
as terminal feasible invariant sets. Simulation scenarios with timing results were presented,
illustrating the capability of our approach to resolve complex conflicts in real-time.
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Figure 5-4: Safe trajectories and corresponding loiter boxes for the 4 aircraft scenario during
the first 9 time steps (corresponding to 45 s).
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Figure 5-5: Safe trajectories of 8 aircraft during 40 time steps of 5 s each.
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Figure 5-6: Safe trajectories of 10 aircraft during 65 time steps of 5 s each.
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Chapter 6

Multi-Vehicle Path Planning for
Non-Line of Sight Communication

This chapter presents a proof-of-concept application of the concepts developed in the previ-
ous chapters. We tackle the problem of online connectivity-constrained trajectory planning
for autonomous helicopters through cluttered environments. A lead vehicle must execute
a certain mission whereby wireless line of sight communication to its ground station is
lost. Relay helicopters are therefore introduced that must position themselves in such way
that indirect line of sight connectivity between the leader and the ground station is always
maintained. This requires coordinated multi-vehicle trajectory optimization which is tack-
led using centralized and distributed receding horizon planning strategies. The problem is
again formulated as a mixed-integer linear program that accounts for the vehicle dynamics,
obstacle and collision avoidance, and connectivity constraints. A centralized two-helicopter
mission is described for which simulation, hardware in the loop, and actual flight test results
are presented. Simulation results for distributed scenarios with two and three vehicles are
given as well.

6.1 Introduction

The problem of interest in this chapter is to guide a small autonomous helicopter through a
cluttered (e.g. urban) environment in which line of sight communication with a ground sta-
tion cannot be maintained due to the presence of obstacles. Depending on the nature of the
mission, however, some form of communication with the vehicle might be required. For ex-
ample, a ground operator may need the capability to upload mission level commands to the
helicopter, such as to fly to and inspect a certain site, and request a real-time video down-
link. In addition, he or she should have access to information about the state and health of
the machine. Practical applications of interest are search and rescue missions, inspection
of disaster sites, urban surveillance, traffic observation, volcanic crater measurements, fire
fighting unit support, etc.

Depending on the power and antenna characteristics of the wireless transmitter/receiver
with which the helicopter and ground station are equipped, obstruction of the line of sight
by nearby buildings or natural obstacles such as hills might significantly degrade the relia-
bility and quality of the communication link. Moreover, since the available power on-board
the vehicle is limited because of battery life (or fuel, in case an alternator is used), the wire-
less range will naturally be constrained even in an obstacle-free environment. A reliable
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communication link between the ground station and the helicopter executing the mission
can then be obtained by introducing a set of relay agents. These can be a combination of
ground and aerial vehicles, but we are interested in using only rotorcraft as relay stations:
they can take advantage of altitude as an extra degree of freedom, and unlike fixed-wing
aircraft, they can hover at a steady location. Indirect communication with the ground sta-
tion can then be established by positioning the relay vehicles in such way that a sequence
of direct line of sight links exists between the ground station and the mission helicopter,
henceforth called the leader.

As the leader is maneuvering through the environment, the relay helicopters should
adapt their positions such that visibility/connectivity between the subsequent relay agents
is maintained. A cooperative scheme is therefore required that allows the relay formation
to coordinate its reconfiguration with the actions of the leader, and, vice versa, the motion
of the leader is constrained by the locations that the relay helicopters can reach. This
coordination problem can be formulated as a connectivity-constrained multi-vehicle path
planning problem, in which feasible trajectories for all agents are computed that optimize
a certain cost criterion. Besides maintaining line of sight, feasibility of the trajectories im-
plies respecting the helicopters’ kino-dynamic constraints, as well as avoiding obstacles and
collisions. We will focus solely on these dynamic and geometric aspects of the connectivity
problem and ignore mobile networking factors such as fading, cross-talk, and delay, which
can also affect the availability of links between the vehicles.

Various researchers have approached the problem of motion planning for connected
multi-agent systems. Nguyen et al. [100] describe the use of mobile relay nodes to extend
the effective range of a ground robot exploring a complex interior environment. The relay
nodes follow the lead robot in convoy and automatically stop where needed to form an ad
hoc network guaranteeing a link between the lead robot and the base station. Variations of
this algorithm can be found in Sweeney et al. [143]. Another such incremental deployment
strategy was developed by Howard et al. [50]. These approaches, however, are rule-based
and as such are less flexible than the optimization-based framework presented in this chap-
ter. In our methodology, a solution is determined online “from scratch” that accounts for
the features of the particular environment and various constraints on the vehicles. Hybrid
approaches in which predetermined navigation or communication recovery behaviors are dy-
namically employed online are described in Wagner and Arkin [150], Ulam and Arkin [148],
and in Powers and Balch [107]. In the latter, the computational complexity for a planning
agent is kept low by assuming that other team members remain in the same position one
step into the future. Our distributed strategy uses a similar idea to maintain feasibility of
the configuration during the trajectory updates of the planning agent in the relay sequence,
more specifically by applying the terminal feasible invariant set principles from Chapters 4
and 5.

Next, Beard and McLain [5] use dynamic programming to tackle the problem of search-
ing a region of interest using multiple UAVs under communication range and collision
avoidance constraints. Obstacles blocking line of sight between vehicles are not accounted
for, however. Various auction or so-called market-based algorithms have been developed as
well, in which tightly coupled tasks are allocated in a distributed fashion and a solution
is found through a convergence process. Examples include the work of Kalra et al. [59],
Lemaire et al. [76] and Bererton et al. [15]. Their focus, however, is on the fair distribution
of the tasks and workload among the agents rather than on the actual trajectory planning
accounting for obstacle and collision avoidance. Finally, Spanos and Murray [141] discuss
the feasibility aspects of path planning for vehicles connected through a range-constrained
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wireless network. They define a connectivity robustness measure which quantifies the free-
dom of individual vehicles to undergo arbitrary motions without disconnecting the network,
but do not explicitly construct feasible trajectories.

Unlike some of the approaches mentioned above, the focus of this chapter is not on the
(positioning) task allocation, but on the development of an online cooperative trajectory
planning algorithm that incorporates connectivity constraints directly into the formulation.
In the most general case, different additional constraints can be placed on the individual
vehicles: for example, one of the agents may have to remain at ground level, whereas the
relay agents must stay above a certain altitude. Our framework will be able to naturally
handle such requirements. More specifically, we will compute the connectivity-constrained
trajectories online using MILP again with both centralized and distributed planning strate-
gies. This allows us to apply the various concepts and algorithms developed in the previous
chapters to a realistic proof-of-concept application and scenario.

6.2 Problem Formulation

6.2.1 Problem Setup

This section extends the basic centralized receding horizon formulation (2.3)-(2.9) for mul-
tiple vehicles as presented in Chapter 2 to account for connectivity constraints. Let the
various agents be denoted by an index i = 0, . . . , L, where i = 0 is the stationary ground
station, i = L indicates the leader, and the remaining index values correspond to the relay
helicopters. The dynamics of the moving vehicles are again characterized by discrete-time,
linear state space models (Ai, Bi) with corresponding constraint sets Xi(t) and Ui(t). The
obstacles that are relevant to vehicle i are again represented by the set Oi.

The overall goal of the trajectory planning problem is for the lead vehicle L to perform a
certain task while optimizing a particular cost. The leader’s task is again specified as having
to fly to a certain waypoint of interest, denoted as the final state xf ≡ [p′

f v′
f ]′, e.g., to

go take video footage at a particular location. As before, a series of task waypoints would
be considered as a sequence of independent tasks. Besides maintaining feasibility w.r.t.
obstacle and collision avoidance, the motion of the leader will be constrained by the net-
work connectivity requirement and the communication capabilities of the relay helicopters.
Denote the broadcasting range of each agent i as drelay,i ∈ R. Since we are considering
two-directional communication between the vehicles, a communication link between two
agents i and j can only exist if they are within each other’s broadcasting range, or thus if
the Euclidean distance dij ≡ ‖pi − pj‖ between them is smaller than the shortest range of
the two: dij ≤ min(drelay,i, drelay,j). Moreover, the visibility between them should not be
obstructed. We define these requirements more precisely as follows:

Definition 6.1 (Line of Sight Connection): We say that there exists a line of sight
connection between two agents i and j, positioned respectively at pi and pj, if their Euclidean
separation distance dij = ‖pi−pj‖ is smaller than the shortest broadcasting range of the two,
i.e., dij ≤ min(drelay,i, drelay,j), and the line between them does not intersect any obstacles,
i.e., pi + λ(pj − pi) /∈ (Oi ∩ Oj), 0 ≤ λ ≤ 1.

In the most general case, the topology of the wireless network could be set up ad hoc
as part of the optimization problem. In this chapter, however, we consider a fixed order in
the set of relay vehicles i = 1, . . . , L− 1 that corresponds to a linear graph structure: i = 1
relays information between i = 0 and i = 2, i = 2 does so between i = 1 and i = 3, and so
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forth. As such, there is no robustness against link dropouts at one of the relay agents. At
the cost of a more complex optimization problem (and therefore longer computation time),
more flexible network structures with redundancy properties could be obtained. Such setup,
however, would automatically limit the operational range of the vehicle platoon. Without
redundancy and after having fixed the order of the relay vehicles, the maximum distance the
leader could travel away from the ground station is given by :

∑L−1
i=0 min(drelay,i, drelay,i+1),

i.e., in the best-case scenario in which no obstacles obstruct the line of sight between the
leader and ground station.

The connectivity requirement for the ordered team of vehicles can then be defined as
follows:

Definition 6.2 (System Connectivity): We say that there is system connectivity in the
ordered set of agents if there exist line of sight connections between all pairs of subsequent
agents (i, i + 1), i = 0, . . . , L − 1: di(i+1) ≤ min(drelay,i, drelay,i+1) and pi + λ(pi+1 − pi) /∈
(Oi ∩ Oi+1), 0 ≤ λ ≤ 1.

Trajectory feasibility for all vehicles now also implies that system connectivity is maintained
at all times.

6.2.2 Centralized Receding Horizon Planning

For the same reasons as mentioned earlier in this thesis, namely computational complexity
and/or partially unknown environments, we again make use of a receding horizon planning
approach. We first present a centralized strategy, in which the ground station computes tra-
jectories for all vehicles simultaneously. In Section 6.5, a distributed cooperative algorithm
is presented, similar to the one discussed in Chapter 5.

