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Abstract

If a  man will begin in certainties
he shall end  in doubts;
but if he will b e  con ten t to  begin in doubts
he shall end  in certainties.

We shall not c e a se  from exploration 
And the en d  of our exploring 

Wiil b e  to  arrive where w e started  
And know the p lace  for th e  first time.

Francis Bacon Thomas Stearns Eliot

M otiva tion

Image analysis is simply the science of extracting information from pictures. If information 
is encapsulated in an image, the human eye is usually very good at extracting qualitative 
information from the picture. Very often though, more consistent and objective methods 
are needed.

This thesis considers one specific application in image analysis, the detection and 
visualisation of edges around any objects in the image. Some original approaches to 
edge detection are developed and demonstrated. Efficient computational algorithms are 
defined and various applications are considered. The proposed techniques could be seen 
as a contribution to the field of image filtering.

V isu a lisa tion

Our primary objective is to improve the quality of the restoration at a boundary, between 
two regions of different colour, by allowing each pixel or voxel in an image to contain two 
colours.

The structure in the data  is qualitatively presented by visualising the reconstruction 
of the unknown true image. We use a variety of presentation methods to visualise edges, 
with a precision that exceeds that of the underlying data. A concise but precise method 
of visualisation is very desirable to speed presentation, extract summary information and 
subsequently manipulate the data. This is particularly im portant in 3D where it is often 
necessary to deal with large volumes of data. Quantitative comparisions are also made.

Stochastic simulation models and Bayesian image analysis have provided a general frame­
work to model image data  and, in particular, to incorporate prior information. We use

T ools



Abstract ii

a Bayesian model, which includes some prior knowledge, to reconstruct an image to a 
greater accuracy than tha t of the recording sensor. This prior knowledge, based on the 
edge length or surface area, is expressed through a prior probability for each image in 
a predefined class. The objective is to strike a balance between the discrete, noisy and 
blurred data and the class of possible reconstructions.

The models are implemented using algorithms based on Markov chain Monte Carlo 
theory. So we structure all algorithms to be strictly local in nature. This simplifies 
algorithms making them more transparent and thus easier to understand; but they are 
computationally intensive tools.

We discuss the design of algorithms for effecient exploration of two and three dimen­
sional image spaces.

A p p lica tion s

This thesis is primarily concerned with practical aspects of image analysis. Therefore to 
demonstrate the utility of the new algorithms, real datasets are used to address practical 
problems. The data and their associated problems dictate the design of the statistical 
models and the computational algorithms.

There are two primary datasets: one is two dimensional and the other is three dimen­
sional. Their principal feature is that the size of the objects in the images is near the 
resolution of the recording device. Details are given about how the data was gathered 
and the scientists’ objectives. The results of applying the algorithms to some simulated 
datasets are also presented.

Layout

The thesis is broken into the following parts:

• Chapter 1 provides some background to the subject of image analysis, leading to the 
reasons why subpixel analysis is important.

• Chapter 2 defines some notation and explains the statistical theory underlying the 
models that are discussed later.

• Chapter 3 considers a discrete, two-dimensional, subpixel image model.

• Chapter 4 discusses another two-dimensional subpixel image model, but assumes the 
true underlying image is continuous.

• Chapter 5 extends the model in Chapter 4 to three-dimensions.

• Finally, the conclusions are drawn and possible future work in outlined.

Miscellaneous issues are deferred to the appendices. A bibliography and index are included 
for reference.
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Chapter 1

From im age analysis 
to subpixel edges

Things are always a t their best 
in the beginning.
Blaise Pascal 

Lettres Provinciates

There is no abstract art. 
You must always start with som ething. 

Afterwards you ca n  rem ove all traces of reality.
Pablo Picasso

1.1 B road  v iew  o f  im age analysis

1 .1 .1  M o tiv a t io n  for s tu d y in g  im a g e  a n a ly s is

It is becoming increasingly popular in the applied sciences to convey information in the 
format of digital images. For some two dimensional images, the data are collected by a 
perspective projection of the objects of interest onto a planar grid of rectangular or square 
picture elements, called pixels. The light from these objects is focussed by a lens onto 
the recording sensor, known as a charge-coupled-device detector (CCD). The CCD then 
digitises the radiated intensity of the light source so tha t the data are grey-levels or a 
finite set of colours. In other cases, the two dimensional image may be a cut surface tha t 
transects a three dimensional (3D) object. Measurements on individual features, or on 
the image as a whole, must then be extracted and interpreted to obtain useful information 
from the objects.

E x a m p le  1.1 . E xamples OF Images.
Figure 1-1 shows two examples of images that are discussed in greater detail later in this 
thesis. In Plot (a), the two dimensional (2D) image is of a fungus mycelium growing on a 
microscope slide. Scientists are interested in the feeding behaviour of the fungus, which is 
reflected in its spatial distribution across the slide and the length of its arms (see §4.4.2 
on page 87). Plot (b) shows a slice through a three dimensional image of a single, plant 
cell. In this case, the feature of interest is the change in the volume and surface area of 
an individual cell, under different circumstances (see §5.1.1 on page 99). □
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(a) (b)

Figure 1 -1: E x a m p le s  o f  Im a g e s . In Plot (a), the im age is of a  fungus mycelium growing on a 
m icroscope slide. Scientists are interested in the feeding behaviour of the fungus, which is reflected 
in its spatial distribution across the slide and the length of its arms (see §4.4.2 on p a g e  87). Plot (b) 
shows a  slice through a  3D im age of a  plant cell, called a  guard cell. When the cell contracts, the 
circular opening in the middle disappears. In this case, the feature of interest is the ch a n g e  in the vol­
ume and surface area of the cell betw een  its opening and closing position (see §5.1.1 on p a g e  99).

1.1 .2  S u b d iv id in g  im ag e  a n a ly s is

Level Description
M+3 
M+2 
M +l 

6 to M 
5 
4 
3 
2 
1 
0

3-D scene interpretation 
3-D scene description 
2-D image description
Higher level aggregation and model matching 
Discovery of structural relationships 
Feature classification or pattern recognition 
Image segmentation and feature detection 
Preprocessing and restoration 
Sensor representation 
Scene

Table 1.1: V a r io u s  L e v e l s  o f  A n a ly s i s  in  C o m p u te r  V is io n . Levels 0 to 3 are called  
im age processing or low-level vision. Higher levels are called im age interpretation or high-level vi­
sion.

Image analysis and computer vision is a rapidly growing area. For the year 1991, 
Rosenfeld (1992) states that a selected bibliography of journal and conference proceedings 
for image analysis and computer vision runs to nearly 1,200 citations. The corresponding 
figure for the following year is 1,900 (Rosenfeld 1993).

Levine (1985) classifies the field into various levels, shown in Table 1.1. Rosenfeld’s 
survey subdivides the field even further into topics like: applications, computational tech­
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1 From image analysis to subpixel edges 3

niques, feature detection, segmentation and three dimensional recovery-analysis, to name 
but a few. For example, the main results from Chapter 4, as presented in Gavin and 
Jennison (1995), fall into the category of ‘feature detection’ (Level 3), where the feature 
is the edges in the image, and into the sub-category ‘computational techniques’.

Overall, the thesis deals with issues that fall into categories 0-3 and M+2.

1 .1 .3  A p p lic a t io n s  o f  im a g e  a n a ly s is

Image analysis and measurement methods are used in a broad range of applications in the 
applied sciences:

• satellite weather maps

• industrial quality control of macroscopic manufactured items

• light and electron microscopy of material structures

• biological, geological, astronomical or archaeological specimens

• integrated circuits, etc.

Generally, these methods are concerned with extracting a few numerical values, such as 
the number, size, shape or location of objects from the image. This may require image 
processing to correct defects, enhance some aspect of the image, compare multiple images, 
recognise objects of interest in a complex environment, or other steps. Ultimately, the 
image is reduced to ju st the features of interest, which may then require further editing, 
for instance to separate touching objects.

1 .1 .4  R e a so n s  w h y  s ta t is t ic a l m o d e ls  are u sed  in  im a g e  a n a ly s is

Image analysis is simply the science of extracting information from pictures. The hu­
man eye is very good at extracting qualitative information but more consistent, objective 
methods are needed. Also automatic processing of images is becoming more essential, as 
more and more data  are captured via images. Statistical methods can extract quantitative 
information automatically using computer based algorithms. We often want to count the 
number of objects in an image, estimate their areas, measure distances between objects, 
describe the shape of objects or find their boundaries. So in this section, we offer three 
distinct but related reasons why statistical science should be considered when processing 
and analysing digital images (Green 1994b; Green 1995a). In later chapters, we consider 
how this is done.

U se  o f  p ro b a b ilis tic  m o d e ls  for th e  tru e  im age

In statistical image models, the number of random variables is often of the same 
order as the number of data points. For example, each pixel in an image is often 
modelled as an individual random variable. So point estimates of the image features
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1 From image analysis to subpixel edges 4

of interest are difficult to find even after a large amount of computation. If we also 
want to estimate variability, standard numerical methods are usually inadequate.

A key feature of image analysis is that we often have prior information about the 
data. Consequently, a Bayesian framework is a natural way to incorporate the ad­
ditional information, in the form of a prior distribution, in order to draw inferences 
about the image (Besag 1989). The prior distribution adds some stability and regu­
larity to the model. It allows information about the image, such as local contextual 
regularities, to be approximately modelled using a Markov random field (see §2.2.3 
on page 21).

This Bayesian formulation offers a unified approach to image analysis covering low 
level analysis, such as the removal of noise and blur, higher level work such as 
tomographic reconstruction, segmentation, texture modelling and, at the highest 
level, object recognition.

M odelling  th e  degradation  in the data
The degradation arises from transmission loss between the true image and the 
recorded data, the record. The loss of information is due to imperfections in the 
lens and the sensor, arising from blurring and noise. Noise is a disturbance in data 
tha t is either uninterpretable or not of interest. Blurring occurs when information, 
in the form of varying colours, ‘leaks’ into a pixel from its neighbouring pixels. A 
flexible likelihood is needed to reflect the characteristics of different sensing devices. 
Removing the degradation to draw inferences about the unknown true image, given 
the record, is a key objective of statistical image analysis (see §2.2.4 on page 23).

D esign ing  efficient algorithm s for stochastic sim ulation
Sophisticated optimisation algorithms are necessary, since we typically have to esti­
mate a large number of parameters simultaneously. In some optimisation problems, 
the change in the cost function can be computed in an order of magnitude faster than 
the cost function itself. The key to such algorithms is the conditional independence 
between pixels, the random variables, given the parameters. Markov chain Monte 
Carlo (MCMC) methods provide the necessary tools to implement such algorithms.

We use the Bayesian method to produce point estimates of pixel images or image 
functionals using stochastic or deterministic algorithms. These algorithms are used 
to simulate both the prior and posterior distributions (see §2.3 on page 25). The 
algorithms are sets of iterative rules for updating pixels in a process of local compe­
tition and cooperation, which simultaneously exploits the data and the prior model 
for the image. They are used to solve global optimisation problems which meet the 
following criteria:

• an analytic solution is not available

• the cost domain has many local minima

• a grand tour is too costly.
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1 From image analysis to subpixel edges 5

The Bayesian approach provides a unified framework for image models, so avoiding 
the need to adopt ad hoc methods for each new problem.

1.2 Full p ix e l ed ge d etectio n

1 .2 .1  M o tiv a t io n  for s tu d y in g  fu ll p ix e l ed g e  d e te c t io n

One im portant application in image analysis is the location of edges between regions of 
different colour, known as edge detection. Edges convey a surprising amount of information 
about a scene, as illustrated by the human ability to interpret cartoons. The simplest case 
is a two colour problem, which arises in images that are essentially binary in nature. This 
occurs naturally when locating the interior and exterior of an object. Sometimes, it is 
sufficient to detect the edges between regions of different colours to the nearest pixel. In 
such cases, the edges are implicitly assumed to lie on the boundary between adjacent 
pixels.

1 .2 .2  C u rren t m e th o d s  for fu ll p ix e l ed g e  d e te c t io n

F ilte rs  Filters enhance or emphasize certain features of images, by applying transfor­
mations based on sets of neighbouring pixels. The objective is to remove noise or 
enhance edges. Their main advantage is that they are fast and for simplicity, most 
filters are designed to be spatially invariant. There are two general classifications: 
linear and non-linear filters. A filter is linear if the values it outputs are a linear 
combination of its input values, otherwise it is a nonlinear filter.

L in e a r  f ilte rs  The output from linear filters is a linear combination of the val­
ues in the record. Linear filters are easier to analyse mathematically so, not 
surprisingly, the theory is much more developed. This class of filters can be 
studied in the spatial or frequency domain. There are many linear filters but 
we only mention the more common ones. We start with the box filter, which 
can be used efficiently to approximate the Gaussian filter. Both of these filters 
smooth the data, reducing noise. This helps edge detection filters, such as the 
Laplacian, because they are often sensitive to noise. It is possible to combine 
the filters to achieve the best of both worlds, such as the Laplacian-of-Gaussian
filter.

B ox  f ilte r  This is simply a moving weighted average (MWA). So the output 
from a linear filter gij of size (2p +  1) x (2p +  1), with weights W ki for 

M  =  is

p
W kiYi+kj +i, for i, j  = p +  1 , . . . ,  n  — p,
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1 From image analysis to subpixel edges 6

where Yij denotes the record value in the i th row and the j th column. The 
output Qij represents the reconstruction of the record Y, as a consequence 
of applying the filter.
For example, every pixel could be replaced by an average of the 3x3  window 
around it. Odd sized windows are typical and adjustments are needed at 
the boundary. This filter reduces noise but increases blurring. It is used to 
smooth images rather than detect edges.

G au ss ian  f il te r  This filter has weights W  derived from a bivariate Gaussian 
distribution, with variance <j 2,

Here, [3cr] is the integer part of 3o and it controls the amount of smooth­
ing. The distribution is truncated for convenience. The Gaussian filter 
has a variety of appealing mathematically properties (Marr and Hildreth 
1980). This filter is used to model blurring in Chapter 4. It can be ap­
proximated efficiently by repeatedly applying a MWA, which is a form of 
kernel regression (Scott 1992).

L ap lac ian  f ilte r  Subtracting corresponding pixels in the box filtered image 
from the original image produces a new filter, called the Laplacian filter. 
It is a linear, second order differential operator, which produces a zero 
crossing at an edge. The Laplacian is

Once again, the output gij represents the reconstruction of the record Y, 
as a consequence of applying the filter. One im portant property is that 
this filter can detect edges in any direction. In other words, the Laplacian 
is isotropic or rotationally invariant, so it is widely used in edge detection.

L ap lac ian -o f-G au ss ian  f ilte r  Another common filter is formed by applying 
the Gaussian to reduce noise followed by the Laplacian to emphasize edges. 
This convolution of Equations (1.1) and (1.2) is called the Laplacian-of - 
Gaussian filter (LOG) (Marr and Hildreth 1980).
Oakley and Shann (1991) extend this method of edge detection, using Gaus­
sian filtering calculated at optimally chosen points of interest. The accuracy 
is based on the filter size.

/ = - i

/  1 1 1 \
where W  =  1/3 1 —8 1

V i  i  i  /

(1.2)
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1 From image analysis to subpixel edges 7

N on-linear filters All filters that are not linear are classified as non-linear filters. 
Non-linear filters are more diverse and difficult to categorise. They often do 
better than  linear filters because they can reduce noise without blurring edges 
but they tend to be more complex and have less theoretical justification. Simple 
statistical examples include the moving median and the trimmed mean. To 
detect edges, some of the weights in the filter must be negative and, if the 
weights sum to one, the resulting image emphasizes the edges in the record. 

R oberts filter A common method for finding edges is to apply a discrete 
operator which takes a maximum on an edge. One simple low pass, gradient 
operator which reaches a maximum at the edge is the Roberts filter (Roberts 
1965). It approximates the magnitude of the gradient at the point (i , j ) by 
using the sum of absolute differences of diagonally opposite record values,

9ij =  I Yij Yi+i j +1\ +

P rew itt and Sobel filters The maximum gradient at a point is

These partial derivatives can be approximated in various ways. For exam­
ple, the approximation

d Y i■ 1
— g ( ^ z - i j + i  +  ^ , j +1 +  Yi+ l j + i  — — Y i j - i  — Y{.f-1, j —l )

and

d Y  1= gO-i+u-i + Yi+1J + yi+iJ+i -  n -ij-i -  y - u  -  Yi-ij+i)

is known as Prewitt’s filter. Sobel’s filter is similar except tha t more 
weight is given to pixels near (i, j) .

Because edge detectors require assumptions about the shape of the features being 
measured, such as straight lines verses circular edges, some authors use an array of 
edge detectors each sensitive to a different group of edge types. Glasbey and Horgan 
(1994, Chapter 3) offers an excellent introduction to filters.

Transform s If the low dimensional parametric description of the object is known, then 
a model fitting procedure can be used to find the param eter values for that object 
tha t best fit the data. The method works well even in the presence of noise.

For example, Hitchcock and Glasbey (1994) parametrise small objects, peanut ker­
nels, using Fourier descriptors for the boundary and then optimise the parameters. 
They also describe an image of fibres using a network of splines.
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1 From image analysis to subpixel edges 8

Glasbey (1994) considers reversing the degradation caused by digitising images. In­
ference from binary images to binary data follows a two stage process: firstly from 
the lattice points to a binary image in continuous space and then inverting the blur­
ring and removing noise. If objects, of a minimum size, have a specified shape and 
size except for one or two parameters then it is possible to estimate the unknown 
param eters and their standard error.

The Hough transform method replaces a search through image space with a search 
through Hough transform space (Atiquzzaman 1992). This requires a mathematical 
model of the object shape and the space to be searched may be large.

C o n to u rs  An approach to perimeter estimation, due to Koplowitz and Bruckstein (1989), 
is based on contour reconstruction methods with subsequent measurement of the 
reconstructed boundary by counting the vertical and horizontal links lying on the 
pixel boundary around the object. Each link has length equal to  the pixel size. 
The number of links would have to be adjusted to smooth this stepwise function. 
The adjustment is such as to yield an expected error of zero between the true and 
estimated length of straight boundaries.

S nakes Active contours (Kass, Witkin, and Terzopoulos 1987), also called snakes, is an 
approach where the boundary is represented by a fixed number of points. Unlike 
Friedland and Adam’s star-shaped approach (see below), the points are not restricted 
to being of a fixed radius. Functions are maximised to include spatial smoothness and 
combine the boundaries of the image. To be more specific, a local gradient operator 
is first applied to the image. Then a smooth curve is found such tha t, the integral 
of the squared image gradient along the curve is maximised. Algorithms using this 
approach have concentrated on being fast and can usually produce answers in real 
time but this method will only find local optima, using a steepest decent procedure. 
Therefore, it needs a good starting point in order to avoid convergence to a local 
maximum.

In a similar spirit, O’Sullivan and Qian (1994) characterise object boundaries as 
areas where there is rapid change in the grey-level intensity of the image. They then 
use a function tha t measures the normalised image contrast between the inside and 
outside of a boundary to detect closed curves in the image.

M ax im u m  e n tro p y  This is a Bayesian method tha t uses a non-spatial prior. It is espe­
cially useful if the background is mostly black with point sources of high intensity, 
such as arise in astronomy (Weir and Djorgovski 1991; Skilling and Bryan 1984). 
In these cases, the edges are the border between the black and white pixels. A 
substantial amount of computing is required.

S to c h a s tic  m ode ls  A variety of models have been proposed tha t use a Markov random 
field to model images as part of a Bayesian approach to boundary detection at the 
fu ll pixel level. The Bayesian approach to two dimensional, image reconstruction
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1 From image analysis to subpixel edges 9

was popularised by Grenander (1983), Geman and Geman (1984) and Besag (1986). 
Theoretical and practical applications have been pursued ever since. In general 
terms, this methodology treats the recorded image as numerical data, generated by 
a statistical model, involving both a stochastic component to allow for noise and 
a systematic component to describe the true scene under view. The corresponding 
likelihood is combined with a prior model for the true scene to draw inferences about 
the scene, based on the observed data, using Bayes’ theorem.

These statistical, edge detection models often assume simply connected boundaries, 
sometimes called dynamic contours. They are found by iteratively making local 
changes to an existing boundary until convergence.

M R F  edge  e lem en ts  Geman and Geman’s paper suggested using edges between 
pixels to define a boundary around objects in an image. Such edges would 
lie either horizontally or vertically. Silverman, Jennison, Stander, and Brown 
(1990) and Silverman and Jennison (1991) re-examine the Geman and Geman 
model and propose edge penalties that are roughly independent of the pixel 
grid, based on geometrical features of the image. Then, if an edge exists be­
tween two contiguous pixels, they are not considered to be neighbours in the 
reconstruction.

S ta r-sh a p e d  b o u n d a ry  The star-shaped approach (Friedland and Adam 1989) 
represents boundaries as the distance from a centre point along a series of 
radii. The object being studied must be star-shaped around a centre point. 
A Bayesian approach combined with the simulated annealing algorithm can 
be used to find the optimal boundary by minimising an energy function. The 
energy function can also include spatial and time-dynamic aspects as well as 
data  models. This methodology is explained in greater detail in Chapter 2. 
The resolution varies along the boundary because the distance between the 
radii increase with increasing distance from the centre point.

S to c h a s tic  b o u n d a ry  As an alternative to the snakes algorithm of Kass, Witkin, 
and Terzopoulos (1987) (see above), Storvik (1994) assumes that the boundary 
consists of a stochastic number of points with equal distance between adjacent 
points. The points are usually set to be one pixel apart so that the boundary 
consists of horizontal and vertical, linked edges. A global simulation scheme is 
used to find the optimal boundary. The model is easy to update, once an initial 
boundary has been found.

Helterbrand, Cressie, and Davidson (1994) offers an MCMC approach to iden­
tifying one-pixel wide closed boundaries, that is in the same spirit as Storvik 
(1994). The optimisation algorithm is restricted to searching over a class of 
closed boundaries so the final reconstruction is guaranteed to be closed. Be­
cause of this constraint, various configurations of edges are specifically excluded.
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C o n s tra in e d  o p tim isa tio n  Geman, Geman, Graffigne, and Dong (1990) define 
edge sites and neighbourhoods to exist at a coarser scale than tha t of the record. 
This helps to prevent the profusion of ‘micro edges’ that may be suggested 
by apparently fuzzy boundaries. Certain configurations are banned but only 
gradually. This is achieved by steadily increasing the penalty for undesirable 
states. The model is also used for texture discrimination.

All these methods require some a priori information about the features being studied. 
Some methods define a mathematical formula for the shape of the boundary and then 
optimise the model parameters based on the observed data, such as the star-shaped algo­
rithm  and other algorithms that use Fourier descriptors. Other approaches do not require 
any assumption about the shape of the boundary but the cost is that a large optimisation 
problem must be solved. Each model or algorithm offers its own set of advantages and 
disadvantages. The most suitable choice depends on the purpose of the analysis. One 
common problem is tha t it is not immediately apparent how to extend these models to 
three dimensions.

1.3 S u b p ix e l ed ge d etectio n

1 .3 .1  M o tiv a t io n  for s tu d y in g  su b p ix e l ed g e  d e te c t io n

The location and orientation of the pixel grid can have a noticeable effect on the shape of 
objects tha t are at the resolution limits of the recording sensor. This is because the recon­
struction of a  continuous planar image is piecewise constant on pixels, while boundaries in 
the image consist of horizontal and vertical edges lying between pixels. This approxima­
tion to the true boundary can result in a loss of information which may be quite noticeable 
for small objects, only a few pixels in size. Increasing the resolution of a sensor requires 
greater resources, which may be undesirable or not possible in some applications, due to 
technical or cost limitations. For example, an increase in intensity of illumination may 
damage a biological sample or in medical imaging the lowest possible exposure to X-rays 
is always desirable. So in such cases, minimising the amount of such exposure may be 
an im portant constraint. If not, perhaps the number of detectors could be increased by 
a factor of ten, say, in each of the x , y and z directions. However this would result in a 
thousand-fold increase in the cost and amount of subsequent processing.

We wish to reduce the distorting effect caused by the pixel grid. Resolving detailed 
features of an object is not possible if the object lies wholly within a single pixel but 
usually individual objects within an image extend across the boundaries between pixels. 
By expressing fairly mild assumptions about the underlying image in a mathematical 
model and combining this with the observed data, it is possible to reconstruct the image 
to a higher accuracy than the scanning resolution of the sensor. The motivation for such 
a model comes from the belief tha t the true, underlying image has a smooth, continuous 
boundary. To achieve this, we remove the restriction that edges should lie between pixels
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(a) (b)

5 10 15

Figure 1-2: E f f e c t  o f  P i x e l a t i o n  o n  a  S m a l l  Im a g e . This figure shows the discretisation 
of a  continuous binary im age (Plot (a)) into a  16 x 16 grey-level pixel im age and a  reconstruction 
of the continuous im age from the discretised record (Plot (b)). The effects of pixelation can  lead to 
noticeable errors in e d g e  length and surface area for objects that are small relative to pixel size.

and this leads naturally to a subpixel model. This process can be used to provide improved 
estimates of edge length and area of objects and to detect the presence and shape of objects 
that are only a few pixels in size. This procedure is called subpixel resolution and is the 
focus of this thesis.

E x am p le  1.2. E FFE C T  OF PIXELATION ON A SMALL IMAGE.

For example, the continuous binary image shown in Figure 1-2 (a) appears as the dis­
cretised image, Figure 1-2 (b), when recorded on a 16 x 16 pixel grid. The level of grey 
in each pixel of the discretised image represents the proportion of black in that pixel in 
the original image. There is just a small amount of noise and no blurring in this example 
so almost all loss of information is due to the discrete nature of the sensor. Ideally, the 
properties or position of the pixel grid should have a minimum effect on the reconstruction 
of the true image.

We consider this toy image in greater detail in Chapter 4 (see page 64). □

1 .3 .2  A p p lic a t io n s  o f  su b p ix e l ed g e  d e te c t io n

It is reasonable to ask why anyone would be interested in measuring data to a greater 
accuracy than the scanning resolution of the sensor. One way of answering this question 
is to consider the areas where subpixel models have found application. In fact, there are 
surprisingly many applications, such as:

• Measuring the size and shape of microscopic fibres (Hitchcock and Glasbey 1994). 
The authors study blurred, grey-level images of true binary scenes. Fourier descrip­
tors are used to optimise the parameters for the boundary around small objects. A
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1 From im age analysis to  subpixel edges 12

network of splines is used to extend the technique to images of fibres. In Chapter 4, 
we apply a subpixel model to some microscopic data of a fungus tha t are similar to 
the data  considered by Hitchcock and Glasbey (1994).

•  Classification of subpixel vegetation cover (Jasinski 1990a; Jasinski 1990b; Jasinski 
and Eagleson 1990; Foody 1994).

• Remote sensing of active volcanos (Bhattacharya, Reddy, and Srivastav 1993).

• High precision measurement of component positions (Young 1987; Lyvers, Mitchell, 
Akey, and Reeves 1989). An edge operator based on two dimensional spatial mo­
ments is used with varying window size. A look-up table is used to correct for 
orientation and location or non-ideal edge profiles.

• Measuring the width and path of a laser beam (Sziranyi 1992; Sziranyi 1993). To 
recognise subpixel patterns in two dimensions or to measure laser beam diame­
ters, a gray-level histogram of the objects examined is compared with the simulated 
histograms of different (in type or size) possible objects, and the shape or size is 
recognised on the basis of comparison.

• Locating and measuring blood vessel boundaries and diameters in cine coronary 
angiography (Sandor and Spears 1985). A Monte Carlo technique is used to estimate 
the effect of radiographic noise on the location of blood vessel boundaries in an image. 
The objective is to measure changes in blood vessel diameters in order to estimate 
the fraction of the vessel tha t is open for blood flow. The authors fit polynomial 
curves to a one dimensional cross section through the blood vessel using a Monte 
Carlo approach. This requires an assumption about the order of the polynomial to 
choose.

• Subpixel alignment in lithography (Gatherer and Meng 1992; Gatherer and Meng 
1991).

• Pictorial data in the form of line drawings (Sriraman, Koplowitz, and Mohan 1989; 
Koplowitz and Sundar Raj 1987). A nonlinear, filtering algorithm is used to recon­
struct piecewise linear curves such as polygonal figures.

• Subpixel deconvolution in astronomy (Weir and Djorgovski 1991) based on maximum 
entropy and a Bayesian model.

These applications rely on a variety of techniques that are often specific to the particular 
application in hand.

1 .3 .3  C u rren t m e th o d s  for su b p ix e l ed g e  d e te c t io n

There are a wide variety of ad hoc methods for subpixel edge detection. For the most part, 
they are based on extensions to the full pixel methods outlined in §1.2. Some of the more 
common methods are:
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1 From im age analysis to  subpixel edges 13

In te rp o la t io n  Interpolation is a simple method that produces fewer distortions and 
smoother results than simple pixel replication or sampling. The image is treated 
as a discrete approximation to a unknown, continuous object sampled at points on 
a lattice. To enlarge the reconstruction we could sample at a greater frequency but 
this is often neither feasible nor desirable. So we estimate the true image at inter 
pixel points by assuming smooth changes occur between the four nearest neighbour 
record values. This method is usually used in conjunction with other methods, such 
as filtering.

For example, Lorensen and Cline (1987) propose a 3D algorithm tha t effectively 
thresholds the data, which they call ‘marching cubes’. It efficiently draws a surface 
through the 3D data by interpolating between neighbouring voxel values (see §5.1.2 
on page 103).

F il te r s  Because the sampled points are discrete, numerical approximations to the con­
tinuous filter are needed to get subpixel edge locations (Oakley and Shann 1991; 
Huertas and Medioni 1986). For example, filtering might first be applied. Then a 
second stage might be to interpolate between the discrete sampled points, by fit­
ting a polynomial (Sandor and Spears 1985). Subpixel accuracy is then obtained by 
finding the zero crossing or maximum value, as appropriate, in the continuum.

Huertas and Medioni (1986) locate edges by finding zero-crossings in the convolution 
of the image with a Laplacian-of-Gaussian mask. The zero-crossings locate the edges 
and then it is assumed that in the neighbourhood around such points the image can 
be modelled by a polynomial. Subpixel values are then obtained by sampling the 
continuous function on a regular grid at the desired resolution.

Boult and Wolberg (1993) treated images as area samples, rather than the more 
conventional treatm ent of images as point samples. They formulate a process with 
the constraint that the approximate reconstruction is the exact reconstruction for 
some function in the allowable class of functions. The class of functions is based on 
the second derivative of the underlying continuous signal.

Filter methods provide fast subpixel algorithms because the filter is chosen to be 
simple. These methods do not require iteration or knowledge about the shape of 
the edges in the image. However, subpixel accuracy cannot be achieved without 
interpolation and the results may be distorted by noise. Amongst other things, this 
requires an assumption about the order of the polynomial to choose. In addition, an 
assumption about the edge filter width is required. Some allowance is also needed 
for the effect on accuracy, if edges are in close proximity but not connected.

T ran sfo rm s Kiryati and Bruckstein (1991) show that if binary images of polygonal sil­
houettes are to be digitised then low-resolution gray-level sensors can potentially 
induce less ambiguity than high-resolution binary sensors.
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For subpixel alignment in lithography Gatherer and Meng (1992) use a discrete 
Fourier transform.

T e m p la te  m a tc h in g  An ideal edge is fitted to the observed record values, lying in some 
window, by matching some statistics calculated from the proposed edge and the 
record values or by maximising some joint statistic such as correlation. So the 
ideal edge is rotated, translated or rescaled to best fit the observed data where, for 
example, the ideal edge might be a step or ramp edge.

Because the shape of the object is assumed known, correlation can be used to deter­
mine the translation, rotation and scale parameters. Correlation is used because the 
cross-correlation function is smooth enabling interpolation to find the correlation 
peak (West and Clarke 1990), such as matching between ariel photographs. The 
ideal moments are calculated by integrating the ideal edge over a chosen window, 
subject to the sample moments being equal to the moments of the ideal edge.

This approach offers a closed form solution and requires no interpolation or iteration. 
However, it requires assumptions about the shape of the edge (e.g. the edge forms 
a straight line or is circular over the window) and the size of the window over which 
the edge is estimated. Also the method may be distorted by noise. Tabatabai and 
Mitchell (1984) discuss a method of moments algorithm and Lyvers, Mitchell, Akey, 
and Reeves (1989) discuss an extension to this algorithm which includes spatial 
information in the moment equations. Jasinski and Eagleson (1990) consider an 
application of the method in the classification of subpixel vegetation cover.

S to c h a s tic  m o d e ls  Jennison and Jubb (1988) and Jubb and Jennison (1991) introduce 
a stochastic model for the edge process. They first find the boundary around an 
object and then optimise the position of a sequence of linked line segments around 
the boundary to provide a subpixel estimate of the edge. The model favours patterns 
with smaller total edge length.

West and Clarke (1990) offer a review of several subpixel methods. These methods 
have much to offer, including considerable scope for further extensions and computational 
improvements. However, it is essential to be aware of their limits, as no single method 
is universally satisfactory. The methods that we outline in subsequent chapters are not 
replacements for the methods listed above but a further alternative to be added to an an­
alyst’s toolbox. Our models have their own limitations which must be recognised but they 
offer mathematically and computationally attractive features not found in the methods 
outlined above.

©  John Gavin (1995) Subpixel Image Analysis Ph.D. thesis, Bath



1 From im age analysis to  subpixel edges 15

1.4 B road  v iew  o f th is  th esis

1 .4 .1  O b je c tiv e s

The theory behind Bayesian image analysis has reached a certain maturity, so now much 
of the work in this area is focussing on applications. Such is the case in this thesis. We 
summarise our objectives as follows:

R e c o n s tru c tin g  edges Our primary objective is to improve the quality of the restoration 
at a boundary, between two regions of different colour, by allowing each pixel to 
contain two colours.

The ways in which each pixel is allowed to be split leads to various models: in 
Chapter 3, each pixel is gradually refined by dividing it into discrete subpixels; 
the continuous analogue of Chapter 3 is to allow each pixel to be split in to two 
regions separated by a straight line and this is explored in Chapter 4. Due to recent 
improvements in technology, it now possible to record data in three dimensions. For 
example, the data might be recorded as a sequence of parallel and equally-spaced, two 
dimensional slices through a three dimensional object. In Chapter 5, we investigate 
how the model in Chapter 4 might be extended to incorporate three dimensional 
images.

We remove imperfections in the data, by designing a statistical model of the degra­
dation and then search over a predefined class of reconstructions to find the recon­
struction tha t strikes the best balance between the data and our prior beliefs about 
the true image.

A lg o rith m ic  desig n  We structure all algorithms to be strictly local in nature. This 
makes the computational aspects of the algorithms easier to understand and visu­
alise, and consequently to implement. It also means that the algorithms are poten­
tially very efficient in their use of CPU time and storage requirements.

A d a p ta b le  m o d e ls  It is surprisingly difficult to describe mathematically the information 
in an image. Any models should be flexible enough to be applied to real data under 
various conditions. The sensitivity of the model to the assumptions made about the 
data  should be considered and the model should be robust with respect to extreme 
behaviour.

V isu a lisa tio n  Compact representation of the objects in images is very desirable, most 
especially in three dimensions. We consider reconstructions tha t extract structure 
from the record in a concise form. This reduces the burden on the computer when 
viewing and storing the reconstruction. It also makes the model and algorithm more 
transparent and thus easier to understand.

A natural advantage of subpixel imaging is the ability to zoom in on features of 
interest. This requires the reconstruction to preserve detail. While there is a limit
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to the level of detail available from any reconstruction, the techniques discussed are 
designed to detect small features in the data. The facility to rotate and zoom-in on 
the data  is especially appealing with computer reconstructions of three dimensional 
objects, where motion is often essential to create the illusion of depth.

M e a su re m e n t This is usually the final stage in the analysis. A compact representation 
of the structure in the observed data makes it easier to extract summary information. 
If the reconstructions preserve detail then more accurate estimates are possible. The 
basic building block is an estimate of the edge length in each pixel or the area of a 
surface through a voxel in three dimensions. Prom this, we can build up estimates 
of the area or volume of an object in an image and other statistics.

Overall, this thesis proposes a new initiative for statistical applications in the field of 
image analysis as well as some new computational developments. The techniques proposed 
could be seen as a contribution to the field of image filtering.

1 .4 .2  O u tlin e

• Chapter 2 is concerned with the necessary background details tha t form the basic 
building blocks of subsequent chapters.

• Chapter 3 introduces a computationally feasible, discrete, two dimensional model 
for subpixel image reconstruction. Computational problems are discussed.

• Chapter 4 is concerned with a continuous, two dimensional model for subpixel image 
reconstruction. The fungal data set, shown in Figure 1-1 (a), is analysed to a subpixel 
level.

• Having established a continuous model and algorithm for two dimensions, Chapter 5 
extends this algorithm to three dimensions and discusses the additional complications 
tha t arise. It also summarises the existing approaches to three dimensional image 
reconstruction.

• Finally, we draw some overall conclusions.

Each chapter finishes with a summary. The appendices contain material that is useful 
but not essential to the thesis.

1 .4 .3  T o p ics  n o t cov ered

Naturally, this thesis does not cover every topic related to image reconstruction. It is 
informative to state explicitly which topics within this field are not discussed. Excluded 
topics include:

D y n am ic  im ages Most images are of static objects captured under laboratory condi­
tions. It is assumed tha t there is time to prepare, process and analyse the data.
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Real-time, automatic processing of images involves studying motion, three dimen­
sional modelling and real-time processing. These are topics from the field of com­
puter vision tha t are beyond the scope of this thesis.

