2,149 research outputs found

    Breathing Rate Estimation From the Electrocardiogram and Photoplethysmogram: A Review.

    Get PDF
    Breathing rate (BR) is a key physiological parameter used in a range of clinical settings. Despite its diagnostic and prognostic value, it is still widely measured by counting breaths manually. A plethora of algorithms have been proposed to estimate BR from the electrocardiogram (ECG) and pulse oximetry (photoplethysmogram, PPG) signals. These BR algorithms provide opportunity for automated, electronic, and unobtrusive measurement of BR in both healthcare and fitness monitoring. This paper presents a review of the literature on BR estimation from the ECG and PPG. First, the structure of BR algorithms and the mathematical techniques used at each stage are described. Second, the experimental methodologies that have been used to assess the performance of BR algorithms are reviewed, and a methodological framework for the assessment of BR algorithms is presented. Third, we outline the most pressing directions for future research, including the steps required to use BR algorithms in wearable sensors, remote video monitoring, and clinical practice

    Breathing pattern characterization in patients with respiratory and cardiac failure

    Get PDF
    El objetivo principal de la tesis es estudiar los patrones respiratorios de pacientes en proceso de extubación y pacientes con insuficiencia cardiaca crónica (CHF), a partirde la señal de flujo respiratorio. La información obtenida de este estudio puede contribuir a la comprensión de los procesos fisiológicos subyacentes,y ayudar en el diagnóstico de estos pacientes. Uno de los problemas más desafiantes en unidades de cuidados intensivos es elproceso de desconexión de pacientes asistidos mediante ventilación mecánica. Más del 10% de pacientes que se extuban tienen que ser reintubados antes de 48 horas. Una prueba fallida puede ocasionar distrés cardiopulmonar y una mayor tasa de mortalidad. Se caracterizó el patrón respiratorio y la interacción dinámica entre la frecuenciacardiaca y frecuencia respiratoria, para obtener índices no invasivos que proporcionen una mayor información en el proceso de destete y mejorar el éxito de la desconexión.Las señales de flujo respiratorio y electrocardiográfica utilizadas en este estudio fueron obtenidas durante 30 minutos aplicando la prueba de tubo en T. Se compararon94 pacientes que tuvieron éxito en el proceso de extubación (GE), 39 pacientes que fracasaron en la prueba al mantener la respiración espontánea (GF), y 21 pacientes quesuperaron la prueba con éxito y fueron extubados, pero antes de 48 horas tuvieron que ser reintubados (GR). El patrón respiratorio se caracterizó a partir de las series temporales. Se aplicó la dinámica simbólica conjunta a las series correspondientes a las frecuencias cardiaca y respiratoria, para describir las interacciones cardiorrespiratoria de estos pacientes. Técnicas de "clustering", ecualización del histograma, clasificación mediante máquinasde soporte vectorial (SVM) y técnicas de validación permitieron seleccionar el conjunto de características más relevantes. Se propuso una nueva métrica B (índice de equilibrio) para la optimización de la clasificación con muestras desbalanceadas. Basado en este nuevo índice, aplicando SVM, se seleccionaron las mejores características que mantenían el mejor equilibrio entre sensibilidad y especificidad en todas las clasificaciones. El mejor resultado se obtuvo considerando conjuntamente la precisión y el valor de B, con una clasificación del 80% entre los grupos GE y GF, con 6 características. Clasificando GE vs. el resto de los pacientes, el mejor resultado se obtuvo con 9 características, con 81%. Clasificando GR vs. GE y GR vs. el resto de pacientes la precisión fue del 83% y 81% con 9 y 10 características, respectivamente. La tasa de mortalidad en pacientes con CHF es alta y la estratificación de estospacientes en función del riesgo es uno de los principales retos de la cardiología contemporánea. Estos pacientes a menudo desarrollan patrones de respiraciónperiódica (PB) incluyendo la respiración de Cheyne-Stokes (CSR) y respiración periódica sin apnea. La respiración periódica en estos pacientes se ha asociadocon una mayor mortalidad, especialmente en pacientes con CSR. Por lo tanto, el estudio de estos patrones respiratorios podría servir como un marcador de riesgo y proporcionar una mayor información sobre el estado fisiopatológico de pacientes con CHF. Se pretende identificar la condición de los pacientes con CHFde forma no invasiva mediante la caracterización y clasificación de patrones respiratorios con PBy respiración no periódica (nPB), y patrón de sujetos sanos, a partir registros de 15minutos de la señal de flujo respiratorio. Se caracterizó el patrón respiratorio mediante un estudio tiempo-frecuencia estacionario y no estacionario, de la envolvente de la señal de flujo respiratorio. Parámetros relacionados con la potencia espectral de la envolvente de la señal presentaron losmejores resultados en la clasificación de sujetos sanos y pacientes con CHF con CSR, PB y nPB. Las curvas ROC validan los resultados obtenidos. Se aplicó la "correntropy" para una caracterización tiempo-frecuencia mas completa del