The objective of the trajectory optimization problem is to now guide the leader to its
goal state xf while optimizing a certain cost and maintaining connectivity. Since the actions
of the leader must be coordinated with those of the relay helicopters, the efforts made by
the latter should somehow be reflected in the cost. We therefore introduce the following
general objective function:

JT =
T−1
∑

k=0

ℓL,k(xL(t + k|t), uL(t + k|t), xf ) + fL(xL(t + T |t), xf )

+
L−1
∑

i=1

T−1
∑

k=0

ℓi,k(xi(t + k|t), ui(t + k|t)) (6.1)

in which ℓL,k(·) indicates the stage cost associated with the leader at the kth time step, and
fL(·) represents a terminal penalty function. As discussed earlier, the latter should be an
estimate of the cost-to-go from the last state xL(t + T |t) in the planning horizon to the
desired waypoint xf . Similarly, ℓi,k(·) is the kth stage cost corresponding to relay vehicle
i, i = 1, . . . , L − 1. Notice, however, that there are no cost-to-go functions associated with
the relay vehicles and that their stage costs ℓi,k(·) do not depend on xf . Indeed, reaching
the goal waypoint only matters to the leader, and there are no a priori known desired
locations for the relay helicopters.

The connectivity-constrained trajectory optimization problem at time t can then be
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formulated as:

J∗
T = min

xi(·),ui(·)

{

T−1
∑

k=0

ℓL,k(xL(t + k|t), uL(t + k|t), xf ) + fL(xL(t + T |t), xf )

+
L−1
∑

i=1

T−1
∑

k=0

ℓi,k(xi(t + k|t), ui(t + k|t))
}

(6.2)

subject to: ∀i = 1, . . . , L :

xi(t + k + 1|t) = Aixi(t + k|t) + Biui(t + k|t),
k = 0, . . . , T − 1

xi(t|t) = x̂i(t|t − 1)

xi(t + k|t) ∈ Xi(k), k = 1, . . . , T

ui(t + k|t) ∈ Ui(k), k = 0, . . . , T − 1

pi(t + k|t) /∈ Oa,i(t), k = 1, . . . , T

‖pi(t + k|t) − pj(t + k|t)‖ ≥ dsafe, j = 0, j ≥ i + 1, k = 1, . . . , T

pi(t + k|t) + λ
(

pi−1(t + k|t) − pi(t + k|t)
)

/∈ Ov,i(t) ∩ Ov,i−1(t), 0 ≤ λ ≤ 1,

k = 1, . . . , T (6.3)

‖pi(t + k|t) − pi−1(t + k|t)‖ ≤ min(drelay,i, drelay,i−1),

k = 1, . . . , T (6.4)

vi(t + T |t) = 0 (6.5)

p0(t + k|t) = p0(0), k = 0, . . . , T (6.6)

where the last equality indicates that the ground station does not move. Constraint (6.5) is
a terminal hover constraint ensuring that the optimization problem at the next iteration is
feasible. Indeed, applying the terminal feasible invariant set principle from Chapter 4, the
remaining segments k = 2, . . . , T of the trajectories produced at time step t and combined
with an extra time step in the respective hover positions pi(t+T |t) form a feasible solution to
the new optimization problem at time t+1. Furthermore, to prevent the actual continuous
trajectories and lines of sight from cutting corners of obstacles, the obstacle sets Oa,i and
Ov,i are again the actual obstacles enlarged with an appropriate safety envelope.

6.2.3 Connectivity Constraints

Compared to the basic formulation (2.3)-(2.9) of Chapter 2, the only additions are the
connectivity constraints (6.3) and the maximum separation bounds (6.4). To retain a MILP
formulation, the former can be expressed by substituting the single vehicle coordinates
pi(t + k|t) ≡ [xi(t + k|t) yi(t + k|t) zi(t + k|t)]′ in the obstacle avoidance conditions (2.28)-
(2.32) by sample points along the line between subsequent agents i− 1 and i (i = 1, . . . , L):

pi−1(t + k|t) +
l

Lv

(

pi(t + k|t) − pi−1(t + k|t)
)

, l = 1, . . . , Lv (6.7)

Here Lv is the number of interpolation points. Again, due to the discrete nature of this
sampling operation and the fact that visibility between the vehicles should not be lost in
between two time steps, the obstacles should be enlarged with a connectivity safety envelope.
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The number of sample points should be determined in function of how far the vehicles can
be separated and how large a safety envelope can be tolerated.

Because they are convex, the maximum separation constraints (6.4) are easier to for-
mulate and do not require the use of binaries. For simplicity, instead of approximating the
2-norm of the separation distance between vehicles i and i− 1 (i = 1, . . . , L) by a collection
of tangent planes, we use an outer 1-norm formulation. Constraints (6.4) then become:

∀k = 1, . . . , T : xi(t + k|t) − xi−1(t + k|t) ≤ min(drelay,i, drelay,i−1)
xi−1(t + k|t) − xi(t + k|t) ≤ min(drelay,i, drelay,i−1)

yi(t + k|t) − yi−1(t + k|t) ≤ min(drelay,i, drelay,i−1)
yi−1(t + k|t) − yi(t + k|t) ≤ min(drelay,i, drelay,i−1)

zi(t + k|t) − zi−1(t + k|t) ≤ min(drelay,i, drelay,i−1)
zi−1(t + k|t) − zi(t + k|t) ≤ min(drelay,i, drelay,i−1)

(6.8)

6.3 Implementation

6.3.1 Helicopter Test-Bed

Using the helicopter model from Chapter 2, the centralized MILP-based receding horizon
algorithm described above was implemented on a testbed consisting of two autonomous X-
Cell miniature helicopters, a ground station and a trajectory planning laptop. The X-Cell
helicopters were originally developed at MIT [142, 39] and further improved and commer-
cialized by Nascent Technology Corporation (NTC). NTC also extended the original ground
station to support multi-vehicle operations and developed a simulation platform.

Figure 6-1: MIT’s autonomous X-Cell helicopter, equipped with avionics box.

Figure 6-1 shows one of the autonomous X-Cells equipped with its avionics box. Power
is supplied through a 50W alternator that runs off the gas engine and also charges a smart
Li-Ion battery that is used as a backup power supply during interrupts. With a full tank,
the endurance of the helicopter is 40 minutes. The avionics box contains an Aaeon PC-104
computer which runs the QNX real-time operating system. Among other functions, the
on-board software features 1) a Kalman filter that combines GPS, IMU, and barometer
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measurements to estimate the inertial position and velocity, 2) stabilizing control algo-
rithms, 3) a waypoint follower, and 4) health management functions. Waypoints can be
uploaded from the Windows-based ground station in real-time, and, through file sharing,
the downloaded vehicle states are available to the ground-based trajectory planning laptop.

The communication between the ground station and the helicopters is done through
Microhard Spectra NT920 wireless modems. They operate in the 900 MHz band with a
5 miles range, achieve data rates of 276 Kbps, have built-in support for Ethernet, and
can be configured for both “point to multi-point” and relay operation. The latter mode is
critical for beyond-line of sight operations, which is the problem of interest in this chapter.
A “heartbeat”-type system monitors the communication link and keeps both the ground
station and the flight computer apprised of its state. If communication is lost, a protocol is
set up to re-establish it and continue normal operation, rather than to hang up or otherwise
crash. If communication is lost for longer than a pre-established time out period, however,
the helicopter aborts its current mission and automatically returns to the take-off point.
This is one of the many autonomy and control augmentation features, which among others,
include automatic take-off and landing, transition to hover in case of loss of GPS, and
waypoint following or easy steering by joystick through the ground station laptop.

6.3.2 Mission Scenario

A demonstration mission scenario was developed that is based on military and civilian
law enforcement requirements for beyond-line of sight urban intelligence, surveillance, and
reconnaissance (ISR) operations. The target mission starts with the two helicopters stowed
in the back of a ground vehicle (e.g., a truck or SUV). The ground vehicle arrives at an urban
site near an area of interest, the vehicles are unloaded, started, and taken off. This happens
sequentially because a single operator guides the take-off process. Since the control system
on the helicopter makes take-off and landing easy, (s)he need not be especially skilled.

The first (mission) helicopter is pull-started, takes off, and is put into hover mode.
Next, the second (relay) helicopter is started, takes off, and is put into hover nearby. Both
helicopters are under control of the ground station at all times. For safety purposes, below
a certain “clearance plane”, they are directly controlled by the operator through joystick
steering. As soon as the vehicles are high enough, they can be guided by point-and-click
operations on the ground station. Once both helicopters are above the clearance plane
and in hover mode, the operator selects a location on the map at which (s)he wants video
information. Next, the online trajectory planning software is started and the first series
of waypoints uploaded to the relay and mission helicopter. The latter then starts flying
towards the location of interest, thereby avoiding known obstacles and other constraints,
while the relay helicopter adjusts its position to maintain line of sight with both the ground
station and the mission helicopter.

An office park in Burlington, MA (where NTC is located), was chosen as the specific test
side. Figure 6-2 shows a satellite image of the area, which is about 0.5 km by 0.3 km. The
take-off area and ground station are located within the rectangle, the circle represents the
target point for the mission helicopter. There are three large office buildings surrounded
by parking lots and wooded areas, next to which are other buildings. A major highway
(US 95) runs north-south on the left. The office buildings are about 50 m tall, the trees
around 40 m. Using a combination of GPS measurements and satellite image data from
Google Earth [45], a Matlab model of the relevant environment was built which is shown
in Figure 6-3. The office buildings were considered separate obstacles, whereas the thick

117



Figure 6-2: Satellite image of the test region. The rectangle represents the take-off area
and ground station, the circle is the target location. Source: Google Earth

copses of trees were treated as one large no-fly zone. Unless the mission helicopter is at
an altitude that is too high for the type of ISR that we envision, flying to the target
area clearly involves obscuration of the line of sight between the ground station and the
mission helicopter. Although the MILP approach is flexible and could readily tackle more
complicated scenarios, this specific one was chosen as a trade-off between the logistics
and safety issues associated with flying two autonomous helicopters through a real obstacle
environment, and sufficient complexity for a proof-of-concept demonstration of online MILP
for obstacle avoidance, collision avoidance and connectivity maintenance.

6.3.3 Trajectory Planning Software

The MILP-based online trajectory optimization module was implemented using a combi-
nation of commercially available software products. The planning parameters, such as the
current state and obstacle information, were processed in Matlab, the optimization model
was implemented in AMPL [34], and CPLEX 9.0 [56] was used as the MILP solver. The
module ran on a separate Pentium 4 laptop with 2.2 GHz clock speed, which used standard
Windows file sharing with the ground station to obtain state updates from both helicopters
(downloaded every second) and to upload waypoints. It was executed every 5 seconds,
resulting in a new waypoint list being uploaded at 5 s intervals. We thereby made use of
CPLEX’s computation time limit, which was set to 4.7 s. In case no optimal solution was
found within that time, the best feasible solution was returned. If no feasible solution was
found in time, e.g., because of a structural infeasibility such as having been blown into
an obstacle’s safety envelope, the previous waypoint list was kept. Since each waypoint
plan of the receding horizon strategy terminates in a safe hover state, a sequence of such
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infeasibilities would not jeopardize the helicopters.

In our experiments, however, we did not encounter sequences of more than two infeasi-
bilities. First, since most of them are related to disturbances in the environment affecting
the initial state, most infeasibilities can be avoided by removing constraints on the initial
time step. Second, in a preprocessing step executed at each iteration, we checked for in-
feasibilities such as being inside an obstacle envelope or flying faster than the maximum
allowed speed and “manually” compensated for them by pushing the initial state estimate
slightly into the feasible region. Provided that the vehicle has more thrust available than
accounted for in the optimization problem, it can compensate for this artificial perturbance
when tracking the new plan.

