85 research outputs found

    Artistic Path Space Editing of Physically Based Light Transport

    Get PDF
    Die Erzeugung realistischer Bilder ist ein wichtiges Ziel der Computergrafik, mit Anwendungen u.a. in der Spielfilmindustrie, Architektur und Medizin. Die physikalisch basierte Bildsynthese, welche in letzter Zeit anwendungsĂŒbergreifend weiten Anklang findet, bedient sich der numerischen Simulation des Lichttransports entlang durch die geometrische Optik vorgegebener Ausbreitungspfade; ein Modell, welches fĂŒr ĂŒbliche Szenen ausreicht, Photorealismus zu erzielen. Insgesamt gesehen ist heute das computergestĂŒtzte Verfassen von Bildern und Animationen mit wohlgestalteter und theoretisch fundierter Schattierung stark vereinfacht. Allerdings ist bei der praktischen Umsetzung auch die RĂŒcksichtnahme auf Details wie die Struktur des AusgabegerĂ€ts wichtig und z.B. das Teilproblem der effizienten physikalisch basierten Bildsynthese in partizipierenden Medien ist noch weit davon entfernt, als gelöst zu gelten. Weiterhin ist die Bildsynthese als Teil eines weiteren Kontextes zu sehen: der effektiven Kommunikation von Ideen und Informationen. Seien es nun Form und Funktion eines GebĂ€udes, die medizinische Visualisierung einer Computertomografie oder aber die Stimmung einer Filmsequenz -- Botschaften in Form digitaler Bilder sind heutzutage omniprĂ€sent. Leider hat die Verbreitung der -- auf Simulation ausgelegten -- Methodik der physikalisch basierten Bildsynthese generell zu einem Verlust intuitiver, feingestalteter und lokaler kĂŒnstlerischer Kontrolle des finalen Bildinhalts gefĂŒhrt, welche in vorherigen, weniger strikten Paradigmen vorhanden war. Die BeitrĂ€ge dieser Dissertation decken unterschiedliche Aspekte der Bildsynthese ab. Dies sind zunĂ€chst einmal die grundlegende Subpixel-Bildsynthese sowie effiziente Bildsyntheseverfahren fĂŒr partizipierende Medien. Im Mittelpunkt der Arbeit stehen jedoch AnsĂ€tze zum effektiven visuellen VerstĂ€ndnis der Lichtausbreitung, die eine lokale kĂŒnstlerische Einflussnahme ermöglichen und gleichzeitig auf globaler Ebene konsistente und glaubwĂŒrdige Ergebnisse erzielen. Hierbei ist die Kernidee, Visualisierung und Bearbeitung des Lichts direkt im alle möglichen Lichtpfade einschließenden "Pfadraum" durchzufĂŒhren. Dies steht im Gegensatz zu Verfahren nach Stand der Forschung, die entweder im Bildraum arbeiten oder auf bestimmte, isolierte Beleuchtungseffekte wie perfekte Spiegelungen, Schatten oder Kaustiken zugeschnitten sind. Die Erprobung der vorgestellten Verfahren hat gezeigt, dass mit ihnen real existierende Probleme der Bilderzeugung fĂŒr Filmproduktionen gelöst werden können