patrón respiratorio de pacientes con CHF. La "corretronpy" considera los momentos estadísticos de orden superior, siendo más robusta frente a los "outliers". Con la densidad espectral de correntropy (CSD) tanto la frecuencia de modulación como la dela respiración se representan en su posición real en el eje frecuencial. Los pacientes con PB y nPB, presentan diferentesgrados de periodicidad en función de su condición, mientras que los sujetos sanos no tienen periodicidad marcada. Con único parámetro se obtuvieron resultados del 88.9% clasificando pacientes PB vs. nPB, 95.2% para CHF vs. sanos, 94.4% para nPB vs. sanos.The main objective of this thesis is to study andcharacterize breathing patterns through the respiratory flow signal applied to patients on weaning trials from mechanicalventilation and patients with chronic heart failure (CHF). The aim is to contribute to theunderstanding of the underlying physiological processes and to help in the diagnosis of these patients. One of the most challenging problems in intensive care units is still the process ofdiscontinuing mechanical ventilation, as over 10% of patients who undergo successfulT-tube trials have to be reintubated in less than 48 hours. A failed weaning trial mayinduce cardiopulmonary distress and carries a higher mortality rate. We characterize therespiratory pattern and the dynamic interaction between heart rate and breathing rate toobtain noninvasive indices that provide enhanced information about the weaningprocess and improve the weaning outcome. This is achieved through a comparison of 94 patients with successful trials (GS), 39patients who fail to maintain spontaneous breathing (GF), and 21 patients who successfully maintain spontaneous breathing and are extubated, but require thereinstitution of mechanical ventilation in less than 48 hours because they are unable tobreathe (GR). The ECG and the respiratory flow signals used in this study were acquired during T-tube tests and last 30 minute. The respiratory pattern was characterized by means of a number of respiratory timeseries. Joint symbolic dynamics applied to time series of heart rate and respiratoryfrequency was used to describe the cardiorespiratory interactions of patients during theweaning trial process. Clustering, histogram equalization, support vector machines-based classification (SVM) and validation techniques enabled the selection of the bestsubset of input features. We defined a new optimization metric for unbalanced classification problems, andestablished a new SVM feature selection method, based on this balance index B. The proposed B-based SVM feature selection provided a better balance between sensitivityand specificity in all classifications. The best classification result was obtained with SVM feature selection based on bothaccuracy and the balance index, which classified GS and GFwith an accuracy of 80%, considering 6 features. Classifying GS versus the rest of patients, the best result wasobtained with 9 features, 81%, and the accuracy classifying GR versus GS, and GR versus the rest of the patients was 83% and 81% with 9 and 10 features, respectively.The mortality rate in CHF patients remains high and risk stratification in these patients isstill one of the major challenges of contemporary cardiology. Patients with CHF oftendevelop periodic breathing patterns including Cheyne-Stokes respiration (CSR) and periodic breathing without apnea. Periodic breathing in CHF patients is associated withincreased mortality, especially in CSR patients. Therefore it could serve as a risk markerand can provide enhanced information about thepathophysiological condition of CHF patients. The main goal of this research was to identify CHF patients' condition noninvasively bycharacterizing and classifying respiratory flow patterns from patients with PB and nPBand healthy subjects by using 15-minute long respiratory flow signals. The respiratory pattern was characterized by a stationary and a nonstationary time-frequency study through the envelope of the respiratory flow signal. Power-related parameters achieved the best results in all of the classifications involving healthy subjects and CHF patients with CSR, PB and nPB and the ROC curves validated theresults obtained for the identification of different respiratory patterns. We investigated the use of correntropy for the spectral characterization of respiratory patterns in CHF patients. The correntropy function accounts for higher-order moments and is robust to outliers. Due to the former property, the respiratory and modulationfrequencies appear at their actual locations along the frequency axis in the correntropy spectral density (CSD). The best results were achieved with correntropy and CSD-related parameters that characterized the power in the modulation and respiration discriminant bands, definedas a frequency interval centred on the modulation and respiration frequency peaks,respectively. All patients, i.e. both PB and nPB, exhibit various degrees of periodicitydepending on their condition, whereas healthy subjects have no pronounced periodicity.This fact led to excellent results classifying PB and nPB patients 88.9%, CHF versushealthy 95.2%, and nPB versus healthy 94.4% with only one parameter.Postprint (published version