Another preprocessing task was to perform the appropriate coordinate transformation.
Position information from the helicopters was received in GPS latitude, longitude and alti-
tude coordinates, whereas the trajectory planning problem was solved in a local Cartesian
north-east-up coordinate frame relative to the position of the ground station. Likewise, the
waypoints resulting from the MILP optimization had to be transformed back before being
uploaded. Since the vertices of the obstacles were stored in GPS coordinates too, they
had to be transformed as well. Although for the demonstration the obstacle coordinates
were stored ahead of time, new obstacles that came within reach of the planning horizon
were processed (i.e., approximated by surrounding polyhedrons) at each receding horizon
iteration. Overall, the complete preprocessing time to setup the updated MILP problem at
each iteration took about 0.2 s.

6.4 Results

6.4.1 Planning Parameters

Before flight-testing the Burlington scenario described in Section 6.3.2, we performed Mat-
lab and high-fidelity hardware-in-the-loop (HIL) simulations. In the hardware tests, two
identical X-Cell machines or HIL simulators were employed. The parameters used in the
trajectory optimization problem are given in Table 6.1. The receding horizon contained
T = 6 time steps of ∆t = 2.5 s each, corresponding to an actual planning horizon of 15 s.
With a maximum velocity of 2 m/s, the 6 waypoints were thus separated by at most 5 m.
Since the X-Cell’s waypoint controller provided better tracking results with a 10 m resolu-
tion, however, only the 2nd, 4th and 6th waypoint were uploaded. Furthermore, for safety
reasons, a minimum and maximum altitude of respectively zmin = 25 m and zmax = 100 m
were enforced. The former ensured avoidance of light poles on the terrain and would give
the safety pilot enough time to take over in case something went wrong.

T 6 drelay 400 m zmax 100 m
∆t 2.5 s dsafe 10 m żmin -2 m/s
N 16 vmax 2 m/s żmax 2 m/s
La 4 amax 2 m/s2 z̈min -2 m/s2

Lv 10 zmin 25 m z̈max 2 m/s2

Table 6.1: Parameters used in the MILP trajectory optimization
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The test scenario used the following heuristic cost function:

JT =
T

∑

k=1

10−2|zL(k) − zf | +
T−1
∑

k=0

10−4|aL(k)| + |pL(T ) − pf |

+
T

∑

k=1

(

10−3|vR(k)| + 10−2|zR(k) − zmin|
)

+
T−1
∑

k=0

10−3|aR(k)| (6.9)

in which L and R respectively indicate the mission (lead) and relay helicopter, and | · |
represents the 1-norm. This cost function seeks to guide the mission helicopter to the goal
pf by placing a high weight on the position error |pL(T )− pf |, while minimizing the effort
of the relay helicopter to maintain line of sight. The actions of the latter are expressed in
terms of its velocity and acceleration sequence. To prevent the vehicles from flying over
the buildings, the cost function also penalizes altitude, as expressed by the |zL(k) − zf |
and |zR(k) − zmin| terms. Note that for reasons of simplicity this objective function does
not account for knowledge of the environment. For a more sophisticated function with a
cost-to-go term based on a visibility graph, we refer the reader to [7].

6.4.2 Simulation and Flight Test Results

Figure 6-3 shows a Matlab simulation of the scenario in the nominal case, i.e., without
disturbances or model uncertainties. The ground station is located in the origin of the local
coordinate frame whose x-, y-, and z-axes are aligned with the east, north, and up directions
respectively. The circles indicate the position of the mission helicopter at every 5 s time
step; the triangles represent the relay agent. The initial states are hover in respectively
(0,−16, 25)m for the mission helicopter and (0, 3, 25)m for the relay one. The goal, shown
as a star, is located at (176,−206, 25)m and is reached after 33 receding horizon iterations
or 165 s. The line of sight between the mission and relay helicopters at each time step is
plotted in black, the connection between the ground station and the relay in green dashed
line. The result shows that as the mission helicopter flies around the buildings to reach its
goal, the relay moves south to maintain visibility with both the mission helicopter and the
ground station. Connectivity between all agents is thus guaranteed at all times. It is also
worth mentioning that at every iteration an optimal solution was always found within the
time limit of 4.7 s.

Figure 6-4 shows the same scenario tested using high-fidelity HIL-simulators for both
helicopters. It shows the position of the vehicles at a 5 s interval. In the HIL-sim test,
the MILP algorithm operated on the same platform and with the same data that it would
see in an actual flight test. The trajectory planning laptop communicated with the ground
station software just as it would in the actual flight test, using GPS coordinates that were
geographically correct. The ground station, in turn, communicated with the two flight
computers in the same way as in the flight test, and the latter executed the same software
as they would in flight. The flight computers interacted with sensors and actuators using the
same low-level code as used on-board. Furthermore, the actuator commands were delivered
to actual flight hardware consisting of a servoboard and servos. Only at this point did the
simulation deviate from reality: servo positions were transduced by potentiometers, which
were read by an A/D converter driving a high-fidelity software simulation of the vehicle
flight dynamics and kinematics. Sensor outputs were also simulated, and serial outputs
identical to those generated by the actual sensors were created to drive the sensor inputs of
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Figure 6-3: Nominal trajectories of the Burlington scenario computed in Matlab using
receding horizon planning. The circles represent the mission helicopter, the triangles show
the relay vehicle. The obstacles in the center are buildings; the large no-fly zone at the
Western and Southern edge represents forests (enlarged with a safety boundary).

−50 0 50 100 150 200

−250

−200

−150

−100

−50

0

East (m)

N
or

th
 (

m
)

(a) East-North projection

−50
0

50
100

150
200

−250

−200

−150

−100

−50

0

0

20

40

East (m)

North (m)

A
lti

tu
de

 (
m

)

(b) 3D plot

Figure 6-4: Hardware-in-the-loop simulations of the trajectories computed online in real-
time. The circles represent the mission helicopter; the triangles show the relay vehicle.

the flight computer. As can be seen from Figure 6-4, the HIL-simulation took 51 receding
horizon iterations or 255 s to arrive at the goal instead of 165 s. This was mainly due to
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Figure 6-5: Actual flight test data of the trajectories computed online in real-time. The
circles represent the mission helicopter; the triangles show the relay vehicle.

the vehicle flying slower than commanded in the straight edge towards the end.

Figure 6-5 shows the result of an actual flight test. The online MILP-based trajectory
planning software was initiated after the helicopters were manually taken off and brought to
their starting positions by the waypoint controller. Naturally, the main difference between
the HIL-simulation and the flight is the use of actual helicopters in the real environment.
This adds the stresses of hardware operating in noisy environments with vibration and heat
playing a role in the equipment functionality. The other major difference is the wireless
communication, which is nearly perfect in the HIL-sim environment. For the flight test,
an actual relay protocol was implemented using the Microhard 900 MHz Ethernet modems
described in Section 6.3. These modems performed very well, maintaining communication,
as planned, when the line of sight was blocked. As seen in Figure 6-5, visibility between
the ground station and the mission helicopter was indeed lost during the flight. An indirect
communication link, however, was maintained through the relay helicopter. Based on this
setup, we know that all waypoints executed by the mission helicopter were sent to it by way
of the relay, and that all waypoints executed by the latter were uplinked directly.

Finally, the flight differed from the HIL-simulation because real sensors were used in
the actual mission. In particular, this meant that GPS coordinates were based on actual
measurements, which sometimes suffer dropouts and loss of accuracy, especially in urban
settings. Our scenario environment can be considered suburban, so for the most part GPS
performance was good. Other sensor measurements on-board the helicopter are reliable and
accurate, and performed flawlessly during the mission.

The first part of the flight looks very similar to the HIL-sim results. About 65% through
the mission, however, a faulty power supply on-board the relay helicopter caused the com-
munication with the ground station to be temporarily interrupted. As such, both helicopters
ran out of waypoint updates and safely hovered at the last waypoint of their latest plan
(approximately (−25,−120, 25) for the relay and (22,−178, 25) for the mission helicopter).
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As a safety procedure, the relay helicopter then entered a “safe return home” mode, which
consists of first climbing to an altitude of 100 m and then returning to the position from
where it started. This climb is visible in the last few data points shown in the 3D plot
of Figure 6-5. Once in safe return home mode, the relay helicopter ignored the additional
waypoints that were uploaded to it. However, communication picked up again just after
entering this mode and right before the mission helicopter would have initiated it. As a
result, after having hovered around location (22,−178, 25), the mission helicopter continued
receiving and executing the MILP updates. It thereby maintained line of sight with the
climbing relay helicopter until the mission was manually aborted. This in fact highlighted
the flexibility and adaptive replanning properties of the receding horizon MILP approach.
Furthermore, this was the first time that the X-Cell helicopters were guided by an on-
line MILP-based trajectory planner around actual buildings, thus providing a successful
proof-of-concept of the use of MILP for in-air obstacle and collision avoidance.

6.5 Distributed Planning Strategy

Because the centralized formulation presented in Section 6.2 accounts for the states and
inputs of all vehicles as unknowns in the optimization problem, its computation time scales
exponentially with the number of agents. To reduce the computational complexity, it is
therefore more sensible to use a distributed strategy in which each helicopter only computes
its own trajectory. One possible approach is that all vehicles compute their trajectories
according to a cyclic order corresponding to the relay sequence and thereby always account
for the latest plans of the other vehicles. For vehicles j′ that already updated their trajectory
in the current cycle, the latest plan is the newly optimized trajectory. For vehicles j′′ that
follow later in the cycle, the latest plan is the one computed during the previous iteration.
The current helicopter j can then consider the plans of all other vehicles j′ and j′′ as fixed
waypoints p̂j′(·) and p̂j′′(·), such that they enter as constraints in the optimization problem
and not as unknowns. As in the centralized formulation, feasibility at all times can be
guaranteed by constraining the intermediate trajectories of all helicopters to terminate in
hover states at distinct locations.

6.5.1 Distributed Cooperative Algorithm

Starting with the leader L who optimizes its mission-dependent cost function, a possible
objective function for each subsequent relay agent is to minimize the distance to the previous
vehicle in the cycle (or thus to the next one in the relay order). Assuming an initial feasible
relay configuration at t = 0, the preceding strategy is formalized by the following algorithm,
executed at each time step t:

Start: Start at time t.