Im ag es  th a t  v a ry  sm o o th ly  Objects which vary smoothly across the image are not 
considered in this thesis. All the examples analysed in later chapters show abrupt 
changes in pixel values at the edge of the object, which we interpret as object bound­
aries.

In d ire c tly  o b serv ed  im ages We exclude indirectly observed images, such as Positron 
Emission Tomography (Rosenfeld and Kak 1982). However, we do need to consider 
inverting a blurring matrix, if the image is blurred.

M a th e m a tic a l m o rp h o lo g y  This field of study uses set theory to apply a series of 
operations to an image to define the shape of the objects tha t it contains. Originally, 
it was applied to binary images only. More recently, morphology has been extended 
to deal with grey-level images. Serra (1982) is the seminal reference for this subject.

O b je c t reco g n itio n  This thesis is restricted to low-level analysis such as the removal 
of noise and blurring. The main problem with pixel-level image models is that 
inference based on them  can only refer to statements about the pixels of the true 
scene. However because MCMC is used to implement the image models, posterior 
probabilities of arbitrary events defined by the pixel values, such as boundary length, 
can be estimated. This is discussed in Chapter 2. We do not attem pt high-level 
analysis from the field of artificial intelligence, such as object recognition, as has 
been done using template matching (Green 1995a, §3.3).

R e g is tra tio n  Subpixel registration is a related and im portant topic in this field. It is 
concerned with accurately aligning two or more separate images of an object to  allow 
consistent comparison to be made between two or more images (Tian and Huhns 
1986; Mort and Srinath 1988).

It is assumed tha t the data have already been registered and, for the 3D data  con­
sidered in Chapter 5, this is guaranteed because of the recording method used by 
the sensor.

S e g m e n ta tio n  Segmentation means dividing the pixels in an image into categories, which 
correspond to different objects or parts of an object. The objective is to move from 
individual pixels to considering sets of pixels as objects in their own right.

The simplest segmentation algorithm is to threshold the record, by classifying each 
pixel as lying above or below the threshold. The threshold might be the median 
record value in the image.

Some segmentation algorithms are often quite complex. For example, the Hough 
transform is a subpixel segmentation algorithm and the snakes algorithm operates
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at the full pixel level (see §1.2.2 on page 8). Kent and Mardia (1988) introduce fuzzy 
membership models in order to classify pixels in LandSat data.

Although we are not concerned with segmentation itself, it is in fact complementary 
to edge detection since edges can be used to break up images into different regions.

1.5 Sum m ary o f chapter

The purpose of this chapter is to provide motivation to explore the subject of subpixel 
image analysis in greater detail. To achieve this:

• Image analysis is defined and some example images are shown. The field of image 
analysis is broken down into categories.

• Potential areas of application are listed.

• Pull pixel edge detection is explained and commonly used methods are summarised.

• Reasons for subpixel edge detection and possible applications are discussed.

• Some existing subpixel methods axe outlined, including:

— interpolation

— filters

— transforms

— template matching

— stochastic models.

• Objectives for this thesis are stated:

— accurate reconstruction of edges in an image

— efficient algorithmic design

— flexible statistical models

— fast visualisation of the reconstruction.

• The thesis is outlined.

• Topics not covered in this thesis are acknowledged.
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Chapter 2

Bayesian m odels and inference

The sc ien ces d o  not try to  explain, they hardly Models are to  b e  used but not to  b e  believed,
even  try to  interpret, they mainly m ake models. Hem men
A m odel m eans a  m athem atical construct which, 
with th e  addition of certain verbal interpretations, 
describes observed phenom ena.
The justification of such a  m athem atical construct is 
solely and  precisely that it is e x p ec ted  to  work.
John von Neum ann

2.1 B a sic  a ssu m p tio n s ab ou t im age d ata

In image analysis, there is often prior knowledge about the features of objects in the image. 
Other assumptions can be derived from the data directly, such as estimating the colours, 
noise and blurring in the likelihood. In this thesis, we make assumptions about the form 
of the true image through the prior model. To reconstruct the true image to subpixel 
accuracy, we make the following assumptions:

1. The image can be modelled by a Gibbs distribution.

2. Objects in an image are defined as regions displaying considerable homogeneity, and 
have smooth boundaries.

3. The regions are large, so tha t locally the image has at most two colours, perhaps 
with a few exceptions.

For the first of these assumptions, a stochastic Bayesian approach to image analysis is 
used to incorporate prior assumptions about observed and unobserved image features, such 
as the detection, linking and smoothing of edges. These prior assumptions are incorporated 
into a mathematical model through a prior probability distribution on the set of possible 
images. Any difference between a given reconstruction and the observed data is reflected 
through a separate model for the degradation. Typically, the degradation arises from noise 
and blurring due to sensor imperfections. Consequently, there are many different images 
tha t could have produced the observed data. To help to avoid this instability, assumption 
two states tha t object boundaries are assumed to be smooth, in some sense. However,
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we do not require a parametric formula for the whole boundary. Instead, we implement 
this assumption by imposing a smoothness constraint, which says that pixels which are 
in close proximity are likely to be similar in colour. The third assumption ensures tha t 
within each region the image is essentially binary in nature. If the edge length or area of 
an object are the statistics of interest then it is sufficient to consider the object of interest 
to be lying on a contrasting background, so that there are only two colours or levels in 
the image. This assumption eases the computational burden and is often encountered in 
subpixel resolution modelling.

Remark.

•  Note th a t we make no major assumptions about the number, shape or size of objects 
in the true image, except that the objects are at least one or two pixels in size, do 
not overlap and have sharp edges.

• The models make explicit allowance for noise and blurring, in the observed record.

• For convenience, we colour the foreground as black and the background colour as 
white. They are denoted by b and w , respectively.

In principle, we would like to allow any division of the image between colours b and 
w in continuous space. However, our methods rely on the assumption tha t regions of 
a particular colour are at least a few pixels in size and that the boundaries between 
areas of opposite colour are smooth. But we observe that our methods have the 
potential to be extended to images containing several colours. The basic algorithm 
can be applied within any region containing just two colours and additional features 
are needed only in small regions where three or more colours meet. This is likely 
to occur at only a few pixels in an image. An alternative proposal is outlined in 
Chapter 6.

2.2 T h e  B ayesian  m odel

2 .2 .1  S o m e  n o ta t io n

defPrior The true image is denoted by X  = (Xi, X 2 , • • •, X n) and it is treated as a random 
variable. Let the density for the true image X  be where x  6 and Q, is defined
to be the state space of true scenes. The density fx{%) is the prior distribution. 
The random variable X i  is the colouring of pixel i. The marginal density of X i  is 
written fx ifa i)-  In full pixel models, Xi is usually a univariate distribution but in 
our subpixel models it is more complex. We refer to an estimate of the image as a 
reconstruction.

While the underlying, true image is usually continuous, we normally assume tha t it 
consists of pixels laid out on a regular lattice. This approximation is usually adequate 
for full pixel analysis but for subpixel reconstructions greater care is needed to define 
the state space for each model.
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L ikelihood  Let the probability density of the observed image or record Y  given X  — x  be 

fy\x(y->x ) and let f y ( y )  denote the marginal density of Y.  The density fy\x{y->x ) 
is the likelihood distribution. Although Y  is a random variable, it is fixed by obser­
vation, once the data has been observed.

P o s te r io r  Let the probability density of the true image given the record be f x \ y { x ^y)- 
The density f x \ y { x ,y)  1S the posterior distribution.

2 .2 .2  B a y es ia n  in feren ce

The methodology used in this paper is based on the Bayesian approach to two dimensional 
image reconstruction proposed by Grenander (1983), Geman and Geman (1984) and Besag 
(1986). In a Bayesian analysis, inference about X  is based on the posterior density of X  
given Y  = y,

f x \ y ( x , y ) =  f y \ x ( y , x ) f x ( x ) / f y ( y )  oc f y \ x ( y , x ) f x ( x ), x e n .  (2 .1)

Due to the high dimensionality of x, standard analytical, numerical or simulation meth­
ods are not adequate. Typically in spatial statistics f x { x ) is known up to proportionality 
only. We are mainly interested in the posterior distribution f x \y { x ^y)- For example, we 
might compute properties of fx \Y {x ->y)-> such as the expectation E fx Ŷ (k (X ))  of some 
function k  under f x \ y >

E f x \ y ( k (x )) =  ^ 2 k (x ) f x \ y ( x ^y)-

If k is an indicator function, probabilities of specified events are possible. Interesting 
properties of a reconstruction are not confined to just expectations. In §2.4, we consider 
which estimator has the most appropriate properties for subpixel imaging.

2 .2 .3  T h e  p rior  d is tr ib u tio n

We want the prior model for X  to produce realisations which contain smooth boundaries 
so tha t the reconstruction itself will tend to have smooth boundaries. This can be achieved 
if pixels which lie close to each other on the lattice tend to have similar colourings. It 
is also reasonable to assume that pixels which are spatially separated on the lattice are 
independent, given the other pixels in the image. A Markov random field probability 
model (MRF) is a model that is often used to reflect both of these features. So it is 
used in image analysis to introduce prior knowledge about the image. Its key feature is 
the local dependence of an individual pixel on the pixels in a neighbourhood around it. 
Before defining a MRF, we introduce some set notation to denote specific sets of pixels 
within an image.

D efin itio n  2.1. We say that two pixels are neighbours if they are near each other, in 
some sense. Denote a neighbourhood relation on Xi, Xj G X  by i ~  j .
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The relation ~  (tilde) is symmetric, so i ~  j  => j  ~  i. A standard condition is 
tha t Xi is not a neighbour of itself, i /  i. The implication of this definition is tha t the 
neighbourhood structure is quite local but only if the neighbour relation is appropriately 
defined. Denote the neighbours of pixel i by 5i.

D efin itio n  2.2. The set of four pixels horizontally and vertically adjacent to pixel i is 
defined to be the first order neighbourhood S\ of pixel i.

D efin itio n  2.3. The set of four pixels diagonally adjacent to pixel i is defined to be the 
second order neighbourhood Sf of pixel i.

We use second order neighbourhoods only in Chapter 3.

D efin itio n  2.4. A clique is either a set of pixels, all of whom are neighbours, or a
singleton pixel. Define C  to be the set of all these cliques and define X - i  to be the set of
variables X  excluding pixel i.

Now, we are ready to discuss Markov random fields.

M o d el 2.1. M arkov random  field (M R F). A M RF is defined by two conditions. 
Firstly, every permitted reconstruction is considered,

Pr(A  =  x) > 0, V x e f l .  (2.2a)

Secondly, the colouring for pixel i is conditionally independent of all other pixels, given 
the colouring of its neighbours Si,

Pr(X* =  Xi | X - i  = x- i )  =  Pr(Xi =  X{ \ X j  = x j , j  e  Si). (2.2b)

A theorem due to Hammersley and Clifford provides a consistent, general form for the 
joint p.d.f. of a MRF, given the conditional probabilities in Equation (2.2).

T h eo re m . Hammersley-C lifford . The general form o f the probability density func­
tion (p.d.f.) that satisfies the two conditions for a MRF, in Equation (2.2), is

f x ( x )  = P r(A  = x) = kexp{  —Ux{x)}, where x  E Q, U x{x ) =  ^  Uc(x) (2.3)
cec

and Uc(x) depends only on the pixels in the clique c. The constant k ensures that f x  
integrates to one but its value need not be known to implement our methods.

Proof. See Besag (1974) and Besag (1986). □

The term  Ux{x)  is sometimes called the energy function (or cost function or penalty) of 
the image X .  Equation (2.3) is sometimes called a Gibbs distribution.
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Random field models are derived historically from models in statistical physics. De­
velopments in the image model and the design of algorithms that use this model have 
proceeded in parallel. A MRF can be summarised succinctly as a non-directional, non- 
causal, conditionally independent structure. In practice, it is built up by:

1. Specifying a neighbourhood system.

2. Deciding the cliques associated with that neighbourhood system.

3. Determining the energy function associated with each clique. The MRF is homoge­
neous if the energy function does not depend on the position of the clique.

The outstanding problem is how to perform any computation with a MRF model. The 
answer is to use Markov chain Monte Carlo methods but the details are deferred until

T h e  p r io r  d is tr ib u tio n  for th is  th e sis

The prior for this thesis is based on a MRF and so it takes the form shown in Equa-

chapter, as the models change, so we defer the details until then. For now we use the 
general form of the prior to specify the posterior, in Equation (2.6).

2 .2 .4  T h e  lik e lih o o d  fu n ctio n

The observed data Y  = (yi,V2 , • • • iVn) are recorded on a regular lattice of points {z{ G 
3ft2 : i =  1 , 2 , . . . ,  n}. The sensor’s output at each Y{ represents the average intensity within 
tha t pixel and is assumed to be proportional to the area covered by the object in that 
pixel. Due to imperfections in the recording sensor, the record Y  may be degraded by 
blurring or additive noise.

M o d e l 2 .2 . LIKELIHOOD. The likelihood model is

which decreases in value as the distance between z  and the point z\ increases and e* is

§2.3.

tion (2.3). The choice of neighbourhood system and the specification for Uc{x) decides 
the behaviour of the prior for X .  The specific details about the prior are different in each

Vi = hi(x) +  ej, for i = 1, . . .  ,n , (2.4)

where ei is independent, additive sensor noise and h{x) is the vector of mean values E ( Y )
when X  = x, taking into account blurring, if necessary. □
E x a m p le  2.1. Continuous 2D D egradation M odel .
In 2D, one possible additive Gaussian model for the degradation model is

where x(z)  is the value of the true image at the point z G 3ft2, bfa, z) is a blurring function
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independent, additive, Gaussian sensor noise, with variance a2. This particular model is 
considered in §4.2.2 on page 70. □

In general, the likelihood distribution of the signal y given the true image x  for the 
Gaussian model is

fv \x { y ,x )  exp { (2cr2)—111 y — h(x)\\2}. (2.5)

The specific formulae for y and h(x) depend on the model used, so we defer the details 
to later chapters. A simple example is given in §2.6.

Blurred data

The function h(x) may include blurring. When blurring is present, pixels around the 
border of the image are only observed indirectly through their contributions to the records 
of neighbouring pixels. In this case, there are fewer elements in the record Y  than there 
are pixels in the image X .  We assume that the blurring is shift invariant. This spatial 
stationarity, usually assumed in image models, removes the need for experimentation with 
proposal distributions tailored to individual variables, representing individual pixels (see 
§2.3.7 on page 32). We assume the blurring coefficients b(zi,z) and the noise variance o2 
are known or can be estimated from the data.

2 .2 .5  T h e  p o ste r io r  d is tr ib u tio n

The posterior distribution is formed by substituting Equations (2.3) and (2.5) into Equa­
tion (2.1) to get

f x \ r f a y )  oc ex p { -U x (x) -  {2o2)~1\\y -  h(x)\\2}, x  e ft. (2.6)

The posterior distribution is still a Markov random field but with larger neighbourhoods 
than in the prior because of blurring. Although this implies that the posterior distribution 
depends on Y, this is fixed by observation. This posterior distribution is the basis of 
statistical inference given the record Y.

D efin ition  2.5. When we refer to the energy of an image, we mean the energy associated 
with the posterior distribution f x \ y ( x ,y) which is the quantity

U x \y (x ) = Ux {x) +  (2<72)_1||y -  h(x) ||2. (2.7)

We consider methods for estimating the true image X , which require sampling values 
of X  from fx \Y (x i V) or finding the value that maximises f x \ y { x i y)- These are substantial 
computational problems, which are tackled using Markov chain Monte Carlo algorithms.
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2.3  M arkov chain M on te Carlo a lgorith m s

2 .3 .1  D e fin it io n s

To discuss Markov chain Monte Carlo algorithms (MCMC), we need the following defini­
tions:

D efin ition  2.6. A stochastic process t =  1 , 2 , . . . }  is said to have the Markov
property if future events depend on the current status and not the past. The discrete case 
is expressed as

Pr{x(m > = x(t+l> I A<0) =  x(0\ . . . , X (l) =  rc(t )}  = Pr{A'(1+l) = x{t+1) | A'(t) = x(l) \.
(2.8)

D efin ition  2.7. A Markov chain M  is a discrete-time, time-homogeneous process with 
a countable state space which satisfies Equation (2.8).

D efin ition  2.8. The Markov process can be defined by one-step transition probabilities

q(x,x') = Pr(X"(i+1) =  x 1 \ = x).

These transition probabilities can be collected into a matrix called the transition matrix, 
Q = {q(x,x ')  : x ,x '  £ fi).

D efin ition  2.9. A Markov chain is defined as irreducible if we can reach every state 
from any given state.

D efin ition  2.10. An irreducible Markov chain is aperiodic if it has a state i of period 
1, where the period Di of state i is defined to be

Di = g.c.d. {t : Pr(getting from i to i in t steps) >  0,for t G A/’}.

State i is periodic if Di > 1.

D efin ition  2.11. The transition matrix Q of a Markov chain is said to satisfy detailed 

balancewithrespecttoadistributionirx if

nx{x)Q {x  —>• x ’) = 7Tx {x ' ) Q ( x i —i► a:) V x ^ x ' e Q .  (2.9a)

The general balance condition is satisfied iff

nx(x )  — —> x), V x (E £2. (2.9b)

The detailed balance condition is also called local balance or time reversibility. 
Detailed balance implies general balance and it is often easier to work with.
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Next we state, without proof, that the Markov chain will converge to a unique lim­
iting distribution, under suitable conditions. A limiting distribution of a Markov chain 
is a distribution over the allowable states of the chain which is maintained as the chain 
undergoes transitions.

T heorem . ERGODIC. I f  X ^  is an aperiodic, irreducible and finite Markov Chain, there 
exists a unique limiting distribution irx satisfying

nx{x)  =  'Kx{x ')Q {x' ► x), V x  e  fl.

and P r ( X ^  = i) —>• nx(i)> where i = 1 , . . . ,n , 7rx(i) >  0, ^ x i f )  = 1 and t —y oo.

Proof. See Feller (1968). □

The limiting distribution ttx is also called the ergodic, equilibrium, invariant or stationary 
distribution for the transition matrix Q. It follows that to sample from the equilibrium 
distribution irx(x),  we can run a Markov chain with transition matrix Q satisfying the 
equations in (2.9) until the chain appears to have settled down to equilibrium.

Although the above theory has been presented in terms of countable state spaces, it 
also holds for non-countable state spaces.

2 .3 .2  C o n str u c tin g  a M C M C  a lg o r ith m

Suppose we wish to sample from a distribution ttx(x ). For example, in image analysis 
we want to sample from the posterior distribution f x \Y{x ty)-> given by Equation (2.6). 
Ideally we want a sequence of independent realisations from ttx{x ). In some cases such 
as the multivariate Gaussian, it may be possible to sample directly from ■nx{x) using 
a transformation of uniformly distributed variables. In other cases, rejection sampling 
may be used (Smith and Gelfand 1992). In more complicated cases, we resort to the 
ergodic theorem to generate a sequence of dependent realisations from a single, finite- 
state, discrete-time Markov chain, which we design so that its limiting distribution is 
nx (x).

We construct Markov chains in which a single element of X  is updated at each step. 
In image analysis, this corresponds to a process in which one pixel at a time is updated 
and the distribution of the updated value is conditional on its neighbours. If the Markov 
chain is irreducible and aperiodic then the limiting distribution of this chain is the pos­
terior distribution in Equation (2.6). So we can get a Markov chain with the posterior 
distribution as its limiting distribution. Simulating from this chain causes the chain to 
wander through the states x , visiting each with probability f x \Y ( x ,y)-

E xam ple 2.2. E xpectations under  MCMC.
Suppose we want to construct a chain M  and then use its empirical average ki to approx­
imate E^x {x){k), where ki is calculated from a long, partial realization x ^ \ x ^ 2\ . . .  , x ^  
of the Markov chain. If x ^  has distribution nx(x)  then the general balance condition
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^ x ( x )  Q = ttx{x ) means that the marginal distribution of each subsequent x ^  is also irx- 
This ideal condition is rarely attainable for the problems under consideration. Instead, we 
use an arbitrary starting point from which we collect a sample. For assessing simulation 
errors, the Markov chain is usually run for some time, called the burn-in period, before 
collecting statistics so tha t x ^  should then have distribution rather close to ttx- Geyer 
(1993) advocates using a single long run rather than several short ones. □

Having established tha t certain Markov chains converge to a unique limiting distribu­
tion, it is still necessary to construct the transitions such that the limiting distribution is 
the desired posterior distribution. There are several MCMC algorithms for updating just 
a subset of the variables in x, x a say, in accordance with detailed balance. We consider the 
Hastings algorithm, the Metropolis algorithm and the Gibbs sampler, in the next section.

2 .3 .3  M C M C  a lg o r ith m s for sa m p lin g  from  a d is tr ib u tio n  

T he H astings algorithm

Hastings (1970) provides a general form of MCMC algorithm. The objective is to create 
a Markov chain with limiting distribution 7rx{x) for x  6 Q.

A lgorithm  2 .1 . H a sting s .

• Start with a proposal matrix P. P  is any convenient matrix, which defines an irre­
ducible and aperiodic Markov chain.

• Set the transition probabilities Q to be

I P ix  —> x 'ia lx  —t x ' )  x x'
Q(x  —> x  ) =  < (2.10a)

[ 1 -  P<<X X" M X -> X') X = X'i

where a(x, x') = min {7rx(x,)P (x l ► x ) / t t x {x ) P ( x  —> x f), 1} . (2.10b)

Then Q has the limiting distribution n x • d

Proof of convergence. To see that Q has limiting distribution n x  we need to confirm de­
tailed balance,

'x{x)Q (x  -* x') =  irx(x')Q(x' ->■ x).

C ase  1 x  =  x':
Nothing to be done.
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Case 2 x ^  x ' and 'Kx{xl)P{xl —» x) > ttx (x )P (x  —>■ x '):

7t x {x )Q(x —>■ x;) =  7tx{x )P{x —>■ x')a{x  —>• a/)

=  nx{x)P {x  x'), because a  =  1.

Also —̂ rr) — 7Tx(xl)P(x' —> x)a(x '  —> x)

=  7Tx(xr)P(x' —> x)(irx(x)P (x  —> x')/lTX {x')P{x' —> x))

=  7Tx(x)P(x  —»■ a/).

C ase 3 x / i '  and 7tx (x ')P (x '  —> x) <  n x{x )P (x  —> x')\
Repeat the previous case but interchange x  and x ' . □

The irreducibility of Q follows from that of P. The matrix Q is aperiodic since Q(x -» 
x) > 0, for at least one state x  in SI. The matrix P  can be anything so we choose something 
easy. However a  depends on 7rx, s o  we need to be able to calculate 7 r x { x ' ) / 7 r x ( x )  for any 
x, x' £ Q, with P (x  -» x') >  0. We set up P  so that the only transitions from x to x' are 
those for which 'kx{x ')/ '^x{x)  are easy to calculate.

D efin ition  2.12. In the context of image analysis, we usually assume Q(x —>• x') =  0 
unless x and x' differ at most at only one pixel, x_{ =  x'_{ for some pixel i. This is called 
single site updating. Occasionally, we update several pixels simultaneously and this is 
called multiple site updating.

D efin ition  2.13. A sweep of the image consists of working systematically once through 
each of the n  pixels in an image.

We select the sequence of pixels to be updated, from a raster scan of the image.

D efin ition  2.14. A raster scan visits the pixels in an image, going from left to right and 
from the top to the bottom  of the image, starting at the top-left. (We define a raster 
scan of a 3D volume on page 126 of Chapter 5.)

We usually talk about visiting all the pixels in an image rather than looping over 
subscripts and for this we use the phrase ‘sweeping the image’.

Another way to view the Hastings algorithm is to sweep systematically through a 
sequence of transitions, for i = 1 , . . . , n ,  where each is of the form given in 
Equation (2.10), for some P ^ \  The transition updates element i only.

T he M etropolis a lgorithm

The Metropolis algorithm is another single-site update procedure. It was proposed by 
Metropolis et al. (1953) for simulating the evolution of a solid to thermal equilibrium. Let 
P  be symmetric,

P (x  —> x') = P(x '  —>• x) V x, x  E SI
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then a(x  —>• x') = min{l,7r^-(x/)/7rx(^)}. The transition matrix Q can be derived as 
follows:

A lgorithm  2.2 . M etropolis.

1. Let x ^  be the state at time t. Set t = 0.

2. Generate a proposal state x' according to P, Pr{X  =  x'} = P{x^> —> x'), for x' E fi.

3. Accept x' with probability a ( x ^ \ x ' )  otherwise remain at x ^ . So

X ( t + 1 )  J  x> with probability a ( x ^ \ x ' ) ,

x-W with probability 1 — a ( x ^ \ x ' ) .

4 . Increment t. Goto Step 2. □

In image analysis terms, we select a new proposal uniformly from the range of possible 
pixel values, when updating the zth pixel. The new proposal is accepted with probability

a (x ,x  ) =  min{l,7rx(a: )/irx (x )}-  (2-11)

The equilibrium distribution is unique if Q(x  —> x 1) =  a(x  -> x ,)P (x  —> x') and a
sufficient condition for convergence is being able to move from any state to any other
(Ripley 1987).

T he G ibbs sam pler

The Gibbs sampler consists of sampling sequentially from the conditional distributions of 
each variable given all the others. The normalisation to a proper distribution is simple 
and MCMC simulation is easy using the Gibbs sampler, if the distribution is discrete and 
takes few values. It was popularised by Geman and Geman (1984) and is referred to as 
the ‘heat bath ’ in statistical physics.

A lgorithm  2.3 . G ibbs SAMPLER.

1. Let t = 0. Start with any point in the multivariate distribution x ^  = x =  
f r (0) (0) (Oh
^ 1  5 X2 ’ • • • ’ Xn /■

2. Sweep through the n  elements of x ^  to generate .

• Sample x±+1  ̂from Pr(:ri | x%\ • • • , X n \ Y )

• Sample x ^ +1  ̂from Pr(x2 \ x f +1\ x ^ \ . . .  , x $ , Y )

• Sample Xn+l>) from Pr(a:n | x±+1\  x ^ +1\  ■.. , x ^ _ ^  ,Y )

3. Increment t and goto Step 2.
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The vectors x^° \x^ l\ . . .  , x ^ \ . . .  are a realisation of a Markov chain. The transition 
probability Q from x  to x' is

Q(x -+ x') = Pr(a:/1 | z 2, . . .  , x n, y )  Pr(x'2 | x\, x 3, . . .  , x n, Y )

Pr(^3 | z i , 4 , x 4, . . .  , x n, Y ) .. .Pr(x'n \ x '^ . . .  , < _ 1?y )  □

This completes a sweep of the Gibbs sampler. It produces a whole new image after 
each sweep by updating the current value of the reconstruction at each pixel with one 
sampled from the conditional distribution for the colour of that pixel.

To put the algorithm in the context of image analysis, let x, x' E fh The transition 
probability Q(l\ x , x ' )  of moving from x  to x' by changing a single pixel Xi is propor­
tional to the probability of x\ under the conditional density of X{ given tha t X - i  = x - i ,  
^Xi\X-i(x i7x -i)- That is, if x'_{ =  x - i ,  the probability of moving from x  to x ' is

. I 7rx(x ') /y]  „ // nx(x" )  ,• =  x~i,QW(l ,X,) =  ^  > -  (2>12)
I 0 otherwise

and this move is always accepted. The algorithm works by applying these transition 
matrices in sequence, such as a raster scan. It can be shown tha t 7Tx is the stationary 
distribution for each Qh) and that 7Tx is the stationary distribution for Q.

2 .3 .4  C o m p a r iso n s b e tw een  M C M C  sa m p lin g  a lg o r ith m s

In the chapters that follow all three algorithms are used, so we now consider their relative 
merits.

The Gibbs sampler is a special case of the Metropolis algorithm which in turn  is a 
special case of the Hastings algorithm. For all three algorithms, a neighbouring state is 
generated and a decision is made to accept the move, or not, from the current state to the 
newly, generated state. Generally, a neighbouring state is an image which differs from the 
current image by a single pixel. Chapter 3 also considers the possibility of changing more 
than  one pixel at a time.

Choosing between the three MCMC methods depends on the application. Gibbs is 
useful if the marginal distribution takes few values (less than about 30) and the algorithm 
assumes tha t the marginal distributions are cheap to compute; otherwise this algorithm 
is computationally expensive. Hastings and Metropolis methods update pixels singly by 
choosing between the current and an alternative proposal. They work well with either 
discrete or continuous variables. Metropolis is easy to code but Hastings is a little more 
difficult because the transition matrix is no longer symmetric, so extra code is required. 
However, this allows greater freedom when designing algorithms that are more efficient 
and hence speed convergence. This extra feature is especially im portant with 3D images as
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the greater amount of physical space translates into state spaces which grow exponentially 
with dimensionality. This point is discussed in detail in Chapter 5.

2 .3 .5  C h a r a cter istic  fea tu res  o f  M C M C  a lg o r ith m s  
for sa m p lin g  th e  p o ste r io r  im a g e  d is tr ib u tio n

An analytic approach to sampling from the posterior is not feasible because of the high 
dimensionality of fI. We resort to simulation to reflect and assess the uncertainty inherent 
in image models. We seek efficient and easy to code algorithms. The main advantage of 
simulation over analytical or asymptotic methods is its flexibility for non-standard cases 
and its ability for almost exact solutions for arbitrary functionals of the process. This is an 
im portant feature when dealing with image data. Simulation is used in estimating expec­
tations, variances or modes, over some defined multivariate distribution. For example, the 
expectation might be probabilities or vectors of probabilities. The posterior distribution 
is often stated up to a normalising constant.

C onditional independence

The key to construction of highly structured stochastic systems is the concept of con­
ditional independence, where each variable is related conditionally or locally to only a 
few other variables. We use a local conditional structure to economically model the spa­
tial structure in the true scene. This allows the model to exhibit global complexity even 
though the model has a simple local structure. For example, conditional independence can 
be represented graphically by drawing random variables as nodes and the links between 
them indicate local conditional independence relations. This leads to modular components 
which are based on local computation.

Spatial structure

Secondly, a key feature of image data is their spatial structure. The conditional inde­
pendence structure inherent in MCMC methods reflects this spatial structure while still 
producing tractable algorithms. This means that pixels in an image which are spatially 
near to each other are treated as neighbours in the conditional independence structure. 
So instead of producing a sequence of realisations from the multivariate distribution of in­
terest, MCMC produces a single realisation of a Markov chain whose limiting distribution 
is tha t multivariate distribution. A key feature of this method is to work with conditional 
distributions so variables are updated one at a time. This slows the process down and 
leads to correlated results but each step in the algorithm is easier to compute.

Stationarity

Thirdly, to make image models even more tractable, they are often defined to be spatially 
stationary. This leads to efficient MCMC algorithms because the calculations at each pixel 
are very similar, resulting in compact code. This suggests that MCMC algorithms may
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be implemented on parallel machines to produce real time answers (Grenander and Miller 
1994). In §4.2.2 for instance, a likelihood function for the data relies on the blurring in 
the image being stationary, to simplify the calculations.

For these three reasons (Green 1994b), MCMC is a natural mechanism for sampling 
from both the prior and posterior distributions of image models. However, there is no 
substitute for a thorough qualitative understanding of the target distribution. This ‘expert 
knowledge’ is a prerequisite for reliable design of MCMC algorithms.

2 .3 .6  A d v a n ta g es  o f  M C M C  sa m p lin g  a lg o r ith m s  

F lex ib ility

MCMC is flexible. For example it can be used to estimate confidence intervals, to deal 
with non-standard priors and likelihoods that arise with missing data, to simulate systems 
tha t can only be observed indirectly, or to assess simulation error.

MCMC can be used to tackle famous problems, such as the travelling salesman prob­
lem. It is used to solve inverse problems in remote sensing. In image analysis, simple 
edge detection is often based on local gradient information only. MCMC can incorporate 
additional information such as smoothness, continuity and closure.

C redib ility  regions

One of the main appeals of MCMC is the use of large samples from the chain to form 
credible regions for posterior estimators, direct from the empirical distributions. This 
offers the possibility of assessing the variability of point estimates (Green 1995a; Besag, 
Green, Higdon, and Mengersen 1995). Also, we can use models tha t are believed to be most 
appropriate for the data, even if they require non-standard likelihoods and non-conjugate 
priors.

S en sitiv ity  analysis

Sensitivity analysis is an im portant part of responsible statistical inference. Prior distri­
butions can have a major influence on the posterior so the sensitivity of the posterior to 
the prior is an im portant issue. MCMC can be used for sensitivity analysis.

2 .3 .7  P r o b le m s  w ith  M C M C  sa m p lin g  a lg o r ith m s  

Spatial invariance

MCMC is a computational technique that requires a full probabilistic model. Sometimes 
the spatial invariance assumption is not justified strictly speaking; but the benefits that 
it offers may make us willing to accept it. This problem can be especially noticeable in 
biological microscopy because images may contain very heterogeneous image structures. 
For example, the z-axis may suffer from different blurring to tha t on the x-y plane. This 
is discussed in more detail in Chapter 5.
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C onvergence and efficiency of M CM C

There are convergence issues that need to be considered with MCMC.

The canonical example for illustrating the problems that can arise with single variable 
updating in MCMC is a mixture of two bivariate normal distributions, displaced diagonally 
from each other. As the distance between them increases, swaps between one mode and 
the other become increasingly rare. For a finite number of realisations of the Markov chain 
there may be little or no swaps but mathematically the Gibbs sampler and other MCMC 
algorithms are still irreducible. This is why MCMC may sometimes work badly.

Two methods for alleviating this are multigrid and auxiliary variables. For multigrid 
methods (Sokal 1989) the size of the sets of variables that are simultaneously updated 
is varied systematically from small to large and back again. The sets of variables are 
neighbouring pixels. In auxiliary variable methods (Swendsen and Wang 1987; Besag 
and Green 1993), the original variables x  are augmented by additional variables u say, 
with ttx(u | x ) specified. Simulation relies on x  and u being updated alternately, using a 
MCMC method such as Gibbs sampling. The effect is that the chain mixes more rapidly. 
The marginal for x  is unchanged, therefore information extracted from it is valid.

Monitoring the rate of convergence is currently an active area of research (Rosenthal 
1994; Roberts and Poison 1994). One approach is to monitor the output from the chain 
and use a function of the realisation to decide when convergence has occurred. Green 
(1995b) warns that it is difficult to draw inferences about parts of a distribution which 
have not been visited, without prior knowledge of the target distribution.

The large dimensionality of a state space may make monitoring of convergence difficult 
and the speed of convergence seems to decrease as the dimensionality increases (Green 
1995a). This may be a problem with the 3D algorithm considered in Chapter 5.

O ther problem s

Phase transition problems within the prior models are another issue but this problem is 
offset by the fact that we are mainly concerned with the posterior distribution which is 
stabilised by the likelihood function.

MCMC must be designed to allow free movement around those regions of the model 
space that have substantial support in the posterior distribution.

We do not consider strategies for avoiding excessive autocorrelation or novel types of 
inference in MCMC algorithms.

2 .3 .8  A lg o r ith m s  for fin d in g  th e  m o d e  o f  a d is tr ib u tio n

To help find the mode of the posterior distribution, we use two other algorithms: simulated 
annealing is stochastic and iterated conditional modes is deterministic.
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S im u la ted  an n ea lin g

Kirkpatrick et al. (1982) discovered an analogy between minimising the cost function of 
a combinatorial optimisation problem and the slow cooling of a solid. They called this 
algorithm simulated annealing as they were simulating the physical process of cooling 
a metal which is known as annealing. Simulated annealing is an MCMC, stochastic- 
optimisation algorithm for sampling from a target probability distribution. We use it 
in conjunction with the other MCMC algorithms, to find the image x  with maximum 
probability in the posterior distribution ttx{x ) =  fx \Y (x ^y)-

Combinatorial optimisation involves attaching a real number to a finite or countably 
infinite number of states using a cost or energy function. The objective is to search the state 
space to find the state with the minimum energy. The modification, that enables simulated 
annealing to optimise rather than sample, is the raising of the target distribution to higher 
and higher powers over the course of the algorithm. This places an increasing probability 
at the globally optimum state. By using the energy in the Metropolis algorithm as the 
energy function in the simulated annealing algorithm and slowly reducing the temperature, 
Kirkpatrick et al. (1982) found a general solution to combinatorial optimisation problems.

An initial image is needed to initialise the algorithm.

D efin itio n  2.15. The maximum likelihood estimate (MLE) is created by assigning to 
each pixel the colour which is closest to the record value for tha t pixel.

The resulting image is called the closest mean classifier (CMC).

A lg o rith m  2.4. SIMULATED ANNEALING.

• Initialise to any convenient image, such as the closest mean classifier of the record.

• Simulate from a process with the distribution

n p f a )  = { * x ( x ) } l/T /  . (2.13)

— Choose an initial value for T . Complete a sweep of the image by sequentially 
updating each of the pixels in the image.

— Remember the image with the lowest energy.

— After each sweep of the image the parameter T  is reduced, such that,

Tt > Tt+1 and lim Tt = 0,
£—>00

according to a predefined schedule.

• The image with the lowest energy is the final answer. □
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T  is called the tem perature parameter. As t —> 0, our estimate of the true scene 
concentrates on the mode of the posterior probability.

Remark.

• The crux of the algorithm is that it might accept a move to a state with a higher 
energy function as a means of escaping from a local minimum.