    A meta-learning algorithm for respiratory flow prediction from FBG-based wearables in unrestrained conditions

    Get PDF
    The continuous monitoring of an individual's breathing can be an instrument for the assessment and enhancement of human wellness. Specific respiratory features are unique markers of the deterioration of a health condition, the onset of a disease, fatigue and stressful circumstances. The early and reliable prediction of high-risk situations can result in the implementation of appropriate intervention strategies that might be lifesaving. Hence, smart wearables for the monitoring of continuous breathing have recently been attracting the interest of many researchers and companies. However, most of the existing approaches do not provide comprehensive respiratory information. For this reason, a meta-learning algorithm based on LSTM neural networks for inferring the respiratory flow from a wearable system embedding FBG sensors and inertial units is herein proposed. Different conventional machine learning approaches were implemented as well to ultimately compare the results. The meta-learning algorithm turned out to be the most accurate in predicting respiratory flow when new subjects are considered. Furthermore, the LSTM model memory capability has been proven to be advantageous for capturing relevant aspects of the breathing pattern. The algorithms were tested under different conditions, both static and dynamic, and with more unobtrusive device configurations. The meta-learning results demonstrated that a short one-time calibration may provide subject-specific models which predict the respiratory flow with high accuracy, even when the number of sensors is reduced. Flow RMS errors on the test set ranged from 22.03 L/min, when the minimum number of sensors was considered, to 9.97 L/min for the complete setting (target flow range: 69.231 ± 21.477 L/min). The correlation coefficient r between the target and the predicted flow changed accordingly, being higher (r = 0.9) for the most comprehensive and heterogeneous wearable device configuration. Similar results were achieved even with simpler settings which included the thoracic sensors (r ranging from 0.84 to 0.88; test flow RMSE = 10.99 L/min, when exclusively using the thoracic FBGs). The further estimation of respiratory parameters, i.e., rate and volume, with low errors across different breathing behaviors and postures proved the potential of such approach. These findings lay the foundation for the implementation of reliable custom solutions and more sophisticated artificial intelligence-based algorithms for daily life health-related applications

    VOLUNTARY CONTROL OF BREATHING ACCORDING TO THE BREATHING PATTERN DURING LISTENING TO MUSIC AND NON-CONTACT MEASUREMENT OF HEART RATE AND RESPIRATION

    Get PDF
    We investigated if listening to songs changes breathing pattern which changes autonomic responses such as heart rate (HR) and heart rate variability (HRV) or change in breathing pattern is a byproduct of listening to songs or change in breathing pattern as well as listening to songs causes changes in autonomic responses. Seven subjects (4 males and 3 females) participated in a pilot study where they listened to two types of songs and used a custom developed biofeedback program to control their breathing pattern to match the one recorded during listening to the songs. Coherencies between EEG, breathing pattern and RR intervals (RRI) were calculated to study the interaction with neural responses. Trends in HRV varied only during listening to songs, suggesting that autonomic response was affected by listening to songs irrespective of control of breathing. Effective coherence during songs while spontaneously breathing was more than during silence and during control of breathing. These results, although preliminary, suggest that listening to songs as well as change in breathing patterns changes the autonomic response but the effect of listening to songs may surpass the effect of changes in breathing. We explored feasibility of using non-contact measurements of HR and breathing rate (BR) by using recently developed Facemesh and other methods for tracking regions of interests from videos of faces of subjects. Performance was better for BR than HR, and over currently used methods. However, refinement of the approach would be needed to get the precision required for detecting subtle changes

    Characterization of the Autonomic Nervous System Response in Hyperbaric Environments.