Step 1: Let leader L perform the following actions:

Step 1a: Solve the following optimization problem:

J∗
L = min

T−1
∑

k=0

ℓL,k(xL(t + k|t), uL(t + k|t), xf ) + fL(xL(t + T |t), xf ) (6.10)

subject to:
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xL(t + k + 1|t) = ALxL(t + k|t) + BLuL(t + k|t),
k = 0, . . . , T − 1

xL(t|t) = x̂L(t|t − 1)

xL(t + k|t) ∈ XL(k), k = 1, . . . , T

uL(t + k|t) ∈ UL(k), k = 0, . . . , T − 1

pL(t + k|t) /∈ Oa,L(t), k = 1, . . . , T

pL(t + k|t) + λ
(

p̂L−1(t + k|t − 1) − pL(t + k|t)
)

/∈ Ov,L(t) ∩ Ov,L−1(t − 1),

0 ≤ λ ≤ 1, k = 1, . . . , T

‖pL(t + k|t) − p̂L−1(t + k|t − 1)‖ ≤ min(drelay,L, drelay,L−1),

k = 1, . . . , T

‖pL(t + k|t) − p̂j(t + k|t − 1)‖ ≥ dsafe, j = 0 . . . L − 1

p̂j(t + T |t − 1) = p̂j(t − 1 + T |t − 1),

j = 0, . . . , L − 1 (6.11)

vL(t + T |t) = 0 (6.12)

Step 1b: Send new waypoints p̂L(t + k|t) to all other agents j = 1, . . . , L − 1 through
the relay network.

Step 2: Let all relay agents j = L − 1, L − 2, . . . , 1 subsequently perform the following
actions:

Step 2a: Solve the following optimization problem:

J∗
j = min

T
∑

k=1

q|pj(t + k|t) − p̂j+1(t + k|t)| +
T−1
∑

k=0

r|uj(t + k|t)| (6.13)

subject to:

xj(t + k + 1|t) = Ajxj(t + k|t) + Bjuj(t + k|t),
k = 0, . . . , T − 1

xj(t|t) = x̂j(t|t − 1)

xj(t + k|t) ∈ Xj(k), k = 1, . . . , T

uj(t + k|t) ∈ Uj(k), k = 0, . . . , T − 1

pj(t + k|t) /∈ Oa,j(t), k = 1, . . . , T

‖pj(t + k|t) − p̂j+1(t + k|t)‖ ≤ min(drelay,j , drelay,j+1),

k = 1, . . . , T (6.14)

pj(t + k|t) + λ
(

p̂j+1(t + k|t) − pj(t + k|t)
)

/∈ Ov,j(t) ∩ Ov,j+1(t),

0 ≤ λ ≤ 1, k = 1, . . . , T (6.15)

‖pj(t + k|t) − p̂j−1(t + k|t − 1)‖ ≤ min(drelay,j , drelay,j−1),

k = 1, . . . , T (6.16)

pj(t + k|t) + λ
(

p̂j−1(t + k|t − 1) − pj(t + k|t)
)

/∈ Ov,j(t) ∩ Ov,j−1(t − 1),

0 ≤ λ ≤ 1, k = 1, . . . , T (6.17)
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‖pj(t + k|t) − p̂j′(t + k|t)‖ ≥ dsafe, j′ = j + 1, . . . , L (6.18)

‖pj(t + k|t) − p̂j′′(t + k|t − 1)‖ ≥ dsafe, j′′ = 0, . . . , j − 1 (6.19)

p̂j′′(t + T |t − 1) = p̂j′′(t − 1 + T |t − 1),

j′′ = 0, . . . , j − 1 (6.20)

vj(t + T |t) = 0 (6.21)

Step 2b: Send new waypoints p̂j(t + k|t) to all other agents j′′ = 1, . . . , j − 1 and
j′ = j + 1, . . . , L through the relay network.

End: End before time t + 1.

Notice that the cost function (6.10) for the lead vehicle L does not account for the other
vehicles and only optimizes a specific mission objective. The cost functions (6.13) for the
subsequent relay agents j, however, seek to minimize the 1-norm distance to the previous
agent j + 1 in the decreasing planning sequence, i.e., to the vehicle that just updated
and broadcasted its new waypoints p̂j+1(t + k|t). Constraints (6.14)-(6.15) express the
connectivity requirement with this previous agent, whereas constraints (6.16)-(6.17) ensure
connectivity with the next agent j − 1 in the update sequence, using the latter’s previous
waypoints p̂j−1(t + k|t − 1) with an additional time step in the terminal hover location
given by equation (6.20). Finally, the collision avoidance constraints (6.18) and (6.19) also
account for the latest waypoint plans of all vehicles in the cycle, namely p̂j′(t + k|t) for
agents j′ = j + 1, . . . , L and p̂j′′(t + k|t − 1) for agents j′′ = 0, . . . , j − 1.

The planning sequence for all agents j = L, L − 1, . . . , 1 should be completed before
the next time step. To ensure this, each vehicle in the sequence should be allocated a time
slot in which to compute its trajectory update. An a priori feasible solution will always be
available, consisting of the remainder of the previous plan with the additional time step in
the terminal hover state. Therefore, if the vehicle cannot find a better solution within the
allotted time slot, it can always resort to this backup plan. Constraints (6.11) and (6.20)
determine the last time step of this a priori solution for the vehicles following later in
the update cycle. As such, together with the terminal hover constraints (6.12) and (6.21),
feasibility of the planning problem for all subsequent agents and time steps is guaranteed.
Because it is similar in nature to the feasibility and safety proofs from Chapters 4 and 5, a
formal proof of this statement is omitted. It would again consist of the explicit construction
of the feasible solution just described.

6.5.2 Results

Simulation results of the preceding distributed algorithm are shown in Figures 6-6 and 6-7.
The former revisits the Burlington scenario with an extra obstacle placed in the field. To
maintain connectivity with the ground station a second relay vehicle must be introduced
which, starting from (0, 16, 25)m, positions itself near the lower right corner of the new
obstacle. On average, the total cycle for the three vehicles at each receding horizon iteration
took 1.3 s, indicating that the computational complexity of the distributed strategy scales
much better with the number of relay agents than the centralized approach.
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Figure 6-6: Simulation result for distributed Burlington scenario with extra obstacle and
second relay vehicle.

In general, for mission purposes, the lead vehicle might be constrained to stay at a lower
altitude, whereas the relay agents might be able to position themselves anywhere in the
environment. A scenario in which the relay helicopter takes advantage of altitude changes
to maintain connectivity is plotted in Figure 6-7. This particular environment represents
a part of the MIT campus. Both helicopters again start close to the origin where the
ground station is located. The mission helicopter must now maneuver to a hover state near
(−100, 80, 10)m while staying low over the building. The altitude of the relay helicopter is
unconstrained and, as such, it climbs to a higher altitude that is sufficient to maintain line
of sight with both the mission helicopter and the ground station. This again highlights the
flexibility of the MILP approach. Using the same planning parameters as in the Burlington
scenario, each two-vehicle cycle in this scenario took 1.0 s on average.

6.6 Conclusion

This chapter presented a centralized and distributed receding horizon strategy for online
connectivity-constrained MILP-based trajectory planning of autonomous vehicles through
cluttered environments. The centralized approach was successfully implemented on two
X-Cell helicopters and tested in a real-world scenario. The test-bed, mission and first time
proof-of-concept results of online multi-helicopter operation in an actual obstacle environ-
ment were described in detail. The results show that MILP is a flexible framework that
can effectively handle obstacle avoidance, collision avoidance, and connectivity constraints
in real-time. Simulations of a distributed planning strategy indicated that the approach is
scalable to multi-relay networks.
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Figure 6-7: Simulation result for distributed scenario in which the mission helicopter must
fly over the building (MIT’s Simmons Hall) and the relay has to gain altitude.
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Chapter 7

Implementation of MILP-based
UAV Guidance for Human/UAV
Team

This chapter discusses the implementation of a MILP-based guidance system as part of a
manned vehicle – UAV mission system. The overall system enables an operator in a manned
aircraft to issue mission level commands to an autonomous aircraft in real-time. A natural
language interface allows the manned and unmanned vehicles to communicate in languages
understood by both agents. A task scheduler transforms the commands into a dynamic
mission plan consisting of task waypoints. These are then given to the MILP-based trajec-
tory optimizer, which safely guides the vehicle through a partially-known environment in
real-time. Integrated simulation and flight-test results are presented that used an F-15 and
an autonomous T-33 equipped with Boeing’s UCAV avionics package. These activities were
part of the Capstone Demonstration of the DARPA-sponsored Software Enabled Control
effort. The flight-tests mark the first time that an onboard MILP-based guidance system
was used to control a UAV. They also mark the first time that a natural language interface
was used by a manned vehicle to task a UAV in real-time.

7.1 Introduction

Recent advances in guidance and autonomy technology have enabled some UAVs to execute
simple mission tasks without human interaction. Most of these tasks are pre-planned using
reconnaissance or environment information. For example, air operations are executed ac-
cording to an Air Tasking Order (ATO), which may take up to 72 hours to plan, task and
execute [153]. In volatile situations, however, information about the vehicle’s operating en-
vironment may be limited: a detailed map of the environment might not be available ahead
of time, and obstacles might be detected while a mission is carried out. In such situations,
task planning flexibility and safe trajectory solutions are essential to the survivability and
success of the autonomous system: the vehicle’s guidance and mission planning systems
must possess enough intelligence (and processing power) to recognize and react to changes
in the operating conditions.

The complexity of the above problem increases when more than one agent is introduced.
For example, if other autonomous agents are added to the mission scenario, then all vehicles
must resolve information regarding the impending actions of the other vehicles. Similarly,
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if a manned agent is introduced, the autonomous vehicles must also possess the capability
to effectively communicate and coordinate their actions with the manned vehicle. Most
unmanned vehicles, however, do not exhibit this level of performance. Intelligent mission
and guidance systems providing the flexibility and cooperative behavior needed to complete
an entire mission autonomously are therefore a topic of active research [67, 122, 25, 47].

This chapter discusses the development, implementation and evaluation of such a system
containing a manned vehicle and a UAV operating in a partially-known environment. It
enables the operators of the manned aircraft to issue tasks and mission-level commands to
the unmanned aircraft in real-time using a natural language interface. The latter translates
English sentence commands from the crew to a set of codes understood by the UAV, and
vice versa. A task scheduler then transforms these commands into input data of an online
MILP-based trajectory optimization problem, using the feasible receding horizon planning
strategy from Chapter 4. The overall mission system thus transforms the natural language
commands of the manned aircraft operators into a mathematical programming problem
producing real-time trajectories that implement the dynamic mission plan of the UAV.

A number of challenges had to be overcome during the development of this system.
First, the mechanism allowing both vehicles to communicate with one another needed to
be designed. Second, the UAV guidance technology had to be made robust to changes and
threats in the vehicle’s environment – including changing wind conditions, no-fly zones and
other obstacles,– and produce safe trajectories through the partially-known environment.
Third, since the system was intended for real-time missions, all developed algorithms needed
to reach a solution and resolve any unexpected issues reliably in a pre-defined period of time.

As part of the DARPA-sponsored Software Enabled Control (SEC) Program, the system
was implemented on a test-bed consisting of an F-15, acting as the manned aircraft, and a
T-33 augmented with Boeing’s UCAV avionics package, acting as the autonomous vehicle.
During the SEC Capstone Demonstration in June 2004, it was successfully flight-tested at
the NASA Dryden Flight Research Center. These flight-tests mark the first time that a
natural language interface was used by a manned vehicle to task a UAV in real-time, and
the first time that a MILP-based guidance system was used to control a UAV.