• If the starting tem perature is sufficiently high, the starting point is not critical 
because the algorithm can escape from local minima. Therefore for convenience, we 
use the maximum likelihood estimate to initialise the algorithm.

• The algorithm relies on a process of iterative improvement. This makes it easy to 
implement but it is slower than some ‘greedy’ algorithms, which can only converge 
to local minima.

• The algorithm has the potential to reach but not to detect the global maximum of the 
posterior distribution. In theory, the algorithm will find the mode of the posterior, 
if the tem perature is decreased at a sufficiently slow rate.

T em perature schedules for sim ulated  annealing

Because we are not sampling from a fixed distribution, the tem perature must be decreased 
slowly (Geman and Geman 1984). In theory, the temperature parameter should be de­
creased on a log schedule but in practice we can only afford to decrease the tem perature 
towards zero over a finite period of time. Consequently, we can only expect to find a 
local minimum. However, if the starting temperature is high enough, we expect to explore 
the state space sufficiently to find a good local minimum. The rate of decrease may also 
depend on the complexity of the energy function.

We consider the four families of temperature schedules proposed by Stander and Sil­
verman (1994). These are shown in Table 2.1. This means that our schedule requires 
four parameters: starting and stopping temperatures, the desired number of sweeps of the 
image and the shape of the tem perature schedule. This approach has the advantage that 
we can explicitly control the number of sweeps, the parameter to which the CPU time 
is most sensitive. All four temperatures were considered but the geometric tem perature 
schedule is used throughout because it was found to work better in practice than other 
tem perature schedules, not cooling too quickly or too slowly.

E xam ple 2.3. T EM PE R A T U R E  SCHEDULES.

For example, suppose we wish to sweep an image using simulated annealing a finite number 
of times, say 50, and the temperature starts at 5 and drops towards 0. Then Figure 2-1 
shows some examples from the families of temperature schedules listed in Table 2.1. In 
order to get from a tem perature of 5 towards 0 in a finite number of sweeps, both  the 
logarithmic and reciprocal temperatures drop rapidly towards zero during the first few 
sweeps. Thereafter, the algorithm makes few changes to the image and so is not exploring
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Family 
of schedules Temperature

Straight

Geometric

Reciprocal

Logarithmic

/  + ( ( - / ) ( t - l ) / ( T - l )

U (T  — 1)/ (IT — 

i / { io g ( r + i ) - ( o 9(2)}
I log(T + l)—/  lo g (2 )+ (/-/)  log(t+ l)

Table 2.1: F a m i l i e s  o f  T e m p e r a t u r e  S c h e d u l e s . This table shows the four temperature 
schedules that were considered for simulated annealing: straight line, geom etric, reciprocal and  
logarithmic. Each schedule has four parameters: T  is the total number of sw eeps, /  is the starting 
temperature, I is the finishing temperature and t is the current sw eep  number.

to

Straight line 

Geometric 

Reciprocal 

Logarithmic

b= co

a

CM

o
30 40 500 10 20

S w eep  number

Figure 2-1: F a m i l i e s  o f  T e m p e r a t u r e  S c h e d u l e s . Some exam ples from the families of 
temperature schedules listed in Table 2.1 are shown here, where there are 50 sw eeps with a  starting 
and finishing temperature of 5 and 0.1, respectively. The logarithmic schedule was felt to drop too  
rapidly to explore the state sp ace  fully, as does the reciprocal schedule. On the other hand, the 
straight line was felt to d eca y  too slowly. Thus the geom etric schedule is preferred.
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the state space as much as it does under the geometric schedule. The straight line schedule 
was found to decrease too slowly. Consequently the geometric schedule is favoured. □

Iterated  conditional m odes (ICM )

A deterministic, strictly downhill algorithm that Besag (1986) called iterated conditional 
modes (ICM) forces convergence to the ‘nearest’ local minimum from the starting image. 
We use it to find the image X  with maximum probability in the distribution irx{%) = 

fx \y (x ,y ) -

A lgorithm  2.5. ITERATED CONDITIONAL MODES (IC M ).

• Start with the CMC of the record.

• For each pixel i in the image, update from x to x' where x ,x '  6 and X-i = x'_i} 
by choosing

x' = maxlTTx^^n : x ’C = £_i},

f o r i  = l , . . . , n .

• Repeatedly sweep the image until convergence. □

ICM requires a good starting point which makes it sensitive to noise. ICM does not 
require a temperature schedule, as it merely focusses in on the nearest local minimum and 
convergence is guaranteed usually after only a few sweeps of the image. ICM is equivalent 
to running simulated annealing at a temperature of zero.

C om parisons betw een  sim ulated  annealing and ICM

Simulated annealing can achieve far lower energies than ICM but at a cost of more process­
ing time. Simulated annealing sometimes accepts increases in the energy which allows this 
algorithm to escape from local minima. Simulated annealing also has the theoretical ad­
vantage that it will converge to the mode of the posterior (or any statistic of the posterior 
distribution) as the number of sweeps tends to infinity. In practice, only a finite number 
of sweeps are available and it is not clear how well the sampling mechanism performs at 
each temperature.

A well known problem can arise with simulated annealing if the target distribution 
exhibits multi-modality. For a fixed temperature, successive realisations become increas­
ingly dependent as a local minimum is approached. Unless the algorithm can escape, the 
process may spend a long time restricted to that region. This problem is known as critical 
slowing down (Besag and Green 1992).

ICM is a strictly downhill or ‘greedy’ algorithm that converges deterministically to a 
local maximum of the posterior distribution. The algorithm cannot escape from a local 
minimum, so the final reconstruction depends heavily on the starting point. For example,
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if the starting image has every pixel coloured white then the prior penalty in Equation (2.3) 
is zero. A pixel will change colour to escape this poor starting point only if the resulting 
increase in the prior penalty is more than offset by the corresponding reduction in the 
likelihood penalty. However, it is im portant to realise that it is the combination of a poor 
or naive starting point and the level of noise inherent in the image tha t results in a poor 
reconstruction from ICM. Consequently, given a sufficiently low level of noise, ICM can 
produce quite reasonable reconstructions even from poor starting images.

C om bining sim ulated annealing and ICM

During the last few sweeps of the simulated annealing algorithm, the tem perature drops 
close to zero. Ideally we would like to continue running the simulated annealing algorithm 
at a temperature of zero to converge on a local minimum (Geman, Geman, and Graffigne 
1987). However, this would cause ‘division by zero’ errors in Equation (2.13). To ensure 
convergence, we use a combination of simulated annealing followed by a strictly downhill 
algorithm.

• Apply simulated annealing as per Algorithm 2.4.

• Initialise the downhill algorithm to the reconstruction which had the lowest energy 
from the simulated annealing algorithm, a la Stander and Silverman (1994).

• Apply the downhill algorithm until it converges.

We illustrate the benefit of this approach in §2.6.

2 .4  Im age estim ators

2 .4 .1  P o ss ib le  e s t im a to r s

Following on from §2.2.5, the posterior distribution fx \Y (x iV) °f Equation (2.6) 
our knowledge of X  given the prior model and the record Y .  We can use the 
average of I realisations to estimate the expectation of X ,

i
Ef xly ( X )  =  Y ,  x f x \ y ( x , y)  ~  x  = r1

xEf l  t —1

where is the state at time t = 0,1, 2, . . . .  As will become clearer in later 
averaging realisations is not straightforward for the models used in this thesis, so we use 
point estimates of the posterior instead.

However, expectations present problems with averaging the realisations, as will become 
clearer in later chapters.

The aim is to sample from the posterior of our distribution in order to arrive at a point 
estimate for the true image. There are two commonly used point estimates.

expresses
empirical

(2.14)

chapters,
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D efin itio n  2.16. The maximum a posteriori estimate (MAP) is the point estimate of 
the image i G f i  that maximises the posterior distribution fx \Y {x iV)-

Therefore we want to find an image X , in the predefined set of allowable images Q, 
tha t maximises fx \Y -

D efin itio n  2.17. The marginal posterior mode estimate (MPM) is the point estimate 
of the image that maximises the posterior probability fx i\Y ix ii y)-> for i =  1 , . . .  , n  (Mar- 
roquin, Mitter, and Poggio 1987).

MPM is equivalent to minimising a loss function which incurs a penalty of one for each 
misclassified pixel. In an imaging context, MPM can be implemented by sampling from 
fx \Y  and choosing the most frequently occurring colour at pixel X{ as the estimate for 
the colour of tha t pixel.

2 .4 .2  C om p ar ison s b e tw e e n  e s tim a to r s

The point estimates MAP and MPM are not necessarily equal. Greig, Porteous, and 
Scheult (1989) contains examples of MAP estimators which have high penalties under the 
MPM loss function.

Which estimator is more suitable depends on the application. For example, MPM may 
be better if we are interested in a statistic of the number of pixels of a particular colour, 
such as the classification of land from ariel images. MAP may be better at restoring groups 
of pixels such as in shape analysis (Ripley 1988).

The MAP estimate is a convenient choice for our subpixel problem and it is this 
estimate that we pursue. That is, we seek the mode of the posterior distribution, the 
MAP estimate,

X  -- a rg m ax.{fx\Y(x iy)}-xGiI

For simplicity, denote X  by I ”. The reasons why this estimator is more convenient will 
become clear in later chapters.

2.5 M easuring  th e  q uality  o f  a recon stru ction

There are various measures of how good a reconstruction is. The most common measure is 
simply a visual inspection of the final image. If it contains no obvious discrepancies then 
it could be said to have passed a visual inspection. However, some quantitative measures 
tha t are clear and objective are essential.

A commonly used measure of ‘goodness-of-fit’ is the energy of the image, defined 
in Equation (2.7). This value is readily available and objective. For ICM, the energy 
decreases monotonically, while for simulated annealing it generally decreases as the tem ­
perature drops towards zero in Equation (2.13).
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Another measure of discrepancy between two images is to count the number of pixels 
in one of the images where the corresponding pixel in the other image is a different colour. 
This is particularly convenient for binary images. In simulated examples, the true image 
is known so we can count discrepancies between a reconstruction and the true image.

For simulated annealing, we acknowledge that it is not sufficient to show comparisons 
based on one realisation from the chain, because it is a stochastic algorithm. The recon­
structions will vary based on the samples drawn from the posterior distribution at each 
update. So any statistics based on a single chain must be used with caution.

2.6 A n  ap p lication  o f som e o f th e  M C M C  algorith m s

To illustrate simulated annealing and ICM, we show an example where we reconstruct 
a binary image from the state space of all binary images whose size equals that of the 
record. So =f { 6  {b,w} : i =  1, . . .  ,n} , where b and w represent black and white 
coloured pixels, respectively. The values attributed to the colours in this example are 
6 = 1  and w — 0. We run a Markov chain on the posterior distribution so 7r =  f x \y • A 
first-order neighbourhood is used. The energy arising from the prior, in Equation (2.3), is 
the number of discrepant first order neighbours multiplied by a smoothing penalty, (3= 1. 
So

U x(x) =f ^  E E  3\xi^xj]i where I^xi^xj] s '  (^A5)
i = l j £ S }  ( °  if x i  =  X j .

The factor of \  is necessary to avoid double counting. The record Y  = (y i, 2/2 , - - - ,Un) 
is assumed to be derived from the true image by the pixelwise addition of independent, 
Gaussian noise with known variance. So for this example, the degradation model is

Yi =f hi(x) +  ê , where ~  N (0,0.5).

Each pixel is of single colour and for simplicity, there is no blurring in this example. From 
Equation (2.5), the function which measures the mixtures of colours in the reconstruction 
is

def I 6 if Xi is coloured black, 
h i ( x )  =  <

\w  if X{ is coloured white.

On substituting these values into Equation (2.6), the posterior function becomes

{ /3 n n ̂  2 'j
—2 E E  I[xi^xj] (2 x 0.5) r> x e n -

i =  1 j e S }  i =  1

Plot (a) in Figure 2-2 shows the true 64 x 64 scene. The record is shown in Plot (b) as 
a grey scale image, after noise with distribution iV(0,0.5) is artificially added. Note that
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(a) True image (b) Record

Figure 2-2: S im u l a t e d  A n n e a l in g  a n d  ICM — 1/3. The 64 x 64 pixel, binary im age on 
the left is the true scen e. Artificial noise is ad d ed  and the resulting record is shown on the right as a  
grey sca le  im age. Note that the colouring scales in the two im ages are different.

the colours in the image of the record have been scaled differently to those in the other 
images, so direct comparisons are not possible. In Plot (a), black and white represent the 
foreground and background colours, respectively; in Plot (b) they represent the greatest 
and least record value, respectively.

The simplest estimate of the true image is the CMC (see §2.3.8 on page 34). The 
result is shown in Plot (a) of Figure 2-3. This estimate is too crude to be of any real 
value but it can be used as a simple and convenient starting point for simulated annealing. 
Note however that any starting point, such as an all white image, would also work with 
simulated annealing provided that a sufficiently high starting temperature is used and the 
algorithm is run for a sufficient period.

A Markov chain, using the Gibbs sampler, is implemented using single-site updating. 
This means that only one pixel is updated at a time. The simulated annealing algorithm 
is based on a geometric schedule with starting and stopping temperatures of 5 and 0.1, 
respectively. The number of sweeps used is 1,200.

Plots (b)— (f) of Figure 2-3 show the reconstructions after 200 ,400 ,..., 1,000 sweeps 
respectively. For each reconstruction the energy is printed. It shows a steadily decreasing 
value as is to be expected. Other comparisons axe also shown. The number of times 
corresponding pixels differ in pairs of images is an easy and intuitive way to compare 
reconstructions. For each image in Plots (b)—(f), the number of disagreements between 
corresponding pixels in that image and the true image (true), the CMC image (cmc) and 
the previous reconstruction (prev) are shown. For example, when comparing Plot (b) 
and Plot (c) there are 1,433 corresponding pixels coloured differently. As the tempera­
ture decreases, the number of differences between the reconstruction and the true image 
decreases. So does the number of differences with the previously shown reconstruction 
because the algorithm makes relatively few changes after the first few hundred sweeps.

Figure 2-4(a) shows the final image after 1,200 sweeps using simulated annealing. This
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cO CMC (p )S^fb) Sweep number 200

1,014 misclassified pixels 

(c) Sweep number 400

Energy is 5,583.38 
Number of c h a n g e s  from: True(l ,345) cm c(l ,395) prev(l ,395)

(d) Sweep number600

. _. is 3,500
No. c h a n g e s  from: true(580) cm c(984) prev(l,433) 

(e) Sweep number 800

Energy is 2,548.31 
No. ch an g es  from: true(227) cm c(955) prev(605)

(f) Sweep number 1,000

Energy is 2.420.05 
No. c h a n g e s  from: true(144) cm c(966) prev(161)

Energy is 2,403.59 
No. ch an g es  from: frue(l 26) cm c(960) prev(68)

Figure 2-3: S i m u l a t e d  A n n e a l i n g  a n d  ICM —  2 /3 .  This figure shows the reconstruc­
tion from the simulated annealing algorithm on the im age in Figure 2-2 (a), using the CMC as the 
starting point (Plot (a)) and following a  geom etric schedule. Reconstructions are shown after ev ­
ery 200 sw eeps of the image, in Plots (b)—(f). The subtitle in ea ch  plot shows the energy for ea ch  
im age and the number of misclassified pixels betw een  the current plot and the true reconstruction 
(Figure 2-2 (a)), the CMC reconstruction (Plot (a)) and the previous reconstruction.
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(a) Sweep Number 1200 (b) 2 ICM sweeps after sweep number 1,200

Energy is 2,401.77 
No. c h a n g e s  from: frue(131) cm c(953) prev(21)

(c) Lowest energy from sweep no. 1,096

Energy is 2,401.44 
No. c h a n g e s  from: frue(128) cm c(952) prev(18)

(d) 2 ICM sweeps after sweep no. 1,096

Energy = 2.401.39 
No. ch an g es  from frue(l 27) cm c(953) prev(l 3)

Energy = 2,401.28 
No. c h a n g e s  from true(l 27) cm c(951) prev(l 1)

Figure 2-4: S im u la t e d  A n n e a l in g  a n d  ICM —  3 /3 .  Plot (a) shows the reconstruction 
after l, 200 sw eeps using simulated annealing. Plot (b) shows the reconstruction after applying ICM 
to con vergen ce (2 sweeps) on the im age in Plot (a). Plot (c) shows the reconstruction with the lowest 
energy from the simulated annealing stage, which was sw eep  number 1,096. Plot (d) shows the 
reconstruction after applying ICM to convergence on sw eep  number l, 096.

oo
>
g>
a3

oo

oo
CM

OO

o

O)
o

800200 400- 600
Sweep Number

Figure 2-5: L og  of  t h e  E n e r g y  v e r se s  t h e  S w e e p  N u m b e r . The log of the energy for 
e a c h  reconstruction is plotted against the sw eep  number. The original energy sca le  is shown on the 
right. The energy is not monotonically decreasing under simulated annealing.
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12 sweeps of ICM

Figure 2-6: ICM O n ly .  This figure shows the 
reconstruction from applying ICM, without first us­
ing simulated annealing. It took only 12 sw eeps  
for the algorithm to converge and the energy is 
fairly low. However, there are a  significant number 
of misclassified pixels com pared to both the true 
and CM C images. This shows the benefit of a p ­
plying the simulated annealing algorithm before 

Number of chang^from f'true(234) cm c(808) applying the ICM algorithm.

image has an energy of 2,401.77 using Equation (2.6). Applying ICM to convergence 
requires two further sweeps of the image and results in an image energy of 2,401.44, shown 
in Figure 2-4(b). This suggests that simulated annealing had almost settled into the 
nearest local minimum. The reconstruction which achieved the lowest energy is shown in 
Figure 2-4(c). This occurred at sweep number 1,096, with an energy of 2,401.39. Applying 
ICM to convergence again requires a further 2 sweeps, giving a final estimate with an 
energy of 2,401.28. Again, ICM was of little help because the difference between the 
energies in Plots (c) and (d) is trivial. Usually, we expect Plot (d) to have lower energy 
than Plot (b) because Plot (d) starts the ICM stage using a reconstruction with a lower 
energy. In this case, the two energies are almost the same. Plots (b) and (d) also show 
that the number of misclassified pixels compared with the true image in each case is 128 
and 127, respectively. Normally Plot (d) does much better than Plot (b), both in terms of 
the energy function and the number of misclassified pixels. A contributing factor in this 
case is that the relatively large number of simulated annealing sweeps ensures that the 
chain has converged to the mode of the posterior.

The log of the energy for each reconstruction is plotted against the sweep number in 
Figure 2-5. The energy is not monotonically decreasing under simulated annealing. This 
reflects the fact that the algorithm can escape from a local minimum by accepting proposals 
that have a higher energy, with a certain probability. However, ICM is monotonically 
decreasing. When ICM is applied there is usually a sudden drop in energy, due to ICM 
removing isolated pixels that simulated annealing has accepted. Thereafter, the energy 
continues to drop under ICM but at a slower rate. In this case, the simulated annealing 
stage of the algorithm is very close to a local minimum so ICM has little effect. Although 
the number of sweeps required for ICM is not known in advance, it is usually very small, 
relative to simulated annealing.

Figure 2-6 shows the reconstruction from applying ICM, without first using simulated 
annealing. It took only 12 sweeps for the algorithm to converge and the energy is fairly 
low. However, there are a significant number of misclassified pixels compared to both the
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true and CMC images. Compared to the true image, simulated annealing plus ICM had 
127 misclassifications compared to 234 for ICM on its own. ICM suffers because it was 
given a poor starting point. It is for this reason that we first apply simulated annealing 
before applying ICM to the simulated annealing reconstruction with the lowest energy, in 
subsequent chapters.

2.7  Sum m ary o f chapter

The purpose of this chapter is to define some notation and introduce the basic statistical 
models and computational algorithms that are used throughout the remaining chapters. 
To achieve this:

• We define some basic assumptions and notation.

• The prior, likelihood and posterior distributions of the Bayesian model are intro­
duced.

• We outline standard algorithms for searching over a high-dimensional density, namely:

— the Gibbs sampler,

— the Metropolis algorithm and

— the Hastings algorithm.

Comparisons are made between them, characteristic features are outlined and their 
relative advantages and disadvantages are discussed.

• Two algorithms for optimising a function are used, namely:

— simulated annealing and

— iterated conditional modes.

The two algorithms are contrasted. Problems associated with the tem perature sched­
ule for simulated annealing are briefly mentioned.

• Based on the posterior density, various estimates of the true image are discussed, 
namely:

— the maximum a posteriori and

— the marginal posterior modes estimators.

• Various ways of measuring the quality of reconstruction are stated.

• To illustrate the algorithms at the full pixel level, a typical example is analysed using 
the Gibbs sampler, simulated annealing and ICM.
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Chapter 3

D iscrete 2D subpixel 
reconstruction

By small sam ple,
w e  m ay judge th e  w hole p iece.

It would b e  as useless to perceive  
how  things 'actually look' 

as it would b e  to  w atch  th e  random dots 
on un-tuned television screens.

Marvin Lee Minsky

Miquel le Cervantes

3.1 In tro d u ctio n

A subtle use of partial conditioning in high-dimensional, multi-modal applications occurs 
when we use the posterior distribution at different scales. For image analysis, these scales 
are associated with a coarsening or refinement of a pixel lattice. In this chapter, a discrete 
approach to subpixel reconstruction is advocated. The basic idea is to extend the full 
pixel model outlined in the previous chapter to allow each pixel to contain two regions of 
colour.

The size and orientation of the pixel grid used to represent the image are independent 
of the continuous, true image so it is rarely the case that all pixels on this grid are wholly 
one colour. Instead, the pixels around the edge of an object will contain more than one 
colour. An intuitive and simple way to model this feature is to subdivide each pixel in the 
original image into a 2m x 2m two-dimensional array of subpixels, in order to more closely 
match the proportion of the two colours inside each pixel.

A naive subdivision of each pixel very quickly leads to too many combinations and 
excessive computation. For example, if all subpixels within a given pixel are updated 
simultaneously then it is computationally prohibitive to go straight to the m th subpixel 
level. Wolberg and Pavlidis (1985) show how the number of possible combinations can be 
reduced to reflect the objectives of the reconstruction. They do this by dealing with 3 x 3  
windows and 5 x 5  windows using a detailed but complicated set of rules to reduce the 
number of combinations. However, Wolberg and Pavlidis (1985) do not consider subpixel
models.
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We adopt an alternative approach by proceeding in steps. Each pixel, and subsequently 
each subpixel, is repeatedly divided into a 2 x 2 subwindow. Thus the subpixel image at 
the m th level is created by cascading through images with finer and finer resolution, 
until each pixel consists of a 2m x 2m array of subpixels. The problem is broken into 
systematic and consistent stages so that the algorithm becomes computationally feasible. 
This procedure is often called cascading.

E xam ple  3.1. EXAMPLE OF A SUBPIXEL CASCADE.

In Figure 3-1, the original reconstruction is a 2 x 2 pixel image at level L^°\ This becomes a

Figure 3-1: E x a m p l e  o f  a  S u b ­
p ix e l  C a s c a d e . Three different lev­
els of the c a sc a d e  are shown. To get  
from on e level to the next, ea ch  pixel is 
subdivided into 2 x 2  blocks of subpixels.

4 x 4  and an 8 x 8 pixel image at levels L ^  and LW  respectively, by repeatedly subdividing 
each pixel into 2 x 2  subpixels. □

The motivation for the subpixel model is based on Jubb and Jennison’s (1991) cascade 
algorithm, which we refer to as the ‘superpixel’ algorithm, to distinguish it from the 
subpixel model discussed here. A brief summary is given in §3.5.

3.2 T he m odel

3.2 .1  S o m e n o ta t io n

The image that we seek is on a much finer lattice than that of the record Y  = (y \ , ?/2 5 • • • , Vn)  • 
We denote this image by X  =  X^M>) =  . . . , where x \ M>> =  { x \ ^  :
j  = 1 , . . . , 2 2M}, for i = 1 , . . . , n ,  and realisations are denoted by x[M  ̂ : j  =

!>•••> 2 2M}.

D efin ition  3.1. The sample space or image space is Q = = {x[M  ̂ : x \ ^  £
(6,!/;};« =  1, . . .  , n ; j  =  1, . . .  ,22M}, where b and w represent black and white coloured 
subpixels, respectively.

Level L(°>

Level L ^

Level L(2)
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So Q and X  lie on an n  x 2M x 2M lattice, where M  is predefined and fixed during the 
reconstruction. The level of the cascade is denoted by L  and indexed by m  = 0 , 1 , . . . ,  M. 
W ithin the m th level each full pixel X -m  ̂ corresponds to a single record value Yi
and XI™''* is subdivided into a 2 m x 2m block of subpixels. Note tha t i =  1 ,2 , . . . ,  n  is used 
to index the blocks of subpixels and j  = 1 , 2 , . . . ,  22m indexes the subpixels within each 
block, in the image X .

3 .2 .2  T h e  p rior  d is tr ib u tio n

A first and second order neighbourhood is used for the prior. From the prior in Equa­
tion (2.3), the energy is the number of discrepant neighbours multiplied by a smoothing 
penalty. So the prior distribution is

fx ( x )  oc exp{ -U x (x ) }

where x  G Q, I  is the indicator function defined in Equation (2.15) and (3\ and P2 are 
the smoothing penalties for the first and second order neighbourhoods, respectively. From 
the notation in §2.2.3, 8}- and 82j  denote the first and second order neighbourhoods for 
the subpixel X ij. The first and second order interaction terms in the prior model should 
reflect the prior belief in the MRF. The models in Chapters 4 and 5 rely on first order 
neighbours only but in this chapter we include the second order interactions.

3 .2 .3  T h e  lik e lih o o d  fu n c tio n

As in the last chapter, the record Y  is assumed to be derived from the true image by the 
pixelwise addition of independent, Gaussian noise with known variance (see Equation (2.4) 
on page 23). There is no blurring in this model for simplicity. So, the likelihood model 
follows Equation (2.4). The expected value of each record element is

b if is coloured black,

w if is coloured white,ij 5

for i = 1 , . . . ,  n. The factor 2-2M arises from each subpixel x \ ^  occupying 2~2M of the 
block of subpixels X{_ corresponding to each yi. Putting  this in Equation (2.5) gives

n

f r \ x f a y ) exp{ (2cr2)—1 ||y -  h(x )||2} -  e x p { -(2 a 2)-1 ^ ( j / i  -  fii(x))2}. (3.2)
i=i

2 M

E{Yi) = hi(x) = 2 where x \ ^  =
3 =1
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3 .2 .4  T h e  p o ste r io r  d is tr ib u tio n

From Equation (2.6), the posterior distribution becomes

/ x \y (x jV) oc <j>(x)
n 22M

~  hxij^xkl] hxij^xkl]\ / q  q \

*=i j= i  k,iesh k,ies?. (3-3)’  ̂ ij ’ ij

-{2<j2)~l Y ^ ( y i - h i ( x ) ) 2\ ,
*=i J

for i G f i .  The function </>(:r) is the posterior distribution up to normality. We now have 
a model to do the reconstruction at the finest level of resolution, L^M\

3.3  T h e a lgorithm

3 .3 .1  A n  o v erv iew

In this section, we describe the subpixel cascade algorithm. It is a method for maximising 
the function 4>{x) in Equation (3.3), over x  G £1 = The strategy is to maximise 4>(x)
over a sequence of subsets of S7, where values of x \ ^  are constrained to be constant over 
2 M-m x 2M~rn blocks, which partition at level Call this image space
The solution at level L will then serve as the starting point for optimisation at level

At level where m  < M , we are still working with the reconstruction
but there are constraints on the values that X ^M) is allowed to take. We introduce 

as a shorthand for a value of X ^M  ̂ satisfying these constraints, without all the 
repeated values of elements that are set equal to each other by constraint. At level L^m\  
X (m) = {x{m), . . . , x i m)} where X ^m) =  {X^m) : j  =  l , . . . , 2 2m} for % =  l , . . . , n .  It 

takes values x — {x\™^ : j  = 1, . . .  ,22m}. The sample space is =  {x[m  ̂ : x\™  ̂ G 

{6 , w}] i = 1 , . . . ,  n; j  — 1 , . . . ,  22m}. Strictly speaking, this definition of differs from 
tha t given in the previous paragraph. In the previous definition x contains n  x 22M 
elements, with constraints on the values tha t they can take; here each x contains only 
n  x 22m elements without constraints. However, we use to refer to both spaces.

X (m) is related to X ( M) in a way which it is easy to understand but awkward to 
write out formally. Basically, each x \ M  ̂ contains 22M~2m copies of each X ^ \  where 
j  =  1, . . .  ,22m in the appropriate order. We can also think of X as an image with 
n  x 2 2m pixels.

3 .3 .2  E n su r in g  a c o n s is te n t m o d e l w h ile  ca sca d in g

At level Z/m), our aim is to maximise 4>{x) over x  G This is equivalent to maximising
<;b{x(m)) over x (m) G We show how this problem arises for each m  as a MAP
estimation problem for a certain prior on x G and a likelihood function. For
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each m  = 0, the function <j>( x) is not itself a p.d.f. for x  E It needs to
be normalised and the normalising constant varies with m. This is not a constraint in 
practice because the essence of the MCMC algorithms in Chapter 2 is that they do not 
need this normalising constant.

To clarify the algorithm, it is helpful to think about a ‘model’ at each level of the 
cascade. We define these models because the processing at each level L^m\  where m  = 
1 , . . . , M  — 1 , has a prior, likelihood and posterior distribution tha t correspond to the 
distribution at level L^M\  The models at different levels are automatically consistent as 
they all come from the single original model at level L^M\  defined in §3.2. This contrasts 
with Jubb and Jennison (1991), who worked with non-consistent models at each level in 
the superpixel process but still hoped that this would find a good estimate of the MAP 
estimate at the bottom, full pixel level. See §3.5 on page 59 for a summary.

In order to produce a reconstruction at the M th level, we start at the level of the 
record, level l/° ) , and proceed in steps. Each pixel, and subsequently each subpixel, is 
repeatedly divided into a 2  x 2  subwindow until each record value has a corresponding 
block in the reconstruction of size 2M x 2M . While doing this, it is essential to ensure 
consistency between the parameters in the model at different levels in the cascade.

The variance of the image at each level is unchanged, so each element of the record Yi 
must be compared with the average colouring of the corresponding block of subpixels , 
for consistency. In addition, we would like to compare the energy of the reconstructions at 
different levels. So some standardisation of the prior penalty is needed because the number 
of subpixel blocks at each level is different. In moving from coarse-to-fine resolution, the 
number of subpixel blocks within each x j m  ̂ increases by a factor of four between levels 
L and So 4|X(m)| =  |X(m+1)|, where m  = 0 , . . .  , M  — 1 . Also the first level
L has one pixel corresponding to each of the n  record elements. So |X(°)| =  n.

E nsuring th e prior d istribution  is consistent

If the MRF models at each level in the cascade are to be consistent, the value of the inter­
action strength between neighbouring pixels needs to be reduced as the cascade proceeds 
through each level, from L to L^M\  This would allow the prior energy function for each 
level in the cascade sequence to be compared on a consistent basis.

The approach used is to consider the reconstruction X at the finest resolution, 
when m  = M . For this level, each element of the record Yi has a corresponding block of 
2m x 2m  pixels in the final reconstruction, X ^M\  The earlier, coarser reconstructions in 
the algorithm are also treated as consisting of blocks of subpixels, of size 2Tn x 2 m, for 
m =  0 , 1 , . . . ,  M  — 1 , but now the pixels are constrained to be the same colour within 
each block of subpixels. For example, at the m th level, each Yi has a corresponding 
block of 2 m x 2 m subpixels which can be broken down into 2 x 2  non-overlapping sub­
blocks, each of size 2m _ 1  x 2m_1. The only way that the fine-resolution reconstruction 

can correspond to the coarser-level reconstruction X (rn ^  is if the 2 x 2  block of 
subpixels in the fine-resolution reconstruction X are constrained to be all the same
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colour. Consequently, the energy of the reconstruction is the same immediately before 
and after the split.

D efin itio n  3.2. At the m th level, define p[m  ̂ and P ^  to be the first and second order 
interaction terms in the prior model, respectively.

At the finest level of resolution, m  = M , we define p[M  ̂ =f Pi and P^M  ̂ =f /%, where 
Pi and P2 are data dependent parameters chosen at the outset. We now need to specify 
the correspondence between the prior penalties at earlier levels in the cascade. To explain 
how these relations are derived, consider the following example.

E x am p le  3.2. ENSURING A C O N SISTEN T P R IO R  DURING THE C A SC A D E .

Suppose we choose M  = 2  for the final reconstruction and consider the interaction between

Level l / 1)Level L Level

Figure 3-2: E n s u r in g  a  C o n s i s t e n t  P r i o r  d u r in g  t h e  C a s c a d e .  A pixel a t the original 
level L(0) is split into a  block of 2 x 2 subpixels a t level Z(1) and into 4 x 4  subpixels a t level L(2). The 
interactions b etw een  this block of pixels and the corresponding block of pixels immediately to the  
north are indicated by arrows t- If the effect of the interaction parameters at e a c h  level is to b e  
consistent then the sum of the penalties arising from the arrows at e a c h  level should b e  the sam e.

a single record element and its neighbours to the north. At the finest level Z/2), each 
record element is reconstructed using a 4 x 4 block of pixels. Figure 3.2 illustrates that 
the interaction with the corresponding block of pixels in the record element to the north 
is 4P ^  +  b P ^  = 4/?i +  6 /?2 - The corresponding interaction terms at levels Z^1) and L  
are 2 p[^  +  2 P ^  and P ^ \  as shown in Figure 3.2. Notice that the interaction with the

(tti)block of pixels to the north-east and north-west /£; (dotted arrows) is the same from 
one level of the cascade to the next. We need to choose values for P ^  and p[^  to ensure 
th a t the interaction with the pixel to the north is the same regardless of the level of the 
cascade. □

To ensure the prior penalties at successive levels in the cascade are comparable, the
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following two relations are used:

4 m ) = f h  (3.4a)

0 (m) def +  2f32(2M -  2m)]/2 m, for m  =  0,1 ,2 , . . .  , M . (3.4b)

We can now specify the ‘effective’ prior distribution for the image at the m th level in
the cascade as

{ TO 22m

i= i  j = i  v  k,iesl tJ )

where G <5̂- and <5?- are the sets of first and second order neighbourhoods for
respectively. At m =  M , Equation (3.5) is the same as Equation (3.1).

Ensuring the likelihood d istribution  is consistent

At the first level , each element of the record Yi has a corresponding pixel x j 0  ̂ in the 
reconstruction. As the reconstruction moves from the original coarse resolution, a t which 
the record was observed, to a finer resolution, the number of subpixels corresponding to 
each record increases. At the m th level in the algorithm, each element in the record Y{ has 
a corresponding block of 2m x 2m subpixels in the reconstruction X This allows the 
mean of each record to be reconstructed as a mixture of regions of two different colours.

Jubb and Jennison (1991) originally used the cascade algorithm to aggregate records. 
This has the advantage of increasing the signal-to-noise ratio (SNR). However for subpixel 
resolution, the records are not aggregated so there is no increase in the SNR. Instead, to 
calculate the likelihood penalty for the image at the m th level of the cascade, we compare 
each element of the record yi with the average value of the colours in the corresponding 
block of 2m x 2m subpixels, The average value, from the mixture of the two
colours, in the block of subpixels is

22m ( (tTi)
T ? tv \  f. Mmh dtf 0- 2™ ^  ("*) v, (">) J 6 if x ij is coloured black, E{Yi) = h,.(x' >) = 2 > < ,  \  where x], = ( /  ,

j - 1 [w  if x\- ' is coloured white,

and j  is summed over the subpixels lying within the block of subpixels in X ^m\  So 
the ‘effective’ likelihood distribution for the the m th level in the cascade is

f $ ( x {m\ y )  oc exp{ —(2 cr2)-1 ||y -  fc(z(m))l|2}

=  exp j-(2<72)-1 j>2(yi -  hi(x(m)))2 
 ̂ » =  1

At m  =  M , Equation (3.6) is the same as Equation (3.2).

(3.6)
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E n su rin g  th e  p oster ior  d istr ib u tio n  is co n sisten t

From Equations (3.5) and (3.6), the ‘effective’ posterior distribution for the m th level in 
the cascade is

22r{ n  I *  "

*=i j=i kjesjj lJ k , i ^ l  13

~  (2̂2)-1 ~  Ŵ (m)))2 j,
i=i J

(3.7)

for x^171) € and m  = 0 , . . . ,  M . At m  = M , Equation (3.7) is equivalent to Equa­
tion (3.3) and it is consistent with Equation (2.6).

3 .3 .3  T h e  2D  d iscre te  su b p ix e l a lg o r ith m

The subpixel optimisation problem requires each pixel at L to be subdivided into a 
2 m x 2m array of subpixels in a single step. Our approach is to simplify this problem 
by breaking it down into a sequence of related but simpler optimisation problems. The 
subpixel cascade algorithm splits each pixel in the image X at the m th level into 
2 x 2  blocks of subpixels that partition the image at the m  +  1 th level, for m  =
0 , . . . , M  — 1 . At each level of the cascade, we search for the mode of the posterior 
distribution of X

A lg o r ith m  3 .1 . D iscrete 2D SUBPIXEL.

1. Set m  = 0 . Use the CMC of the record as the initial reconstruction, at level L

2. Find the mode of the posterior distribution, in Equation (3.7), using simulated an­
nealing, including annealing at a temperature of zero to convergence (i.e. a strictly
downhill optimisation).