    Get PDF
    Esta tesis se centra en el estudio de la respuesta del Sistema Nervioso Autónomo (ANS) en entornos hiperbáricos. Los entornos hiperbáricos son aquellos escenarios en los cuales la presión atmosférica aumenta y ese aumento en la presión produce cambios en el sistema cardio-respiratorio del sujeto para mantener la homeostasis.Estos cambios se ven reflejados en el ANS, cuya respuesta puede ser medida de manera no invasiva a través de la Variabilidad del Ritmo Cardiaco (HRV), extraída del electrocardiograma (ECG), o a través de la Variabilidad del Ritmo del Pulso (PRV), extraída de la señal de pulso pletismográfico (PPG). La descripción de los entornos hiperbáricos, de la actividad del ANS, de la relación entre ellos y de cómo la respuesta del ANS puede ser medida a través de las señales ECG y PPG, puede encontrarse en el Capítulo 1.En el Capítulo 2, para corroborar si la señal PPG proporciona la misma información en términos de respuesta del ANS que la señal ECG, ambas señales fueron registradas en sujetos en el interior de una cámara hiperbárica, con la presión atmosférica aumentando desde 1 atm a 3 y 5 atm y luego volviendo a 3 y 1 atm. La correlación y el análisis estadístico entre los parámetros en el dominio temporal y frecuencial extraídos de ambas señales demuestran que la PRV puede ser considerada una medida sustituta de la HRV para los sujetos en el interior de la cámara hiperbárica. Esto hace de la PPG una señal a ser considerada en los entornos hiperbáricos, dado que su sensor es más barato y fácil de colocar que los electrodos del ECG (especialmente debajo del agua), y además la PPG puede estimar otros parámetros, como la saturación de oxígeno, que no se pueden estimar con el ECG. También se ha realizado una caracterización de cómo el ANS reacciona ante los cambios de presión y ante el tiempo pasado en el entorno hiperbárico mediante los parámetros extraídos del ECG y la PPG, aumentando aquellos relacionados con el sistema parasimpático cuando la presión es alta y disminuyendo los parámetros relacionados con el sistema simpático conforme más tiempo se pasa dentro de la cámara.La respiración juega un papel importante en los entornos hiperbáricos por lo que se debe incluir la información respiratoria en el análisis del HRV/PRV, dado que se ha demostrado que los cambios en el patrón respiratorio pueden alterar la interpretación de la respuesta del ANS. Por lo tanto, una vez que se ha probado que la señal PPG debe ser tenida en cuenta en los entornos hiperbáricos, en el Capítulo 3 se ha realizado un estudio sobre la estimación de la frecuencia respiratoria colocando el sensor de la PPG en distintas localizaciones. Para hacer esto, se ha registrado la señal respiratoria junto con la señal PPG en el dedo y en la frente en 35 sujetos mientras respiraban espontáneamente y de forma controlada a un ritmo constante, desde 0,1 Hz a 0,6 Hz en pasos de 0,1 Hz. Cuatro señales respiratorias derivadas dela PPG (PDR) fueron extraídas de cada una de las señales PPG registradas. Éstas son: la variabilidad del ritmo del pulso (PRV), la variabilidad de la anchura del pulso (PWV), la variabilidad de la amplitud del pulso (PAV) y la variabilidad de la intensidad inducida de la respiración (RIIV). La frecuencia respiratoria fue estimada para cada una de las 4 señales PDR en ambas localizaciones del sensor PPG. Los resultados sugieren que: i) la estimación de la frecuencia respiratoria es mejor en frecuencias bajas (por debajo de 0,4 Hz); ii) las señales registradas en el dedo son mejores para la estimación que las registradas en la frente; iii) es mejor no incluir la señal RIIV para estimar la frecuencia respiratoria.Siguiendo con la señal PPG, no sólo la PRV contiene información sobre la respuesta del ANS. También la morfología de la PPG puede proporcionar una gran cantidad de información sobre el estado vascular o sobre la distensibilidad arterial, dado que la propagación de la presión del pulso en las arterias causa alteraciones en el volumen de la sangre y por lo tanto cambios en la forma de onda de la PPG.Esta es la razón por la que, en el Capítulo 4, se presenta un nuevo algoritmo para descomponer el pulso de la PPG en dos ondas relacionadas con los picos sistólico y diastólico. La primera onda es obtenida concatenando la pendiente de subida del pulso, desde el principio hasta el primer máximo, con ella misma girada horizontalmente. La segunda onda se modela como una curva lognormal, ajustando su máximo al pico diastólico. De estas dos ondas, se extraen la amplitud, el instante temporal, la anchura, el _área y algunos ratios. Este método se aplica en el conjunto de datos de la cámara hiperbárica para identificar alteraciones en la morfología del pulso PPG debido a la exposición de los sujetos a diferentes presiones atmosféricas.Los