The chapter is organized as follows. Section 7.2 gives an overview of the SEC experiment
and the associated technology development. Section 7.3 describes the natural language
interface and Section 7.4 covers the task scheduling and communication components. The
implementation of the real-time trajectory planning software is discussed in Section 7.5.
Simulation and flight-test results are presented in Section 7.6.

7.2 Experiment and Technology Overview

7.2.1 Mission Scenario

As originally discussed in [94], as part of the DARPA-sponsored Software Enabled Control
Program, we were was tasked with developing a mission system and flight-test scenario that
exhibited UAV technology developed at MIT. For this demonstration, two flight assets were
available: a Boeing F-15E fighter jet (similar to the aircraft shown in Figure 7-1(a)) and
a Lockheed T-33 trainer fighter jet (similar to the one shown in Figure 7-1(b)) that was
equipped with Boeing’s UCAV avionics package. The former was to be flown by a pilot and
will be referred to as the Fixed-Wing (FW) vehicle. The latter was to be guided by our
technology and will be referred to as the Unmanned Aerial Vehicle (UAV). Besides these
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(a) Boeing F-15E Strike Eagle (b) Lockheed T-33 Shooting Star

Figure 7-1: SEC Capstone Demonstration test vehicles

aircraft, a ground station receiving state and user-defined information from both vehicles
was available to monitor the experiment.

To enable a hard real-time execution, our demonstration software needed to be inte-
grated with Boeing’s Open Control Platform (OCP) [106] and loaded onto a laptop fitted
in each aircraft. The OCP software provided an aircraft interface that included the follow-
ing abilities: 1) send and receive state and user-defined data between both aircraft using a
Link-16 communications interface; 2) receive the current vehicle state data; 3) send a set
of pre-defined commands to the aircraft avionics system which include Set and Hold Turn
Rate, Set and Hold Speed, Set and Hold Altitude, Set and Hold Heading; and 4) memory
storage and time frame execution.

Given these demonstration resources a mission scenario (shown in Figure 7-2) was de-
veloped in which the UAV performs tasks in support of the FW vehicle:

Mission

A manned fighter aircraft (FW) and a UAV will work together on a mission to collect
images of a possible site in enemy territory. The FW Weapon Systems Officer (WSO)
will communicate with the UAV using a natural language interface, which allows the FW
WSO to speak with the UAV using normal sentence commands. The UAV will perform the
reconnaissance for the mission in a partially-known environment, and the FW WSO will
decide how the UAV will be used to accomplish the mission goals. The UAV will possess
the ability to detect threats and collect images, whereas, if applicable, the FW vehicle will
be able to deliver weapons. Since the environment is only partially-known, there may be
threats to both the manned and unmanned aircraft.

Starting Condition

The UAV will start in a pre-defined loiter pattern; the FW vehicle will be flying an air-patrol
near the enemy territory. The environment is partially-known and updated in real-time to
both the UAV and the FW. A pop-up threat may arise en route to the search site, which
is currently unknown.

Mission Narrative

1: The FW vehicle is commanded to gather information and possibly destroy an enemy
site located in unknown territory. Because of the mission risk, the FW vehicle assigns
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Figure 7-2: Overview of the MIT flight experiment

the UAV, stored in a nearby airspace volume, to gather information at the designated
site. The UAV leaves the loiter area and moves toward the designated task area. The
F-15 follows behind at a higher altitude and a safe distance.

2: The UAV is informed of a pop-up threat en route to the task area. The UAV ac-
counts for the threat dynamically, automatically generates a revised feasible trajec-
tory around the threat and other no-fly zones, while notifying the FW vehicle of the
threat’s position.

3: As the UAV moves within a few minutes of the task location, the UAV notifies the
FW vehicle of its location. At this point, the FW will provide the UAV with the exact
ingress and egress conditions into and out of the search area. The UAV modifies its
flight path to arrive at the site as commanded.

4: The UAV enters the site, notifies the FW vehicle of its location and begins its search
for the target.

5: The UAV identifies the target and sends an image to the FW vehicle for evaluation.
The FW commands the UAV to return to its original loiter area, while it prosecutes
the target.

Exit Conditions

The UAV safely returns to the original pre-defined loiter location; the FW vehicle returns
to flying an air-patrol near the enemy territory.
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7.2.2 Technology Development

The above mission scenario allowed us to demonstrate technology developments in several
areas, leading to three distinct software components:

1: Natural Language Interface — This component interprets and converts normal sen-
tence commands from the humans onboard the FW vehicle into data the UAV can
understand and use, and vice-versa. It enables the FW WSO to give high level mis-
sion commands to the UAV in English, e.g. “Search this region for threats”, rather
than low level guidance commands such as “Turn left” or “Speed up”. As such, the
Natural Language Interface is aimed at minimizing the workload of the FW WSO
when interacting with the computer-based UAV.

2: Task Scheduling and Communications Interface — The primary goal of this compo-
nent is to interpret the command data from the Natural Language Interface and de-
velop a series of tasks the vehicle can perform. The mission tasks that were developed
included flying to a waypoint X, entering a loiter pattern, and performing a search
pattern. The component also contains the communications processing module that
provides the FW WSO with the authority to send task commands and receive status
updates, threat and obstacle avoidance information, and acknowledgement messages.

3: MILP-based Trajectory Generation — After the Natural Language Interface and Task
Scheduling component have converted the mission steps into a series of tasks for the
vehicle to perform, the Trajectory Generation Module guides the vehicle from one
task location to the next. Approximate time-optimal trajectories that account for
the current state of the vehicle and the knowledge of the environment are computed
online using mixed-integer linear programming. Since in the mission scenario the
environment is only partially-known and explored in real-time, the MILP guidance
algorithm uses the feasible receding horizon planning strategy presented in Chapter 4.

Each of these components addresses a capability required to perform the above mis-
sion. Figure 7-3 shows a block diagram representation of the integrated FW and UAV
demonstration system. In the following sections, the development and integration of the
three technologies is discussed. The focus, however, is placed on the Trajectory Generation
Module.

7.3 Natural Language Parsing and Interfacing

The main goal of using a Natural Language Interface (NLI) for interacting with a computer-
based system is to minimize the workload on the operator. Using normal English sentence
commands indeed allows the FW WSO or pilot to communicate efficiently and effectively
with the UAV, as if it were a human wingman. The NLI module developed for the demon-
stration consists of two major components. The first one takes sentence commands from
the FW WSO and turns them into a coded command that is sent to the UAV over Link-16.
The second component takes a coded command set from the UAV and converts it into a
natural language response for the FW WSO to interpret.

A sample dialog between the FW WSO and the UAV, in which the latter is commanded
to search a pre-defined region containing a potential threat, could be as follows:

FW: “UAV 7, this is Eagle 3.”
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Figure 7-3: Block diagram of the MIT SEC Capstone Demonstration system. “FCS” stands
for Flight Control System, “GIB” for Guy-in-Back (i.e., the rear-seat operator).

UAV: “Go ahead, Eagle 3.”

FW: “Add new mission task. Proceed to location Echo-Charlie 5 in minimum time. Search
this region for threats and wait for further instructions after the task is completed”

UAV: “Roger. Acknowledge task information - proceeding to location Echo-Charlie 5.”

FW: “Eagle 3, out.”

The NLI module analyzes the natural sentences produced by the FW WSO using parsing,
which is the process of converting an input sentence, e.g., “Proceed to location Echo-Charlie
5 in minimum time,” into a formal representation. The latter is typically a tree structure
which can in turn be translated into an explicit formal command. In our system, parsing
consists of first applying entity extraction to all the individual concepts (e.g., “Eagle 3”
or “Echo-Charlie 5”) and then combining these concepts through cascades of finite-state
transducers using techniques derived from those described in [118].

Because the vocabulary of the SEC experiment is much smaller than for generic appli-
cations, the level of ambiguity is reduced, which makes parsing easier than on more open
text. However, compared to other information processing tasks, this deployment required
a particular emphasis on the safety of the parsing process. The stability of the runtime
module was achieved by shifting the complexity of the system toward the off-line model
compilation phase (for which there are much less stringent stability requirements). This
makes the runtime process much simpler. In addition, the runtime process consists mostly
of finite-state operations whose algorithm can be proven correct and for which the input
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finite-state machines can be checked for particular formal properties. This approach has
the additional benefit of providing a very efficient processing time, which can be bounded
explicitly.

Because of budgetary constraints, our team was unable to incorporate voice recognition
in the system. Instead, a set of useful commands was chosen that are available to the
FW WSO through pre-defined experiment keys on the F-15 laptop. When an experiment
key is pressed, the associated sentence is sent to the NLI module. It is then parsed and
converted into a nine number code used by the UAV as an input command. This code uses
the following protocol:

Message Description

Cmd ID: <long integer>

Cmd Data Words 1-8: <double>

The Command Identification (Cmd ID) value denotes the type of command sent between the
vehicles, whereas the Command Data Words contain the actual information. For example,
Cmd ID 102 may represent the “Command Acknowledge” data set, and Cmd ID 106 may
represent the “New / Change Current Task” data set. The Cmd Data Words corresponding
to Cmd ID 102 may then consist of a coded representation of “Proceeding to location Echo-
Charlie 5”. Because of user bandwidth limitations in the demonstration, each command
word identifies a maximum of eight data words.

7.4 Task Scheduling and Communications Interfacing

The task scheduling and communications processing components are designed to centralize
all of the UAV’s mission processing in one module. Together with the Natural Language
Interface, it provides flexibility for an operator to insert and change mission tasks during
the operation. The UAV software keeps track of the mission tasks, waypoint locations and
known obstacles to pass on to the guidance algorithm.

The communications processing component provides the FW WSO with the authority
to send task commands and receive status updates, threat or obstacle avoidance information
and acknowledgement messages. It also provides the ground operators monitoring the UAV
during the demonstration with the ability to override the guidance system in the event
of an emergency or error. The system sends threat and override information to the FW
WSO before any status or update information in an effort to send the most important data
relevant to the demonstration before any auxiliary information. Input/Output data are
processed every 1 Hz frame before the task planner and guidance step to ensure that the
most up-to-date information is used by the UAV trajectory planner.

The task scheduling component allows a user to plan a number of tasks using a pre-
defined list or as programmed during a mission. Since many missions are pre-planned,
the system allows an operator to initiate a pre-defined mission task or to modify or create
a mission plan by entering specific task parameters. The list of mission tasks includes:
Fly to Waypoint X, Loiter Pattern, Search Pattern, Classify Target, Attack Target, Battle
Damage Assessment, and Return-to-Base. For each of these task options, the user must
provide the ingress and egress conditions, and the size and location of the rectangular task
area, given by the lower left and upper right coordinates. In addition, he or she has the
option of providing (in real-time via the NLI) the optimization metric used by the trajectory
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generation algorithm (i.e., minimum time, minimum fuel, or the amount of time to finish
the task).