    Subpixel image analysis

    Get PDF

    Feature Extraction Methods for Character Recognition

    Get PDF
    Not Include

    Nevada Test Site-Directed Research and Development: FY 2006 Report

    Full text link

    Higher-order Losses and Optimization for Low-level and Deep Segmentation

    Get PDF
    Regularized objectives are common in low-level and deep segmentation. Regularization incorporates prior knowledge into objectives or losses. It represents constraints necessary to address ill-posedness, data noise, outliers, lack of supervision, etc. However, such constraints come at significant costs. First, regularization priors may lead to unintended biases, known or unknown. Since these can adversely affect specific applications, it is important to understand the causes & effects of these biases and to develop their solutions. Second, common regularized objectives are highly non-convex and present challenges for optimization. As known in low-level vision, first-order approaches like gradient descent are significantly weaker than more advanced algorithms. Yet, variants of the gradient descent dominate optimization of the loss functions for deep neural networks due to their size and complexity. Hence, standard segmentation networks still require an overwhelming amount of precise pixel-level supervision for training. This thesis addresses three related problems concerning higher-order objectives and higher-order optimizers. First, we focus on a challenging application—unsupervised vascular tree extraction in large 3D volumes containing complex ``entanglements" of near-capillary vessels. In the context of vasculature with unrestricted topology, we propose a new general curvature-regularizing model for arbitrarily complex one-dimensional curvilinear structures. In contrast, the standard surface regularization methods are impractical for thin vessels due to strong shrinking bias or the complexity of Gaussian/min curvature modeling for two-dimensional manifolds. In general, the shrinking bias is one well-known example of bias in the standard regularization methods. The second contribution of this thesis is a characterization of other new forms of biases in classical segmentation models that were not understood in the past. We develop new theories establishing data density biases in common pair-wise or graph-based clustering objectives, such as kernel K-means and normalized cut. This theoretical understanding inspires our new segmentation algorithms avoiding such biases. The third contribution of the thesis is a new optimization algorithm addressing the limitations of gradient descent in the context of regularized losses for deep learning. Our general trust-region algorithm can be seen as a high-order chain rule for network training. It can use many standard low-level regularizers and their powerful solvers. We improve the state-of-the-art in weakly-supervised semantic segmentation using a well-motivated low-level regularization model and its graph-cut solver