resultados del instante temporal y la anchura de la onda relacionada con el pico sistólico apuntan a una vasoconstricción cuando aumenta la presión, probablemente debida a una activación del sistema simpático sobre los vasos sanguíneos. Los resultados del instante temporal y de la anchura de la onda relacionada con el pico diastólico reflejan esta vasoconstricción y también una dependencia con el intervalo entre los pulsos. Por lo tanto, esta metodología permite extraer una gran cantidad de parámetros relacionados con la morfología de la PPG que se ven afectados por los cambios de presión en los entornos hiperbáricos.En los Capítulos 2 y 4, la respuesta del ANS se ha estudiado dentro de una cámara hiperbárica, donde la presión varía. Sin embargo, hay muchas variables que pueden afectar la respuesta cardiovascular del cuerpo durante el buceo, como son la posición del cuerpo del buceador, la actividad física, la temperatura del agua, respirar por el regulador de presión, y algunas más. Por esta razón, en el Capítulo 5 se estudia la respuesta del ANS en tres entornos hiperbáricos distintos: dentro de la cámara hiperbárica, donde sólo la presión varió; durante una actividad de buceo controlado en el mar, donde la presión cambió, pero los efectos de otras variables se minimizaron lo máximo posible; y durante una actividad de buceo no controlado en un pantano, donde más factores cambiaron entre las etapas basal y de inmersión.Se realiza una comparación de los parámetros extraídos de la HRV entre dos etapas (basal e inmersión) en cada conjunto de datos para estudiar como estos factores relacionados con la actividad de buceo afectan a la respuesta del ANS. Para hacer esta comparación, en lugar de los parámetros frecuenciales clásicos, los métodos Principal Dynamic Mode (PDM) y Orthogonal Subspace Projection (OSP) se usan para tener en cuenta las interacciones lineales y no lineales y para tratar con la componente respiratoria que puede afectar a la respuesta del ANS, respectivamente.Los resultados del método OSP indican que la mayoría de la variación de la HRVno puede ser descrita por los cambios en la respiración, por lo que los cambios en la respuesta del ANS pueden aparecer por otros factores. Los parámetros temporales reflejan la activación vagal en la cámara hiperbárica y en el buceo controlado debido al efecto de la presión. En el buceo no controlado, sin embargo, la actividad simpática parece ser la dominante, debido a los efectos de otros factores como la actividad física, el entorno estimulante y el hecho de respirar a través del regulador durante la inmersión. Como resumen, se ha realizado una descripción detallada de los cambios en todos los posibles factores que pueden afectar a la respuesta del ANS entre las etapas basal y de inmersión en los distintos entornos hiperbáricos para una mejor explicación de los resultados.This dissertation focuses on the study of the Autonomic Nervous System (ANS) response in hyperbaric environments. Hyperbaric environments are those scenarios in which atmospheric pressure increases and this increase in pressure produces changes in the cardio-respiratory system of the subject to maintain the homeostasis. These changes are reflected in the ANS, whose response can be measured in a non-invasive way with the Heart Rate Variability (HRV), extracted from the electrocardiogram (ECG) or with the Pulse Rate Variability (PRV), extracted from the photoplethysmogram (PPG). The description of the hyperbaric environments, the ANS activity, the relationship between them and how the ANS response can be measured through ECG and PPG signals can be found in Chapter 1. In Chapter 2, to corroborate if PPG signal provides the same information in terms of ANS response than ECG signal, both signals were recorded for subjects inside a hyperbaric chamber when the atmospheric pressure varied from 1 atm to 3 atm and 5 atm and the coming back to 3 and 1 atm. The correlation and statistical analysis between time and frequency domain parameters extracted from both signals demonstrates that PRV can be considered as a surrogate measurement of HRV inside a hyperbaric chamber. This makes PPG a signal to be considered in hyperbaric environments, since its sensor is cheaper and easier to place than ECG electrodes (especially under the water), and PPG can estimate some parameters, as the oxygen saturation, than ECG cannot. Also a characterization of how the ANS reacts to pressure changes and the time spent in the hyperbaric environment is done with ECG and PPG parameters, increasing those related with the parasympathetic system when the pressure is high and decreasing the heart rate and the parameters related with the sympathetic system when more time is spent inside the chamber. Respiration plays an important role in hyperbaric environments, so it is