( t t i )3. Split each coarse pixel X\- ' into a block of 2 x 2  subpixels, where each of the four 
subpixels has the same initial colour as the original pixel.

4. Increment m  by one.

5. Goto Step 2, until m  = M . □

To search over the posterior distribution, we use the optimisation algorithms outlined 
in the previous chapter (see §2.3.8 on page 33). That is, we apply simulated annealing for 
a finite number of sweeps, then use the image with the lowest energy to initialise the ICM 
algorithm, which is run to convergence. We use the Gibbs sampler to update the subpixels 
during each sweep of the image because the marginal distribution of a subpixel x\™^ takes 
only two values. In fact, it is computationally feasible to consider updating several pixels 
simultaneously. For example, to simultaneously update a 2 x 2 block of subpixels means 
sampling from a marginal distribution which takes 16 values (see §3.3.5 below).
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The final image at each stage is used as the starting image for the next level of the 
cascade, by splitting each subpixel into a 2  x 2  block and setting each of those four pixels 
to be the same colour as the corresponding single pixel at the previous coarser level. 
These two images have different levels of resolution, one is of size 2m x 2m and the other 
2m + 1  x 2m+1. However, the value of (f>(x) is the same for the last reconstruction at level
L and the first reconstruction at level L^m+1\  prior to any processing at level m  + 1 .
(Note tha t the normalising constants of the p.d.f. for levels L and Z,(m+1) are different.)

At lower-resolution levels in the cascade, there are fewer pixels so reconstructions are 
fast. The algorithm slows down at the finer resolutions, as there are more pixels to process. 
However, even with a very coarse image, say 32 x 32, the resolution improves very quickly, 
so tha t after level five the resolution has reached 512 x 512. Typically, less than six levels of 
reconstruction are needed. The process is much slower for grey-level images or if blurring 
has to be included.

3 .3 .4  A d ju stin g  th e  te m p e r a tu r e  sch ed u le  w h ile  ca sca d in g

To ensure the algorithm does not wander from its initial starting point at the beginning 
of each level, its starting temperature is reduced from one level to the next. A typical 
starting tem perature value is 2 0 % of the starting tem perature at the previous level bu t in 
practice this value must be checked by trial and error (see §3.4).

3 .3 .5  S in g le  verses  m u ltip le  s ite  u p d a tin g

During Step 2 of Algorithm 3.1, we can consider updating the Markov chain by chang­
ing one subpixel at a time or by changing several subpixels simultaneously because the 
marginal distribution takes only a few values.

At the m th level, if single site updating is used then the colouring of each subpixel 
Xj™'* is updated to minimise the current energy holding all other subpixels in the image 
fixed. A typical difficulty with single site updating samplers is that they mix, and hence 
converge, slowly in the presence of multi-modality. This might occur when the data  are 
relatively un-informative compared to the spatially structured prior. In image analysis 
terms, this can occur when the algorithm relies on the prior distribution to reveal the fine 
detail in the image. In §3.4, an example is given where the record is on a coarse lattice 
which deliberately obscures some of the detail in the known, true image. This suggests 
th a t during the early levels of the cascade, the drop in the energy of the image comes 
mainly from improvements in the likelihood; in the final levels of the cascade, we might 
expect to rely more and more on the prior to reduce the energy.

To reduce the possibility of the algorithm getting trapped in local minima and to speed 
the propagation of information through the image, we also consider multiple site updating 
samplers. This may speed up the rate of convergence. We expect it to improve the quality 
of the reconstruction because it offers greater prospects of getting out of local minima by 
changing an entire block of subpixels in a single update. It is usually not practical to use 
the Gibbs sampler for simultaneous updates of small groups of conditionally dependent
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components unless the state space of the marginal distribution is very small and discrete, 
but such is the case for the binary image in §3.4.

The naive solution treats each block of pixels X as a single unit and updates all 
subpixels in this block simultaneously, for m = 0 , . . . ,  M . However, simultaneous updates 
for a whole block are feasible for levels L and l / 1) only because, at higher levels, the 
amount of computation required becomes prohibitive very quickly. W ith 2m pixels in each 
block at the m th level reconstruction, this means 2 2™ possible colourings; instead of 2 m 
searches over the two possible colourings with sequential updating. Such computational 
complexity precludes this naive attem pt at multiple updating.

As a compromise, we simultaneously update subpixels x\™^ in disjoint 2 x 2  blocks. 
There are 16 colourings to consider with each update. This updating mechanism is not 
too expensive computationally, even for the Gibbs sampler. The benefit of this variation 
to the subpixel algorithm is that we expect to produce better results than single pixel 
updating.

Remark. We also considered simultaneous 3 x 3  updates. Using the Gibbs sampler, the 
amount of computation is substantially greater but still feasible, at least for small images. 
More generally, the Hastings-Metropolis algorithm could be used.

An example of the benefits of multiple site updating is shown in §3.4. Multiple updating 
of pixels is also used in Chapters 4 and 5, when groups of two or more pixels are updated 
simultaneously.

3.4 A n  ap p l ic a t io n

3.4.1 T he observed d a ta  and  tru e  im age

(a) _____________(b)_____________

0 4?
50 100 150 200 250

Ideal im age on a  256 x 256 lattice
5 10 15 20 25 30

Record observed  on a  32 x 32 lattice

Figure 3-3: D i s c r e t e  S u b p ix e l  E x a m p le  —  1 /3 .  Plot (a) shows the observed d a ta  which 
is recorded on a  32 x 32 lattice. Suppose w e d ecid e  to reconstruct the true im age on a  256 x 256 
lattice. Plot (b) shows what the reconstruction would b e  like on a 256 x 256 lattice, if w e  had perfect 
information.
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The subpixel model is illustrated with a simulated example. Suppose we observe some 
continuous, binary image and the record suffers from additive Gaussian noise. In this 
example, the foreground colour, background colour and noise are know, b = 1 , w = 0  and 
a 2 =  0.001. In practice, they would have to be estimated from the data or from prior, 
expert knowledge. The record is observed on a 32 x 32 lattice and is shown as a grey-level 
image in Figure 3-3 (a).

Although the true image is assumed to be continuous it has to be discretised on some 
scale. For this example, the record is derived from an image tha t was digitised on a 
1024 x 1024 lattice. This discretised, true image is sufficiently detailed to treat it as being 
continuous because each record element is derived from a mixture of 32 x 32 pixels in the 
original 1024 x 1024 image. Changing just one of the 32 x 32 pixels in the true image 
results in a change of less than a 0.1% in that record element. Thus the discretised nature 
of the true image has no influence.

We now want to reconstruct the true image to a greater detail than the observed 32 x 32 
record. Suppose we decide to reconstruct the true image on a 256 x 256 lattice. Plot (b) 
shows what the reconstruction would be like, if we had perfect information. It is free from 
distortion because it has been derived directly from the true, 1024 x 1024 binary image, 
without any noise. Each pixel in Plot (b) is formed by thresholding the corresponding 
8 x 8  block of pixels in the original 1024 x 1024 image.

This simulated example contains several features that are intended to stretch the limits 
of Algorithm 3.1. The fingers of the ‘paw prin t’ in the bottom  right are very close together. 
It is not reasonable to expect the algorithm to differentiate them but we include them to 
see how well the algorithm can cope. Likewise for the thin, narrow, vertical strip of black 
in the top left object.

3 .4 .2  U s in g  m u ltip le  s ite  u p d a tin g

We now apply Algorithm 3.1. The values of the smoothing parameters for the prior 
are Pi = 0 . 1  and P2 =  Pi/y/2, following Silverman and Jennison’s recommendation for 
choosing the relationship between the first and second order smoothing parameters. In 
Figure 3-4, we use 2 x 2  multiple pixel updating. During each level, we apply 100 sweeps 
of the simulated annealing algorithm, then apply ICM to the simulated annealing recon­
struction with the lowest temperature to convergence. A geometric tem perature schedule 
with starting and stopping temperatures of 5 and 0.1 are used. The starting tem perature 
is reduced by 80% at the start of levels 1,2,  and 3, to ensure tha t the algorithm doesn’t 
deviate too far from its starting point. This value is chosen by trial and error, until the 
energy does not rise suddenly at the start of a new level.

We start on a 32 x 32 lattice, l/° ) , and finish on a 256 x 256 lattice, L (3). The final 
reconstruction for each level is shown in Figure 3-4 (a)-(d), respectively. The energy of the 
final reconstruction for each level have been standardised, so comparisons are valid. (This 
is because the smoothing parameters p[m  ̂ and P ^  in Equation (3.7) vary by level.) The 
steady drop in energy shows the advantage of subpixel reconstruction over reconstructions
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(a) Level L(0) (b) Level L(1)

0 *
5 10 15 20 25 30
Prior(465) Likelihood(1289) 

Energy(1753)

(c) Level L(2)

20 40 60 80 100 120
Prior(491) Likelihood(364) 

Energy(865)

10 20 30 40 50 60
Prior(509) Likelihood(430) 

Energy(939)

(d) Level L(3)

50 100 150 200 250
Prior(452) Likelihood(357) 

Energy(809)

Figure 3-4: D i s c r e t e  S u b p i x e l  E x a m p l e :  M u l t i p l e  U p d a t e s  —  2/3. Using multi­
ple updates, simulated annealing and ICM, Plots (a)-(d) show the final reconstruction from ea ch  
of the levels L(0) to L(3). The number of pixels increases fourfold b etw een  successive levels. The 
energy for ea ch  im age is also shown. Plot (a) is the lowest energy reconstruction on the sam e lat­
tice as the record. For finer and finer lattices, the energy of the final reconstruction d ecreases but 
the improvements are less pronounced. Another benefit of subpixel reconstruction is that level L(3) 
(Plot (d)) displays finer detail than level L(1) (Plot (a)), relative to Figure 3-3 (b).

at the original, 32 x 32 resolution. The decrease in energy is less pronounced at finer 
resolutions suggesting that there is a limit to the benefit of the algorithm. Each new level 
means a fourfold increase in the number of pixels and in the amount of CPU time required. 
This reconstruction took approximately 40 minutes of CPU time on a Sparc server 1000. 
Faster reconstructions are possible by reducing the number of simulated annealing sweeps. 
Runs with about fifty sweeps still produce good reconstructions.

3.4.3 U sing IC M  u p d a tin g  only

If we rerun the algorithm but ignore simulated annealing, we do not expect to do as well. 
Figure 3-5 (a) shows the final 256 x 256 reconstruction from ICM alone. All other param­
eters remain unchanged from those in the previous subsection including 2 x 2  multiple site
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(a) L(3), multiple updates, ICM only (b) L(3), single updates, simulated annealing
o

50 100 150 200 250
Prior(448) Likelihood(416) 

Energy(864)
Prior(449) Likelihood(396) 

Energy(845)

50 100 150 200 250

Figure 3-5: D isc r e t e  S u b p ix e l  E x a m p l e : ICM O nly  a n d  S in g l e  U p d a t e s  —  3/3. 
The two im ages in this figure are similar to Figure 3-4 (d), excep t that Plot (a) uses multiple site up­
dating but with ICM only (no simulated annealing) and Plot (b) uses single site updating (but with 
simulated annealing). Neither reconstruction does as well as Figure 3-4 (d). Plot (a) in particular loses 
much of the detail.

updating. This run of the algorithm is much faster than the previous run, where simulated 
annealing is also used. The average run using ICM only requires about four minutes CPU 
time. The cost is a poorer reconstruction. The final energy in Figure 3-5 (a) is only about 
7% higher than in Figure 3-4 (d) but a visual inspection suggests that much of the finer 
detail in the ideal image (Figure 3-3 (b)) has been lost, relative to Figure 3-4 (d). This 
also suggests that relying on a single statistic to summarise an image, the energy of an 
image in this case, can be misleading.

3.4.4 U sing single site u p d a tin g  only

It is worth considering the benefits of 2 x 2, multiple site updating. Figure 3-5 (b) shows the 
reconstruction when single site updating is used. All other parameters remain unchanged 
from those in §3.4.2, including 100 simulated annealing sweeps per level. Figure 3-5 (b) 
should be compared with Figure 3-4 (d) and Figure 3-5 (a). The paw print in the lower 
right-hand corner is reproduced more accurately using 2 x 2  multiple updates, such as in 
Figure 3-4 (d). This is because the individual paw prints are only a pixel or less in size 
at the 32 x 32 scale, as can be seen by comparing Figure 3-3 (a) and Figure 3-3 (b). Here 
is an example of where the data are relatively un-informative compared to the prior, as 
discussed in §3.3.5. In addition, the energy and the number of misclassified pixels (not 
shown) are lower in the multiple-pixel update reconstruction.

3.4.5 C om parisons betw een various runs

Table 3.1 shows some energy values for the three runs described above: simulated 
annealing and ICM combined with multiple site updating, simulated annealing and ICM
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(1) Multiple updates (2) Single updates (3) ICM only
Level Prior Lklhd Pstr Prior Lklhd Pstr Prior Lklhd Pstr
L(°) 465 1289 1753 486 1269 1754 469 1253 1722
LW 509 430 939 550 447 997 515 472 987
I / 2) 491 364 855 500 380 881 494 421 915
l / 3) 452 357 808 467 378 845 448 416 864

Table 3.1: E n e r g ie s  b y  L e v e l  f o r  V a r io u s  R u n s . The prior, likelihood and posterior ener­
gies of the final reconstruction are shown for ea c h  of the four levels of the ca sc a d e . Typical results 
for three different runs are shown. The 'multiple updates' run uses simulated annealing and  multiple 
site updating. The 'single updates' run uses both simulated annealing but with single site updating. 
The 'ICM only' run uses ICM only but with multiple site updating. As exp ected , run (1) produces a  
lower posterior energy than run (2) and run (2) d oes better than run (3).

combined with single site updating and ICM only combined with multiple site updat­
ing. For each run, the prior, likelihood and posterior energies are shown for the final 
reconstruction at each level.

Surprisingly, at the end of level L , ICM on its own has found a lower energy recon­
struction than the other two runs. Even at level ICM with multiple updates has a 
slightly lower energy than single site updating with simulated annealing, followed by ICM 
to convergence. The final reconstructions have energy values that are as expected. Us­
ing simulated annealing and multiple site updating produces lower energy reconstructions 
than when single site updating is used. ICM does worst, even with multiple site updating.

For each of the three runs, the major drop in energy between the first two levels comes 
from a decrease in the likelihood energy. Between the last two levels, the decrease in 
energy comes from the decrease in the prior. These results are broadly in agreement with 
what we expected from §3.3.5.

3 .4 .6  F in a l co m m en ts  a b o u t th is  ex a m p le

This simple example tentatively suggests tha t this intuitive model could work well in 
practice. The principal disadvantage with the model and algorithm is that the amount of 
computation increases rapidly, especially if blurring is involved. One way of overcoming 
this computational burden might be to move from a discrete model to a continuous model. 
After all, the true image is believed to be continuous. This idea is explored in the next 
chapter.

3.5 T h e su p erp ixel cascade a lgorithm

3 .5 .1  B a ck g ro u n d  and  n o ta tio n

The motivation for the subpixel model comes from Jubb and Jennison’s cascade algorithm, 
which we refer to as the ‘superpixel’ algorithm, to distinguish it from the subpixel model 
discussed in §3.2. It is not our intention to describe the superpixel cascade algorithm in
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detail here; full details are available in Jubb and Jennison (1991). However, a brief outline, 
contrasting the two models, shows that the subpixel model described in this chapter is a 
distinct model in its own right.

The superpixel cascade algorithm is not a subpixel method. It was originally used as 
a simple and efficient multiple-site adaptation of ICM that is intended to deal with noisy 
2 m x 2m blocks of pixels. Unlike the subpixel algorithm, this algorithm averages over 
blocks of pixels to form coarser and coarser reconstructions.

We generally use the same notation as in the previous section except that the superpixel 
cascade initially aggregates pixels rather than splitting them. So m  = 0 is the original level 
at which the data are recorded. Let Y ^  =f Y  =  (j/i, . . . ,  yn) and X(°) =f X  = {x\ , . . . ,  x n) 
be the record and the reconstruction on the original scale. At the m th step, which we refer 
to as level l / m), X(m) is the reconstruction and y (m) the corresponding record.

3 .5 .2  T h e  su p e r p ix e l ca scad e a lg o r ith m

During the first stage of the algorithm, m  increases and the reconstruction becomes coarser. 
Both X a n d  Y ^  are formed by averaging the image X  and the original record Y  over 
the disjoint blocks of 2m x 2m pixels. For simplicity and convenience, the authors use 2 x 2  
blocking. At the coarsest level, we set m  = M . If n =  2M x 2M, there is only one pixel 
at L(m \  Otherwise some adjustment may be needed for images with dimensions th a t are 
not a power of two.

Averaging over record values reduces the signal-to-noise ratio. The variance at level 
m  is reduced by a factor of four relative to the next level, c r ^  =  o^m+1) / 4 , because we 
average over groups of four pixels to get from level L to the level L^m+1\  The variance 
at the original level <7 ^  is estimated from the data.

The second stage is one of optimisation. We look at the sequence of records and 
reconstructions from the previous stage in reverse order. For each level L^m\  where 
m  = M, M  — 1, . . .  ,0, we seek the mode of the posterior distribution at that level. The 
posterior distribution for level L i s

= exp { - \ 0  X  Y  -  (2<7(m))~l T  (Vim) -  X<T })2}  (3-8)
i e x ( m ) j e s }  1 3 z e x (m)

where I  is the usual indicator function from Equation (2.15) and <7 ^  is the variance of 
the noise at level m. Jubb and Jennison (1991) use the same MRF model at all grid 
levels. This means that the strength of association between pixels, denoted by (3, remains 
unchanged at each level of the cascade.

The answer, from processing an image at level initialises the algorithm at level 
Z/(m—1), the next finer level of resolution. To get from X t o  X (m_1), each coarse pixel 
is split into a block of 2  x 2  subpixels, where each of the four subpixels has the same initial 
colour as the original pixel.
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A lgorithm  3.2. F ull  P ix e l  C a s c a d e .

Stage 1: A ggregation  and averaging

1. Set m  = 0.

2. Use the CMC of the record as the initial reconstruction.

3. Average non-overlapping 2 x 2  blocks of pixels to form an image with fewer 
pixels.

4• Increment m  and repeat the previous step, until m  = M , where M  is the pre­
determined coarsest level of resolution.

Remark. This results in progressively coarser resolution images, each with 
successively higher signal-to-noise ratios. This process eventually stops be­
cause a one-pixel image is the limit. A sequence of fine-to-coarse images 
At 0) , . . . ,  has then been generated.

Stage 2: C ascading

1. Initialise this stage of the algorithm to the final coarse reconstruction at the 
previous stage, X ^M\

2. Apply ICM  until convergence to find the mode of the distribution in Equa­
tion (3.8).

3. Split each pixel in X i n t o  2 x 2  blocks where all four subpixels are initially 
the same colour as the corresponding single pixel at level .

Remark. The signal-to-noise ratio increases by a factor of four between suc­
cessive levels in the cascade.

4 . Decrease m  by one.

5. Goto Step 2 of this stage, until m  = 0.

Remark. The reconstruction is back to the resolution of the original image 
data. □

3 .5 .3  A lte r n a tiv e s  to  th e  su p e r p ix e l a lg o r ith m

Hurn (1992) extends the Jubb and Jennison (1991) algorithm to ensure consistent use of 
the prior model between different levels of the cascade and she also extends the underlying 
model to include the effects of blurring.

Other methods used instead of the cascade algorithm include: the re-normalised group 
approach (Gidas 1989), the Swendsen-Wang algorithm (Swendsen and Wang 1987), multi­
grid techniques and pyramid methods. See Hurn (1992) for a comparison of these algo­
rithms.
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3 .5 .4  C o n tra stin g  th e  su b p ix e l and  su p e rp ix e l a lg o r ith m s

The are some similarities between the subpixel cascade algorithm, in §3.3, and the Jubb 
and Jennison ‘superpixel’ algorithm. There are also many differences.

• The similarities between the two algorithms are: both algorithms proceed in stages, 
use the record as the initial starting point and split pixels into 2 x 2  blocks between 
each stage. The final image at each stage is used as the starting image for the next 
level of the cascade.

• In Jubb and Jennison, the energy is minimised at each level of the cascade using ICM, 
although the authors could also have used simulated annealing. At higher levels, 
there are fewer pixels and so less work is required. This algorithm is computationally 
cheap because the finest level of resolution is tha t at which the original data  were 
recorded.

The subpixel model uses simulated annealing and ICM so the algorithm takes longer 
to run but it searches for a global solution. The number of subpixels increases by 
a factor of four between levels, starting with the same resolution as the record. 
However, there are usually only three or four levels in the cascade. The user has the 
option of initially using only ICM to get an approximate but faster answer.

• Unlike Jubb and Jennison, there is no aggregation of pixels in the subpixel algorithm 
so the signal-to-noise ratio remains unchanged during the reconstructions. While this 
may appear to be a disadvantage, in practice it is a prerequisite to have a high SNR 
to be able to produce sensible subpixel reconstructions.

• The MRF prior in the underlying subpixel model changes from one level of the 
cascade to the next, in order to ensure consistency between the energies of the 
sequences of reconstructed images. In this respect, it reflects H um ’s adaptation of 
Jubb and Jennison’s algorithm.

• In the subpixel algorithm, the reconstructions start on the same level of coarseness 
as the record and move from a coarse to fine resolution. Once the finest level of 
resolution has been reached the algorithm stops. This is unlike the Jubb and Jenni­
son algorithm whose resolution goes from fine to coarse and then back to fine again, 
although they only process from coarse to fine.

3.6  Sum m ary o f chapter

The purpose of this chapter is to introduce a subpixel model tha t operates on a  discrete 
lattice. An algorithm to implement the model is also defined. To achieve this:

• The idea behind the discrete 2D subpixel model is outlined.
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• The prior, likelihood and posterior distributions for the model are defined for the 
finest level of resolution.

• It is possible to define a model for each level in the cascade. This leads to the 
constraint tha t the models must be consistent between the posterior distributions at 
different levels in the cascade. This is achieved by making adjustments to both the 
prior and the likelihood distributions, to make them dependent on the levels of the 
cascade.

• An algorithm to implement the model is specified. No assumptions are made about 
the shape of the objects in the image. The algorithm does require iteration. However, 
it does not rely on interpolation to get subpixel answers, as other authors have 
assumed.

Multiple verses single site updating is discussed along with tem perature adjustments 
to prevent the algorithm from wandering too far from its starting point.

• A simulated example is analysed, comparing single and multiple site updating. The 
example also compares simulated annealing and ICM results.

• Jubb and Jennison’s full pixel algorithm is briefly outlined and contrasts are made to 
establish the subpixel model as a separate model. References to alternative methods 
are given.
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Chapter 4

Continuous 2D subpixel 
reconstruction

Everything you've learned in school as 
"obvious" becomes less and less obvious 
as you begin to study the universe.

It's a small world, 
but I wouldn't want to paint it.

Steven Wright

For example, there are no solids in the universe.
There are no absolute continuums.
There are no surfaces.
There are no straight lines.
Richard Buckminster Fuller

4.1  In trod u ction

4 .1 .1  B ack g ro u n d  to  th e  a lg o r ith m

In the previous chapter, we proceeded in steps from a coarse to a fine lattice but each step 
required a substantial amount of computation. Also, each pixel in the discrete subpixel 
model may be split into many subpixels. In theory, each subpixel could be coloured 
differently to its neighbours, leading to several regions of colour within a single pixel. 
In practice, the prior prevents this undesirable possibility from happening. These facts 
suggest that it might be better to proceed directly to a continuous reconstruction, where 
each pixel is split into at most two regions separated by a straight line segment across the 
pixel and line segments link together across the image.

E xam ple 4.1. B e n e f it s  o f  C o n t in u o u s  S u b p ix e l  R e c o n s t r u c t io n s .

For example, Figure 4-1 (a) and (b) re-show the continuous binary image and the 
corresponding observed image, from Figure 1 -2 . Figure 4-1 (c) shows a full pixel recon­
struction where each pixel is either black or white. Figure 4-1 (d) shows the corresponding 
reconstruction obtained using the algorithm we describe in this chapter. Apart from a few 
errors at the edges of the image, the object boundaries are recovered to a high degree of 
accuracy. Ideally, the properties or position of the pixel grid should have a minimum effect
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(a) True image (b) Record

(c ) Full pixel1 im age
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(d) Subpixel image
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Figure 4-1: B e n e f it s  o f  C o n t in u o u s  S u b p ix e l  R e c o n s t r u c t io n s . A continuous binary 
im age, the observed record shown as a  16 x 16 grey scale pixel image, a  full pixel reconstruction 
and a  subpixel reconstruction of the continuous im age are shown in Figures (a)—(d) respectively. 
The true im age shows two objects, one lying com pletely inside the other. Both objects are circular 
rather than straight-lined and the smaller object is only a few  pixels in size. Figure (c) represents a  
typical full pixel reconstruction. In contrast. Figure (d) shows the benefits of a  subpixel reconstruction, 
e d g e s  are more clearly defined. This facilitates accurate edge-length and surface-area estimation.
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on the reconstruction of the true image. In Figures 4-1 (c) and (d), an artificial, pixel-size 
grid has been imposed to highlight individual pixels.

The model and algorithm used to generate the reconstruction shown in Figure 4-1 (d) 
are explained in §4.2 on page 67 and §4.3 on page 72, respectively. □

4 .1 .2  A n  o v erv iew

Just as with the discrete model in Chapter 3, we adopt a Bayesian approach, incorporating 
prior information about the true image in a stochastic model. We attach higher probability 
to images with shorter total edge length.

The overall objective is to improve the quality of the restoration at a boundary, between 
two regions of different colour, by allowing each pixel to contain two regions of colour 
separated by a straight line.

In reconstructions, pixels may be of a single colour or split between two colours. Unlike 
the previous chapter however, only two regions of colour are allowed and they are separated 
by a straight line. For this reason, we refer to this model as the continuous 2D subpixel 
model. In order to preserve smoothness, the edge that defines the boundary across a 
pixel is assumed to meet another edge in a neighbouring pixel or else it meets the image 
boundary. An example of such a reconstruction is given in Figure 4-1 (d).

In a similar fashion to the previous chapter, MCMC algorithms are then used in 
searching for the mode of the posterior distribution, which we take as our image estimator. 
The algorithm accepts as input an initial estimate where edges lie on pixel boundaries and, 
after a process of iterative refinement, outputs a more accurate estimate.

There are many ways in which a line segment can be placed across a pixel and there is 
spatial correlation between pixels. To give a precise location for the boundary, a complete 
mathematical model of the object’s shape is not required but the space to be searched 
has many dimensions. This leads to a huge optimisation problem. In order to produce a 
tractable solution, only local information is used at any stage in the iterative calculations. 
This makes it easier to update the current image reconstruction. In addition, we break 
down the formidable problem of finding the mode of the posterior image distribution into 
stages and use the solution at the end of each stage as the starting point for the next. In 
subsequent stages, the reconstruction focusses on finer details but also avoids straying too 
far from its starting point.

E x a m p le  4 .2 . C o n s t r a i n e d  a n d  U n c o n s t r a i n e d  E d g e s .

Figure 4-2 shows two stages of the reconstruction algorithm. On the left, edges are con­
strained to lie midway along a pixel boundary and neighbouring edges are linked to each 
other or to the boundary. The right figure shows the final stage of a reconstruction. 
Vertices are no longer constrained to lie on the midpoint of a pixel edge. □

Although this chapter is concerned with a 2 D model only, the model is designed bearing 
in mind that we want to extend it to three dimensions (3D). This 3D model is described 
in Chapter 5.
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j - Figure 4-2: C o n s t r a in e d  a n d  U n c o n ­
st r a in e d  E d g e s . The left figure shows an early 
stage of a  reconstruction, where ed g es  are con ­
strained to lie midway along a  pixel boundary. 
The right figure shows the final stage of a  recon­
struction. Each pixel may b e split into two regions 
separated by a  straight line.

4.2 T he m odel

4.2.1 T he  prio r d is tr ibu tion

For practical, computational and intuitive reasons, we allow at most a s in g le , s tr a ig h t- l in e  

edge  to divide any pixel between the two colours in our reconstructions and we incorporate 
this property into our prior model for the true, continuous scene. We also assume that 
edges are linked together. However, unlike Geman and Geman (1984), the location of 
edges is not constrained to lie only along the boundary between pixels. Edges are also 
located within pixels, splitting them into regions of different colours. Thus, we expect a 
fairly small number of regions of colour and smooth boundaries between them.

In this chapter, the prior distribution for the true scene X  is on a class of binary images 
in which boundaries are continuous and piecewise linear.

D efinition 4.1. We define the im a g e  sp a ce  ^  to be the set of binary images satisfying 
the following conditions:

• Each 2D image X  consists of an ordered, rectangular array of n  pixels, X  =  { X i  : 
i =  l , . . . , n } E f l .

• Each pixel is either a single colour or divided into two regions of different colours 
separated by a single, straight-line edge.

• Each edge links with two edges in adjacent pixels, except at the image boundary.

Figure 4-1 (d) shows an example of such an image. Denote the colouring of pixel i by 
h i { x ) .  We also use the notation x ( z ) to denote the colour of image x  at the point z G 9?2, 
in the true continuous image.

A MRF based on edge len g th  defines a prior distribution for the scene X .  Edge length 
is the length of the boundary between regions of different colours. The regions of different 
colours may lie in neighbouring pixels, within the same pixel or they may overlap pixels.

M odel 4.1. P r io r . T h e  p r i o r  e n e rg y  f o r  a n  im a g e  is  b a sed  o n  th e  to ta l  edge  le n g th  in  

th a t  im a g e , L { X ) .  T h e  to ta l  edge  len g th  is  th e  s u m  o f  l in e  s e g m e n ts  a c ro s s  p ix e ls  p lu s  th e  

s u m  o f  th e  ed g e s  ly in g  o n  th e  b o u n d a ry  b e tw e e n  n e ig h b o u r in g  p ix e ls  o f  d if f e r e n t c o lo u r . □
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So the prior probability for the scene X  is 

f x ( x )  oc exp{-C /x(»)} d=  exp{-(3L (x)}  = exp j-/?^ L;(:r) j, x  e ft, (4.1)
 ̂ i = i  >

from Equation (2.3). Lower values of the smoothing parameter /? lead to a greater 
probability of objects in the image having long, usually jagged, edges.

Remark.

•  In this chapter, we use a first order neighbourhood only. So the colouring for a 
pixel is conditionally independent of all other pixels, given the colouring of its four 
horizontally and vertically adjacent neighbours.

• This prior can be extended to three dimensions. In two dimensions, an image is 
a two dimensional array of pixels; the corresponding image in three dimensions is 
a three dimensional array of voxels. Instead of edge length across pixels, we can 
consider the surface area passing through voxels (see Chapter 5 on page 98).

W hat is th e prior d istribution  a density  w ith  respect to?

Consider a distribution on the image space ft defined by Equation (4.1). Let i = 1 , . . .  , N  
index all possible routes of edges that are allowed under Definition 4.1, each having proba­
bility 1/N . For each possibility i, define a vector 9 of the appropriate length with elements 
in the open interval (0,1) to locate the vertices of the edges along the pixel boundary. (This 
requires the direction in which the distance is measured to be recorded.) Conditional on a 
specified route i, let each element of 9 have an independent uniform distribution on (0 , 1 ).

The distribution for the pair (z, 9) will not penalise edge length but it is useful for 
calculating likeliood ratios, such as appear in the acceptance probability of the Metropolis- 
Hastings algorithm. The density /  in Equation (4.1) is with respect to the above measure 
on ft. That is, we have a distribution on the same space as the (i , 9) pairs above but the 
likelihoood ratio of the distribution in Equation (4.1) to the distribution for the pair (i, 9) 
is fx -  In our particular case, the density of 6 is 1 with respect to the space of possible 
values of 9 for a particular route i because we know the distributions of the individual 
elements of 9. Our image model has density proportional to exp { — (3L(x)} with respect 
to this distribution (measure) of 9. When running an MCMC method for this distribution, 
or for the posterior derived from it, the density is with respect to this underlying measure.

N on-degeneracy in th e  prior

Once the colouring of a pixel’s four horizontal and vertical neighbours is known, the 
colouring of that pixel is also known. This is because the location of any edge across that 
pixel has to link up with its neighbours. To establish a Markov random field property for 
our model, without such degeneracy, consider a set of pixels in some neighbourhood of 
pixel i, Si. Define S[ to be the set of pixels which are horizontal and vertical neighbours
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of the pixels in Si, excluding the pixels in the set Si itself,

% =f { j e  { I , . . .  ,n }  : j  e  S]. and j  £  Si},

where (51 defines a first order neighbourhood (see §2.2.3 on page 22). Then it can be 
shown, under Equation (2.2), that the set of pixels in a neighbourhood around pixel i is 
conditionally independent of the set pixels in X  but not in Si or S[, given the set of pixels 
in S[,

fcJL { j € {!>••• i n }  '■ J & I
We illustrate this point with the following example.

E x am p le  4.3. NON-DEGENERACY IN THE PR IO R  DISTRIBUTION.

Defining the prior for a single pixel gives a conditional distribution that takes just one

(a) Trivial distribution for vertices (b) Non-trivial distribution for vertices

\

B__
\

Figure 4-3: N on-degeneracy in the P rior D istribution . The set of pixels of interest 5», 
are coloured in dark grey and the set of neighbouring pixels, 81 is coloured in light grey. In Plot (a), 
the set 5i consists of a  single pixel, So the distribution of the vertices that it contains, A and B, is trivial, 
given the four neighbouring pixels. For the corresponding set of several pixels in Plot (b), the distri­
bution of the vertices that it contains, A to E, is non-trivial b ecau se  C, D and E m ove freely, even  
though A and B are still fixed.

value. This is because the ends of the line segment across the pixel are fixed once the 
four neighbours are known. Instead, the way to look at the distribution of the edges is 
to consider a set of pixels, Si, around some pixel i. The conditional distribution for Si 
given its neighbours depends on the location of the vertices of the two edges that lie on 
the boundary of the set. It also depends on what happens as the edges traverse across the 
set. Because there are many possible choices, the distribution is not trivial.

Figure 4-3 considers the distribution of vertices contained in the set of pixels Si where 
Si is the single, dark-grey pixel in Plot (a) and Si consists of the four, dark-grey pixels in 
Plot (b). The pixels in S[ are coloured in light grey. There are four such pixels in Plot (a)
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and eight in Plot (b). So the light grey pixels S[ are the pixels which are horizontal and 
vertical neighbours of the set of dark grey pixels Si, excluding the pixels in the dark grey 
pixels themselves. (In this example, the pixel colours reflect the neighbourhood structure 
in the prior model; not the colouring in the image reconstruction.)

In Plot (a), for a set consisting of a single pixel, Si = { i  : for one i E { l , . . . , n } } ,  the 
distribution of the vertices that it contains, A and B, is completely determined once the 
set of neighbouring pixels is known. This is because A and B lie on the boundary of the set 
Si. If contains more than one pixel, shown in Plot (b), the distribution of the vertices 
tha t it contains, A to E, is non-trivial because C, D and E move freely. (The vertices A 
and B are remain fixed because they still lie on the boundary between Si and S[.) □

4 .2 .2  T h e  lik e lih o o d  fu n c tio n

The observed data Y  = (y i, . . .  ,y n) are recorded on a regular lattice of points {Zi E 3ft2 : 
i = 1 , 2 , . . .  , n}. In the absence of blurring, the expected value of the sensor’s output at 
each Yi is proportional to the average intensity within that pixel and is assumed to be 
proportional to the area covered by the object in that pixel. We denote the average value 
of the colour of pixel i by

hi(x) = bp\ + wp™, (4.2)

where p\ and p f  are the proportions of pixel i covered by colours b and w  respectively,

Pi I I  I[x(z)=b]dz and p  ̂ /  /  I[x{z)—w ]^'
J J z(zi J J z£i

(For convenience, we assume the area of a pixel is one.)

Due to imperfections in the recording sensor, the record Y  may be degraded by blurring 
and additive noise. So an additive Gaussian model, with blurring, is assumed for the 
record.

M odel 4 .2 . LIKELIHOOD. The likelihood model is

yi = j j  x(z)g (zi, z)dz +  e* (4.3)

where x ( z ) is the value of the true image at the point z E 3ft2, g {zi,z ) is a blurring function
which decreases in value as the distance between z and the point Zi increases and is
independent, additive sensor noise. □

In practice, we use a discrete approximation to the blurring kernel in which g(zi, z) is 
assumed to be piecewise constant in z across pixels. So if blurring is present, the colour 
observed at pixel i is a combination of the colours in a neighbourhood around th a t pixel.
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Equation (4.2) is then replaced by

h i ( x )  = ^ 2  (hpbj + w p y ) K i j  (4.4)

where Si is the set of pixels in a neighbourhood around pixel i. In effect, the colour in 
neighbouring pixels ‘leaks’ into pixel i. The amount of influence each neighbouring pixel 
has depends on its spatial distance from pixel i , which is stored in a blurring matrix K .

Remark.

•  The size and shape of the blurring kernel determines the size of the m atrix K  and 
the value of the elements in the matrix. It is usually estimated from the data (see 
§4.4 on page 83).

• When blurring is present, pixels around the border of the image are only observed 
indirectly through their contributions to the records of neighbouring pixels. In this 
case, there axe fewer elements in the record Y  than there are pixels in the image X .

• Following on from the comments in §2.3.5 (on page 31), we assume tha t the blurring 
is shift invariant. Spatial stationarity is a standard assumption in image models. It 
removes the need for experimentation with proposal distributions tailored to indi­
vidual variables, representing individual pixels.