Next, the operator can either give the vehicle a new task or change the current task it
is performing. A “New Task” command is added to the end of the UAV task list and is
executed after all of the tasks currently in the scheduler have been completed. A “Change
Task” command, on the other hand, modifies the current task performed by the UAV.
Once a task is completed, it is removed from the list. After each of these actions, an
acknowledgement is sent to the FW WSO and the updated task information is included in
the data sent to the Trajectory Generation Module.

To reduce the complexity of the demonstration system, only the current task could be
modified, although future versions of this system will have the capability to change any of the
tasks in the scheduler. Furthermore, because of communication link bandwidth constraints,
the FW WSO did not have the capability to define a new task or adjust parameters in the
current task manually. Instead, he was able to command the vehicle to perform tasks from
a pre-defined library using the experiment keys on the FW laptop.

7.5 MILP-based Trajectory Generation Module

After the Natural Language Interface and Task Scheduling components have converted the
mission steps into a series of tasks for the UAV to perform, the Trajectory Generation Mod-
ule guides the vehicle from one task location to the next, i.e., from an initial state to a desired
one, through an obstacle field while optimizing a certain objective. For the demonstration,
2D scenarios were considered in which no-fly zones or “obstacles” are detected while the
mission is carried out, but such that the environment is always fully characterized inside
a certain detection region around the aircraft. The demonstration scenarios used a circu-
lar region of radius 9 mi and assumed that all obstacles O within that radius were static.
The formulation could, however, be easily generalized to account for any detection shape,
such as a radar cone, and for unknown areas within that shape. Since the environment
is only partially-known and further explored in real-time, a feasible receding horizon plan-
ning strategy is implemented using left and right turning loiter circles as terminal feasible
invariant sets.

7.5.1 MILP Formulation

Dynamic Model

System identification experiments using the UAV DemoSim simulation software provided
by Boeing gave us insight into the velocity response of the UAV. A piecewise linear first-
order approximation was deemed to be sufficient for guidance purposes. The time constant
and DC gain of the transfer function were identified for a discrete set of forward velocities
(from 350 fps to 500 fps with a resolution of 10 fps) and stored in a look-up table. At
each iteration of the receding horizon strategy, the model corresponding to the velocity at
that time step was used, thus linearizing the nonlinear response into several LTI modes
scheduled around the initial velocity.

Taking the desired planar inertial velocity as input then gives the continuous-time state
space model:

ẍ(t) = − 1
τl

ẋ(t) + kl

τl
ẋcmd(t)

ÿ(t) = − 1
τl

ẏ(t) + kl

τl
ẏcmd(t)

(7.1)
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where τl is the time constant and kl is the gain corresponding to the lth LTI mode. As
in equation (5.3), it was discretized using the bilinear transform. Since the typical time
constant of the T-33 velocity response was around 9.7 s, a time step of ∆t = 10 s was
used. With additional constraints on speed and acceleration, this model produced good
results for tasks requiring intensive waypoint tracking and sharp turns (i.e., the loiter and
search tasks). For less aggressive trajectories with more or less constant speed, such as
when transitioning between two task areas, the simpler (2D) double integrator model (2.20)
was used that does not distinguish between the different LTI modes.

As discussed in Chapter 2, since it takes a certain time to compute the trajectory, the
initial state x(0) should be an estimate of the vehicle’s state when the plan is actually
implemented. In our case, the computation delay was approximately 1 s. In addition, a
1.2 s actuator delay had to be accounted for. To obtain an estimate of the initial state at
the next iteration, the dynamics were thus propagated forward according to the previous
plan for 2.2 s.

To ensure that the planned trajectory respected the velocity limits of the vehicle, the
same maximum and minimum speed constraints were included as in inequalities (2.21)
and (2.23)-(2.25). For the reference velocity model (7.1) these were formulated in terms
of the velocity commands ẋcmd(k) and ẏcmd(k), for the double integrator model in terms
of the state velocity variables ẋ(k) and ẏ(k). The minimum and maximum bounds were
respectively set to vmin = 400 fps and vmax = 450 fps, using a polygonal approximation
with N = 32. To avoid infeasible problems in the event the actual ground speed fell outside
these bounds (e.g., because of wind gusts), their values were accordingly adapted online.

Since the dynamics are homogeneous in the x- and y-coordinates and as such ignore
differences in the lateral and longitudinal aircraft dynamics, we added constraints capturing
limits on turn rate and on forward and lateral acceleration. When flying at a relatively
constant speed, the following acceleration constraints were sufficient:

∀k ∈ [0, . . . , T − 1], ∀n ∈ [1, . . . , N ] :

ẍ(k) sin(2πn/N) + ÿ(k) cos(2πn/N) ≤ alat (7.2)

for the double integrator model, and

∀k ∈ [1, . . . , T − 1], ∀n ∈ [1, . . . , N ] :

(ẋcmd(k) − ẋcmd(k − 1)) sin(2πn/N)

+ (ẋcmd(k) − ẋcmd(k − 1)) cos(2πn/N) ≤ alat∆t (7.3)

for the reference velocity model. The lateral acceleration bound was set at alat = 18.1 ft2/s,
corresponding to a maximum turn rate of ωmax = alat/vmin = 2.6 deg/s at vmin = 400 fps.

When the velocity is allowed to change, however, these inequalities overestimate the
available forward acceleration, which was limited to afwd = 5.0 ft2/s. Therefore, to dis-
tinguish between forward and lateral acceleration, the following constraints were included,
similar to inequalities (2.22-b):

∀k ∈ [0 . . . T − 1], ∀n ∈ [1 . . . N ] :

(ẍ(k) + αv(0)−1ẏ(k)) sin(2πn/N) + (ÿ(k) − αv(0)−1ẋ(k)) cos(2πn/N) ≤ β (7.4)

(ẍ(k) − αv(0)−1ẏ(k)) sin(2πn/N) + (ÿ(k) + αv(0)−1ẋ(k)) cos(2πn/N) ≤ β (7.5)

for the double integrator model, and
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∀k ∈ [1, . . . , T − 1], ∀n ∈ [1, . . . , N ] :

(ẋcmd(k) − ẋcmd(k − 1) + αv(0)−1ẏ(k)∆t) sin(2πn/N)

+ (ẏcmd(k) − ẏcmd(k − 1) − αv(0)−1ẋ(k)∆t) cos(2πn/N) ≤ β∆t (7.6)

(ẋcmd(k) − ẋcmd(k − 1) − αv(0)−1ẏ(k)∆t) sin(2πn/N)

+ (ẏcmd(k) − ẏcmd(k − 1) + αv(0)−1ẋ(k)∆t) cos(2πn/N) ≤ β∆t (7.7)

for the reference velocity model. Here, v(0) is the current absolute ground speed, α =

(a2
lat − a2

fwd)/(2afwd) = 30.4 fps2/s, and β =
√

α2 + a2
lat = 35.4 fps2/s. As discussed in

Section 3.4, these inequalities describe the intersection of two circles in which the inertial
acceleration vector must lie. The short axis of this intersection has length 2afwd and is
aligned with the velocity vector at the first time step. The long axis captures the larger
lateral acceleration bound and has length 2alat. As such, the intersection approximates the
dynamically feasible acceleration profile at the initial time step.

Feasibility Constraints

The demonstration only considered rectangular no-fly zones aligned with the east-north
coordinate frame, using constraints (2.30) in 2D to guarantee obstacle avoidance. To prevent
the UAV from cutting corners, the actual obstacles were enlarged with a safety boundary
of dsafe = vmax∆t/

√
2 ≈ 3200 ft. Feasibility was guaranteed by ensuring that either a left

or right loiter circle lying inside the circular detection region did not intersect with any of
the obstacles. As detailed by inequalities (5.9)-(5.10), sample points along both circles were
expressed as affine functions of the last state x(T ) in the planning horizon. Again, because
of the sampling procedure, the obstacles were enlarged on all sides by a thickness dloiter.
The demonstration used 8 sample points, which, given a maximum turn radius of 1.9 mi,
resulted in dloiter = 0.6 mi.

Cost Function

The objective was to guide the UAV between waypoints in the fastest possible way. The
exact shortest time between two states, however, can only be computed if the planning
horizon spans that arrival time, or if an exact cost-to-go is known. Since in the scenario of
interest the environment was not characterized beyond a certain detection radius around
the vehicle, computing an exact time-to-go function as proposed in [7] and [68] was not
possible. Instead, the following heuristic was used.

If there are no known obstacles intersecting the straight line between the waypoint and
the current location, that waypoint is used as the desired state in the cost function. In
case there are obstacles blocking this direct line of sight, the shortest path (as far as the
known obstacles are concerned) must go through one of the visible corner points of these
no-fly zones. This point can then act as an intermediate waypoint en route to the final
destination. To determine this optimal intermediate point, a grid is constructed between
the corner points of all known obstacles interfering with the line of sight. A shortest path
algorithm is then run to compute the approximate shortest time towards the goal from
each visible corner point, thereby assuming that the UAV is flying at maximum speed. As
such, the “best” intermediate waypoint is determined by minimizing the total time from
the current location to one of the visible vertices and from that vertex to the destination
as given by the approximate cost-to-go function.
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Using this intermediate (or, in the obstacle-free case, the original) waypoint pf =
[xf yf ]′, the piecewise linear cost function

minJ =

T
∑

k=0

−qv(k)′(pf − pestim) + r|p(k) − pf | (7.8)

was used to design a fast trajectory between the initial position p(0) = pestim = [x(0) y(0)]′

in the planning horizon and pf . Similarly to cost functions (3.35) and (5.12), the first
term in this objective function tries to maximize the scalar product of the inertial velocity
v(k) = [ẋ(k) ẏ(k)]′ with the vector that is pointing from the initial position to the desired
one, speeding the aircraft up to its maximal velocity and turning it towards waypoint pf .

If, at a certain iteration, the planned trajectory passes through or near waypoint pf at
a time step Tf ≤ T in the planning horizon, the cost function for the next iteration is split
into two parts:

min J̃ =

Tf−1
∑

k=0

−qfv(k)′(pf − pestim) + rf |p(k) − pf |

+

T
∑

k=Tf

−qnv(k)′(pn − pf ) + rn|p(k) − pn| (7.9)

in which pn is the next (intermediate) waypoint. The first Tf − 1 time steps are thus used
to minimize the cost towards waypoint pf ; the remaining steps aim at minimizing the cost
towards the next waypoint pn. As a result, depending on the relative weighting, the MILP
optimization will produce a trajectory that passes through or close by pf and aims for pn

next. The SEC demonstration used T = 6, corresponding to an effective planning length of
1 minute, and all weights in (7.8) and (7.9) were set to 1.