important to include respiratory information in the HRV/PRV analysis, since it has been shown that changes in the respiratory pattern could alter the interpretation of the ANS response. Therefore, once that PPG signal has been proved as an interesting signal to consider in hyperbaric environments, in Chapter 3 a study about the respiratory rate estimation from different locations of the PPG sensor is performed. To do that, the respiratory signal together with finger and forehead PPG were recorded from 35 subjects while breathing spontaneously, and during controlled respiration experiments at a constant rate from 0.1 Hz to 0.6 Hz, in 0.1 Hz steps. Four PPG derived respiratory (PDR) signals were extracted from each one of the recorded PPG signals: pulse rate variability (PRV), pulse width variability (PWV), pulse amplitude variability (PAV) and the respiratory-induced intensity variability (RIIV). Respiratory rate was estimated from each one of the 4 PDR signals for both PPG sensor locations. Results suggest that: i) respiratory rate estimation is better at lower rates (0.4 Hz and below); ii) the signals recorded at the finger are better than those at the forehead to estimate respiratory rate; iii) it is better not to include RIIV signal to estimate the respiratory rate. Following with the PPG signal, not only PRV contains information about the ANS response. Also, PPG morphology can provide a great amount of information about vascular assessment or arterial compliance, since pulse pressure propagation in arteries causes alterations in blood volume and therefore changes in the PPG pulse shape. That is the reason why, in Chapter 4, a new algorithm to decompose the PPG pulse into two waves related with the systolic and the diastolic peaks is presented. The first wave is obtained concatenating the up-slope from the beginning to the first maximum with itself flipped horizontally. The second wave is modelled by a lognormal curve, adjusting its maximum to the diastolic peak. From these two waves, the amplitude, the time instant, the width, the area and some ratios are extracted. This method is applied in a hyperbaric chamber dataset to identify alterations in the morphology of the PPG pulse due to the exposure of the subjects to different pressures. Results of the time and width of the wave related with the systolic peak point out to a vasoconstriction when the pressure increases, probably due to an activation of the sympathetic system on the blood vessels. Results of the time and width of the wave related with the diastolic peak reflect the vasoconstriction but also a dependency with the pulse-to-pulse interval. Therefore this methodology allows to extract a great set of parameters related with the PPG morphology that are affected by the change of pressure in hyperbaric environments. In Chapters 2 and 4, the ANS response is studied inside a hyperbaric chamber, where the pressure varies. However, there are many variables that could affect the body's cardiovascular response during diving, such as diver body position, physical activity, water temperature, breathing with a scuba mouthpieces and more. This is the reason why in Chapter 5 the ANS response is studied in three different hyperbaric environments: inside a hyperbaric chamber, where only the pressure varied; during a controlled dive in the sea, where the pressure changed but the effects of other factors were minimized; and during an uncontrolled dive in a reservoir, where more factors differed from baseline to immersion stage. A comparison of the HRV features between the two stages (baseline and immersion) in each dataset is carried out to study how these factors related to scuba diving activity affect the ANS response. To do this comparison, instead of the classic frequency methods, the Principal Dynamic Mode (PDM) and the Orthogonal Subspace Projection (OSP) methods are used to account for linear and non-linear interactions and to deal with the respiratory component that could affect the ANS response, respectively. OSP results indicate that most of the variation in the heart rate variability cannot be described by changes in the respiration, so changes in ANS response can be assigned to other factors. Time domain parameters reflect vagal activation in the hyperbaric chamber and in the controlled dive because of the effect of pressure. In the uncontrolled dive, sympathetic activity seems to be dominant, due to the effects of other factors such as physical activity, the challenging environment, and the influence of breathing through the scuba mask during immersion. In summary, a careful description of the changes in all the possible factors that could affect the ANS response between baseline and immersion stages in hyperbaric environments is performed for better explanation of the results.<br /