    Realistic Visualization of Animated Virtual Cloth

    Get PDF
    Photo-realistic rendering of real-world objects is a broad research area with applications in various different areas, such as computer generated films, entertainment, e-commerce and so on. Within photo-realistic rendering, the rendering of cloth is a subarea which involves many important aspects, ranging from material surface reflection properties and macroscopic self-shadowing to animation sequence generation and compression. In this thesis, besides an introduction to the topic plus a broad overview of related work, different methods to handle major aspects of cloth rendering are described. Material surface reflection properties play an important part to reproduce the look & feel of materials, that is, to identify a material only by looking at it. The BTF (bidirectional texture function), as a function of viewing and illumination direction, is an appropriate representation of reflection properties. It captures effects caused by the mesostructure of a surface, like roughness, self-shadowing, occlusion, inter-reflections, subsurface scattering and color bleeding. Unfortunately a BTF data set of a material consists of hundreds to thousands of images, which exceeds current memory size of personal computers by far. This work describes the first usable method to efficiently compress and decompress a BTF data for rendering at interactive to real-time frame rates. It is based on PCA (principal component analysis) of the BTF data set. While preserving the important visual aspects of the BTF, the achieved compression rates allow the storage of several different data sets in main memory of consumer hardware, while maintaining a high rendering quality. Correct handling of complex illumination conditions plays another key role for the realistic appearance of cloth. Therefore, an upgrade of the BTF compression and rendering algorithm is described, which allows the support of distant direct HDR (high-dynamic-range) illumination stored in environment maps. To further enhance the appearance, macroscopic self-shadowing has to be taken into account. For the visualization of folds and the life-like 3D impression, these kind of shadows are absolutely necessary. This work describes two methods to compute these shadows. The first is seamlessly integrated into the illumination part of the rendering algorithm and optimized for static meshes. Furthermore, another method is proposed, which allows the handling of dynamic objects. It uses hardware-accelerated occlusion queries for the visibility determination. In contrast to other algorithms, the presented algorithm, despite its simplicity, is fast and produces less artifacts than other methods. As a plus, it incorporates changeable distant direct high-dynamic-range illumination. The human perception system is the main target of any computer graphics application and can also be treated as part of the rendering pipeline. Therefore, optimization of the rendering itself can be achieved by analyzing human perception of certain visual aspects in the image. As a part of this thesis, an experiment is introduced that evaluates human shadow perception to speedup shadow rendering and provides optimization approaches. Another subarea of cloth visualization in computer graphics is the animation of the cloth and avatars for presentations. This work also describes two new methods for automatic generation and compression of animation sequences. The first method to generate completely new, customizable animation sequences, is based on the concept of finding similarities in animation frames of a given basis sequence. Identifying these similarities allows jumps within the basis sequence to generate endless new sequences. Transmission of any animated 3D data over bandwidth-limited channels, like extended networks or to less powerful clients requires efficient compression schemes. The second method included in this thesis in the animation field is a geometry data compression scheme. Similar to the BTF compression, it uses PCA in combination with clustering algorithms to segment similar moving parts of the animated objects to achieve high compression rates in combination with a very exact reconstruction quality.Realistische Visualisierung von animierter virtueller Kleidung Das photorealistisches Rendering realer GegenstĂ€nde ist ein weites Forschungsfeld und hat Anwendungen in vielen Bereichen. Dazu zĂ€hlen Computer generierte Filme (CGI), die Unterhaltungsindustrie und E-Commerce. Innerhalb dieses Forschungsbereiches ist das Rendern von photorealistischer Kleidung ein wichtiger Bestandteil. Hier reichen die wichtigen Aspekte, die es zu berĂŒcksichtigen gilt, von optischen Materialeigenschaften ĂŒber makroskopische Selbstabschattung bis zur Animationsgenerierung und -kompression. In dieser Arbeit wird, neben der EinfĂŒhrung in das Thema, ein weiter Überblick ĂŒber Ă€hnlich gelagerte Arbeiten gegeben. Der Schwerpunkt der Arbeit liegt auf den wichtigen Aspekten der virtuellen Kleidungsvisualisierung, die oben beschrieben wurden. Die optischen Reflektionseigenschaften von MaterialoberflĂ€chen spielen eine wichtige Rolle, um das so genannte look & feel von Materialien zu charakterisieren. Hierbei kann ein Material vom Nutzer identifiziert werden, ohne dass er es direkt anfassen muss. Die BTF (bidirektionale Texturfunktion)ist eine Funktion die abhĂ€ngig von der Blick- und Beleuchtungsrichtung ist. Daher ist sie eine angemessene ReprĂ€sentation von Reflektionseigenschaften. Sie enthĂ€lt Effekte wie Rauheit, Selbstabschattungen, Verdeckungen, Interreflektionen, Streuung und Farbbluten, die durch die Mesostruktur der OberflĂ€che hervorgerufen werden. Leider besteht ein BTF Datensatz eines Materials aus hunderten oder tausenden von Bildern und sprengt damit herkömmliche Hauptspeicher in Computern bei weitem. Diese Arbeit beschreibt die erste praktikable Methode, um BTF Daten effizient zu komprimieren, zu speichern und fĂŒr Echtzeitanwendungen zum Visualisieren wieder zu dekomprimieren. Die Methode basiert auf der Principal Component Analysis (PCA), die Daten nach Signifikanz ordnet. WĂ€hrend die PCA die entscheidenen visuellen Aspekte der BTF erhĂ€lt, können mit ihrer Hilfe Kompressionsraten erzielt werden, die es erlauben mehrere BTF Materialien im Hauptspeicher eines Consumer PC zu verwalten. Dies erlaubt ein High-Quality Rendering. Korrektes Verwenden von komplexen Beleuchtungssituationen spielt eine weitere, wichtige Rolle, um Kleidung realistisch erscheinen zu lassen. Daher wird zudem eine Erweiterung des BTF Kompressions- und Renderingalgorithmuses erlĂ€utert, die den Einsatz von High-Dynamic Range (HDR) Beleuchtung erlaubt, die in environment maps gespeichert wird. Um die realistische Erscheinung der Kleidung weiter zu unterstĂŒtzen, muss die makroskopische Selbstabschattung integriert werden. FĂŒr die Visualisierung von Falten und den lebensechten 3D Eindruck ist diese Art von Schatten absolut notwendig. Diese Arbeit beschreibt daher auch zwei Methoden, diese Schatten schnell und effizient zu berechnen. Die erste ist nahtlos in den Beleuchtungspart des obigen BTF Renderingalgorithmuses integriert und fĂŒr statische Geometrien optimiert. Die zweite Methode behandelt dynamische Objekte. Dazu werden hardwarebeschleunigte Occlusion Queries verwendet, um die Sichtbarkeitsberechnung durchzufĂŒhren. Diese Methode ist einerseits simpel und leicht zu implementieren, anderseits ist sie schnell und produziert weniger Artefakte, als vergleichbare Methoden. ZusĂ€tzlich ist die Verwendung von verĂ€nderbarer, entfernter HDR Beleuchtung integriert. Das menschliche Wahrnehmungssystem ist das eigentliche Ziel jeglicher Anwendung in der Computergrafik und kann daher selbst als Teil einer erweiterten Rendering Pipeline gesehen werden. Daher kann das Rendering selbst optimiert werden, wenn man die menschliche Wahrnehmung verschiedener visueller Aspekte der berechneten Bilder analysiert. Teil der vorliegenden Arbeit ist die Beschreibung eines Experimentes, das menschliche Schattenwahrnehmung untersucht, um das Rendern der Schatten zu beschleunigen. Ein weiteres Teilgebiet der Kleidungsvisualisierung in der Computergrafik ist die Animation der Kleidung und von Avataren fĂŒr PrĂ€sentationen. Diese Arbeit beschreibt zwei neue Methoden auf diesem Teilgebiet. Einmal ein Algorithmus, der fĂŒr die automatische Generierung neuer Animationssequenzen verwendet werden kann und zum anderen einen Kompressionsalgorithmus fĂŒr eben diese Sequenzen. Die automatische Generierung von völlig neuen, anpassbaren Animationen basiert auf dem Konzept der Ähnlichkeitssuche. Hierbei werden die einzelnen Schritte von gegebenen Basisanimationen auf Ähnlichkeiten hin untersucht, die zum Beispiel die Geschwindigkeiten einzelner Objektteile sein können. Die Identifizierung dieser Ähnlichkeiten erlaubt dann SprĂŒnge innerhalb der Basissequenz, die dazu benutzt werden können, endlose, neue Sequenzen zu erzeugen. Die Übertragung von animierten 3D Daten ĂŒber bandbreitenlimitierte KanĂ€le wie ausgedehnte Netzwerke, Mobilfunk oder zu sogenannten thin clients erfordert eine effiziente Komprimierung. Die zweite, in dieser Arbeit vorgestellte Methode, ist ein Kompressionsschema fĂŒr Geometriedaten. Ähnlich wie bei der Kompression von BTF Daten wird die PCA in Verbindung mit Clustering benutzt, um die animierte Geometrie zu analysieren und in sich Ă€hnlich bewegende Teile zu segmentieren. Diese erkannten Segmente lassen sich dann hoch komprimieren. Der Algorithmus arbeitet automatisch und erlaubt zudem eine sehr exakte RekonstruktionsqualitĂ€t nach der Dekomprimierung