The blurring coefficients K  and the noise variance cr2 are assumed to be known or can 
be estimated from the data. From Equation (4.4), the distribution of the the signal y 
given the true image x  is then

n

fv \x ( y ,x )  (x exp j —(2<r2)-1 ^ 2 (y i  -  /ii(rr))2}. (4.5)
i —1

4 .2 .3  T h e  p o ste r io r  d is tr ib u tio n

As usual, the posterior is the combination of the prior and likelihood, which in this model 
is

n

f x \ Y & , y )  exp{-/?L(a;) -  (2 a 2 ) - 1  J ^ (y i  ~  h(xi))2J. (4.6)
Z = 1

We want to find the image x  in the sample space Q which maximises the posterior 
probability f x \ y { x ->y) defined by Equation (4.6).
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4 .3  T h e a lgorithm

4 .3 .1  A n  o v erv iew

We use MAP estimation to find the image x  in the sample space Q which maximises the 
posterior probability fx \Y (x iV) defined by Equation (4.6). The sample space Q, as defined 
in §4.2.1, is complex and it is difficult to find a good initial estimate in Q, directly. Instead, 
we proceed in stages, optimising first over simpler image spaces in order to obtain a good 
starting image in ft for the final optimisation. At each stage we seek the maximum of

<f>{x) = exp{-(3L (x) -  (2cr2)_1||y -  h (x )||2} (4.7)

over images x  in specified spaces, where L(x) is the total edge length in image x  and 
h{(x) the average value of x  over pixel i. Our algorithm for seeking the MAP estimate is 
summarised below.

To aid the search, a cascade approach to optimisation is used, where each step in the 
cascade involves optimising over a different state space. The answer from each stage forms 
a starting point for the subsequent stage. There are four stages in all. Stages 1 to 3 axe 
intended to produce a good starting image x  G fi, for the final stage. In Stages 1 and 2, 
we work with x  in spaces different from Q. Stage 1 has state space fb  =  [x  : X{ <E {b,w }}. 
Stage 2  has state space where, for x € each Xi takes one of the fourteen states shown 
in Figure 4-4. This introduces edges into the reconstruction but they are not necessarily 
linked. In Stage 3, ^ 3  is similar to Q2 but is constrained so that edges link together. 
Finally in Stage 4, the state space Q4 =  Q, allows each vertex to be located anywhere 
along the pixel boundary on which it is initially located. The set of all possible such 
locations defines this state space ^ 4 .

The relationship between the state spaces is fb  C &2 , ^ 2  7) ^ 3  and Q3 C ^ 4  =
So the state space is increased in going from Stage 1 to Stage 2 , reduced during Stage 3 
and then increased again in Stage 4. State spaces S^i, ^ 2  and Q3 are easier to work with 
than Q, initially and the answer from each stage forms a starting point for the subsequent 
stage. This reduces the amount of work during each stage and ensures tha t each stage has 
a good starting point.

Remark.

•  W ithin each stage, the algorithm relies on the Gibbs sampler and the Metropolis 
algorithm to simulate from the posterior and optimisation is performed using simu­
lated annealing. Details are deferred until §4.3.2.

• Note there is something similar here to the previous chapter, the objective function 
is fixed and we maximise it over a series of related image spaces.

4 .3 .2  T h e  2D  co n tin u o u s su b p ix e l a lg o r ith m

We now define the algorithm.
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A lg o rith m  4.1. C o n t in u o u s  2D S u b p ix e l .

S tag e  1: Full p ixe l re c o n s tru c tio n  Define to be the set of images in which each 
pixel is of a single colour, b or w. From a convenient starting point, search for the 
image in that maximises <p{x), in Equation (4.7) using simulated annealing based 
on the Gibbs sampler (see §2.3.3 on page 29).

Remark. The starting image is not critical for simulated annealing, if we use a 
sufficiently high temperature early on. So for convenience, the observed image is 
thresholded at a value midway between the foreground and background colours, 
which are estimated from the data.

S tag e  2: In it ia l  su b p ix e l e s tim a tio n  Define 0,2 to be the space of images in which 
each pixel takes one of the fourteen states shown in Figure 4 ~ 4 - Starting with the 
final reconstruction from Stage 1 , search for the image in 0,2 that maximises 4>{x), 
again using simulated annealing based on the Gibbs sampler.

Remark. This stage introduces edges into the reconstruction. For computational 
efficiency, an edge lying across a pixel is initially constrained to have vertices that 
lie midway along a pixel boundary. This results in the fourteen possible proposals 
shown in Figure 4-4. The edges in neighbouring pixels are not necessarily linked. 
This allows the algorithm greater freedom initially that is not allowed in the final 
stages when edges across pixels are piecewise continuous. An example of a ‘fourteen- 
proposal’ scene is given in Figure 4-5 (b).

S tag e  3: C onversion  to  a n  im age in  O Apply a deterministic algorithm (see §4-3-3 
on page 77) to convert the end product of Stage 2 to an image in O with as little 
modification as possible.

S tag e  4: F in a l su b p ix e l e s tim a tio n  Starting from the reconstruction obtained in 
Stage 3, search for the image in that maximises 4>{x). This time a form  of simu­
lated annealing based on the Metropolis algorithm is used (see §4-3-4 071 Pa9e 79).

Remark.

•  The boundary around each object in the image is now identified by a linked, 
sequence of straight lines, each of whose vertices initially lie midway along a 
pixel edge. The final stage allows the vertices of an edge to be located anywhere 
along the pixel edge on which it currently lies, except right on a corner.

• The search for the image x  € O is by simulated annealing with a Metropolis 
update, for moving the vertex at which two edge-segments meet along a pixel 
boundary. One advantage of this constraint is tha t the starting tem perature 
can be set to a high value, in order to explore the state space O, because it 
is not possible for an edge to move more than a half a pixel from the starting 
point.
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□
(a ) A llow ab le  colourings Figure 4-4: S t a g e  2 P r o p o s a l s . The 

fourteen pixel colourings allowed in Stage 2 
are shown. These possibilities arise from con ­
straining every e d g e  segm ent to terminate 
midway along a  pixel boundary.

• An implicit multiple update occurs during this stage. When the edge vertex 
shared by two pixels is moved, both pixels are updated simultaneously. □

E x am ple  4.4. RECONSTRUCTIONS FROM EACH STAGE OF ALGORITHM 4.2 — 1/2.  
Examples of the types of images produced in the four stages are shown in Figure 4-5.

(a ) S tage 1 (b ) S tage 2 (c ) Stage 3 (d ) S tage 4

Figure 4-5: R e c o n s t r u c t i o n s  f r o m  e a c h  S t a g e  o f  A lg o r i t h m  4.2 — 1/2.  Each 
3 x 3  im age is an exam ple from the state sp a ce  used during the four stages of Algorithm 4.1. In ea ch  
im age the centre pixel's contribution to the e d g e  length L(x) is highlighted using dashed lines for 
e d g es  lying on the pixel boundary and dotted lines for the e d g e  inside the pixel. We are interested 
in reconstructions that lie in Q, which arise in Stage 4.

The edge length penalty for the centre pixel in each 3 x 3  image is highlighted by broken 
lines. The dashed line shows the edge lying on the pixel boundary and the dotted line 
shows the edge lying inside the pixel. Stage 1 has edges lying on the pixel boundary only. 
This allows the algorithm to make large jumps over the space of possible images, by only 
allowing one colour within a pixel. Stage 2 allows straight lines across a pixel with the 
constraint that the vertices of the straight line are located midway along a pixel edge. 
This initial approximation substantially reduces the computational burden and is used to 
locate the boundary to within half a pixel of its final position. To encourage exploration 
of the state space, line segments are not necessarily linked together at this stage. Stage 3 
ensures the line segments lying around the boundary of an object are piecewise continuous 
by linking edges together. Stage 4 relaxes the constraint that edges lie midway along a 
pixel edge. This leads to subpixel changes in the reconstructed image by allowing the 
vertices of each line segment to vary by up to half a pixel from their initial location. □
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E x am p le  4.5. RECONSTRUCTIONS FROM EACH STAGE OF ALGORITHM 4.2 — 2/2.
As a more substantial example, Figure 4-6 shows the four stages in the reconstruction of

(a ) Stage 1 (b) Stage 2
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Figure 4-6: R e c o n s t r u c t i o n s  f r o m  e a c h  S t a g e  o f  A lg o r i t h m  4.2 — 2/2. In 
Stage 1, e a c h  pixel takes one of two colours. In Stage 2, ea ch  pixel is permitted to take on e  of 
the fourteen states, shown in Figure 4-4, with no further restrictions. Only a  few  places require a d ­
justment in Stage 3, in order to obtain the final reconstruction shown in Stage 4. Note that the final 
reconstruction has a tendency to 'cling' to the boundary as this reduces the total e d g e  length within 
the im age, so increasing <f>(x). The benefit of a subpixel reconstruction is the difference b etw een  the 
Stage 1 and the Stage 4 reconstructions.

the image depicted in Figure 4-1. The record Y  used here is the 16 x 16 array of the 
grey-level values in Figure 4-1 (b). Independent normal errors of mean zero and variance 
o 1 =  0.01 have been imposed. The parameter in the prior image model, in Equation (4.1), 
is set at (3 = 25. The algorithm is initialised at the beginning of Stage 1 by thresholding 
the record Y , at the value midway between the two colours {b+w)/2. Simulated annealing 
with a geometric cooling schedule is used in each of Stages 1, 2 and 4.
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For each of the reconstructions in Figure 4-6, a pixel grid has been superimposed and 
the region of black in each pixel has been drawn to lie inside the boundary of each pixel. 
This is purely a graphical device to help illustrate how the image is constructed. It does 
not affect the calculations.

A thresholding of the discretised image in Figure 4-1 is shown in Figure 4-6 (a). The 
reconstructions at the end of Stages 2, 3 and 4 are also shown. In Stage 2, edges which 
contravene the rules defining O are liable to increase L(x) and decrease <f>(x). Thus, it is 
not surprising tha t the Stage 2 image infringes these rules in only a few isolated instances 
on the edges of the ring and in several contiguous pixels on the right-hand side of the small 
black circle. These points are rectified in Stage 3 and further processing in Stage 4 yields a 
reconstruction which approximates the original image much better than the corresponding 
full-pixel reconstruction in Stage 1.

The most noticeable errors occur where boundaries between black and white regions 
meet the image edge. Here, distortions can arise as our prior model penalises edges running 
close and almost parallel to the image edge and favours more abrupt term ination of such 
edges at an earlier point. A different prior may not have this characteristic feature. For 
instance, the prior could be based on the angle between edges, favouring straight line edges 
over jagged edges. □

Sim ulation  for Stages 1 and 2

In Algorithm 4.1, an analytic approach to maximising 4>(x) within each stage is not feasible 
because of the high dimensionality of the image spaces under consideration. Instead, we 
use the stochastic optimisation algorithm of simulated annealing at each stage (see §2.3.8 
on page 34).

Simulated annealing based on the Gibbs sampler is used in Stages 1 and 2 of Algorithm
4.1 to seek the maximum of 4>{x) over sample spaces Qi and 0,2 respectively (see §2.3.3 
on page 29). In each iteration t = 1 , 2 , . . . ,  the image is swept in a raster scan and pixels 
are updated in turn. Let x - i  denote the values of x  at all pixels other than i, in the 
image x. If the current image is x  just before pixel i is updated, the Gibbs sampler would 
generate a new image x' with probability proportional to 4>(xl) for all x ' in the sample 
space satisfying x C  =  X-i. Thus, in Stage 1 pixel i can take either of the colours black 
or white and in Stage 2 pixel i can take any of the fourteen possible colourings shown in 
Figure 4-4.

In our example, we used a geometric temperature schedule falling from initial temper­
ature 5 to final temperature 0.1 in 50 sweeps. Following Geman et al. 1987, the image 
attaining the maximum value of 4>(x) during the 50 sweeps was noted and the algorithm 
was rerun at a tem perature of zero from this starting point, until convergence at a local 
maximum of 4>(x). This final step is equivalent to applying the strictly downhill search 
of iterated conditional modes (Besag 1986) from the starting point formed by simulated 
annealing.
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4 .3 .3  S ta g e  3: T h e  co n v ersio n  a lg o r ith m

An image in 0,2 can be fully specified by stating the colour present in each corner of each 
pixel. Of the eighteen possible combinations of two colours separated by a straight line, 
only fourteen are permitted. These are shown in Figure 4-4. The other possibilities are 
excluded because of the restriction to only one line segment crossing any one pixel. If 
an image in 0,2  is also in the set Q, the same colour must be associated with every point 
in the image where four pixel corners meet or where two pixel corners meet around the 
boundary of the image. It is straightforward to check tha t this is a sufficient condition for 
an image in 0,2 to be in 0  and we base our conversion algorithm on this fact.

A lg o rith m  4.2. C o n v e r s io n  FROM 0 2 t o  ft.

In it ia l is a tio n  Use the final reconstruction from Stage 2 to assign a colour to each of the 
four corners of each pixel.

Sw eep 1 Visit each pixel corner in turn and note the colours of the four adjacent pixel 
corners or two adjacent corners round the boundary, except at the corners.

• I f  all corners have the same colour then fix the corner values for that vertex.

• I f  one colour dominates by occupying three out of four corners then re-colour 
the minority corner to agree with the other three.

• I f  the colours are evenly split, one to one or two against two, calculate the 
average value of the records associated with all the pixels concerned and colour 
all corners with the colour that lies closest to the average record value.

Remark. Here we take the record associated with a pixel to be the record to 
whose mean the pixel makes the largest contribution.

Sw eep 2 Visit pixels in a raster scan taking rows from the top of the image to the bottom 
and moving from left to right within each row.

• I f  the four colours in the corners of a pixel correspond to a pixel colouring in 
Figure 4~4, assign this colouring to the pixel.

• I f  not, we must have one pair of diagonally opposite corners of one colour and 
the other pair of the other colour. To rectify this, switch the value in the pixels 
bottom right-hand corner and also the values in the corner of each neighbouring 
pixel which meet at this vertex. The pixel currently being visited now has a 
pattern of corner values in agreement with a colouring in Figure 4~4 a n d  w e  
assign it this colouring. □

E x a m p le  4.6. T h e  C o n v e r s io n  A l g o r it h m .

Figure 4-7 shows the conversion of the example in Figure 4-5 from Stage 2 to Stage 3 using 
Algorithm 4.2. The colour of each corner of each pixel, from Stage 2 of Figure 4-5, is used 
to initialise Figure 4-7 (a). During the first sweep, each corner of each pixel along with its

©  John Gavin (1995) Subpixel Image Analysis Ph.D. thesis, Bath



4 Continuous 2D subpixel reconstruction 78
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Figure  4-7: T h e  C o n v e r s io n  A lg o r i t h m .  Figures (a)-(c) show the conversion of Figure 4-5 
from Stage 2 to Stage 3 using Algorithm 4.2. In (a), the circles d en ote the grouping of corner val­
ues at pixel vertices. During Sw eep 1, rules are applied to ensure that all corners m eeting at a  ver­
tex have the sam e colour. During Sw eep 2, the corners within ea ch  pixel are used to d ec id e  the  
colouring for that pixel. To avoid an anomaly in pixel 5, the colour of the South-East corner and its 
neighbours are flipped. This switch has a knock-on effect on pixel 9, so that the South-East corner of 
that pixel also changes.

neighbouring corners is processed and the circles in Figure 4-7 (a) highlight the corners 
involved in each step. For the circles labelled A, B and C, there is a tie between the two 
colours. This is resolved by considering the average of the records associated with those 
pixels.

During the second sweep of the image, the four corners within each pixel are considered 
and one of the fourteen proposals shown in Figure 4-4 (a) is inserted, based on the colouring 
of the four corners within that pixel. An ambiguity arises at the pixel labelled 5, in 
Figure 4-7 (b), because the colouring is not one of the possibilities shown in Figure 4-4. 
The South-East corner of pixel 5 is flipped and this has a knock-on effect on pixel 9, which 
now has a pattern of colours similar to that of pixel 5. After switching the South-East 
corner, we obtain the result shown in Figure 4-7 (c) which is the Stage 3 reconstruction 
of Figure 4-5. □

A void ing  S tage 3

The state space 0,2 includes images where edges may lie along a pixel boundary. It is 
likely that edges will settle into a ‘linked’ pattern during the latter part of Stage 2 since 
this will tend to increase the posterior probability. The intention in these first two stages 
is to produce an initial approximation to the MAP subpixel estimate in an unconstrained 
search over the spaces and 0 .2 -

There is no guarantee that the reconstruction at the end of Stage 2 will be in the set 
Q, as edges of regions of a particular colour may lie along pixel boundaries rather than 
within pixels. Geman, Geman, Graffigne, and Dong (1990) suggest imposing an increasing 
penalty for undesirable or ‘taboo’ states to help ensure that edges across pixels are linked 
together. In effect, they added closed boundary constraints with increasing penalties for
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each step in the algorithm. In our case the ‘taboo’ state would be a corner with both 
plus and minus around it. They show that, theoretically the constrained optimisation 
algorithm would converge to the optimal closed boundary configuration. But in practice, 
they adm it that a ‘linked’ pattern is not always guaranteed from simulated annealing with 
a finite number of sweeps, even if a large penalty is attached to images that are not ‘linked’. 
So to guarantee that edges are linked a separate stage for tidying-up may be needed.

To cater for this possibility, we use a convenient procedure that requires only one or two 
sweeps of the image, to amend any features which contravene the rules obeyed by images 
in fl. After Stage 3, all edges lie within pixels and their vertices are at the midpoints 
of the pixel edges. Prom this point, the pixel-to-pixel route of each edge is fixed. Thus, 
the end product of Stage 3 determines a subset of D to be searched in Stage 4, when the 
vertices of each edge segment are allowed to move within their specified pixel edges.

Stage 3 could be unnecessary if we allowed up to two edges across a pixel. This would 
require 18 proposals to be considered. The four new proposals arise from pixels with both 
black and white located at diagonally opposite corners. This adjustment would guarantee 
tha t any Stage 2 reconstruction will lie in Q, provided tha t also allows pixels with up to 
two edges across it. However, this would lead to a more complex model. In particular, it 
implies th a t the analogous model in 3D could have four surfaces inside a voxel. This level 
of complexity is not desirable so this route is not explored further.

Any other conversion algorithm could be used as long as it does not upset the answer 
from Stage 2 too much.

4 .3 .4  S ta g e  4: S u b p ix e l a d ju stm en ts

At the end of Stage 3, the boundary around each object in the image is identified by a 
linked, sequence of straight lines, each of whose vertices lies midway along a pixel edge. 
So, the colouring of the image is specified up to the location of the vertices of the linked 
edge segments. In the final stage of our algorithm, we allow the vertices of an edge to be 
relocated anywhere along the pixel edge on which it lies initially. We do not allow vertices 
to move into neighbouring pixels. Thus, the image space is effectively reduced to a subset 
of by the beginning of Stage 4. This reflects the work done during the earlier stages. 
One consequence of this is that the starting temperature for a simulated annealing search 
can be set to a high value in order to explore this subspace of f2 fully. Details of this 
application of simulated annealing are described in §2.3.3. As the Stage 4 image space is 
continuous, it is convenient to use simulated annealing based on the Metropolis-Hastings 
algorithm.

Suppose the vector 9 = (91 , . . .  , 9r) contains parameters, taking values in (0,1), which 
specify the location of the vertices. Let x{6 ) denote the image defined by 9, let 9-i denote 
the values of 9 in all elements other than i and let 9' be the vector with 2th element 9[ and 

O'-i = 0 - i.
The goal is to find the value which maximises (fr{x(9)} over 9 G (0 ,1)7". The Metropolis 

algorithm samples from the distribution of 9 with density proportional to (f){x («)}■
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A lg o r ith m  4 .3 . S w e e p in g  a n  Im a g e  in  Q.

Sweep the image, updating every vertex location once. In effect, the vector 9 is swept 
and its elements $i are updated in turn, where z =  1,2, . . .  , r.

Remark. Typically the number of updates required to sweep an image is far less 
than the number of pixels in the image, r  <  n, as only a few pixels contain two 
colours. This reduces the amount of computation required.

In updating 9i, a proposal value 9\ is drawn from the uniform density on (0,1). 
Replace 0i by with probability

a{9,6') =  m i n J l j ^ a j ^ O I / ^ s O T }  (4.8)

otherwise the value 6 i is retained.

Increment i by one and goto the previous step to update the next element 9i+\, until 
i = r. □

The effect of changing a single 6 i is illustrated in Figure 4-8. The colouring of two pixels 
is simultaneously affected as the two edge-segments meeting at the vertex in question 
are repositioned. The only modification with the simulated annealing algorithm is the 
replacement of Equation (4.8) by

{(f){x(9')}/ (f>{x(0)}} . (4.9)

In our examples, we again use a geometric cooling schedule with a starting tem perature 
of 5 dropping to a final tem perature of 0.1 over 50 steps, unless otherwise stated. This is 
followed by a strictly downhill search starting from the image with the highest value of 
4>(x) during the simulated annealing stage.

E x a m p le  4 .7 . A Stage 4 M ove .
Figure 4-8 shows an example of a possible move for one vertex. The vertex is currently 
at the position labelled A. A new position, B, along th a t pixel edge is selected at random. 
Moving the vertex from A to B means increasing the proportion of black in the pixel on 
the left of the vertex by the area of the triangle ABC. Similarly the proportion of the 
pixel on the right is increased by the area of the triangle ABD. Therefore the likelihood 
needs to be recalculated for both pixels. The prior penalty for edge length around the 
boundary has increased by the difference between |CB| -I- |BD| and |CA| +  |AD|. No other 
pixels are changed so their posterior probabilities cancel out when calculating the ratio in 
Equation (4.9). □

Remark.

• Since the number of vertices in the image during Stage 4, is usually much less than 
the number of pixels in the image, the optimisation in Stage 4 is not particularly

©  John Gavin (1995) Subpixel Image Analysis Ph.D. thesis, Bath



4 Continuous 2D subpixel reconstruction 81

Figure 4-8: A  S t a g e  4 M o v e . The Metropo­
lis algorithm proposes a  m ove from the point A to 
a point B randomly selected  along the com m on  
pixel boundary betw een  the two linked ed ges. 
This m ove adds an additional e d g e  length of 
|CB| +  |BD| -  |CA| -  |ADj and ch an ges the pro­
portion of black in the two pixels by the areas of
triangles ABC and ABD. Equation (4.9) is used to
a c c e p t or reject the proposed move.

onerous. This is in spite of the greater amount of computation required in each 
Metropolis update relative to the Gibbs sampler updates of Stages 1 and 2.

• Each move during this stage means updating the state of two pixels simultaneously. 
This is another example of multiple-site updating, the previous example occurred 
with the 2 x 2  block updating in the previous chapter.

R ela tio n sh ip  to  te m p la te  m atch ing

In Stage 4, each proposal consists of a uniformly distributed random displacement to a 
single vertex, affecting two boundary segment lengths and three inter-segment angles. This 
changes the boundary of the object and consequently both the likelihood and prior terms 
in the posterior. In this respect, this stage of the algorithm is rather similar to a simplified 
form of template modelling. However, no prior knowledge is assumed about the number 
or shape of the objects in the image and the displacement of a single vertex is constrained 
to move along a single pixel boundary only.

R e ro u tin g  th e  edges in S tage 4

In Stage 4, the vertices are free to move along the pixel edge; but not to move into
neighbouring pixel edges, as this would require the addition of line segments. Thus, the 
dimension of the optimisation problem during Stage 4 is fixed at the start of that stage, 
so r does not change. The possibility of inserting new elements into a vector is excluded, 
for simplicity.

The parameter vector needed to define a reconstruction requires one variable to specify 
the location of each vertex around the boundary of each object. If we allow new links to be 
added to the boundary around an object, the target distribution does not have a density 
with respect to a simple measure in a parameter space of fixed dimension r. Instead, 
each rerouting adds or deletes some vertices from the reconstruction and this changes the
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dimension of the parameter vector that is used to define a reconstruction. To allow such 
additional vertices to be added, the appropriate parameter spaces would then become a 
union of subspaces of varying dimensions.

E x am p le  4.8. R e r o u t in g  E d g e s  d u r in g  S t a g e  4.

Consider moving a single vertex. Currently, it has to remain on the edge between the two

Figure 4-9: R e r o u t in g  E d g e s  d u r in g  
S ta g e  4. The vertices A, B and C could be  
rerouted to b eco m e the seq u en ce  A, D, E, F and  
C. The number of vertices around an object in­
creases by two. Finding the optimal position of 
the vertices for the new  set of vertices m eans 
searching over a  parameter sp a ce  with an extra 
two dimensions.

pixels on which it initially lies. We could consider allowing it to move to another edge, 
effectively rerouting the boundary around the object.

If the current vertex jumps to a new pixel, the number of vertices, defining the bound­
ary around an object, will increase or decrease by up to two vertices. For example, in 
Figure 4-9, the sequence of edges A, B and C becomes the sequence A, D, E, F and C. We 
are no longer simply trying to optimise the location of the vertices in the reconstruction, 
we are also trying to optimise the number of vertices that we should have. So our state 
space becomes a union of state spaces a la Green (1995c).

As with all our algorithms, we are ultimately aiming at a 3D model, so any 2D model 
must be easily extended to 3D. □

Jubb and Jennison (1991) describe an algorithm which allows edges to be re-routed 
through a new sequence of pixels in their equivalent of our Stage 4. Such re-routeing would 
certainly be desirable in simulating from the posterior distribution in Equation (4.6) over 
all of Q.

Some novel MCMC algorithms have been developed to deal with this scenario by using 
deformable templates and jump-diffusion simulation (Grenander and Miller 1994; Srivas- 
tava, Miller, and Grenander 1991), which would allow regions of one colour to appear or 
disappear. Transitions between models of different orders are made at random exponential 
times and between jumps the parameters of the model are simulated to satisfy a stochastic 
differential equation. Phillips and Smith (1994) used this sampler to investigate a number 
of model choice problems. Green (1994a, 1995c) describes an explicit, more general class
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of MCMC methods tha t use reversible Metropolis-Hastings jumps between subspaces that 
might also be applicable in this context.

4 .4  A n  ap p lica tion  in m icroscopy

In this section we illustrate how the subpixel model can be used to restore blurred micro­
scopic images of the type considered by Hitchcock and Glasbey (1994). There are three 
examples, the latter two come from the same record.

The fungal mycelium Trichoderma viride consists of a network of hyphae from a sin­
gle fungal organism. It is growing on a microscope slide which has been coated with a 
cellophane-coated nutrient agar (Ritz and Crawford 1990). A fundamental characteristic 
of this class of fungi is their mycelial growth form. It is an effective mechanism by which 
habitats can be explored, in order to find new food bases and subsequently exploit them. 
The fungi need to search their habitat efficiently to maximise their chances of finding food, 
simultaneously minimising the amount of energy consumed. Some evidence suggests that 
the fungi forage according to the spatial distribution of their food. Traditionally, results 
were based on qualitative data from field and laboratory experiments. Today, image anal­
ysis can be used to examine the spatial structure of the fungal hyphae in relation to their 
environment. Glasbey and Horgan (1994, Chapters 5 and 6) use a thinning operation to 
get a skeleton that is one pixel thick to estimate the total length of hyphae. They allow 
for effects due to lines being represented as lattice points rather than being in continuous 
space. Crawford, Ritz, and Young (1993) discuss further work on fungal morphology and 
its relationship to soil structure.

4 .4 .1  F u n gu s M y c e liu m  1 /3 :  a  s im p le  d a ta  s tr u c tu r e

In Plot (a) of Figure 4-10, we consider just a small and structurally simple example 
of a fungal growth, in order to show the effect of the model and algorithm in detail. At 
each of the 41 x 51 pixels, a blurred greyscale value is observed and the record value is 
recorded as an integer in the range 0 to 255. The image consists of two long fungus arms 
on the left and some isolated objects spread across the image. Several of these smaller 
objects may be only a few a pixels in size. Our objective is to remove blurring and noise, 
down to a subpixel level. Subsequent processing of the reconstruction can then lead to 
summary information about the fungi, which reflects their foraging or feeding behaviour 
as they spread across the microscope slide.

In this example, we briefly summarise how the parameter estimates are obtained. The 
next two examples consider the problems associated with parameter estimation in more 
detail.

T he tw o im age colour estim ates

The foreground and background colours were estimated from a histogram (not shown) of 
the data to be 249 and 50 respectively.
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Figure 4-10: F u n g u s  M y c e liu m  G r o w in g  o n  a  S l i d e  —  1/2. Plot (a) shows a  part of a  
fungus mycelium growing on a microscope slide. The blurring kernel is estimated from cross-sections 
of the im age. Such a  cross-section, along row 22 of the image, is shown in Plot (b). Plots (c) and (d) 
show a reconstruction of the data where the smoothing parameter is f3 =  50. The im ages are the 
sam e ex cep t that the left im age has an artificial boundary imposed to highlight the individual pixels. 
The ragged object boundaries suggest that the smoothing parameter needs to b e  increased.
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(C) (d)

Figure 4-11: F u n g u s  M y c e liu m  G r o w in g  o n  a  S l i d e  —  2 /2 .  Each row of this figure 
shows two reconstructions of the data. The value of the smoothing parameter in Plots (a) and (b) is 
250 and in Plots (c) and (d) is 450. The ch o ice  of about p  = 250 seem s to best fit our priori knowledge  
about the true im age containing smooth boundaries.
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T he noise estim ate

The record variance, for Equation (4.5), is estimated to be 2.5, by sampling in parts of 
the image which contain just one colour.

T he blurring kernel estim ate

The blurring kernel is estimated by taking cross-sections through the data. If no blurring 
is present, the cross-section would be almost vertical at the boundary between the fungus 
and the background. The rate at which the cross-section moves from the one colour level 
to the other provides an estimate of the blurring kernel. The top-right image in Figure 4- 
10 shows the colour values for row 22 of the image. This row passes through one of the 
arms and an isolated object lying to the right. The remainder of the cross-section consists 
of the background colour. Repeating the analysis elsewhere in the image suggests tha t 
a Gaussian kernel with a standard deviation of about 1 is a reasonable approximation 
for the blurring. Hitchcock and Glasbey (1994) decided that a Cauchy distribution best 
approximates the blurring kernel but they also felt tha t a Gaussian distribution was an 
acceptable approximation.

T he tem perature schedule

As usual for Stages 1, 2 and 4, simulated annealing is used with a starting tem perature of 
5 and a final tem perature of 0.1. During each of Stages 1, 2 and 4, one hundred sweeps 
of the image on a geometric schedule are applied, followed by ICM to convergence. Tests 
with a larger number of sweeps did not make a significant difference to the reconstruction. 
Other tem perature schedules were also considered but the results were not sensitive to 
small changes in these parameters. The reconstruction with the lowest energy during each 
simulated annealing run is used as the starting point for a strictly downhill convergence 
to the nearest local minimum, to complete each stage.

C om m ents on th e  analysis

The bottom  row in Figure 4-10 and the two rows of images in Figure 4-11 show recon­
structions for increasing values of the smoothing parameter in Equation (4.6), (3 = 50, 250 
and 450 respectively. For the left-hand image in each row, a pixel grid is superimposed 
and the region of black in each pixel has been drawn to lie inside the boundary of each 
pixel, to illustrate the amount of subpixel detail recovered.

The param eter (3 determines the balance between our desire for smooth boundaries, 
in the sense of minimising the edge length, while still agreeing with the observed image. 
If (3 is large, we move away from the record and objects tend to have smooth boundaries. 
Conversely if (3 is small then the observed image is closely matched but the boundary 
around objects is less smooth. As the value for the smoothing param eter increases, the 
boundaries become smoother and isolated objects are more likely to disappear.

©  John Gavin (1995) Subpixel Image Analysis Ph.D. thesis, Bath



4 Continuous 2D subpixel reconstruction 87

Our prior expectations about the smooth boundaries around objects in the true image 
leads us to tentatively suggest that a smoothing parameter value of (4 = 250 is a suitable 
choice. Currently this parameter is chosen by trial and error. Obtaining a more objective, 
data-driven estimate is the focus of future work. Computer experiments suggest th a t the 
reconstruction is not overly sensitive to the choice of the smoothing parameter.

4 .4 .2  F u n gu s M y c e liu m  2 /3 :  a  c o m p lex  d a ta  s tru c tu re

In §4.4.1, the structure of the fungus in the image was deliberately chosen to be simple, 
to dem onstrate the model and algorithm. In Figure 4-12 (a), a different fungal record is 
shown. It contains much more structure than the previous record but the analysis is 
similar. The purpose is to demonstrate tha t the algorithm makes no assumptions about 
the size shape or orientation of the object in the image.

Again, Figure 4-12 (a) is an image which is essentially binary in nature, with little noise 
and blurring. Unlike the previous example, the objects in the image, the fungal hyphae, 
are typically only 1-2 pixels wide so subpixel reconstruction may be more beneficial. The 
fungus is spread out across the image so as to maximise its ability to feed on the nutrient 
tha t lies on the microscope slide.

The tw o im age colour estim ates

Each pixel, in the image in Figure 4-12 (a), is recorded as an integer ranging from 0 to 
255 (1 byte per pixel), as usual. This record has 40 unique values, ranging from 30 to 
241. The histogram in Plot (b) counts the number of occurrences of each observed record 
value. A log scale is needed to display the data but the right y-dxis scale shows the actual 
pixel count. The 40 unique record values are plotted along on the x-axis, where the height 
of each line corresponds to the number of occurrences of that record value. The most 
common record value is 30, the background colour. This occurred 20% (789/(63 x 60)) 
of the time. The foreground colour, with a record value of about 240, is less obvious in 
Plot (b). Two reasons for this are: the fungus occupies a very small proportion of the area 
over which it is spread and the log scale of the y-axis. The former reason is to be expected 
because the fungi want to cover as much area as possible, to maximise their chances of 
finding food, but they also want to minimise the cost of doing so, since spreading out over 
an area means using energy to grow. A clearer picture can be deduced from Table 4.1.

Table 4.1 tabulates the values in the record shown in Figure 4-12 (a) and the linechart 
in Figure 4-12 (b). The number of occurrences of each of the 40 record values is shown. 
The intermediate values in the table may be due to a combination of noise, blurring and 
the grey-level colour in the background of Figure 4-13 (a). (The source of this grey-level 
colour is not known.) The figures suggest that the foreground colour is about 240 and 
the background colour is about 30. Plot (c) shows the record values, denoted by a circle, 
for the 30th row and column of Plot (a). These are the horizontal and vertical lines that 
partition the image into quarters, approximately. Record values going from right to left 
along row 30 are drawn as a continuous line; record values going from top to bottom  along
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(a ) Record
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(b) Histogram o f record
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Figure 4-12: C o m p l e x  S t r u c t u r e  o f  t h e  F u n g u s  M y c e l iu m  —  1/2. Plot (a) shows a  
part of a  fungus mycelium growing on a microscope slide. The im age is 63 x 60 pixels in size. Plot (b) 
shows a  histogram of the record values. Plot (c) shows the record values for the 30th row and col­
umn of the im age in Plot (a). Plot (c) shows more clearly a foreground colour of about 240 and a  
background colour of about 5. The slope of the line in going from the foreground to the background  
colour suggests that only a  small amount of blurring is present.
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Record 30 38 46 50 57 64 72 77 78 83
Count 789 81 456 653 181 100 112 32 32 21
Record 84 92 99 100 107 115 116 119 123 125
Count 41 52 38 27 11 16 27 10 46 9
Record 131 134 138 144 152 160 168 176 184 190
Count 50 17 22 37 32 45 57 54 59 50
Record 194 197 203 211 217 221 226 235 240 241
Count 27 16 80 70 73 53 85 97 96 26

Table 4.1: R e c o r d  C o u n t  f o r  t h e  F u n g a l  H y p h a e  in  F ig u r e  4-12. The 40 unique 
observed record values in the 63 x 60 im age are shown. The number of occurrences of e a c h  record 
value is also tabulated. The figures suggest that the foreground colour is about 240 and the b ack ­
ground colour is about 30.

column 30 are drawn as a jagged line. This also suggests a foreground colour of about 
240 and a background colour of about 30. We now need to estimate the noise and any 
blurring.

T h e noise estim ate

The noise is estimated by calculating the variance of record values from areas of a single 
colour. Figure 1-1 (a) (re-shown in Figure 4-14 (a) for convenience) shows the original 
image, from which Figure 4-12 (a) is taken. The empty regions in this image are used 
to find large areas of background colour only. This suggests a variance of about 4. For 
this image, it is only feasible to estimate the variance for the background colour because 
it is difficult to find large areas clearly composed of the foreground colour. Therefore, we 
assume tha t the variance of the foreground colours is similar.

T he blurring kernel estim ate

In Figure 4-12 (c), the slope of the line in going from the foreground to the background 
colour indicates the extent of the blurring. A vertical line with no pixels on it would suggest 
no blurring. Most of this line seem to be about 2-3 pixels wide, which suggests tha t there 
is a small amount of blurring. (In fact, if blurring is ignored then reconstructions have 
very jagged edges.) To allow for the blurring, a 3 x 3 blurring window with a Gaussian 
kernel and a variance of 1 was found to be quite successful.

T he tem perature schedule

Two hundred sweeps were used during Stages 1 and 2; four hundred were used in Stage 4. 
For each stage, the starting and ending temperatures were 5 and 0.1 respectively.