7.5.2 Implementation

The Trajectory Generation Module was implemented in C++ and ILOG’s Concert Tech-
nologies. To interface with the UAV avionics and guarantee hard real-time execution, it
was integrated with Boeing’s Open Control Platform (OCP) [106]. The software ran on a
Pentium 4 Linux laptop with 2.4 GHz clock speed that was mounted in the aircraft, and
interacted with the UAV avionics through a set of pre-defined command variables. Through
the OCP interface the laptop received GPS, ground speed and turn rate data, among other,
at a rate of 20 Hz. The guidance module itself, however, only ran at 1 Hz. It consisted of
three subroutines: a pre-processing step, an optimization step, and a post-processing step,
which are now discussed in more detail.

Pre-Processing

The pre-processing routine was called every second and determined all parameters of the
MILP problem. It subsequently 1) selected the correct LTI model, 2) estimated the initial
state for the current planning horizon, 3) determined the relevant obstacles, 4) enlarged the
obstacles with the appropriate safety envelope, 5) determined the intermediate waypoint,
and 6) selected the appropriate cost function. In addition, for numerical stability purposes
and to speed up the MILP optimization, all latitude/longitude position data and obstacle
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coordinates were transformed to an east-north axis frame in kilometer units with the current
position of the aircraft as the origin. The ground velocity of the aircraft was scaled to km/s
accordingly.

Optimization

The optimization step was implemented using the ILOGs Concert Technologies, a C++
based modeling language for use with CPLEX. It enables one to encode a large MILP
problem in a compact form that is similar to the mathematical representation of it. To
guarantee hard real-time execution of the mission software, we again used CPLEX’s optional
limit on computation time, which was set to 0.85 s. After the allocated time has passed,
CPLEX then either returns a feasible solution within a predefined optimality gap (set to
10−4), a feasible solution outside the optimality gap, or no solution at all. The last situation
occurs when the MILP itself is infeasible or when no feasible solution can be found in time
(e.g., because the problem is too complex).

Ideally, by definition of the loiter circle constraints, the trajectory planning problem
remains feasible at all times. However, because of disturbances such as wind gusts, the
initial velocity might fall outside the constraint bounds or the vehicle might be blown off
course to a position from where an obstacle-free MILP solution no longer exists. The
first situation is easy to spot and can be resolved ahead of time by resetting the velocity
bounds in the pre-processing step. Infeasibilities caused by obstacles, however, are harder
to predict and resolve. In that case, the UAV should resort to its backup plan, consisting
of the remaining time steps and loiter circle of the previous plan.

If the control authority used in the MILP problem (i.e., the admissible acceleration
and turn rate limit) is somewhat conservative w.r.t. the actual performance of the vehicle,
robust trajectories can be designed. Then, in case the UAV gets blown off course to a
state from which no feasible solution to the MILP exists, the aircraft can use its additional
control authority to get back to feasibility within a few time steps [71]. Our code therefore
used maximum acceleration and turn rate bounds that are smaller than the actual ones
available to the waypoint controller. As a result, sequences of more than two infeasible
receding horizon iterations never occurred.

Although the pre-processing step was repeated every second, the optimization function
was nominally only executed every 10 s: the ∼10 s time constant of the T-33 made a higher
planning rate unnecessary. Only when a large disturbance or an additional obstacle was
detected, or when the vehicle was in backup plan mode (i.e., when the last MILP problem
was infeasible), was the optimization routine executed at the next second. This way the
available time slots could be occupied by computations required by the Task Scheduling
and Natural Language Interface components.

Post-Processing

The post-processing routine performed the feasibility check by interpreting a CPLEX flag
and updated the current trajectory (i.e., the current waypoint list), the loiter direction and
a backup plan waypoint counter accordingly. In the nominal case where a feasible solution
was found, the variables of interest were the 6 new states of the planning horizon (i.e., the
new waypoint coordinates with corresponding velocity vectors) and the new loiter direction.
The coordinates were first transformed back to the original Greenwich-referenced longitude
and latitude axis frame and the velocity was rescaled to fps. Next, the old plan was flushed
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Figure 7-4: Sample scenario map for the MIT SEC Capstone Demonstration. The flight
area is approximately 40 mi long along the northern boundary.

and replaced by the new one. The backup plan counter was set to 1, pointing to the first
entry in the waypoint/state list, which was then given to a waypoint controller that issued
forward velocity and turn rate commands to the vehicle.

If no feasible solution was found, however, the remainder of the previous trajectory was
used as a backup plan. In that case, the backup plan counter was increased by one to point
to the next waypoint of the existing plan. If the counter exceeded 6, depending on the value
of the loiter direction binary, the left or right loiter circle was initiated by issuing a “Set
and Hold Turn Rate” command to the UAV. Its value was set to the maximum available
turn rate at the current velocity, e.g., 3 deg/s at 400 fps, which was slightly more aggressive
than the maximum 2.6 deg/s accounted for in the planning problem. The turn command
thus resulted in a smaller loiter circle than planned, which introduced some robustness to
perturbations along the trajectory. As long as the vehicle remained in the backup plan
mode, the MILP optimization was executed every second (but the counter only updated
every 10 s) until a new feasible plan was found.

7.6 Simulation and Flight Test Results

Using the narrative outlined in Section 7.2, various sample scenarios were designed that are
depicted in Figure 7-4. The flight area is approximately 40 mi across (east to west along the
northern boundary) and 30 mi wide (north to south along the western boundary). There
are two pre-determined no-fly zones (listed as “NFZ 1” and “NFZ 2”) and three potential
pop-up threats (denoted by “PObs 1,” “PObs 2,” and “PObs 3”), which can be activated
during flight. In addition, there are two mission task areas (labeled “Search Area Alpha”
and “Search Area Bravo”). Each task area has three potential ingress conditions which can
be selected by the FW WSO before the vehicle reaches the task area location. Each task
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Figure 7-5: SEC demonstration Simulation-In-the-Loop (SIL) laboratory setup

area also includes a threat/target (denoted by “TrgFnd A” and “TrgFnd B”) which the
UAV searches for and locates during the mission. Finally, the UAV starts the mission from
the UAV Base Loiter location in the southwest corner of the flight area, and the FW vehicle
maintains a loiter pattern near the northern border until the target has been detected.

7.6.1 Simulation Results

To aid in the development of our guidance system, a real-time Simulation-In-the-Loop (SIL)
test platform was built at MIT, which is shown in Figure 7-5. Besides the OCP, it included
Boeing’s DemoSim vehicle simulations for the UAV (T-33) and FW (F-15) aircraft, which
were executed on separate computers with a Link-16 communication interface. The mission
system software ran on two laptops similar to the ones mounted in the aircraft during the
flight-test experiments. Using wireless ethernet connections through the laboratory LAN,
command latency and other real-time issues could be simulated. Besides communications
link latency, test conditions included message drop-outs, invalid experiment key selection,
data scaling issues and modeling errors.

Figure 7-6 shows one of the many initialization tests. As the FW aircraft and UAV
approach the flight area, the demonstration software is initialized: the UAV automatically
flies to the UAV Base Loiter Location, where it remains until it is commanded another task.
The loiter task itself is defined as a series of six waypoints with a fixed ingress location and
heading. As can be seen from the picture, the UAV successfully avoids NFZ1 while flying
to the loiter area.

Next, Figure 7-7 shows one of the pop-up obstacle avoidance tests used to verify the
feasibility guarantees of the MILP trajectory planning algorithm. In this test, two pop-
up obstacles were placed into the demonstration area as the UAV was en route to Search
Area Alpha. The resulting trajectory highlights the MILP algorithm’s ability to maintain
dynamically feasible, obstacle-free paths for the vehicle after unexpected changes to the
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Figure 7-6: SIL Test 1 - Initialization of the SEC demonstration: the UAV (in light) enters
a loiter pattern.

environment right outside its detection radius. For example, when the UAV is south of the
first pop-up obstacle (PObs 3), the second one (PObs 1) is inserted, causing the UAV to
immediately turn left and proceed northeast over it. After passing the pop-up obstacles,
the vehicle levels out and flies at a safe distance from No-Fly Zone 2 (NFZ 2) before turning
north to enter Search Area Alpha to perform a search task.

Figure 7-8 depicts a test where the UAV was commanded to fly two consecutive missions
from the UAV Base Loiter Location. The main objective of this test was to ensure that the
vehicle returns to its loiter location after it finishes a certain task (provided that another
task was not given). First, the FW WSO commands the UAV to proceed to one of the
search areas, but does not issue the Return-To-Base (RTB) command during the mission.
Still, after the UAV finishes its search of the task area, it informs the FW WSO that it
has completed the search task and will proceed back to the Base Loiter Location to await
another set of commands. This test shows that the software provides the vehicle operators
and test directors with flexibility in task and mission management during flight.

Figure 7-8 also shows the UAV’s coverage over both search areas during the search
task portions of the mission. Notice that the two search patterns are almost identical: the
same task defining waypoint sequence (relative to the ingress position of the task area) was
used in both search tasks, showing that the MILP guidance approach can accurately track
waypoint plans. In addition, the UAV safely avoids two pop-up obstacles en route to each
search area.
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Figure 7-7: SIL Test 2 - Pop-up obstacle test: the UAV safely avoids both pop-up threats.

7.6.2 Flight-Test Results

From mid-April 2004 to mid-June 2004, the final demonstration software was turned over
to Boeing Phantom Works in St. Louis for verification and validation testing on a hardware
in the loop simulator. After successfully completing this step, the software was transitioned
to the actual vehicle setup for testing at NASA Dryden in late June 2004. Figure 7-9 shows
a system level diagram of the flight experiment setup. During the test, the main role of
the T-33’s two person crew was to fly the vehicle to the demonstration area, activate the
demonstration software and manage the vehicle in the event of failures. In addition, for
technical reasons, the T-33 pilot executed the forward velocity commands produced by the
MILP guidance algorithm. The turn rate, however, was directly commanded by the laptop.

Although the FW WSO was only able to select UAV-tasks from a pre-defined list of
options, the actual mission was not pre-planned. The T-33’s rear-seat operator (nicknamed
the “Guy-In-Back” or “GIB”) observed the progress of the demonstration and a Ground
Station Operator (GSO) added pop-up obstacles via experiment key commands. Although
the possible locations of the mission task areas and pop-up obstacles were pre-defined, they
were selected randomly in real-time, thus introducing another degree of uncertainty into
the flight experiment. The Test Coordinator (TC) monitored the demonstration from the
ground station and communicated status information about the local airspace to the pilots.
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Figure 7-8: SIL Test 3 - Simulated flight with two consecutive search missions.

Figure 7-9: Flight experiment system level diagram
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Figure 7-10: SEC Flight-Test: UAV/T-33 (in light) with simulated F-15 (in dark)

Flight-Test with T-33/UAV and Simulated F-15

In the first test, depicted in Figure 7-10, the T-33/UAV flew a mission with a simulated
F-15 and the GSO issuing the natural language commands. The flight took place in the
morning of Thursday, June 17th, 2004, with a wind of 5 to 10 knots blowing from the
southwest corner of the flight area (at a heading of 220 to 240 degrees).