    Analysis of the inspection of mechanical parts using dense range data

    Get PDF
    More than ever, efficiency and quality are key words in modern industry. This situation enhances the importance of quality control and creates a great demand for cheap and reliable automatic inspection systems. Taking into account these facts and the demand for systems able to inspect the final shape of machined parts, we decided to investigate the viability of automatic model-based inspection of mechanical parts using the dense range data produced by laser stripers. Given a part to be inspected and a corresponding model of the part stored in the model data base, the first step of inspecting the part is the acquisition of data corresponding to the part, in our case this means the acquisition of a range image of it. In order to be able to compare the part image and its stored model, it is necessary to align the model with the range image of the part. This process, called registration, corresponds to finding the rigid transformation that superposes model and image. After the image and model are registered, the actual inspection uses the range image to verify if all the features predicted in the model are present and have the right pose and dimensions. Therefore, besides the acquisition of range images, the inspection of machined parts involves three main issues: modelling, registration and inspection diagnosis. The application, for inspection purposes, of the main representational schemes for modelling solid objects is discussed and it is suggested the use of EDT models (see [Zeid 91]). A particular implementation of EDT models is presented. A novel approach for the verification of tolerances during the inspection is proposed. The approach allows not only the inspection of the most common tolerances described in the tolerancing standards, but also the inspection of tolerances defined according to Requicha's theory of tolerancing (see [Requicha 83]). A model of the sensitivity and reliability of the inspection process based on the modelling of the errors during the inspection process is also proposed. The importance of the accuracy of the registration in different inspections tasks is discussed. A modified version of the ICP algorithm (see [Besl &; McKay 92]) for the registration of sculptured surfaces is proposed. The maximum accuracy of the ICP algorithm, as a function of the sensor errors and the number of matched points, is determined. A novel method for the measurement and reconstruction of waviness errors on sculpÂŹ tured surfaces is proposed. The method makes use of the 2D Discrete Fourier Transform for the detection and reconstruction of the waviness error. A model of the sensitivity and reliability of the method is proposed. The application of the methods proposed is illustrated using synthetic and real range image
    • 

    corecore