C om m ents on th e analysis

Figure 4-13 (a) redisplays Figure 4-12 (a), for ease of comparison.
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Figure 4-13: C o m p l e x  S t r u c t u r e  o f  t h e  F u n g u s  M y c e l iu m  —  2/2. Plot (a) redisplays 
Figure 4-12 (a) for comparison. Plot (b) shows a  reconstruction using Algorithm 4.1. A boundary is 
drawn around the region of black within e a ch  pixel. Clearly the algorithm is ca p a b le  of dealing with 
highly irregular shapes of different sizes and orientations. Plot (c) consists of Plot (b) superimposed 
onto Plot (a) but with the foreground region coloured in black. This highlights the dark grey pixels 
that might b e  part of the fungus but which are excluded in this particular reconstruction.
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Plot (b) shows a reconstruction from Algorithm 4.1, where a boundary has been drawn 
around the region of black in every pixel. A smoothing parameter of /3 = 300 is used. 
In this example, it is difficult to specify both the shape and the number of objects in 
the record. The subpixel algorithm provides an objective method for detecting the closed 
boundaries in this image down to a subpixel level. The analysis suggests that some of 
the fungal hyphae are only one or two pixels wide, so full pixel methods might not be 
adequate.

Plot (c) shows Plot (b) superimposed onto Plot (a), except that the regions of black 
within each pixel in Plot (b) have been filled in. Here, the purpose is to outline the regions 
identified as being part of the fungal network. In doing so, it highlights the small regions of 
dark grey pixels that are not part of the fungal mycelium, in this reconstruction. Sensitivity 
analysis is needed to decide if the parameters need adjusting so that such regions are also 
included in the reconstruction.

4 .4 .3  F ungus M y celiu m  3 /3 :  zo o m in g  in  on  d e ta il

(a) Complete record (b) Reduced record

Figure 4-14: T he  O r ig in a l  F u n g a l  M y c e l iu m  D a t a . Plot (a) shows the full record, which 
is 500 x 500 in size. Most of the fungal growth is in the bottom left hand side of this im age. For this 
reason, w e only use the 250 x 250 block of pixels in the bottom left hand side. This record is shown in 
Plot (b). (The highlighted box in the lower left hand corner of Plot (b) is discussed later.)

The original record, used in this and in the previous section, is shown in Figure 4- 
14 (a). It is 500 x 500 in size but most of the detailed structure is in the bottom left hand 
corner and this sub-image is shown in Figure 4-14 (b).

Figure 4-14 (b) is a much larger record than the previous examples. To show that the 
algorithm works on large and complex structures, consider reconstructing the underlying 
fungus from the record shown in this image. Unlike the record analysed in §4.4.1, the 
records in §4.4.2 and §4.4.3 are taken from the same source. Therefore, we expect the 
parameter values in this section to be similar to those in the previous section.
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Figure 4-15: H ist o g r a m s  o f  t h e  O r ig in a l  F u n g u s  M yc eliu m  D a t a . Plot (a) shows a  
histogram of the record values in the im age shown in Figure 4-14 (a). Plot (b) shows the correspond­
ing histogram for Figure 4-14 (b). A foreground colour of 240 is used. Plot (b) suggests a  background 
colour of 50 but the histogram for the whole im age suggests a  value of about 30, which agrees with 
the analysis in §4.4.2.

T h e  tw o im age co lour e s tim a te s

The histograms corresponding to the images in Figure 4-14 are shown in Figure 4-15. 
The foreground colour is estimated to be 240, as before. The estimate of the background 
colour is problematic. Plot (b) suggests a background colour of 50 rather than 30, as in 
the previous example. However, the histogram of the whole image (Plot (a)) suggests a 
background colour of 30, which agrees with the histogram in Figure 4-12 (b). In practice, 
the difference is not significant.

T h e  noise e s tim a te

The noise is estimated in the same way as before. Because this record is from the same 
source as the previous example, the variance is the same, a2 = 4.

©  John Gavin (1995) Subpixel Im age Analysis Ph.D. thesis, Bath

468896



4 Continuous 2D subpixel reconstruction 93
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Figure 4-16: T h e  126th R o w  a n d  C o lu m n  o f  t h e  F u n g a l  M y c e l iu m  D a t a .  This 
figure shows the record values for the 126th row and column of the im age in Figure 4-14 (b). As in the 
previous section, this gives som e indication of the extent of the blurring in the im age and the values 
of the foreground and background colours.

T h e  b lu rr in g  kernel e s tim a te

The one dimensional horizontal and vertical slices that partition Figure 4-14 (b) into 
quarters are shown in Figure 4-16. Following a similar analysis to the previous section, 
they can be used both to estimate the two colours and the extent of any blurring. A 
Gaussian blurring kernel with a variance of 1 is used, spread over a 3 x 3 window.

T h e  te m p e ra tu re  schedule

The starting and stopping temperatures of the geometric schedule are 5 and 0.1 and 50 
sweeps of the simulated annealing algorithm are used in Stages 1 and 2 and 100 sweeps 
are used in Stage 4.

C o m m en ts  on  th e  analysis

A smoothing parameter of (3 = 300 is used, to ensure that all the parameters are consistent 
with the last example.

Once the reconstruction is complete, it retains most of the information of the original 
record; but it can be stored, retrieved and displayed at a fraction of the cost. (The 
reconstruction in Figure 4-17 (a) requires 17,079 edges; the record in Figure 4-17 (b) 
requires 253 x 249 pixels.) For example, to see detail in the reconstruction, we simply 
zoom in on the feature of interest. Figure 4-17 (c) shows the highlighted square box in 
the bottom left hand side of Figure 4-17 (a). It can be draw much more quickly than the 
corresponding record, shown in Plot (d).

Because the reconstruction is accurate to a subpixel level, the process of zooming can 
be carried further. The square box in Figure 4-17 (c) is re-shown on a larger scale in 
Figure 4-18 (a). The highlighted square in this reconstruction is shown in Figure 4-18 (c).
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Figure 4-17: Z o o m in g  in  o n  D e t a i l  in  a  R e c o n s t r u c t i o n  —  1/2. Plot (a) shows a  
reconstruction of the im age in Figure 4-14 (b). This is a  demonstration of the m odel and algorithm 
on an im age that is both large and complex. An important ad van tage of the algorithm is that it 
generates a  reconstruction which contains most of the information of the corresponding record, 
shown in Plot (b); but it can  be stored retrieved and displayed at a  fraction of the cost. Plots (c) 
and (d) zoom  in on the bottom, left-hand-side of Plots (a) and (b), respectively.

For each reconstruction, the corresponding record is shown immediately to the right. As 
the scale increases, visual inspection of the record does not become any easier. However, 
the detail in the reconstruction does become apparent down to a subpixel level.

Analysis of images to a subpixel accuracy is almost always carried out on images 
that are much smaller in size than the image in Figure 4-17 (a). Because of its size, the 
reconstruction takes 18 hours on a Sparc server 1000 and requires 27mb of RAM. Reducing 
the number of simulated annealing sweeps still produces similar estimates but at a fraction 
of the CPU time.
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Figure 4-18: Z oo m ing  in  o n  D eta il  in  a  R e c o n s t r u c t io n  —  2/2. Plots (a) and (c) 
continue the trend in Figure 4-17 by zooming in on the bottom left hand side of Figure 4-17 (c) and  
Figure 4-18 (a), respectively. No computation is required to generate these two plots. They are sim­
ply a  subset of Figure 4-17 (a). They show the detail of the information that is in the reconstruction. 
For comparison, the corresponding records are shown in Plots (b) and (d), respectively.

4.5 F in a l  R e m a rk s

A multi-stage algorithm is used to gradually refine the reconstructed image down to a 
subpixel level. The final estimate from one stage is used as the starting point for the next 
stage. This breaks a large optimisation problem down into a more manageable format. 
Furthermore, each stage in the reconstruction has a good starting point so the amount 
of work required at each stage is reduced. One advantage of this method is that the 
pixel grid on which the reconstruction takes place does not have to correspond to the 
resolution of the underlying record. For example, a coarser reconstruction grid may allow 
the records associated with each pixel to be averaged, increasing the signal-to-noise ratio 
but the cost is a poorer approximation to the data. One feature of this cascade approach 
is that parameter values need to be consistent from one stage to the next (Hurn and 
Jennison 1995). In Algorithm 4.1, the model and hence the parameter values are constant
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in Stages 1, 2 and 4; it is the state space tha t changes. This is in contrast to the previous 
chapter, where the smoothing parameter required adjusting between levels.

The algorithm proposed here, Algorithm 4.1, is computationally intensive. It is mainly 
applicable to small objects that are only a few pixels in size, given current computer 
processing power. However, it also works for large images. As show in this section, the 
data can be analysed on a small part of the image first, perhaps using just ICM, to get 
some preliminary results before long runs are carried out on the whole image. If several 
images are similar, perhaps because they are from the same source, the same parameters 
can often be used on each image, without constantly reassessing them.

In this 2D algorithm, Stage 1 may be avoided because the Gibbs sampler is used in 
Stage 2 so that the two proposals in Stage 1 are always reconsidered with each Stage 2 
update. This is not the case in the 3D algorithm so a separate Stage 1 is maintained here 
for consistency.

W ith a large image, several pilot runs are necessary in order establish the best param ­
eter estimates. As yet, we do not have a data-dependent way of choosing the penalty for 
edge length (3 nor for choosing the rule to ensure tha t the boundary is piecewise continuous.

Conceivably, the posterior distribution in Equation (4.6) could be sampled rather than 
simply optimised (Besag, Green, Higdon, and Mengersen 1995, §6). This would lead to 
estimated confidence intervals for the posterior but this issue is not explored further here.

Some image reconstruction algorithms guarantee tha t the boundary around objects is 
closed by constraining the parameter space to be the set of closed boundary configura­
tions. Thus any estimate of the optimal boundary will have the property of being closed 
by default. Helterbrand, Cressie, and Davidson (1994) argue that this ensures that the 
boundary is a one-pixel wide contour (i.e. pathological cases are avoided), the complexity 
of identifying the boundary is reduced because fewer configurations have to be consid­
ered and ambiguous boundaries axe avoided. Our algorithm incorporates a specific stage, 
Stage 3, to ensure that the boundaries around all objects are closed and that ambigu­
ous boundaries are avoided. This offers greater freedom in earlier stages to explore more 
general parameter spaces.

4.6  Sum m ary o f  chapter

This chapter introduced a continuous, 2D subpixel model for edge detection.

• The benefits of continuous subpixel reconstruction are discussed and an overview of 
the method is outlined.

• The prior, likelihood and posterior distributions are defined. The parameters that 
need to be estimated in the model are

— the two colours,

— the noise,

— the blurring kernel,
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-  the smoothing parameter.

No assumptions are made about the shape or number of the objects in the image. 
The temperature schedule must be decided but this is not critical. The algorithm 
does require iteration, so it is not fast. However, it does not rely on interpolation 
to get subpixel answers, as other authors have assumed. The limiting restriction is 
that the edge across a pixel is a straight line.

• A multi-stage algorithm is used to gradually refine the reconstructed image down 
to a subpixel level. The final reconstruction segments the pixels in the image by 
allowing boundaries to consist of piecewise-continuous, straight lines across pixels.

The model and hence the parameters are constant in Stages 1, 2 and 4; it is the 
state space that changes from one stage to the next. Strictly speaking, Stage 1 is 
not essential but it is included here for consistency with the corresponding algorithm 
for three dimensions, where Stage 1 is essential.

The algorithm is illustrated with a simulated example.

The possibility of rerouting is briefly mentioned.

• An application is considered in detail. Three different images are considered.

-  The first is a small image, where the object has a simple structure. The branches 
are several pixels wide. It is discussed in detail to illustrate how the model and 
algorithm are applied in practice.

-  The second image is of a similar size but has much more structure. So it is 
more challenging for the algorithm.

-  The final example is of a large image. Such reconstructions make it possible 
to zoom in on the features of interest and to store and display the information 
more easily.

• Finally, some overall comments are made.
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Chapter 5

Continuous 3D subvoxel 
reconstruction

Visualisation is a necessary part of data analysis. An approximate answer to the right problem 
is worth a good deal more than 

an exact answer to an approximate problem.
John W. Tukey.

Tools matter.
W. S. Cleveland  

Visualising D a ta

5.1 In tro d u ctio n

5 .1 .1  B a ck g ro u n d  to  th e  a lg o r ith m

In this chapter, we present a methodology for extracting a topologically closed set of 
objects from a volume data set. This technique is of growing importance because of 
the advent of non-destructive sensing equipment, especially confocal microscopes, which 
generates point samples of true, three-dimensional (3D) objects.

T h e con foca l m icro sco p e

Shaw and Rawlins (1991) suggest that there are three reasons for the current popularity 
of light microscopy. The ease and convenience of optical microscopy make it possible to 
examine much larger numbers of specimens than is possible using electron microscopy. Sec­
ondly, recently developed labelling techniques, especially immunofluorescence microscopy, 
allow almost any cellular component to be specifically imaged because labelling dyes im­
prove the contrast in the image, unlike conventional light microscopes. Thirdly, optical 
microscopy is a relatively non-invasive and non-destructive technique and this makes it 
possible to observe living cells.

The imaging characteristics of a conventional microscope are complicated. The resolu­
tion in the direction of the optical axis (denoted by z) contains out-of-focus contributions 
from other parts of the specimen above and below the plane of focus, so the depth of field 
is larger than the in-plane resolution limit. Consequently, the image at a given focal plane 
is a poor estimate of a true section through the specimen. A confocal laser scanning mi-
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croscope (CLSM) is essentially a conventional scanning microscope with a point detector 
where the light source has been replaced by a laser. The main advantage of CLSM is 
its sectioning property which offers a modification to the optical system to improve the 
rejection of out-of-focus components (Howard 1990). In particular, it can visualise a thin 
slice within a thick specimen without having to slice it mechanically. In a conventional 
scanning microscope, it is only possible to see a projection of the whole object. The con­
focal microscope is the device used to record the data which are analysed in this chapter 
but the method proposed here can be applied to data from other recording devices.

V isualisation  in 3D

Our model and algorithm are the three dimensional analogue of the model and algorithm 
in Chapter 4. Images are binary in nature, consisting of a ‘black’ object set against a 
‘white’ background. Pixels are replaced by voxels, edge length is replaced by surface area 
in the prior and area is replaced by voxel volume in the likelihood.

A 3D object may be visualised in a number of ways. Some hardware has the ability 
to make parts of a 3D image transparent. However, this facility is not available on Sun 
workstations. So we represent individual record elements by voxels. An all black voxel 
contains 6 faces, 12 edges and 8 vertices. It is the 3D analogue of the all black pixel in 2D, 
which has 4 edges and 4 vertices. When an image is visualised, voxels which are deemed 
to lie outside the object are coloured white and all voxels inside an object are coloured 
black. If a voxel overlaps a boundary then only that part of the voxel that lies inside the 
object is coloured black.

E xam p le  5.1 . E xample of a 3D Image from  a C onfocal M icroscope .
Figure 5-1 shows an example of a 3D visualisation, created by thresholding the record. 
The record measures vacuolar volumes in stomatal guard cells of Commelina communis 
stained with acridine orange, recorded using a confocal microscope. Optical sections were 
collected at 1 n m intervals. The hole in the middle of a guard cell closes up when the 
two halves of the cell contract. Measurements were repeated at 20 minute intervals during 
opening and closing responses. The difference between the volume and surface area as the 
cell switches from being open to being closed is what concerns plant scientists at Oxford, 
who supplied the data (Fricker and White 1992). They seek estimates of quantities, such 
as the surface-to-volume ratio.

One single optical section near the centre of the guard cell is shown in Figure 1-1 (b), 
on page 2. The reconstruction shown in Figure 5-1 is 13 x 17 x 16 in size and it is formed 
by simply thresholding the record at a sensible value. In this image, the guard cell is in 
the open position so tha t it is approximately toroidal in shape. Notice that surrounding 
the guard cell, there is a small isolated object only a few voxels in size.

As a first approximation to the volume, we can simply count the number of full-voxels 
inside the object, as shown in Figure 5-1. Similarly, we can count the number of faces lying 
between white and black voxels to estimate the surface area but Howard (1990) points 
out that tiling algorithms will invariably underestimate surface area, sometimes severely.

©  John Gavin (1995) Subpixel Image Analysis Ph.D. thesis. Bath



5 Continuous 3D subvoxel reconstruction 100

Figure 5-1: E x a m p le  o f  a  3D Im a g e  f r o m  a  C o n f o c a l  M ic r o s c o p e .  This 3D recon­
struction shows a  confocal microscopic im age of a  single plant cell, called the guard-cell. (O ne 2D 
slice of the underlying data set is shown in Figure 1-1 (b) on p a g e  2.) The cam era is shifted to the left 
in Plot (a) and to the right in Plot (b) to improve the depth information. Individual record elem ents 
are represented by voxels, which are m ade visible if that record elem ent is inside the object. An 
isolated voxel is evident in the upper right-hand corner.

The subvoxel method developed in this chapter reduces the effect of the discrete grid upon 
which the data are recorded. □

Before discussing our 3D model and algorithm in detail, we briefly review existing 3D 
visualising algorithms.

5.1.2 E xisting  v isualisation  m ethods

Segmentation in 3D is a major objective of 3D imaging, just as in 2D. Non-destructive 
examination of the interior of an object is now possible using remote scanning and sensing 
technology. So a number of research groups and commercial organisations are currently 
developing image processing algorithms to analyse directly the resulting complicated data 
sets. The data sets may consist of the interior of a mechanical object or a patient’s internal 
organ. Current applications are mainly in medicine and engineering (see the citations in 
this section for more details).

Statistical image analysis offers new methods for reducing the systematic errors present 
in any 3D data set and enhancing the clarity and contrast of relevant features. To date, 
these methods has been limited to the visual integration of data and their representation 
to the human observer; but it is possible to perform some measurements on these 3D 
images as well.
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An im portant characteristic of this field is the huge volume of information tha t is 
generated by 3D recording devices. This makes it difficult to extract useful information 
about a physical object from a 3D data set, especially as the corresponding software tools 
are not yet completely developed. Also, each type of object seems to require a specific set 
of processing algorithms and parameters, as in 2D. The following algorithms are among 
the most commonly used at the moment:

Stacking 2D slices

A three dimensional object can be digitised, and hence visualised, by physically taking a 
regular, ordered sequence of cross sections through it. For example, confocal microscopy 
and magnetic resonance imaging devices collect 3D arrays of data by generating a three- 
dimensional scalar field, where each scalar records some physical property at tha t point, 
such as density. Often, the observed data consist of 2D slices stacked vertically to form a 
3D volume.

The usual practice in the past was to analyse 2D slices separately and 3D information 
was then inferred from the results. (The raw, 2D data can be analysed using some of the 
2D techniques mentioned in Chapter 1, such as is done in morphology (Serra 1982).) Then 
the data are visualised by displaying an ordered, sequence of 2D slices through the image, 
in quick succession.

Simply displaying successive 2D slices is an intuitive and simple way to visualise a 3D 
data  set. Alas, it is usually not good enough because the human brain is unable to extract 
structural information from a stack of 2D slices. Also, there may be a focal plane outside 
of which parts of the object become blurred.

Stereology

This is the fusion of two images whose parallax reveals depth information, especially if 
the object is opaque. The two images are formed by viewing the object from two slightly 
different angles. As with the ‘stacking’ solution above, two dimensional image analysis 
techniques can then be applied to the captured image. Again, there may be a focal plane 
outside of which parts of the object may be blurred.

Traditionally, 3D imaging consisted of stereological interpretation of conventional two 
dimensional images to obtain information about the three dimensional structure which 
they sample.

R endering algorithm s

A much favoured route to 3D data analysis is to create a projection of the 3D image 
or a subset of it. Adding motion, by rotating the view, creates the illusion of three- 
dimensionality. There are two commonly used classes of rendering algorithms: volume 
rendering and 3D graphics.
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V olum e re n d e rin g  Reconstructions are formed by colouring each element of the record 
and projecting the semi-transparent voxel onto a chosen projection plane. There are 
three steps in volume rendering: classification, shading and projection.

C lassifica tion  This step assigns an opacity value between 0 and 1 to each voxel. 
Typically, the lower threshold value is selected to eliminate background in­
tensity. The range between lower and upper threshold controls the degree of 
transparency in the final reconstruction.

S h ad in g  Shading techniques simulate both surface characteristics and the position 
and orientation of surfaces with respect to light surfaces and the viewer.

P ro je c t io n  Next the semi-transparent, coloured record element is projected onto a 
plane perpendicular to the observer’s direction. A ray is cast from each point 
on the projection plane through the record. For every record element on its 
path, the colour and opacity is accumulated, in back-to-front order, to produce 
a single pixel colour.

Because all the record elements contribute to the reconstruction, even badly defined 
features are present. This allows complex images to be displayed.

3D g rap h ic s  Another approach is to create a geometric model of the object using the 
volume data as a guide. Such a geometric model can be used to analyse and interpret 
the data in a number of ways: object recognition, inspecting or visualising the model 
and calculating geometric measurements, such as volume.

In these algorithms, the surface of the true image is approximated by a list of poly­
gons. It is displayed by projecting all the polygons onto a plane that is perpendicular 
to the viewing direction. Most modern graphic workstations offer built in 3D graphic 
functions, which can render polygons at speeds of several thousand to several million 
per second. The view of the reconstruction is changed by applying a rotation matrix. 
Transparency and lighting models can enhance the view further.

Although the rendering algorithms are now very sophisticated, it is still difficult to 
generate a list of polygons that accurately represents the surface of the reconstruc­
tion. Miller et al. (1991) suggest several approaches for extracting 3D geometries 
from volume data: manual model building, contour stitching, surface construction, 
marching cubes and deformable primitive models.

M a n u a l m ode l b u ild in g  Interactive model building is possible if a display system 
is available that allows users to select model points using an on-screen cursor 
to point at the record. The procedure is simply to connect all the vertices 
tha t are to be linked together to form the 3D structural model. The display 
system ideally needs to be able to rotate the data and to display the record 
simultaneously on different display screens. Displays shown might include cross- 
sections, volume rendering and orthogonal views.
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C o n to u r s titc h in g  This method combines a sequence of 2D contours together by 
fitting a triangular strop between adjacent contours. Lin and Cline (1989) 
use a similar approach but use splines to do the stitching. Both cases require 
the contours within each slice to be identified and problems arise if there are 
different numbers of contour lines in adjacent slices.

M arch in g  cu b es  One of the most popular methods is to triangulate a 3D sur­
face through the volume data. Lorensen and Cline (1987) use what they call 
£marching-cubes’ to generate a list of polygons, from volume data  which con­
tains no connectivity information.

Each voxel in their reconstruction is bounded by eight vertices, consisting of 
four neighbouring vertices lying on each of two adjacent 2D slices. (Note that 
this definition of a voxel is not the same as that which we use in the rest of 
this chapter.) A record element from the volume data is associated with each 
of the eight vertices or corners of the voxel. Then each corner is classified 
as lying inside or outside the object by comparing its value with a threshold 
or contour level, chosen by the user. The voxel is then triangulated so that 
each triangle forms a portion of the surface. The exact location of the vertices 
of the triangulation is found by interpolation. Connectivity is automatically 
generated because the four corners on the face of any voxel are the same as the 
four corners on the opposing face of the neighbouring voxel.

Cline et al. (1988) extend marching cubes to an algorithm called ‘dividing 
cubes’, by resampling the voxels to a different level of resolution.

S urface  c o n s tru c tio n  Kass, Witkin, and Terzopoulos (1987) use ‘snakes’ to model 
contours by minimising a spline function. The function tha t is minimised is 
based on the image and its first and second derivatives. This model can use 
prior information but the minimisation of the spline is a global operation that 
may lead to computational difficulties.

D efo rm in g  p r im itiv e  m ode ls  Finally, Miller et al. (1991) deform a primitive 
model to fit an object using local geometric constraints. The reconstruction 
is a closed, topologically-simple (non-self intersecting), geometric model of an 
object. They envision the reconstruction as the surface of a balloon placed 
inside an object and expanded until its surface reaches the boundary of the 
scanned object.

The vertices of this mesh of polygons are deformed using local information and 
different levels of resolution are possible. The reconstruction is closed at all 
stages. However, the algorithm may result in self-intersecting polygons and the 
initial placement of the primitive may be important. This method approximates 
the observed data by aggregating the observed data as opposed to analysing 
the observed data directly. It can model non-convex objects and the level of 
detail can be varied to allow for quick estimates. The amount of computation
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is proportional to the size and complexity of the object, not the size of the 
original data.

Overall, the 3D graphics models often assume only one object in the image and 
results are sensitive to the size and shape of the object, in some cases. Generally, 
only local solutions are found but this does mean that less computation is required.

The paper by Chen, Swedlow, Sedat, and Agard (1995) offers an introduction and 
further references to rendering algorithms.

5.2 T h e m odel

5 .2 .1  B ack g ro u n d

In our model voxels are indexed by i =  1 , .. .  ,n . A surface may pass through any voxel, 
splitting it into two regions of different colour. We allow such a surface to consist of a 
sequence of triangles linked by the sharing of a common edge. This is the 3D analogy of 
using a straight line to separate two regions of colour in a pixel. In the same spirit as 
the previous chapter, we allow at most a single, triangulated surface to divide any voxel 
between the two colours in our reconstructions and we incorporate this property into our 
prior model for the true, continuous scene.

A triangulated surface means a linked sequence of triangles, with no holes. An internal 
face refers to a single triangle on the surface that separates the two regions of colour 
within a voxel. An external face refers to that part of one of the six faces of a voxel that 
is coloured black. These definitions will be clarified in later examples.

5 .2 .2  T h e  p rior d is tr ib u tio n

In order to specify a prior penalty, we first define an image space, S7. For the 3D problem, 
we define Q, to be on a class of binary images in which boundaries are continuous and 
piecewise planar. The object is coloured black and the background is coloured white, 
denoted by b and w, respectively.

D e fin it io n  5 .1 . We define the image space to be the set of binary images satisfying 
the conditions:

• Each 3D image X  consists of an ordered, 3D array of n  voxels, X  = {Xi  : i = 
1 , . . . ,  n} 6 fh

• Each voxel is either a single colour or divided into two regions of different colours 
by a single surface composed of one, two or three triangular sections.

• A face of a voxel with a single colour must lie next to a face of another voxel with a 
single colour, excluding boundary voxels.
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• Each surface through a voxel shares a common edge with surfaces through the ad­
jacent voxels that the surface borders. There are three or four neighbouring voxels, 
except at the image boundary.

Denote the colouring of voxel i by hi(x), as before. We also use the notation x(z)  to 
denote the colour of an image x  at the point z  E $R3, in the true continuous image.

The neighbourhood around a voxel in 3D could consist of 6, 18 or 26 voxels, if a 
voxel were connected to those other voxels with which it shares a common face, edge or 
vertex, respectively. To be consistent with the previous chapter, we use a ‘first’ order 
neighbourhood only in defining a MRF model for the prior image distribution. So the 
neighbourhood for a voxel is the set of six voxels with which it shares a common face. 
Consequently, the colouring for a voxel is conditionally independent of all other voxels, 
given the colouring of these six neighbouring voxels.

A MRF based on surface area defines a prior distribution for the scene X .  Surface 
area is the sum of the areas of the triangles separating regions of different colours.

M o d el 5 .1 . P rior . The prior distribution for an image is based on the total surface area 
between black and white in that image, S (X) .  We define the prior probability for the scene 
X  to be

f x ( x )  oc exp{-t/x(a;)}  =f exp{-/?S(:r)} =  exp j - / ? ^  S'*(a;) j ,  x e Q, (5.1)
 ̂ »=i '

where S{(x) is the surface area in voxel i. □

This model is consistent with the Hammersley-Clifford theorem for the general form 
of a MRF, given in Equation (2.3) and the prior p.d.f.s used in the last two chapters. The 
density in Equation (5.1) is defined with respect to a measure in a similar way to §4.2.1.

The motivation for this choice of prior is similar to the motivation for the 2D prior 
in Chapter 4. Now, instead of edge length across pixels, we use the surface area passing 
through voxels. For the image space Q, this surface area is the sum of the areas of the 
triangles that pass through voxels. Lower values of the smoothing param eter (3 lead to a 
greater probability of objects in the image having long, usually jagged, triangular surfaces.

5 .2 .3  T h e  lik e lih o o d  fu n c tio n

The observed data Y  = (y i , . . . ,  yn) are recorded on a regular lattice of points {zi 6 5R3 : 
i = 1 ,2 ,. . .  ,n}. The sensor’s output at each Yi represents the average intensity within 
tha t voxel and is assumed to be proportional to the volume occupied by the object in tha t 
voxel. We denote the average value of the colour of voxel i by

hi(x) =  bp\ + w p f ,  (5.2)
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where p\ and p f  are the proportions of pixel i covered by colours b and w respectively,

Pi III I[x(z)=b]dz and p^ III I\x{z)—w\
J J J zGi J J J zGi

f f  'rt  r l  —  m l  d Z  •

zEi J J J zEi

(The algorithmic details for calculating the volume of a colour inside a voxel are deferred 
until §5.3.7 on page 130.)

Due to imperfections in the recording sensor, the record Y  may be degraded by addi­
tive noise. We assume an additive Gaussian model, without blurring, for the record. If
necessary, the model can be generalised to include blurring, in a similar manner to tha t 
discussed in the previous chapter.

M o d el 5 ,2 . Likelihood. The likelihood model is

Hi = h i(x) +  ei (5.3)

where ei is independent, additive sensor noise, with distribution N ( 0 , o 2). □

As before, we assume the noise variance o 2 is known or can be estimated from the 
data. From Equation (5.2), the distribution of the signal y given the image x  is then

n
f y \ x ( y , x )  e x p | —(2<t2 ) - 1  ^ ( ? / i  -  hi(:r ) )2}. (5.4)

i=i

5 .2 .4  T h e  p o s te r io r  d is tr ib u tio n

As usual, the posterior is the combination of the prior and likelihood, which in this model 
is

n

f x \ v {x , y )  oc expj-/?S(a:) -  (2a2 ) - 1  ^ { y i  -  h f e ) ) 2}. (5.5)
i=i

We want to find the image x  in the sample space which maximises the posterior 
probability f x \ Y ( x iU) defined by Equation (5.5), the MAP estimate.

5.3  T h e a lgorith m

5 .3 .1  A n  o v erv iew

The 3D reconstruction algorithm contains four stages, just like the 2D algorithm in the 
previous chapter. Our ultimate goal is to find the image x  in the sample space £1 which 
maximises the posterior probability f x \ Y ( x iV) defined by Equation (5.5). The sample 
space O, as defined in §5.2.2, is much more complex than in the 2D model. To get a 
good starting point in Q, we again proceed in stages, optimising the same function over
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different, simpler image spaces during Stages 1 , 2 and 4 in order to obtain a good starting 
image in Q, for the final optimisation. At each stage we seek the maximum of

<j>(x) = exp {-(3 S (x ) -  (2 <t2 ) - 1  \\y -  h(x)\\2} (5 .6 )

over images x  in specified spaces, where S(x)  is the total surface area in image x  and hi (x) 
is the average value of x  over pixel i.

Note that there is consistency here with the previous two chapters: the objective 
function is fixed and we maximise it over a series of related image spaces. The answer 
from each stage forms a starting point for the subsequent stage.

• Stage 1 allows each voxel to be all black or all white, Qi =  {x  : Xi G 

Relative to the other stages, Stage 1 effectively makes large jumps across the image 
space Vl.

During Stage 1 of the algorithm, there are no internal surfaces because all voxels are 
either all black or all white. Consequently, the penalty for two neighbouring voxels 
is the area of opposing colours on the common face lying between the two voxels.

• Stage 2 introduces surfaces through voxels but the vertices that define the internal 
faces of the surface through a voxel are constrained to lie midway along the voxel 
edge upon which each vertex lies. In addition, the internal surfaces do not necessarily 
link up with internal surfaces in neighbouring voxels, during Stage 2.

When updating each voxel, the number of choices for the location of a surface is 
still very large, with several hundred possibilities from which to choose. This is 
in contrast with the 2D algorithm. A focussed design-strategy helps to reduce the 
number of possibilities in a sensible but easily-implemented manner. Consequently, 
all of the possible updates for a single voxel are not considered simultaneously.

• After Stage 2, a deterministic third stage is needed to guarantee that surfaces in­
side voxels link up with surfaces in neighbouring voxels, with as little disruption as 
possible.

• Overall, Stages 1 to 3 are intended to produce a good starting image x £ Q, for 
the final stage. In Stage 4, the vertices that define the internal faces of the surface 
through a voxel are allowed to move freely along the voxel edge upon which the 
vertex initially lies.

There is no surface area on the external faces of any voxel in this stage because they 
are removed during Stage 3. The only prior penalty in Stage 4 is from the sum of 
the areas of the internal faces.

The relationship between the image spaces, corresponding to each stage of the algo­
rithm , is still the same as in Chapter 4: C ^ 2  D ^ 3  and ^ 3  C ^ 4  =  fh
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5 .3 .2  T h e  3D  co n tin u o u s su b v o x e l a lg o r ith m

The algorithm is broadly similar to the 2D case (see §4.1 on page 73).

A lgorithm  5 .1 . C o n t in u o u s  3D  S u b v o x e l .

Stage 1: Full p ixel reconstruction  Define fb to be the set of images in which each 
voxel is of a single colour, all black or all white. From a convenient starting point, 
search for the image in fb  that maximises 4>{x), as defined in Equation (5.6), using 
simulated annealing based on the Gibbs sampler (see §2.3.3 on page 29).

Stage 2: In itia l subvoxel estim ation  Define 0,2 to be the image space where each 
voxel has:

• A t most one internal surface passing through the voxel,

• The internal surface of the voxel is composed of one, two or three triangular 
sections.

• The vertices of any internal surface are constrained to lie midway along an 
edge.

Starting from the final reconstruction from Stage 1, search for the image in O2 that 
maximises 4>(x).

Remark.

• There are no constraints forcing the surfaces in adjacent voxels to ‘link together’.

• Because the space O2 is so large, the algorithm used to generate proposals when 
updating a voxel is more complex than in 2D. In particular, the proposals we 
use for updating a single voxel are not symmetric. The details are presented in 
§5.3.5.

Stage 3: C onversion to  an im age in O Apply a deterministic algorithm to convert 
the end product of Stage 2 to an image in Q, with as little modification as possible 
(see §5.5.5 on page 126).

Stage 4: F inal subvoxel estim ation  Starting from the reconstruction obtained in 
Stage 3, search for the image in that maximises 4>{x). This time a form  of simu­
lated annealing based on the Metropolis algorithm is used to move the vertex at which 
two inner faces meet along a voxel edge (see §5.5.7 on page 127).

Remark. An implicit multiple update occurs during this stage. When the surface 
vertex shared by four voxels is moved, all four voxels are updated simultaneously. □

5 .3 .3  T h e  S ta g e  1 r e c o n str u c tio n

In comparison to later stages, Stage 1 is relatively straightforward. There are just two 
choices for updating a single voxel: an all white or an all black voxel. Voxels do not have
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an internal surface so the prior penalty S (x ) depends on the surface area of the external 
faces which differ in colour to the corresponding faces in neighbouring voxels. To find the 
maximum value of as defined in Equation (5.6), the Gibbs sampler is used within 
the simulated annealing algorithm and this is followed by a strictly-uphill algorithm.

E x am p le  5.2. S t a g e  1 RECONSTRUCTION OF A 3D OBJECT.

Consider a reconstruction of the confocal microscopy example shown in Figure 5-1. Fig-

100 150
Record

Figure 5-2: H is t o g r a m  o f  t h e  
3D C o n f o c a l  M ic r o s c o p e  
Im a g e . As exp ected , most of the 
im age consists of the background 
colour. This suggests a  foreground 
colour of about 150 and a  back­
ground colour of about 20.

ure 5-2 shows a plot of the number of occurrences of each of the 237 unique record values 
which range from 11 to 250. This histogram is drawn on a log scale, with the original 
values shown on the right-hand axis. As expected, most of the image consists of the back­
ground colour. This plot and other analysis suggests a foreground colour of about 150 and 
a background colour of about 20. The peak for the foreground colour is less pronounced 
than that for the background colour. One reason for this may be the variation in record 
elements lying inside the guard cell, perhaps reflecting different parts of the cell structure. 
The plot suggests that the data could be thresholded at a value of about 100. The results 
of such thresholding are shown in Figure 5-1. The variance is estimated at about 16.

The Stage 1 reconstruction from this record is shown in Figure 5-3. A smoothing 
parameter of f3 =  100 is used. For Stage 1, the number of simulated annealing sweeps is 
25 and the temperature drops from 5 to 2  before ICM is applied to convergence.

Stage 1 has a smoothing effect, as can be seen by comparing the Stage 1 reconstruction 
in Figure 5-3 and the thresholded image in Figure 5-1. There is one small object lying 
above and to the right of the guard cell which contains enough voxels to survive Stage 1 .

□

5 .3 .4  T h e  S tage  2 im age space

It is important to choose an image space and design a set of updating rules so that a rich 
class of reconstructions is generated. Recall from the previous chapter that we only allow
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(a) (b)

Figure 5-3: S t a g e  1 R e c o n s t r u c t io n  o f  a 3D  O b j e c t . For the original thresholded 
data  shown in Figure 5-1, this figure shows a  reconstruction of the guard cell at the end of Stage 1. 
Again, the cam era is shifted to the left in Plot (a) and to the right in Plot (b) to improve the depth  
information, This stage smoothes the surfaces in the image.

one straight-line edge across a pixel in 2D, for simplicity. In the same spirit, we restrict 
the 3D image space in Stage 2 to the set Q2 , defined in Algorithm 5.1. A voxel of an image 
in Q2 can be created by applying the following steps:

• Allocate a colour to each corner of a voxel.