The UAV started west of the ingress point (labelled “INPT / EGPT” in Figure 7-10)
with a heading of 090. After the GIB initialized the mission software, the UAV began
turning south to avoid NFZ 1. After it passed the lower left hand corner of NFZ 1, the Test
Coordinator notified the T-33/UAV operators that the southwestern corner of the test area
had to be avoided because of unplanned flight activity there. As such, when the vehicle
was approximately two miles SSW of NFZ 1, the GSO commanded the UAV to proceed to
Task Area Bravo before reaching the UAV Base Loiter Location. The UAV responded and
began turning left toward it. This verified the flexibility of the mission software and the
ability of an operator to easily change the tasks in real-time.

Within two minutes of the last command, the GSO inserted Pop-up Obstacle 3 into the
test area. At this point, the vehicle had a heading between 070 and 080 and was approxi-
mately four miles from the obstacle. It began to turn right to avoid the obstacle and flew
along its southern boundary, successfully avoiding it even though the obstacle was inserted
inside the vehicle’s detection. After passing it, the UAV proceeded to turn north toward
Task Area Bravo, initiated the search pattern, and notified the GSO of its status. As the
vehicle was facing SSE, it was near the target location and the GSO inserted the target into
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Figure 7-11: SEC Flight-Test: UAV/T-33 (in light) and actual F-15 (in dark) providing
natural language commands.

the environment. The UAV sent the proper status messages to the operator, after which the
GSO commanded it to return to base. The vehicle began to turn right, safely flew southwest
around Pop-up Obstacle 3, and sent a “Two Minutes to Task Location” notification. Since
the southwest airspace was off-limits, however, the UAV was not permitted to fly to its Base
Loiter Location, and the mission was ended.

The flight test marked the first time a MILP-based onboard guidance system operating
in real-time was used to control a UAV. The natural language software effectively com-
municated mission status to the GSO and was successfully used to command the UAV to
perform and change tasks during the flight. The GSO remarked that he found the interface
easy to use and helpful in following the progress of the mission.

Flight-Test with T-33/UAV and Actual F-15

In a second test, shown in Figure 7-11, the T-33/UAV flew a successful mission with the F-
15 WSO issuing the natural language commands. This flight took place in the afternoon on
Wednesday, June 23rd, 2004, with a SW wind (220-240 deg) between 10 and 15 knots. The
UAV again started west of the ingress point with a heading of 090 and began turning south
to avoid NFZ 1 after the GIB started the experiment software. After passing the no-fly
zone, the vehicle steadily moved to the UAV Base Loiter Location. When it had a heading
of 270, the F-15 WSO commanded the UAV to fly to Task Area Bravo. It responded and
began turning northward. When the GSO inserted Pop-up Obstacle 3, the UAV notified
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the F-15 that it detected the threat and successfully avoided the obstacle. As it approached
the task area, the UAV informed the F-15 WSO that it was two minutes from the ingress
point it was initially given. At that time, the WSO commanded the UAV to change the
entrance location. It responded and proceeded to the new ingress point. This again verified
the flexibility of the task scheduling and trajectory planning software.

After reaching the task area, the UAV notified the F-15 WSO and began its search
pattern. As it turned left toward the southern boundary of the search area, the GSO
inserted Target B into the environment. The UAV notified the F-15 WSO and sent an
image. The F-15 WSO then commanded the UAV to return to base. The UAV acknowledged
the command and flew back to its loiter location, avoiding obstacles and providing status
notifications to the F-15 WSO along the way. The demonstration was ended when the UAV
successfully returned to the UAV Base Loiter Location.

This flight-test marked the first time that a natural language interface was used by a
manned vehicle to task and command a UAV in real-time. The F-15 WSO also remarked
that he found the interface easy to use and helpful in following the progress of the mission.
In addition, the test marked the first time that an onboard MILP-based guidance system was
used to control a UAV in coordination with a manned vehicle. Furthermore, it was the first
successful in-flight cooperation demonstration between the F-15 and UAV for the Boeing
team. Overall, both flight-tests provided an important proof-of-concept of the capabilities
of the MIT mission software as previously witnessed in the laboratory: the flexibility of the
task scheduling software allowed the test team to make adjustments in real-time, while the
trajectory generation algorithm safely guided the UAV through the environment.

7.7 Conclusion

This chapter described the development, architecture and testing of a manned vehicle - UAV
mission system that allows an operator in a manned aircraft to issue mission level commands
to an autonomous aircraft in real-time. A natural language interface was presented that
allows the manned and unmanned vehicle to communicate in languages understood by both
agents. A task scheduler transformed these commands into a dynamic mission plan con-
sisting of task waypoints. The latter were then given to a real-time MILP-based trajectory
planner, generating obstacle-free trajectories through a partially-known environment by
implementing the feasible receding horizon strategy presented in Chapter 4.

The complete mission system was successfully tested using high-fidelity software- and
hardware in the loop simulations. Actual flight-test results with an F-15 and an autonomous
T-33 were presented that provided an important proof-of-concept of the benefits and real-
time capabilities of the natural language interface and MILP-based guidance methodology.
After these first validation steps, the approach and algorithms are ready to being transi-
tioned to larger problems, such as platforms with multiple unmanned vehicles running dis-
tributed task assignment and trajectory planning strategies. The eventual goal is to have
a single operator issue team level mission commands using natural language. We believe
that in the future natural language interfaces will be the most efficient way to communicate
with unmanned vehicle systems.
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Chapter 8

Conclusion

8.1 Summary

This thesis presented several new concepts and algorithms for online receding horizon tra-
jectory planning of autonomous vehicles. We started off with a general problem formulation
and used mixed-integer linear programming as the modeling and implementation framework.
A new, more efficient approach to capture avoidance constraints for arbitrarily shaped ob-
stacles was introduced. Next, the basic linear dynamics used in Chapter 2 were extended in
Chapter 3 to incorporate agile nonlinear behavior into the planning formulation. A hybrid
control architecture for trajectory planning of agile vehicles was presented that combines
multiple velocity control modes with a maneuver scheduler. The former provide the flexi-
bility to precisely navigate between waypoints in a cluttered environment, while the latter
enables execution of pre-programmed maneuvers at the limit of the vehicle capabilities.
The closed-loop dynamics under this control architecture were described by a simple hybrid
model consisting of a set of LTI modes and discrete, fixed-duration state transitions. Online
trajectory optimization through cluttered environments was again formulated using MILP.
The approach was worked out in detail for a small-scale helicopter model based on MIT’s
aerobatic X-Cell.

Chapter 4 then introduced the concept of a feasible invariant set that is a periodic,
dynamically feasible and obstacle-free sequence of states in which a vehicle can remain for
an indefinite period of time. Constraining all intermediate receding horizon trajectories to
terminate in such sets guarantee feasibility of the planning problem at all future iterations.
These terminal feasible invariant sets were expressed as a collection of affine transformations
of the last state in the planning horizon and as a result were computed online as part of the
optimization problem. An explicit formulation for a UAV was worked out using obstacle-
free loitering circles as feasible invariant sets. Next, safety was defined as being able to leave
the terminal feasible invariant set at some time step in the future and backtrack along the
executed trajectory. A receding horizon formulation that maintains safety and feasibility at
all time steps was presented. A practical approach that only maintains safety was discussed
as well.

In Chapter 5, the terminal feasible invariant set principle was used to design a distributed
algorithm for multi-vehicle path planning with feasibility guarantees. A receding horizon
planning strategy was adopted for each vehicle individually that accounts for the trajectories
of the neighboring ones. Within one iteration of the algorithm, the vehicles update their
trajectories in a sequential fashion. Feasibility at all times is guaranteed by constraining

149



the intermediate plans of all vehicles to terminate in individual feasible invariant sets. A
MILP-based formulation for multiple aircraft using loiter circles was worked out in detail.

Chapter 6 presented a proof-of-concept application of online MILP-based trajectory
planning for multiple vehicles. The problem of interest was to maintain line of sight com-
munication in a cluttered environment between a mission vehicle and ground station using
a relay network. Both a centralized and a distributed formulation were given. The former
was successfully implemented on two X-Cell helicopters and tested in a real-world scenario.

Chapter 7 then presented UAV flight-test results of the feasible receding horizon planning
strategy of Chapter 4. It discussed the development, architecture and testing of a manned
vehicle - UAV mission system that allows an operator in a manned aircraft to issue mission
level commands to an autonomous aircraft in real-time. The complete mission system was
successfully tested using a manned F-15 and an autonomous T-33 aircraft. The results in
both chapters showed that receding horizon MILP-based trajectory planning is a flexible
framework and a feasible option for real-time guidance.

8.2 Future Work

The concepts introduced in this thesis give rise to various topics for future research. First,
throughout the thesis, we only considered the nominal planning problem which does not
account for external disturbances acting on the vehicle or uncertainties in the dynamic
models. Introducing robustness in the planning problem is therefore a necessary next step.
Among other, interesting problems related to robustness include handling uncertainties in
the location of obstacles and perturbations during maneuver execution of the LTI-MA,
formulating robustly feasible invariant sets leading to robust feasibility and safety, and
tackling uncertainties in the execution of the individual plans in the distributed planning
algorithm of Chapter 5. Some initial work on the last two issues was recently begun in [71]
and [70].

A second broad topic is related to the performance and stability of the various planning
formulations. For example, good cost-to-go functions for the LTI-MA that account for
the availability of maneuvers need to be developed. This may include functions that are
computed offline and then incorporated in the online trajectory optimization. Functions
for often recurring situations, such as turning around a corner or reversing direction, or
functions corresponding to different planning modes as discussed in Chapter 3 could be
designed. Good cost-to-go functions are required to prevent the vehicle from getting trapped
in local minima. For the distributed multi-vehicle case, a related performance and stability
concern is the possible existence of live-lock situations, i.e. the condition when all vehicles
are trapped in their respective terminal feasible invariant sets. Proving that a particular
objective function or algorithm will be able to avoid such situations is another problem that
has to be tackled. Furthermore, comparing the performance of the distributed approach
to centralized formulations with respect to the quality of the resulting trajectories and the
time required to compute them would be another interesting topic of future work.

Third, it may be worthwhile to investigate the specific structure of the MILP formu-
lation for path planning in order to find specific heuristics and cuts in the MILP solution
algorithms. Rather than fully relying on CPLEX to analyze the matrix structure and apply
particular heuristics or algorithms, guiding the optimization engine by exploiting a priori
knowledge of the problem structure could speed up the computation. Alternatively, com-
bining the MILP approach with alternative approaches such as constraint programming
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could take some of the computational load away as well.
Finally, further implementation of the concepts developed in this thesis and testing of

various applications would be desirable. This includes actual helicopter flight-tests of the
LTI-MA trajectory planning framework, possibly with the addition of flexible maneuvers
as introduced in [31], and demonstrations of the safe distributed algorithm for both ho-
mogeneous and heteregenous vehicle teams. Work on the latter is currently already being
undertaken at MIT.
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