• Construct each face of the voxel by introducing a vertex midway along each voxel 
edge that joins corners of opposite colours.

• Form an internal surface, if necessary, by combining triangular sections.

Some combinations of corner colours are not allowed. In particular, if an internal surface 
is present, it separates two regions of colour within the voxel and the surface consists of 
one, two or three triangular sections. There are sometimes a number of different ways to 
triangulate the internal surface, so separate cases need to be recognised.

This description provides a useful representation of a voxel, colour each corner to 
triangulate the internal surface. In particular, it eliminates voxels which contain more 
than one internal surface, to make the calculations more tractable. Nevertheless, the 
resulting image space is still rich enough to generate a wide range of reconstructions.

T h e  se t of S tage 2 voxels
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(a) No corners (1 case) (b) One corner (8 cases) (c) Two corners (24 cases)

(d) Three corners (120 cases) (e) Four corners (6 cases) (f) Five corners (120 cases)

■m

(g) Six corners (24 cases) (h) Seven corners (8 cases) (i) Eight corners (1 case)

■9

Figure 5-4: T h e  s e t  o f  S t a g e  2 V o x e l s .  This figure shows som e exam ples of voxels in f22 
where the number of black corners increases from zero to eight in voxels (a) to (i) respectively. Each 
black corner is labelled by a  black circle. For ea ch  voxel, the number of valid, unique voxels with 
the sam e number of black corners is shown in brackets. Some voxels have internal fa ces  which are 
coloured to improve visibility. For ea ch  of voxels (c), (e) and (g), there are two ways the internal fa ce  
ca n  b e  constructed from two triangles but the internal fa ce  stays the sam e. For voxels (d) and (f), 
the internal surface is represented by three triangles, which have on e vertex, the apex, in com m on. 
Voxel (d) shows the apex at &i. There are five choices, a , 6i, b2, c\ and c 2, for the location of the apex  
which result in three distinct surfaces and volumes for that voxel b eca u se  b\ is identical to b2 and a  
to c 2 .
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Figure 5-4 shows all of the legal voxels in Stage 2 , except for the possibilities tha t arise 
from rotation. A legal voxel is any voxel which in allowed in the image space D.2 - The 
number of black corners increases from zero to eight in voxels (a) to (i), respectively. We 
refer to these voxels as i-corner voxels, where i can vary from 0 to 8 . Each black corner 
in a voxel is labelled with a black circle and a bounding box has been drawn around 
each voxel to highlight its shape (most of the other examples do not have these features). 
The 0, 1, 2 and 3-corner voxels axe the compliment of the 8 , 7, 6  and 5-corner voxels, 
respectively.

Some of the voxels in Figure 5-4 have internal faces. These are composed of linked 
triangles. We refer to them as internal faces, as opposed to any black region on one of 
the six sides of the voxel, which is called an external face. The number of internal faces 
depends on the number of black corners in the voxel. The internal faces in Figure 5-4 are 
coloured to improve visibility. We allow at most three internal faces, arising from both
3-corner and 5-corner voxels. In principle, more cases could be considered but the extra 
complexity is unlikely to offer greater benefits.

For each voxel, the number of unique, legal voxels with the same number of black 
corners, allowing for rotation, is shown in brackets. For example, voxel (c) has two black 
corners which are separated by a single edge. Rotating this voxel on the x - y , x - z  and y -z  
axes results in four different voxels for each of the three orientations. For each of these 
twelve possibilities, the internal surface (a rectangle) can be triangulated in one of two 
ways, depending on how the diagonal line across the rectangle is located. This distinction 
is not im portant during Stage 2 but is im portant in Stage 4. This results in a total of 24 
possibilities for the 2 -corner case.

Note tha t there are different ways to triangulate internal surfaces. All can be defined 
by specifying an ‘apex’. The most complicated cases are the 3-corner and 5-corner voxels. 
One is the compliment of the other. The three internal faces all share a single vertex, the 
apex. The axe five choices, a, 6 i, 6 2 ? c\ and C2 , for the location of the apex which result in 
three distinct surface areas and volumes for that voxel because 61 is identical to 62  and c\ 
to C2 - Figure 5-4 (d) shows the apex at 6 1 . For each voxel in there are a to tal of 312 
possible updates for a single voxel.

To recap, a voxel is represented by a set of black corners, one of which is defined to be 
the apex, but there are some restrictions:

• For a 2-corner voxel, the black corners must linked by an edge.

• For a 3-corner voxel, one of the black corners must be linked to each of the other 
two black corners by an edge.

•  For a 4-corner voxel, each of the black corners must be linked to two other black 
corners by an edge. This voxel looks like a cuboid.

The restrictions on 5-corner and 6 -corner voxels are analogous to those for 3-corner and
2-corner voxels, respectively. We use this representation when deciding updates as we 
optimise over the image space.
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T h e  a p e x  o f a  voxel

To help with the triangulation of the inner faces we define one of the vertices to be the 
apex.

D efin itio n  5.2. A p e x  o f  a  V o x e l . For every permissible voxel, one and only one of 
the vertices in a voxel is defined to be the apex. The strategy for choosing the apex of a 
voxel depends on the number of internal faces in the voxel.

0  choose any vertex as the apex,

1 choose any of the three vertices on the internal face 

as the apex,

2  choose either of the two vertices shared by the two 

internal faces as the apex,

3 the apex is the vertex shared by the three internal faces.

Number of internal faces =  <

The apex is used to help classify the different kinds of Stage 2 and Stage 4 proposals 
and to calculate the volume of black in a voxel.

E x a m p le  5.3. C h o o sin g  t h e  A p e x .

If the apex occurs at either of the vertices labelled b\ and 62 in Figure 5-4 (d) then the voxel 
has the same surface area and volume. Thus its contribution to the prior and likelihood 
penalties is the same. Similarly for the vertices labelled c\ and C2 . So there are effectively 
only three unique choices for the apex. A similar argument applies to the 5-corner voxel. 
The apex of a voxel is chosen randomly because there is no extra information available to 
help make a choice, at this stage. □

E x c lu d ed  voxels

Despite the 312 potential choices when generating a proposal during Stage 2 , there are 
still many voxels which are excluded. We specifically exclude voxels where two or more 
separate internal surfaces are needed and voxels where the internal surface requires more 
than  three internal triangles. This is in keeping with the simplifications made in the 2D 
model.

E x a m p le  5.4. S o m e  Il l e g a l  V o x e l s .

For example, the 3-corner voxel must have corners th a t are linked by an edge. If this were 
not the case then there would be more than one surface through the voxel. There are 
many other exclusions which are less obvious. Figure 5-5 shows some examples of illegal,
4-corner voxels. Plots (a) and (b) are illegal because it is not possible to triangulate a 
single surface through those voxels. Plots (c) and (d) are illegal because more than three 
internal triangular faces would be needed to create a surface separating the black corners 
from the white corners. □
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(a) (b) (c) (d)

Figure 5-5: E x a m p le s  o f  I l l e g a l  V o x e l s .  Several potential voxel reconstructions are 
specifically excluded. For voxels with four black corners, this figure shows som e of excluded cases. 
These cases are excluded usually b ecau se  of ambiguity over the ch o ice  of internal faces, such as 
voxels (a) and (b). Voxels (c) and (d) have more than three internal faces.

(d)

Figure 5-6: S o m e  S ta g e  2 V o x e l s . Shown here are com puter-generated exam ples of voxels 
with l, 2 ,4 ,6 ,7  and 8 black corners, in Plots (a) to (0 respectively. The voxels have b een  rotated and  
sca led  to offer the best view. For example, Plot (a) shows a  voxel with on e black corner, pointing 
towards the viewer. It forms a tetrahedron. Each of the Plots (b)—(d) have two inner faces. The 
e d g e  that splits the inner surface into two triangles can  b e  drawn in two ways but the sh ap e does  
not ch an ge.

Figure 5-6 shows actual examples of Stage 2 voxels. The colouring in the figure comes 
from flat-shading the shadows cast by a single light of medium intensity. Edges have been 
drawn around each face to aid visualisation. Each proposal has been rotated to give the 
best angle and scaled to fill the plot. So the only distinguishing feature between the plots 
is the shape of the black region in the voxel.

Looking from left to right, the plots in this figure show 1, 2, 4, 6 , 7 and 8 -corner 
proposals, respectively. For example, Plot (e) shows a voxel with seven black corners. The 
missing black corner, nearest to the viewer, is replaced by an inner surface, consisting of 
a single triangle. Each of Plots (b), (c) and (d) has two inner faces. The edge that splits 
the inner surface into two triangles can be drawn in two ways but the shape does not 
change. (However, this is not the case for the analogous voxel in Stage 4, where vertices 
are allowed to move freely.)

Figure 5-7 shows examples of the different types of 3-corner and 5-corner voxels that 
are shown in Figure 5-4 (d). In the first row, Plots (a), (b) and (c) each show one example 
of a 3-corner type-a, 3-corner type-&i and 3-corner type-ci voxel, respectively. Plots (d), 
(e) and (f) show the corresponding 5-corner voxels. These three classifications for 3-corner
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(a) type a (b) type bi (c) type ci (d) type a (e) type bx (f) type ci

Figure 5-7: M o r e  E x a m p l e s  o f  R e a l  S t a g e  2 V o x e l s .  The first row shows three 
com puter-generated exam ples ea ch  of 3-corner voxels, (a)—(c), and 5-corner voxels, (d)—(e). 
For e a c h  voxel, the second rows shows the sam e voxel but with the faces removed. There are three 
classifications for 3-corner and 5-corner voxels, which are labelled in Figure 5-4 (d). The first three 
columns show respectively exam ples of the 3-corner, type-a, type-6i and type-ci voxels first m en­
tioned in Figure 5-4. The last three columns show the sam e classification for the 5-corner voxel.

and 5-corner voxels follow the labelling in Figure 5-4 (d). The image directly below each 
voxel, shows that same voxel but with the faces removed. So only the voxel edges are 
visible in the second row, to help to discern the shape of the voxels in the first row.

S u m m ary  of th e  im age space in S tage 2

Number of black corners
Number of 0 l 2 3 4 5 6 7 8

Vertices 0 4 6 8 8 10 10 10 8
Edges 0 6 10 14 13 17 16 15 12
Faces 0 4 6 8 7 9 8 7 6
Cases 1 8 24 120 6 120 24 8 1

Table 5.1: S u m m a r y  o f  t h e  S e t  o f  S t a g e  2 V o x e l s .  This table shows the number of ver­
tices, ed ges, faces and combinations, for voxels with different numbers of black corners. The com ­
binations arise from rotation of the voxel and permutation of the apex, if there are internal faces. 
For exam ple, if two corners are coloured black then such a  voxel would b e  described using 6 ver­
tices, linked by 10 ed g es to form 6 faces. By rotation, there are 12 unique voxels with 2 black corners. 
There are four vertices at which to locate the apex but this reduces to just two ways of locating the 
diagonal on the internal surface, giving 24 cases in total.

The number of vertices, edges and faces needed to construct an i-corner voxel in Stage 2  

depends on the number of black corners present in the voxel. These figures are tabulated 
in Table 5.1. This approach to voxel construction is reasonably efficient as most of the 
voxels in any reconstruction are all white, for which little information is needed. Further 
details about how a voxel is represented are outlined in Appendix B.3 on page 156.

(b) type 6, (c) type ci
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In total, Table 5.1 shows that there are 312 potential choices when generating a pro­
posal during Stage 2 . (This figure exceeds the 28 possibilities mentioned earlier due to the 
different ways of triangulating the internal surface.) It is disappointing that this number 
is so large relative to the 2D algorithm, despite having placed restrictions on the kind of 
internal surface allowed and the location of the vertices of the internal faces.

T h e  p rio r  d is tr ib u tio n  d u rin g  S tage 2

During Stage 2 the prior distribution of each voxel depends on the surface area of both 
the internal faces and the external faces which differ in colour to the corresponding faces 
in neighbouring voxels.

E x a m p le  5 .5 . T he  P r io r  D is t r ib u t io n  d u r in g  S t a g e  2.

Let i, j  and k index the spatial position of a voxel on the x , y and z axes, respectively.

voxel (i , j  +  1 ,k)

penalty on the top

voxel (i,j,k)

voxel (i -  l, j, k) penalty on the left

Figure 5-8: T h e  P r i o r  D i s t r ib u t io n  d u r in g  S t a g e  2. The prior penalties betw een  
voxel (i,j, k) and two of its six neighbours are shown. The penalty is the surface area which is 
coloured differently on two com m on faces. The shaded areas in the 'penalty on the top' and the 
'penalty on the left' slices represent areas where the colours are not the sam e.

Figure 5-8 shows an example of the contribution to the prior penalty between voxel 
(i, j ,  k) and two of its six neighbours. The illustrated neighbours are voxel ( i , j  +  l, k) to the
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north and voxel (i — 1 , j ,  k ) to the east. The penalty between the top face of voxel (i, j,  k) 
and the bottom  face of voxel (i , j  +  1 ,k)  is labelled ‘penalty on the top’. The penalty 
between the left face of voxel (i , j , k ) and the right face of voxel (i — 1, j ,  k) is labelled 
‘penalty on the left’. (Note that all other faces, including the interior of the voxels, have 
been omitted for simplicity.) The shaded area in these two slices represents area where the 
colours are not the same. The prior penalty, arising from these two of the six neighbouring 
voxels, is proportional to the sum of the shaded areas. □

5 .3 .5  G e n e ra tin g  p ro p o sa ls  for M C M C  m e th o d s  in  S ta g e  2 

T h e  sea rch  m e th o d

We want to search for the image in the space ^ 2  that maximises <f>(x) in Equation 5.6. 
There are many ways of designing the updating procedure in Stage 2. Stage 2  proposals 
cannot be generated using the Gibbs sampler because the amount of computation required 
is prohibitive. The Metropolis algorithm would also be costly to evaluate and the rejection 
rate is likely to be high due to the large number of choices. As always the key to our 
algorithm is to work with the corners of the voxel. Suppose a move is restricted to flipping 
the colour of just one of the eight corners in the voxel at a time. Then the proposed move 
depends on the number of black corners in the current voxel and the resulting similarity 
between the current state of the voxel and the new proposal means tha t the new proposal 
has a better chance of being accepted. The Hastings algorithm, defined on page 27, is 
used to choose the corner to flip and whether that move should be accepted or rejected.

However, the cost of this approach is tha t traversing the image space may be much 
slower. Instead of jumping from a 1-corner voxel to a 4-corner voxel, the algorithm has to 
move through at least one 2-corner and one 3-corner voxel. In particular, it is not possible 
to get from an all black to an all white voxel without making many moves. However, if 
such a large move were desirable then it would have been made during Stage 1 . So the 
good starting point provided by Stage 1 reduces the amount of exploration needed in 
Stage 2 . (The amount of exploration is explicitly controlled by the number of sweeps and 
the tem perature during the simulated annealing algorithm.)

O p e ra to rs  fo r u p d a tin g

While several different strategies were considered, an updating procedure that relies on a 
small set of simple rules is clearly preferable. To flip (change) the colour of just one of the 
corners in a voxel, we first define two operators, referred to as the add operator and the 
delete operator.

D efin itio n  5.3. A d d  O p e r a t o r .  Flip the colour of a randomly chosen white corner 
which has the greatest number of black neighbours.

D e fin itio n  5.4. D e l e t e  O p e r a t o r .  Flip the colour of a randomly chosen black corner 
which has the least number of black neighbours.
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W ith both operators, it may also be necessary to choose a vertex as the apex. There 
are several advantages to using an updating procedure that relies on these two simple 
rules.

•  These two operators are simple to understand and to implement, yet the resulting 
image space is still very large.

• The list of proposals for updating a single voxel can be generated independently of 
the rest of the image. This localises the algorithm.

•  The two operators are rotation invariant regardless of the number of black corners 
in the current voxel. This point is crucial because it means tha t the same code is 
used to generate an update for any voxel.

•  Applying the operators to any legal voxel results in a legal voxel.

•  All of the proposals generated are similar to the current state of the voxel and this 
increases the chances of the proposals being accepted, a desirable design feature. 
That is, the operators do not move the black region inside a voxel around too much 
in a single move but the state space is large enough to allow such a possibility as a 
result of a series of updates. So we can get from a voxel with any number of black 
corners at any orientation to any other legal voxel, though it may take several moves 
to achieve this. Thus, a reducible Markov chain is avoided because it is possible to 
get from any image to other image.

In order to further enrich the class of possible reconstructions, we consider choosing a pro­
posal which contains the same number of black corners as the current voxel. This is done 
by applying the add operator immediately followed by the delete operator or vice-versa. 
(This includes the redundant possibility of not changing the voxel.) We refer to these 
two moves as add-delete and delete-add operators, respectively. The four operators add, 
delete, add-delete or delete-add are chosen with equal probability. The chosen operator 
may generate several voxels so we make a uniform choice, if necessary.

E xam ple 5.6. A p p l y in g  t h e  F o u r  O p e r a t o r s  t o  a  2 - C o r n e r  V o x e l .

To clarify this procedure, consider updating a voxel that currently contains two black 
corners, as shown on the left in Figure 5-9. The results of applying each of the operators 
is shown and each operator can generate several voxels, though only one is randomly 
chosen in practice.

Suppose the add-delete operator is chosen, for example. Applying the add operator 
means flipping the colour of the white corner with the greatest number of black neighbours. 
There are four white corners which each have one black neighbour and they are shown 
in the bottom  row of Figure 5-9. Now apply the delete operator to each of these four
3-corner voxels. For any of these 3-corner voxels, applying the delete operator means 
flipping the colour of the black corner with the least number of black neighbours. There 
are two choices in each case. So applying the add-delete operator to a 2 -corner voxel
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d-delete iiiiyiiif

Add

Figure 5-9: A p p l y in g  t h e  F o u r  O p e r a t o r s  to  a 2 - C o r n e r  V o x e l . Startirg from 
the 2-corner voxel on the left, this figure shows all the voxels which can  b e  reached  in one move, 
by applying the add, delete, add-delete and delete-add operators. One of the four operators is 
randomly chosen and then one of the proposals that it generates is randomly chosen. The r umber 
and type of voxels generated  varies, depending on the operator and number of black comers in 
the current voxel.

©  John Gavin (1995) Subpixel Im age Analysis Ph.D. thess, Bath



5 Continuous 3D subvoxel reconstruction 120

results in a total of eight possible updates for tha t voxel, shown in the second and th ird  
last rows of Figure 5-9. One of these proposals is then randomly proposed as the update 
for the current voxel.

Note tha t there are often several ways of generating a particular voxel, so the proba­
bility of proposing any one of the voxels shown in Figure 5-9 is not constant. For example, 
there are a total of twenty choices in Figure 5-9 but six are identical to the current state 
of the voxel. So the probability of a 2-corner voxel remaining unchanged is ^  +  1 | .
In contrast, there is only one occurrence of any of the 1-corner or 3-corner voxels, so the 
probability of any one of these voxels being proposed is ^  □

There is a now a two-tier procedure to generate a new proposal. First, randomly select 
one of four operators. Next, randomly select one of the proposals tha t tha t operator gen­
erates. Having generated the proposal, we then consider switching from our current voxel 
to  the new voxel, depending on the energy of each proposal and the current tem perature, 
as per usual.

Current Probability of
number of add delete same number of corners
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Table 5.2: P r o b a b i l i t y  o f  M a k in g  a  M o v e  D u r in g  S t a g e  2. For an i-corner voxel 
this tab le  shows the probability of adding, deleting or keeping the sam e number of black corners, 
w hen generating a  proposal. If the number of corners remains the sam e the probability of the new  
voxel being identical to the old voxel or not is also shown.

The list of all the voxels that can be generated from an z-corner voxel, where i varies 
from 0 to 8, is shown in Appendix A, for completeness. We summarise the results in 
Table 5.2. Given a voxel with i black corners, this table shows the probability of updating 
to a voxel with one more, one less or the same number of black corners. If the new voxel 
has the same number of black corners as the old voxel then they may or may not be 
identical and this table also shows the corresponding probabilities. For example, the most 
likely update for a 2-corner voxel is to remain a 2-corner voxel bu t with one of the two 
corners having moved. The probability of a voxel adding or deleting a black corner is \  
because each operator is randomly selected. The probabilities for an i-corner voxel and 
an (8 — z)-corner voxel are similar, for i = 1 , . . . ,  7.
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Delete

>

Figure 5-10: A p p l y i n g  t h e  F o u r  O p e r a t o r s  t o  a  3 - C o r n e r  V o x e l .  The layout of 
this figure is similar to that in Figure 5-9. However the probability of getting from the voxel on the left 
in Figure 5-9 to the voxel on the left in Figure 5-10 is not symmetric.

One side effect of this operator-based approach is that, unlike the 2D algorithm, Stage 2 
does not consider all black or all white proposals unless the current state of that voxel has 
seven of the eight corners coloured black or white, respectively. For example, if the voxel 
is currently all white then it can remain unchanged or a single black corner can be added 
and there are eight corners from which to choose. Similarly, an all black voxel can remain 
unchanged or have a single black corner deleted. Note that the probability of updating 
from a 1-corner voxel to a 0-corner (all white) voxel is not the same as updating from a
0-corner voxel to a 1-corner voxel. Therefore, proposals are not always symmetric.

Pr(0-corner —> 1-corner) =  1/2, see Figure A-l on page 144,

and Pr(l-corner —► 0-corner) =  1/4, see Figure A-2 on page 145.

In addition, the operators may generate a different number of proposals, some of which 
may appear more than once. Consider moving from an image x  whose zth voxel is as 
shown on the left in Figure 5-9 to an image x' whose zth voxel is as shown on the left in
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Figure 5-10, where X-i = x'_{ and x ,x ' G

Pr(x —>■ x') =  - -  and Pr(:r —>■ x') =  - -  => Pr(a: —> x') ^  Pr(rr/ —> x).
4 4 4 2

So the proposal matrix and hence the transition matrix are not symmetric. This excludes 
the Metropolis algorithm, so we consider the Hasting’s algorithm instead (see §2.3.3 on 
page 27). To apply this algorithm, we use the four operators outlined above both to 
generate a proposal and to calculate the probability of selecting that proposal given the 
state of the current voxel. The acceptance probability in Equation (2.10b) requires the 
posterior energies for both proposals f x \ Y ( x iV) and f x \ Y { x>iV) from Equations (5.5).

L ocal m in im a p rob lem  in S tage 2

The operator based procedure for generating proposals did not work well in practice be­
cause the algorithm found it too easy to get caught in local minima. When it starts adding 
black to an all white voxel, it begins by changing just one corner to black and this corner is 
chosen at random. If a ‘bad’ choice is made then the algorithm finds it difficult to correct 
this ‘mistake’ later.

E x am p le  5.7. LOCAL MINIMA PROBLEM IN STAGE 2.
Consider the following simple 2 x 2 x 3  image, one half of which is black. The algorithm

(h) (i) 0) (k) (I)

Figure 5-11: L o c a l  M in im a P r o b le m  d u r in g  S t a g e  2. The true im age is 2 x 2 x 3 in 
size and is half black and half white. The algorithm is trying to p lace  four half black voxels on top of 
four black voxels. The im age is shown after ea ch  of the last 12 sweeps, using a  temperature of zero, 
before it gets caught in a  local minimum. After sw eeps (a) to (i), the top, left voxel is a  2-corner 
voxel. During sw eep  0). it adds an extra corner but in the wrong p lace. Undoing this 'bad' m ove  
turned out to b e  difficult for the algorithm, so it frequently fails to find the best solution to this simple 
problem.

encounters problems even with this simple problem. From Stage 1, four of the voxels are 
coloured black and eight white. The ideal Stage 2 solution is to leave the four black voxels
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alone and place four half black voxels on top of them. However the algorithm can do 
this only by adding one black corner at a time. Figure 5-11 shows the image after each 
of the last 12 sweeps at a temperature of zero before the algorithm gets stuck in a local 
minimum. □

The problem seems to be that when the algorithm first starts adding black corners to 
an all white voxel, it can easily introduce the black corners in the wrong place and it has 
difficulty to get out of this position by undoing these moves later. On larger images this 
problem is even more pronounced, resulting in the main object in the reconstruction being 
surrounded by a proliferation of very small black objects. In theory, running the chain for 
longer should allow the algorithm to find its way out of these local minima; in practice, 
the large data sets and the amount of computation required for each update means that 
it takes too long to run hundreds of sweeps of the image.

A void ing  th e  local m in im a p rob lem  in S tage 2

To help overcome the problems of getting caught in local minima during Stage 2, we also 
consider an alternative strategy. It is a ‘greedy’ algorithm for optimisation, so it is not 
related to a MCMC sampler. Instead of selecting just one proposal, we simultaneously 
consider all the voxels that can be generated by applying the add and delete operators 
plus the possibility of remaining at the current voxel. The voxel which maximises (j)(x) 
is always chosen as the new update. This requires a lot more work to update a single 
voxel but the algorithm has a much better chance of selecting the best corner to add 
or delete, thus avoiding very poor local minima. Given any i-corner voxel, the list of 
proposals considered when updating from it, are similar to those shown in Appendix A. 
The difference is that the add-delete and the delete-add operators are ignored, to reduce 
the length of the list of voxels that have to be evaluated.

E x am ple  5.8. Av o id in g  THE L o c a l  MINIMA PROBLEM IN STAGE 2.
Figure 5-12 is similar to Figure 5-11 but each update considers all the voxels that can

Figure 5-12: A v o id in g  t h e  L o c a l  M in im a P r o b le m  in  S t a g e  2. This figure is similar to 
Figure 5-11 but ea c h  update considers all the voxels that can  b e  generated  by adding or deleting a  
black corner or keeping the current voxel. The algorithm successfully finds the solution to this simple 
problem e a c h  time.

be generated by adding or deleting a black corner or keeping the current voxel. At a
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tem perature of zero, the solution is found in 6 sweeps. Plot (a) shows the answer from 
Stage 1, Plots (b) to (f) show the next five sweeps from Stage 2. In Plots (b) and (c), 
the bottom  four voxels switch from 8-corner voxels to 6-corner voxels as this will reduce 
the prior penalty. For the top four voxels, the number of black corners increases by one 
during each of the sweeps in Plots (b) to (e). This then encourages the bottom four voxels 
to switch back from 6-corner voxels to 8-corner voxels. □

This version of the Stage 2 algorithm successfully finds the solution to this simple 
problem each time. However, it should be noted that this is a strictly-uphill algorithm 
that converges on a local minimum.

E x am p le  5.9. S t a g e  2 R e c o n s t r u c t io n  of  a  3D O b j e c t .

The Stage 2 reconstruction of the record in Figure 5-1 is shown in Figure 5-13. A smoothing

Figure 5-13: S ta g e  2 R e c o n s t r u c t io n  o f  a 3D O b j e c t . For the data discussed in §5.1.1, 
this figure shows a  reconstruction of the guard cell a t the end of Stage 2. Again, the cam era is shifted 
to the left in Plot (a) and to the right in Plot (b) to improve the depth information. This stage  intro­
du ces surfaces through voxels but they do not necessarily link up.

parameter of (3 =  100 is used, just as in Figure 5-3.
Stage 1 has the effect of smoothing out the thresholded image in Figure 5-1. Stage 2 

allows internal faces to be added to a voxel to split two regions of colour within that voxel. 
There appear to be several isolated objects just a few voxels in size. Some of these are 
located on the image boundary where the prior penalty is reduced because there are fewer 
neighbouring voxels. □

A n a lte rn a tiv e  for se lec ting  p roposals d u rin g  S tage 2

In theory, any mechanism that generates sensible proposals could be considered. In 
practice, the computational difficulties associated with programming in 3D make it very
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Delete

All
------

Figure 5-14: A 5 - C o r n e r  P r o p o s a l  M e c h a n ism  t h a t  w a s  R e j e c t e d .  This is an exam ­
ple of a  5-corner proposal mechanism that considers all 5-corner proposals (All) plus the possibility 
of adding or deleting a  corner. Som e proposals relocate the volume within the voxel, so they have 
a relatively large prior penalty and are unlikely to b e  a ccep ted .
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desirable tha t any potential proposal is likely to be accepted and can be generated easily. 
Suppose the volume in a 5-corner voxel is approximately correct, we must then decide the 
location for the volume within that voxel. A list of all possible 5-corner voxels would be 
large and some proposals would be unreasonable. Figure 5-14 shows the list of all 5-corner 
proposals. In addition, we need to consider changing the number of black corners, so the 
voxels that can be generated by applying the add and delete operators to the current 
5-corner voxel are also shown. Some of these voxels are unlikely to be accepted because 
the location of the volume within the voxel does not agree with neighbouring voxels, so 
the prior penalty is relatively large. Also, generating this list may not be straightforward. 
Perhaps lists of proposals could be generated and stored from the outset but if separate 
code is needed for each z-corner voxel then the total amount of code could be substantial. 
Contrast the proposals generated by this more straightforward but heavy-handed approach 
with the proposals generated by the four operators shown in Figure A-6 on page 149. In 
the latter case, the list contains proposals each of which is likely to be accepted, if chosen; 
yet the list is shorter than that in Figure 5-14.

5 .3 .6  S ta g e  3: T h e  co n v ersio n  a lg o r ith m

Suppose an image in Q2 is also in the set fh Then at every point in the image where eight 
voxel corners meet, the same colour must be present in the eight corners. Similarly, where 
two or four voxel corners meet around the boundary of the image. It is straightforward 
to check that this is a sufficient condition for an image in Q2 to be in £1 and we base our 
conversion algorithm on this fact.

However, the conversion algorithm is less straightforward than in the 2D case because 
it is more difficult to link the internal faces in neighbouring voxels together.

A lg o rith m  5 .2 . C o n v er s io n  fro m  f l2 TO fi.

1. Use the final reconstruction from Stage 2 to assign a colour to each of the eight 
corners of each voxel.

2. Sweep the image by visiting each voxel corner in turn. Note the colours of the eight 
adjacent voxel corners (or zero, two or four adjacent corners around the boundary).

• I f  one colour dominates by occupying more than four corners then re-colour the 
minority corners to agree with the majority.

• Otherwise, the colours are evenly split. So calculate the average value of the 
records associated with all the voxels concerned and colour all corners with the 
colour that lies closest to the average record value.

3. Sweep the image. During the sweep, visit voxels in a raster scan taking slices from  
the bottom to the top of the image, then from the back to the front within each slice 
and then from the left to the right along each row.
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• I f  the eight colours in the corners of a voxel correspond to a legal voxel colouring, 
assign this colouring to the voxel.

• Otherwise, choose the vertex that ‘has the least effect’ on previously processed

changing each corner, if the voxel is legal then goto the next voxel. I f not 
change the next corner on the list.

Remark. Note that the colouring of the current voxel eventually becomes legal 
because the voxel is then all black.

4- Sweep the image repeating the previous step. Stop when the image is swept without 
changing a voxel. □

The number of black corners increases monotonically during this process. It follows 
that the algorithm will converge because failure to converge at any intermediate point will 
result in an all black image which is a member of the image space Q.

Step 2 is a relatively delicate way of resolving problem areas in the image. At the end 
of this step, we not be in or FI, but we expect only a few illegal voxels. Steps 3 and 4 
are crude in comparison to Step 2 but they are an effective way to produce an image in 
FI. The algorithm may benefit from further refinement.

5.3.7 S tage 4: Subvoxel ad ju stm en ts

At the end of Stage 3, the boundary around each object in an image is identified by a 
linked, sequence of triangles, each of whose vertices lies midway along a voxel edge. Each 
voxel is either all black, all white or has a single surface through it which joins with the 
surfaces passing through its neighbours.

Example 5.10. SOME E x a m p le s  OF STAGE 4 VOXELS.

In Stage 2, vertices on the inner faces are constrained to lie midway along the voxel 
boundary. In Stage 4, this restriction is removed. Figure 5-16 shows some examples of 
Stage 4 voxels. Plots (a) to (g) have one to seven black corners, respectively.

The black part of some voxels is convex in shape, such as Plot (a). For the voxels 
shown in Plots (b), (d), (f) and (g), the shape of the black region is star-shaped from any

voxels and colour it black. Figure 5-15 shows the vertex order used. After

Figure 5-15: V e r t e x  O r d e r  f o r  t h e  
C o n v e r s io n  A lg o r i t h m .  For a  voxel no t ly­
ing near the im age boundary. Plot (a) uses grey- 
shading to show the three neighbouring voxels 
that have already b een  updated. Plot (b) shows 
the order for updating the vertices that have the 
least e ffec t on the upda ted  neighbours. Corner 
1 is the first to change  to black, then the corners 
labelled 2a, 2b, 2c, 3a, 3b, 3c and  4.
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(a )  1 c o rn e r  (b )  2 co rn e rs  (c )  3 co rn e rs  (d )  4 co rn e rs

(g ) 7 co rne rs(e ) 5 co rn e rs

F igure  5-16: Some E xam ples o f  S ta g e  4 V o x e ls . This figure sh o w s s o m e  e x a m p le s  o f  
S ta g e  4  voxels with o n e  to  s e v e n  b la ck  corners. The vertices o f th e  internal f a c e s  a r e  n o t  con stra in ed  

to  lie m id w ay  a lo n g  an  e d g e  b e t w e e n  tw o  b la ck  corners. The b la ck  reg ion  in e a c h  voxel is star­
s h a p e d  from s o m e  p oint within th a t part o f th e  voxel. The voxel a p e x  is a  su ita b le  p o in t in every  

c a s e .

point along the common edge between the two internal faces. Even more awkwardly, the 
3-corner and 5-corner voxels in Plots (c) and (e) are star-shaped only from the common 
vertex shared by the three internal faces. In all cases, the region of black in a voxel is star 
shaped from the apex of the voxel, as defined in §5.3.4 on page 113. □

Each external face on a voxel exactly matches the opposing external face in its neigh­
bouring voxel, so the prior penalty for any voxel arises from the area of the triangles on 
its inner faces, if any.

In this final stage, the vertices that define the inner faces in a voxel are free to move 
along the voxel boundary. We do not allow vertices to move into neighbouring voxels. 
The location of the vertices is decided in a manner similar to that used in the final stage 
of the 2D algorithm. Thus, the image space is effectively reduced to a subset of Q by the 
beginning of Stage 4. This reflects the work done during the earlier stages. Consequently, 
the starting temperature for a simulated annealing search can be set to a high value in 
order to explore this subspace of ft fully. Details of this application of simulated annealing 
are described in §2.3.3.

The simulated annealing algorithm is based on a MCMC sampling algorithm. We 
use the Metropolis algorithm here. In making a proposal for a move, a 3D point along 
the voxel edge upon which the vertex initially lies is chosen at random. The change in 
posterior probability decides the probability of moving the vertex to that position. A 
sweep of the image means updating every vertex location once. Typically the number of 
updates required to sweep an image is far less than the number of voxels in the image, as
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only a few voxels contain two colours. This reduction in computation is more pronounced 
in 3D than in 2D and is especially important given the larger datasets in 3D.

The algorithm for updating an image in Q is the 3D analogy of Algorithm 4.3 on 
page 79. The details for this 3D algorithm are omitted because they are rather similar to 
the 2D algorithm. The primary difference from the 2D algorithm is that four voxels need 
to be updated to change a single vertex.

Example 5.11. A S ta g e  4 M ove.
The effect of changing a single vertex is illustrated in Figure 5-17. The colouring of

A  S ta g e  4 m o v e  

(a ) B e fo re  (b )  A fte r

F igure 5-17: A S ta g e  4 M ove. This figure sh ow s a  typ ica l 'b e fo re ' a n d  'after' M etropolis m o v e  
for S ta g e  4. The internal f a c e s  in e a c h  voxel link with internal f a c e s  in n e igh b ou rin g  voxels so  th e  

prior for e a c h  voxel a s s o c ia te d  with th e  ex ternal f a c e s  is zero. Only o n e  vertex  is m o v e d  during an y  
u p d a te , from A to  B, b u t four voxels n e e d  to  b e  c o n s id e r e d  sim ultaneously.

four voxels is affected as the two edge-segments meeting at the vertex in question are 
repositioned from A to B, where B is chosen randomly along the voxel edge. □

Calculating the volume of a voxel in Q

The shape that voxels are allowed to take during Stage 4 affects the choice of algorithm 
used to calculate the volume occupied by the two regions of different colour inside a voxel. 
The volume of black in any voxel in D can be partitioned using a set of tetrahedrons. In 
every case, the apex of the voxel is a suitable point from which to partition the voxel into 
tetrahedrons because the voxel apex can also be defined to be the apex for each of the 
tetrahedrons. The base of each tetrahedron is formed from three linked vertices lying on an 
external face of the voxel. Calculating and accumulating the volume for each tetrahedron 
gives the volume of the black region in any legal voxel.
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A lg o r ith m  5.3 . V o lu m e  o f  B l a c k  in  a  V o x e l .

•  Given any voxel,

— I f  it is all white then the volume of black in the voxel is zero. Exit.

— Otherwise decide which vertex is the apex and label it pa.

•  For each external face in the voxel that does not contain the apex:

— Use three successive vertices on that face, p i,P 2 and p%, as the base of a tetra­
hedron.

— Calculate the three vectors from the apex to each of the three vertices on the 
external face, v i  =  pi -  pa, v 2 =  P2 ~  Pa and v 3 =  p3 -  pa.

— The volume for that tetrahedron is | | v i  • (v2 <8> v3)|, where ‘ is the dot product 
and ‘ <g>’ is the cross product of two vectors.

— Repeat for any triplet of successive vertices remaining on that external face and 
accumulate the answer.

•  Repeat for any other external face in the voxel that does not contain the apex and 
accumulate the answer. Exit. □

For Stages 1 or 2, this algorithm partitions the black region in any legal voxel into 
tetrahedrons. The volume of white in any voxel is the volume of the entire voxel minus 
the volume of the black region inside the voxel. The volume for the entire voxel depends 
on the relative sizes of one unit in the x, y and z directions. In turn, this is dependent on 
the recording sensor. Usually the x  and y scales are equal but the z scale is larger.

E x a m p le  5 .12 . A Stage 4 R eco nstr uc tio n .
Figure 5-18 shows a reconstruction from each stage of Algorithm 5.1, for a simple 5 x 5 x 5  
record. The record is an approximation to a sphere just over one voxel in size, to which 
some noise has been added a2 = 1. (The small size of the record makes it possible to 
see greater detail in the reconstruction.) Plot (a) shows a single voxel which lies inside
the sphere. No other voxel has a sufficiently large region inside the sphere to justify
colouring it as an all black voxel. During Stage 2, some subvoxel detail is added to the 
reconstruction. The reconstruction is viewed from two different angles in Plots (b) and (c). 
In this reconstruction, Stage 2 of the algorithm has failed to link all the internal surfaces. 
Stage 3 forces the surfaces to link together to form a regular shaped object, so only one 
view is shown (Plot (d)). Two views of the Stage 4 reconstruction are shown in Plots (e) 
and (f). The visible irregularities of the Stage 4 surfaces are partly due to the noise in the 
record and partly due to the tem perature not being close to zero. The irregular shape of 
the reconstruction gradually disappears with decreasing temperature. At a tem perature 
of zero, an approximately regular shaped object is formed to minimise the surface area. 
This reconstruction looks like Plot (d), so it is not shown. □
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(a )  S ta g e  1 (b )  S ta g e  2 (v ie w  a ) (c )  S ta g e  2 (v ie w  b )

(d )  S ta g e  3 (e ) S ta g e  4 (v ie w  a ) (f) S ta g e  4 (v ie w  b )

F igure  5 -1 8 :  A  S t a g e  4  R e c o n s t r u c t i o n . This figure sh ow s e a c h  o f th e  four s ta g e s  from  

Algorithm 5.1. To illustrate th e  d eta il, a  5 x 5 x 5 record  is u sed  to  recon stru ct a  sp herica l o b je c t .  
S ta g e  1 p r o d u c e s  a  sin gle  voxel lying in th e  c e n te r  o f th e  sp h ere . S ta g e s  2 a n d  3 build regions of  
b la ck  into th e  voxels surrounding th e  c e n tr e  voxel. S ta g e  4 allow s th e  vertices  to  m o v e , p rod u cin g  
a  less regular o b je c t .

This example demonstrates that Algorithm 5.1 is effective in principle. The guard cell 
example, from §5.1.1, could be put through Stages 3 and 4. This work has not yet been 
done.

5.4 F in a l  r e m a rk s

5 .4 .1  C o n trastin g  our 3 D  subvoxel m odel w ith  o th e r 3 D  m ethods

The primary difference between our method and the other previously proposed methods 
is that ours is an explicitly subvoxel model. The other methods only model the data at 
the full voxel level or, in some cases, the data are aggregated and analysed on a coarser 
level than the underlying record. In addition, we model the noise in the image explicitly.

The model and algorithm are fully three dimensional and automatic, once the param­
eters have been estimated, such as the noise variance. This contrasts with the manual 
approach in §5.1.2 and it avoids the complications associated with contour stitching be­
cause we do not view the data as simply a sequence of 2D slices.

The marching cubes algorithm has no underlying model, it simply thresholds and
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triangulates the data. Our method is not an interpolation technique, because there are 
explicit prior and degradation models. The definition for a voxel in the marching cube 
algorithm differs from tha t used in our method. The marching-cubes algorithm uses eight 
record elements to form the vertices of a voxel; our algorithm forms a voxel around each 
record element. Our model is not necessarily deterministic, unlike marching-cubes. Also in 
contrast to marching-cubes, all possible triangulations are not considered. The restriction 
is tha t at most one surface is allowed within a voxel, analogous to at most a single line 
across a pixel in 2D.

Our model uses prior information, just like Kass, Witkin, and Terzopoulos’s ‘snakes’ 
model. Unlike splines, the internal energy is not a global operation so there are no associ­
ated computational difficulties. If global optimisation is used, the algorithm is less sensitive 
to its starting point but extra computational costs are incurred for global solutions.

There are several features in our model tha t contrast with the ‘deforming primitive 
tem plates’ model. Our model does not insist on a single, closed surface at all stages and 
there is no template that has be positioned within the volume. In addition, our model can 
deal with highly non-convex surfaces. The amount of computation our algorithm needs 
depends primarily on the size of the original data not the size, orientation nor complexity 
of the object, subject to subvoxel limitations. However, our algorithm does requires more 
computation and different levels of resolution are not possible.

The number of triangles in the final reconstruction is proportional to the size of the 
object and inversely proportional to the size of a voxel. Also, the number of triangles does 
not depend on the complexity or orientation of the object, unlike most of the other 3D 
models. Reconstructions are not self-intersecting because a voxel is never allowed to have 
more than one surface through it. Our model can deal with any number of objects, even one 
object inside another, subject to the subvoxel assumption of at most one surface through a 
voxel. We restrict ourselves to objects that are small relative to the sensor resolution and 
expect advances in computing speed and memory to speed up the algorithm over time.

5 .4 .2  O u tsta n d in g  issu es

We state some of the problems tha t are specifically related to this chapter. Some of these 
issues are discussed in greater detail in the next chapter.

T h e  a lg o rith m  Overall, we make no assumptions about the shape, orientation or number 
of objects in a 3D data set and get a fully 3D reconstruction after Stages 1 and 2.

In theory, the initial algorithm for Stage 2 should produce reconstructions that are 
the 3D analogy of the results in the previous chapter. In practice, the algorithm 
took a long time to run. There are at least three reasons for the slow speed at which 
the sampler works:

• The number of choices for updating each voxel is very large so it takes time to 
sample from this set.
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•  The amount of computation needed to choose an update for a voxel is much 
greater than in the 2D algorithm. This problem could be alleviated by using 
lookup tables.

• The data sets are much larger than in the 2D algorithm.

Nevertheless, the basic framework is in place: we define the statistical model and 
respect it during each stage of the algorithm, while optimising over the underly­
ing distribution. We use an alternative strictly downhill algorithm (see §5.3.5 on 
page 123) to speed up Stage 2. This algorithm looks for the best change within a 
given set at each voxel update.

B asic  so ftw are  to o ls  An essential prerequisite for 3D modelling of any kind is software 
th a t offers primitive, 3D objects, which can be used as basic building blocks, such as 
drawing axes or writing labels. W ithout this support, it is necessary to build even 
the most elementary objects, such as 3D points or polygons before any real image 
processing can begin. This constraint lengthened the project outlined in this chapter 
by an order of magnitude.

S en so r c h a ra c te r is tic s  The non-isotropic resolution characteristics of most optical mi­
croscope data become obvious at viewing angles that are perpendicular to the imag­
ing data. In practice this means tha t the lower resolution along the optical axis 
stretches the flexibility of most algorithms, including the algorithm outlined in this 
chapter.

M u ltip le  in te n s ity  values Another drawback with all these models is tha t every record 
value is classified as either inside or outside the reconstruction. It may be that the 
surface cannot be modelled accurately using single intensity values, as often happens 
in 3D biological structures.

A p p ro x im a tin g  d a ta  Most data sets are large, so an algorithm that requires less com­
putation is an advantage but this requirement will become less im portant as pro­
cessing power increases. The algorithm in this chapter is restricted to generating 
reconstructions where each element is at most the size of a voxel. Therefore, it does 
not approximate the data. It is only suitable for rendering structures tha t are small 
relative to the size of a voxel but this is usually the case with any subvoxel algorithm.

D a ta  m e a su re m e n t The algorithm in this chapter is not affected by the complexity of 
the underlying 3D structure, at least down to a subvoxel level. This contrasts with 
most other 3D algorithms. Once generated, a reconstruction from this algorithm 
can be used as the starting point for subsequent quantitative analysis such as rapid 
visualisation and rotation, shape recognition, subjected to a series of geometric op­
erations or geometric measurements such as volume, length and integrated intensity 
measurements. It might also be interesting to compare our final reconstruction of 
an object to a 3D template of the object.
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C onvergence and efficiency o f M C M C  There are convergence issues that need to be 
considered with 3D MCMC. The large dimensionality of images may make moni­
toring of convergence difficult. The speed of convergence seems to decrease as the 
dimensionality increases (Green 1995a), so this may be a problem in three dimensions 
(see §2.3.7 on page 33).

5.5  S um m ary o f chapter

•  The 3D algorithm is outlined very briefly and an example is given of a 3D object.

•  Existing 3D methods are outlined.

•  An image space along with the prior, likelihood and posterior probabilities are de­
fined.

•  The 3D algorithm is defined in detail.

— An example is given of a Stage 1 reconstruction.

— Examples are given of images from D2 and the different types of voxels that 
can arise are classified.

— Two basic operators are defined. They are applied to the current voxel to 
generate a proposal for updating that voxel. This allows the image space to be 
explored during Stage 2 by changing just one corner of a voxel at time without 
requiring a complex algorithm for dealing with all the special cases tha t arise. 
Examples are given of the sort of proposals that the operators can generate.

— The initial algorithm is not very successful because it can get trapped in a local 
minimum too easily. An alternative algorithm that considers several potential 
updates simultaneously is more successful.

— An algorithm to convert an image from Q2 into the image space D is outlined.

— An example is given of a typical updating move during Stage 4, along with 
some examples of Stage 4 voxels. The algorithm used to calculate the volume 
of the black or white region in a voxel is stated.

— A reconstruction of a small object illustrates the movement of vertices at the 
subvoxel level.

• The issues raised in this chapter, are discussed.

— The model and algorithm is contrasted with the other models outlined at the 
start of the chapter. Note tha t these other models do not attem pt to explicitly 
model the data to a subvoxel level.

— Outstanding issues are listed and briefly discussed but see Chapter 6 for more 
detail.
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Chapter 6

Conclusions and further work

We shall not cease from exploration 
And the end of all our exploring 
Will be to arrive where we started

I never see what has been done; 
I only see what remains to be done.

M ad am e Curie

And know the place for the first time.
Thomas Stearns Eliot

C h ap ter  1

C o n c lu s io n s

• Even from the brief review of image analysis in Chapter 1, it is clear that the vi­
sualisation and subsequent analysis of physical processes by recording an image of 
the data is a technique of growing importance to the scientific community. Con­
sequently, mathematical models that allow this process to become automated or 
simply accelerated will continue to be in great demand.

• Although this thesis has a narrow focus within the field of image analysis, subpixel 
edge detection is still a technique with numerous potential applications in widely 
varying scientific fields. The methods presented in this thesis are quite different 
from those cited in §1.3.3 and §5.1.2, so they provide an alternative approach to 
subpixel reconstruction.

• The objectives in §1.4.1 have generally been met. Various models and algorithms 
have been proposed and demonstrated for building edges onto 2D images and surfaces 
through 3D volumes that allow pixels or voxels to be split into two regions. The 
models are strictly local in nature making them  easier to implement and more robust, 
especially with respect to the number and shape of the objects in the image. Various 
param eters can be altered in the models, such as using a strictly downhill algorithm 
to give fast approximate answers. Ideally, an automatic procedure for dealing with 
all of the parameters is needed, as is a detailed sensitivity analysis of the parameters. 
These are areas for future work. Several different techniques are employed to visualise 
the data. In 2D, these methods are fast, given the volume of data in the record, but
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the data volume is more of a constraint in 3D.

C hapter 2

C o n c lu sio n s

• The richness of the Bayesian/Markov chain approach to image analysis is amply 
demonstrated by its flexibility in the different algorithms in Chapters 3, 4 and 5 of 
this thesis.

F urther w ork

• Alternative priors could be considered. For the continuous, 2D subpixel model in 
Chapter 2, minimising the length of the edge around an object could be replaced by a 
prior tha t penalises divergence in the angle between two linked edges in neighbouring 
pixels from 180°.

• A different estimator to the MAP estimator could be considered. In particular, 
establishing credibility regions for the edge around an object would be a major step 
forward. The posterior distribution could be sampled rather than simply optimised 
to produce estimated confidence intervals for the reconstructions. This would require 
the reconstructions from the Markov chain to be stored after an initial burning-in 
period.

C hapter 3

C o n clu sio n s

• The discrete, 2D subpixel model is more intuitive than the continuous model in 
Chapter 4. However, extending the discrete, 2D subpixel model to three dimensions 
is not a realistic possibility due to the computational demands of the model.

• Ensuring consistency between different levels in the cascade is worthwhile because 
it allows comparisons to be made between all the reconstructions. This allows the 
benefit of the subpixel reconstruction to be objectively measured, as the difference 
between the first and final level reconstructions.

• In comparison to the continuous, 2D subpixel model, the discrete model requires 
more memory to store and takes longer to visualise the reconstructions, as the algo­
rithm proceeds to the finest level of detail.

F urther w ork

• To make this model applicable to real data, it is essential to cater for blurring.
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• The discrete and continuous, 2D models could be compared to see which is faster, 
more accurate, etc.

C hapter 4

C o n clu sion s

• This algorithm condenses the data in the record while still retaining most of the 
information in the record. This makes subsequent analysis and visualisation much 
faster. In this respect, it outperforms the algorithm in Chapter 3.

• The examples demonstrate tha t the algorithm is robust to the number and shape of 
the objects in the record.

F urther w ork

• The effective amount of resolution at the subpixel scale is limited by the assump­
tion of piecewise linearity across pixels. Further work is needed to decide if this 
assumption is always justified. It is likely to rely on the particular application.

• Stage 3 is awkward and perhaps unnecessary. One way of ensuring tha t the re­
construction from Stage 2 is in the image space for Stage 4 is to allow up to two 
lines across a pixel. W hether the extra work that this entails is justified is an open 
question.

C hapter 5

C o n clu sion s

• To explore different models and algorithms in a reasonable time-frame, a library of 
basic 3D image manipulation procedures is essential. Commercial organisations do 
provide such software but costs are prohibitive. Until cheap platforms are available, 
3D data manipulation will continue to be laborious. This point is critical.

• There are problems with visualising 3D data. It is necessary to draw the geometric 
features of the black region in every voxel, even those obscured by occlusion. This 
is inefficient. Alternative ways of visualising 3D data  need to be investigated.

F urther w ork

• Future efforts should concentrate on model quality and how to measure it (e.g. 
computing time, computing memory, number of edges/triangles needed to cover a 
sample object) and alternative datasets. For example, would the algorithm be much 
more successful if we used non-blurred or low noise images? Alternative datasets
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which are essentially binary in nature would be particularly helpful. This may mean 
looking at non-biological data sets.

• The volume of the data sets in 3D is a serious obstacle to practical 3D imaging. 
Algorithms that aggregate or approximate the data  are likely to be more appealing 
to practitioners, until computer processing power improves.

• The sensitivity of the model to the assumptions made about the data  should be con­
sidered further and the model should be robust with respect to extreme behaviour. 
In particular, it seems necessary to allow for non-stationarity in the blurring. This 
is because blurring along the z-axis is often different to the blurring kernel on the x  
and y axes.

• The subvoxel reconstruction requires a large number of triangles to specify an image 
in fh Can the number of triangles be reduced without compromising the level of 
detail in the reconstruction?

• There are convergence issues tha t need to be considered with 3D MCMC. The large 
dimensionality of images may make monitoring of convergence difficult (see §2.3.7 
on page 33). Perhaps many more sweeps are needed compared to two dimensional 
problems? If so, the greater volume of data in 3D will compound this problem.

• How can time varying models be produced (e.g. to model the guard cell dataset as 
the cell closes)?

S om e final com m en ts

• If the objective is only to minimise the energy then subpixel models do much better 
than full pixel models because they can simultaneously reduce both the prior and 
the likelihood in situations where a full pixel model would have to balance the two 
penalties.

• Once generated, a reconstruction can be used as the starting point for subsequent 
quantitative analysis such as visualisation, shape recognition, subjected to a series 
of geometric operations or geometric measurements such as volume, length and in­
tegrated intensity measurements.

• The most im portant area for future development is the evaluation of the models and 
algorithms in a quantitative, systematic and extensive way. This includes comparing 
the results in this thesis with other competing models. Standard test cases could be 
analysed using a variety of subpixel models and the experimental results contrasted. 
For example, it might be concluded that a model is accurate to ^ th of a pixel, say. 
In practice this would not be easy. Great care is needed to compare the models 
presented in this thesis with other subpixel models on a consistent basis. Also, the 
software to implement the models proposed by others is often not readily available.
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Due to the complexity of many of the algorithms that have been proposed (see §1.3.3 
and §5.1.2), it is not practical to rewrite the corresponding software.

The amount of CPU time consumed by the algorithms is proportional to the number 
of simulated annealing sweeps. This user-selected param eter could be investigated to 
speed up simulations. In particular, the run times relative to other algorithms need 
to be tabulated because the algorithms presented in this thesis are computationally 
complex.

The current implementation is designed so that various ideas and geometrical rela­
tionships can be tested with relative ease. Because of this the current implementation 
of the various algorithms is far from optimal. Alternative data structures (see §B.l) 
could reduce the run-times by an order of magnitude. However, it is im portant not 
to become obsessed with computational speed. These models typically take several 
years to mature and in the meantime the speed of the underlying hardware will 
probably increase greatly.

•  The methods work best for data where the total number of pixels or voxels is small 
compared to the total size of the image. Boundary representation has the advantage 
of a significant reduction in space requirements for the data.

• Not much is gained by developing fast algorithms for processing the data if the 
visualisation of the reconstruction is slow.

The major problem in storing and manipulating 3D images is their size. A single 
section, of size 512 x 512, requires a quarter of a megabyte, assuming one byte per 
pixel. Often 3D image sections are of size 1024 x 1024 and there may be 50 sections. 
So the whole image is 10-150mb in size, ignoring compression techniques.

• The models presented in the thesis are not confined to a particular field of study. 
Analysing analogous subpixel problems in other fields would help greatly to improve 
and refine the models.

• Extending all the models to more than two colours is im portant but not necessarily 
essential. Morphology is a subject tha t relied on images being binary in nature 
(Serra 1982). More recently, this theory has been extended to deal with grey-level 
images. The approach is to order the colours, from 1 to n  say and then deal with 
pairs of successive colours at a time, {(1,2), ( 2 ,3 ) , . . . ,  (n — 1, n)}. For each pair of 
colours (i,i +  1), every pixel in the ranges (1, z +  0.5) and (i -1- 0.5, n) will tend to 
be classified as colours i and 2 +  1, respectively. After all pairs have been processed, 
the different reconstructions can be ‘laid on top of one another’ to form a grey scale 
reconstruction. Perhaps a similar approach could be used with the subpixel models 
described here.

Alternatively, an extra stage could be added to the model, where the choice of the 
two most likely colours is dependent on the colouring of the neighbourhood around a
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pixel. However, there are some extra complications tha t need to be addressed, such 
as the possibility of three regions of different colours meeting inside a pixel.

Even then, there are many problems where the colours may blend continuously into 
each other in some parts of the image. The models in this thesis cannot deal with 
such cases.

• All the models need an objective method to choose the smoothing parameter (3.

• It would be interesting to consider sampling rather than simply looking for the MAP 
estimate by optimising during Stage 4. This would be a distinct advantage over other 
subpixel algorithms by offering the possibility of confidence limits for the surface area 
and volume measurements.

• Another possibility to consider is feeding the answer from Stage 3 back into Stage 2 to 
see if the changes make during Stage 3 have any effect on the Stage 2 reconstruction.
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C olophon

The typesetting relies on the macro package (AMS 1995) for DTf])X (Lamport
1986). The generic text font is l lp t  Computer Modern Roman but other fonts from the 
same font family are used where required. For example, caption titles are set in small caps 
while the caption body is sans serif. The bibliography follows the Chicago citation style. 
An index is provided for cross-referencing.

A wide variety of languages are used to write the software used in this thesis:

• C (GNU V2.5.8) is the low level language used for the discrete, subpixel algorithms 
in Chapter 3 and some of Chapter 4.

• C++ (GNU V6.3.2) is the low level language used to for the algorithms in some of 
Chapter 4 and all of Chapter 5. A C++ library for combinatorial simulation called 
LEDA (V3.1.2) (Naeher 1995) proved to be invaluable (see §B.l on page 153).

• The 2D images were visualised using mainly SPlus but the ‘hand-drawn’ figures are 
from Xfig.

• The only excursions out of SPlus for displaying data are the 3D images generated by 
Geomview , the well designed software of Stuart Levy, Tamara Munzner and Mark 
Phillips for direct manipulation of 3D graphics.

• Occasionally, results are derived from M atlab and Maple.

• All figures are stored in PostScript.

• The simulations were mostly run on a SUN Sparcserver 1000.
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A ppendix A

A com plete list o f Stage 2 
proposals

To find out what happens to a system 
when you interfere with it 
you have to interfere with it 
(not just passively observe it)
G eorge E. P. Box

Investigators seem to have settled 
for what is measurable instead of 

what they would really like to know.
Edmund D. Pellegrino

For reference, this appendix contains the complete list of updates tha t are possible 
during Stage 2 of Algorithm 5.1 (see page 108 and §5.3.5 on page 117).

The set of potential updates depends on the number of black corners in the current 
voxel. This can vary from zero for an all white voxel to eight for an all black voxel. 
For convenience, each set of updates is visualised in a series of figures rather than being 
tabulated. The current state of the voxel is shown on the left of each figure. Each arrow 
emanating from the current voxel denotes one of the four operators discussed in §5.3.5. 
One operator is chosen at random. Each operator usually results in several potential 
choices, one of which is randomly chosen. The possibility of keeping the number of black 
corners the same is also shown. This achieved by applying either the add-delete of the 
delete-add operator.

Note, that the current voxel could be rotated to another position and this requires all 
the potential proposals on the right-hand side of each figure to be rotated in a similar man­
ner. Consequently, the algorithm has to deal with many more possibilities than are shown 
here. To keep the number potential proposals manageable, it essential tha t any updating 
procedure is invariant to rotation. Such is the case with the algorithm in Chapter 5.
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Add-delet<

Add

8 times

Figure A-l: P r o p o s a l s  w h e n  M o v in g  f r o m  a  0 - C o r n e r  V o x e l .  This figure shows the  
list of updates for a  particular zero-corner voxel, draw on the left. The arrows em anating from this 
voxel point to the list of potential updates formed by adding or adding and then deleting a  black  
corner to the current voxel.
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Delete

)elete-adql

ld-delet<

Add

Figure A-2: P r o p o sa l s  w h e n  M o ving  fr o m  a  1 - C o r n e r  V o x e l . This figure shows the 
list of updates for a  particular one-corner voxel, draw on the left. The arrows em anating from this 
voxel point to point to the list of potential updates formed by deleting a  black corner, keeping the 
sam e number of black corners (by deleting-adding or adding-deleting a  black corner) or adding  
a black corner to the current voxel.
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Delete

Delete-add

/

Add

Figure A-3: P r o p o s a l s  w h e n  M o v in g  fr o m  a  2 - C o r n e r  V o x e l .  This figure is similar to 
Figure A-2 but shows the potential updates for voxels with two black corners.
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Delete

Figure A-4: P r o p o s a l s  w h e n  M o v in g  f r o m  a  3 - C o r n e r  V o x e l .  This figure is similar to  
Figure A-2 but shows the potential updates for voxels with three black corners.
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Delete

Delete-add

Id-delete

Add

Figure A-5: P r o p o s a l s  w h e n  M o v in g  f r o m  a  4 - C o r n e r  V o x e l .  This figure is similar to 
Figure A-2 but shows the potential updates for voxels with four black corners.
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Delete

Add

Figure A-6: P r o p o s a l s  w h e n  M o v in g  f r o m  a  5 - C o r n e r  V o x e l .  This figure is similar 
to Figure A-2 but shows the potential updates for voxels with five black corners. Compare this set 
of potential updates for a  5-corner voxel with the list of proposals in Figure 5-14, where all 5-corner 
voxels are considered.
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Delete

Delete-ad<

dd-delet

 — a

- d

-
Add

1'  T
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Figure A-7: P r o p o s a l s  w h e n  M o v in g  f r o m  a  6 - C o r n e r  V o x e l .  This figure is similar to 
Figure A-2 but shows the potential updates for voxels with six black corners.
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/ »gd-deleti

Figure A-8: P r o p o s a l s  w h e n  M o v in g  f r o m  a  7 - C o r n e r  V o x e l .  This figure is similar to 
Figure A-2 but shows the potential updates for voxels with seven  black corners.
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8 times

Figure A-9: P r o p o s a l s  w h e n  M o v in g  fr o m  a  8 - C o r n e r  V o x e l .  This figure is similar to 
Figure A-l but shows the potential updates for voxels with eight black corners.
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A ppendix B

Com putational issues

It is unworthy of excellent men to lose hours 
like slaves in the labour of calculation 
which could safely be relegated to anyone else 
if machines were used.
Gottfried Von Leibniz

There are two ways of constructing 
a software design. One way is to make it so 

simple that there are obviously no deficiencies. 
And the other way is to make it so complicated 

that there are no obvious deficiencies.
C. A. R. Hoare

This appendix briefly mentions some of the computational issues that arose while 
completing this thesis. Although they are not central to the issues raised in the body of 
the thesis, similar problems are likely to be encountered by others working in statistical 
image analysis, especially when writing software.

The issues discussed are:

• the use of object-oriented languages for combinatorial optimisation,

• numerical instability in the simulated annealing algorithm,

• the mechanisms used to visualise 3D data

• the choice of random-number generator.

B . l  L anguages and d ata  stru ctu res

One of the major differences between combinatorial computing and other areas of comput­
ing such as statistics, numerical analysis and linear programming is the use of complex data 
types. While built in data types such as integers, reals, vectors and matrices are usually 
sufficient in other areas, combinatorial computing relies heavily on types like dictionaries, 
sequences, graphs, points, segments, etc.

The vast majority of the work for this thesis consists of writing software to define 
objects like images, pixels, voxels, etc. This software relies on object-oriented programming
(OOP).
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B .1 .1  W h y  u se  an  O O P  la n g u a g e  for im a g e  an a lysis?

Most of the algorithms discussed in this thesis are implemented using an object-oriented 
language C++. In the past, procedure oriented languages, such as C and Fortran, involved 
learning how to call a library of perhaps several hundred functions. It was essential to 
learn how to call and use each function separately. For example, one function might call 
another which then updates a data structure which may lie in another file. This approach 
quickly becomes unmanageable. C++ offers two features to address these problems: data 
abstraction and OOP.

Starting from C, which offers flexibility and efficiency, and adding data abstraction 
plus OOP results in C++. D ata abstraction means packaging the data structures and 
functions which manipulate these data  structures, into a user-defined data  type that is 
easy to use. We also want new data types to be efficient and do type checking etc. OOP 
offers the user the opportunity to reuse code, by expressing any commonality among data 
types as a hierarchy of different but related types or classes. The types at the top of this 
tree are very general and become more refined as you progress down the tree.

B .1 .2  B a sic  b u ild in g  b lock s for im a g e  a n a ly s is

To avoid the time consuming task of having to build up a library of objects from scratch, 
a C++ library of efficient data types and algorithms for combinatorial computing, called 
LEDA (Naeher 1995), is used to build many of the data structures needed. LEDA provides 
a sizable collection of data types and algorithms in a form which allows them  to be used 
by non-computer scientists.

E x a m p le  B . l .  T h e  graph d a t a  s t r u c t u r e  in  LEDA .
LEDA contains an elaborate data type for creating graphs, where a graph G consists of 
a list of nodes V  and a list of edges E , with a pair of nodes (v, w) E V  x V  associated 
with every edge e £ E. LEDA offers the standard iterations over G, such as ‘for all nodes 
v in the graph G do’ or ‘for all neighbours w of the node v do’. Addition and deletion 
of vertices and edges is possible. It also offers arrays and matrices indexed by nodes and 
edges. The ideal is to be able to use the data  type graph to design software for solving 
graph problems in a form tha t is close to the typical text book presentation. □

See page 142 for details of the other languages used in this thesis.

B .2  N u m erica l in sta b ility  in  a lgorith m s

This section summarises the effect of numerical precision on the simulated annealing al­
gorithm. In particular, an example is given to show how easy it is for instability to arise 
in a binary image. A possible solution is outlined.

When running simulated annealing, the objective is to minimise an energy function, 
E. Part of the algorithm involves calculating the energy for a proposal, dividing by the 
temperature and then exponentiating the result. If the noise is low, o 1 < 0.001, or the
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tem perature is near zero, the exponentiation can lead to very small numbers. Subsequently 
normalising this set of numbers, one for each proposal, can lead to division by zero errors.

E x a m p le  B .2 . NUMERICAL INSTABILITY.
At any Gibbs update, the energy for all possible moves to a new state, i, are calculated, 
{Ui : i =  1, . . .  , n}, where n = 21 for a single pixel update or n  =  24 when updating a 
2 x 2  sub-window simultaneously. The kernel of the annealing algorithm is the decision to 
accept a proposal to move to a new state which has higher energy than the current state. 
The probability of accepting state i as the new state is

n

Pr(X = i) =  exp{—C/j/T}/ £  exp{ - U j / T }  (B.l)
J =  1

where T  is the temperature. As the tem perature drops to zero the algorithm behaves like
the ICM algorithm of Besag (1986), at least in theory.

However, in the single precision (32 bit) IEEE standard, the smallest non-zero random
floating point number that is available is 2-126 «  1.175e-38 and for the double precision (64
bit) IEEE standard the corresponding number is 2-1022 «  2.225e~308. These limitations
can be exceeded quite easily during a typical simulation.

O 1 1 r 11 / 0.988 0.999 N , . . .  .Suppose we observe the following 3 x 2  image 1.005 -o.oio ), where the variance of the
V 0.018 0.994 '

signal is known to be o2 =  0.0001. The closest mean classifier is ( 1 0 ). Updating one pixel 
at a time using a first order neighbourhood model with (3 =  4 means that for the pixel at 
row two, column two, say, the choice is between 0 and 1 with corresponding energy values 
of

U0 =  (0 -  (-0.010502))2/(2  * 0.0001) + 4 * 3  =  12.55146

and

Ui = (1 -  (-0.010502))2/(2  * 0.0001) + 4 * 0  =  5105.57. (B.2)

with probabilities

2

Pr(X = 0) = exp{-£70/ r } / £ e x p { - £ y T }
3 =  1

=  exp{—12.55/T}/(exp{—12.55/T} +  exp{—5105.57/T})

and

2

Pr(X = 1) = exp{—Ui / T } /  ̂  exp{—Uj/T}
j  =  1

=  exp{—5105.57/T}/(exp{ —12.55/T} +  exp{—5105.57/T}).
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Now suppose our tem perature is at T  = 0.1 which appears to be a long way from the 
case T  «  0, where we might expect instability to occur. In this case, P r(X  =  0) oc 
exp{—125.5} «  3.134e-55 which is zero in the single-precision, IEEE standard and clearly 
P r(X  =  1) a  exp{—51005.7} is also zero. So both choices generate a ‘0 /0 ’ probability. 
W ith double precision, P r(X  =  0) can be safely calculated and the algorithm would 
choose X  =  0 as the update without any modification being necessary. However, even for 
a larger variance the decrease in temperature towards zero will eventually cause instability 
and lead to a probability of ‘0 /0 ’ for all proposals. Stiles (1993) offers further details about 
the limits of various machines. □

B .2 .1  A  rem e d y  for n u m erica l in s ta b ility

As only the relative differences between the energy values is relevant, the problem is best 
resolved by first subtracting the minimum energy from the energy value for each of the 
proposals (Gavin 1993). This guarantees tha t at least one proposal has a reasonable 
probability of being accepted.

The energy for each proposal is first calculated. The minimum energy is then sub­
tracted from all the energies. This doesn’t affect the relative energy values and hence the 
probabilities are unaffected. Now the probability for the smallest energy is never ‘0 /0 ’, 
so at least one proposal is reasonable. For high energy proposals the probability is not 
calculable but is approximated by zero which is acceptable in that instance. In particular, 
if all of the proposals have high energy values then it is the proposal w ith the minimum 
energy tha t is chosen. This is equivalent to an ICM (Besag 1986) update for tha t single 
pixel. Other pixels in the same sweep may be unaffected, so the energy for the scene as a 
whole may still rise.

B .3  S torin g  3D  recon stru ction s

It is informative to consider briefly how the reconstructions in Chapter 5 are stored and 
drawn. The purpose is to highlight some of the problems associated with 3D visualisation.

The reconstructions from the algorithm in Chapter 5 are written in ASCII format. The 
symbol denotes a comment, so everything on the line beyond tha t point is ignored. 

Each reconstruction is formatted as a list (LIST) of voxels (OFF objects). There is one OFF 
object for each voxel that has some black in it. To save space, only information about the 
black in a voxel is recorded. Each voxel is represented by a list of 3D points, one for each 
black vertex in the voxel. (The points are absolute positions in 3D, real-world space, as 
opposed to relative, model-world values.) The connectivity between vertices results in a 
list of faces for each voxel. This is represented by a list of integers, one for each face. Each 
integer is the subscript of the 3D point on the list of vertices. The first integer on each 
list specifies the number of indices, hence vertices, on tha t face. The number of vertices 
and faces in each voxel is also needed to draw each voxel but this information is easily 
deduced from the other details.
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{LIST # List of voxels for each image.

{OFF # Cube for vertex(2,3,4)
10 9 # number of vertices and faces
# vertices: bottom-left-front to top-right-back vertex
2 3 4
3 3 4
2 6 4
3 6 4
2 3 8
4 3 8
4 3 6
4 4.5 8
2 6 8
3 6 8
# name the faces
4 2 3 1 0 #  lfront face.
5 8 9 7 5 4 #  2back face.
4 4 8 2 0 #  31eft face.
3 7 6 5 #  4right face.
4 8 9 3 2 #  5top face.
5 4 5 6 1 0 #  6bottom face.
3 1 7  9 #  7innerl face.
3 1 6  7 #  8inner2 face.
3 1 3  9 #  9inner3 face.
} # end of vertex 2.00 3.00 4.00

# Vertex (2,3,8) is ALL white

{OFF # Cube for vertex(6,8,4)
8 8 #  number of vertices and faces
# vertices: bottom-left-front to top-right-back vertex 
8 8 4
7 8 4

}■ # end of vertex 6.00 8.00 4.00
> # end of LIST
F igure B - l : E x t r a c t  f r o m  t h e  O u t p u t  F il e  f o r  a  3 D  O b j e c t . Each reconstruction 
is a  list (list) of voxels (off objects). Only information about the black in e a c h  voxel is recorded to 
save sp a ce . The black region within e a c h  voxel is represented by a  list of 3D points, o n e  for e a c h  
black vertex in the voxel. The connectivity b etw een  vertices results in a  list of fa ces  for e a c h  voxel. 
This is represented by a  list of integers, on e for e a c h  face . Each integer is the subscript of the 3D 
point on the list of vertices. The first integer on e a c h  of these lists specifies the number of indices, 
h en ce  vertices, on that face . Com m ent lines follow the hash symbol '#'.
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For example, the first voxel in Figure B-l has ten vertices and nine faces. The ten 
3D vertices are listed, one on each line. Then for each of the nine faces, the subscripts 
for the vertices on that face are listed. (The n  subscripts on a face are numbered from 
0 to n — 1.) The first number on each list is just the number of vertices on that face of 
the voxel. For example, the ‘right’ face in the voxel is a triangle formed from the three 
subscripts {7,6,5} in the list of vertices. These points are {(4,4.5,8), (4,3, 6), (4,3,8)}, 
respectively.

The display engine Geomview is used to draw the 3D images shown in this thesis (see 
page 142).

B .4  R an d om  num ber generators

A variety of random number generators are used for the simulations shown in this thesis. 
The principle generator due to Wichmann and Hill (1982) combines three multiplicative 
generators. Although this makes the generator expensive to call, it also results in a huge 
period. De Matteis and Pagnutti (1993) claim tha t this generator compares favourably 
with others.
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motivation, 1, 136 
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Markov
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model
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full pixel, 20-24 
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likelihood, 23-24, 70-71, 105-106 

discrete subpixel, 48, 52 
notation for, 21 

motivation for, 3-5 
noise
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alternatives, 137 
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noise, see algorithm, noise estimate 
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object recognition, 17 
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conclusions, 136 
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definition of, 1 
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model, posterior 
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publications by the author, 3

raster scan, see image, raster scan 
re-normalised group approach, see Markov, 
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record

source of, 4 
registration, 17
Roberts, see edge detection, filter, Roberts
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single-site updating, see Markov, chain, 
single-site updating 

Star-shaped boundary, see edge detection, 
stochastic models 

stationary distribution, see Markov, chain, 
stationary distribution 

stochastic boundary, see edge detection, 
stochastic models 

subpixel, see edge detection, subpixel 
summary

introduction to image analysis, 18 
superpixel, see algorithm, superpixel 
sweep, see image, sweep 
Swendsen-Wang algorithm, see Markov, 

chain, Swendsen-Wang algorithm

tem perature schedule, see algorithm, tem­
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true image, see image, true
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