    The analysis of breathing and rhythm in speech

    Get PDF
    Speech rhythm can be described as the temporal patterning by which speech events, such as vocalic onsets, occur. Despite efforts to quantify and model speech rhythm across languages, it remains a scientifically enigmatic aspect of prosody. For instance, one challenge lies in determining how to best quantify and analyse speech rhythm. Techniques range from manual phonetic annotation to the automatic extraction of acoustic features. It is currently unclear how closely these differing approaches correspond to one another. Moreover, the primary means of speech rhythm research has been the analysis of the acoustic signal only. Investigations of speech rhythm may instead benefit from a range of complementary measures, including physiological recordings, such as of respiratory effort. This thesis therefore combines acoustic recording with inductive plethysmography (breath belts) to capture temporal characteristics of speech and speech breathing rhythms. The first part examines the performance of existing phonetic and algorithmic techniques for acoustic prosodic analysis in a new corpus of rhythmically diverse English and Mandarin speech. The second part addresses the need for an automatic speech breathing annotation technique by developing a novel function that is robust to the noisy plethysmography typical of spontaneous, naturalistic speech production. These methods are then applied in the following section to the analysis of English speech and speech breathing in a second, larger corpus. Finally, behavioural experiments were conducted to investigate listeners' perception of speech breathing using a novel gap detection task. The thesis establishes the feasibility, as well as limits, of automatic methods in comparison to manual annotation. In the speech breathing corpus analysis, they help show that speakers maintain a normative, yet contextually adaptive breathing style during speech. The perception experiments in turn demonstrate that listeners are sensitive to the violation of these speech breathing norms, even if unconsciously so. The thesis concludes by underscoring breathing as a necessary, yet often overlooked, component in speech rhythm planning and production

    Extraction of respiratory signals from the electrocardiogram and photoplethysmogram: technical and physiological determinants.

    Get PDF
    OBJECTIVE: Breathing rate (BR) can be estimated by extracting respiratory signals from the electrocardiogram (ECG) or photoplethysmogram (PPG). The extracted respiratory signals may be influenced by several technical and physiological factors. In this study, our aim was to determine how technical and physiological factors influence the quality of respiratory signals. APPROACH: Using a variety of techniques 15 respiratory signals were extracted from the ECG, and 11 from PPG signals collected from 57 healthy subjects. The quality of each respiratory signal was assessed by calculating its correlation with a reference oral-nasal pressure respiratory signal using Pearson's correlation coefficient. MAIN RESULTS: Relevant results informing device design and clinical application were obtained. The results informing device design were: (i) seven out of 11 respiratory signals were of higher quality when extracted from finger PPG compared to ear PPG; (ii) laboratory equipment did not provide higher quality of respiratory signals than a clinical monitor; (iii) the ECG provided higher quality respiratory signals than the PPG; (iv) during downsampling of the ECG and PPG significant reductions in quality were first observed at sampling frequencies of  <250 Hz and  <16 Hz respectively. The results informing clinical application were: (i) frequency modulation-based respiratory signals were generally of lower quality in elderly subjects compared to young subjects; (ii) the qualities of 23 out of 26 respiratory signals were reduced at elevated BRs; (iii) there were no differences associated with gender. SIGNIFICANCE: Recommendations based on the results are provided regarding device designs for BR estimation, and clinical applications. The dataset and code used in this study are publicly available

    Derivation of respiration from electrocardiogram during heart rate variability studies

    Get PDF
    A method was developed to derive the respiration signal from the ECG signal based on the observation that the body-surface ECG is influenced by electrode motion relative to the heart and that fluctuations in the mean cardiac electrical axis accompany respiration. S-Plus programs were developed to calculate the changes in the value of the mean cardiac electrical axis during respiration from a two lead ECG signal and to generate a continuous ECG-derived respiratory signal from the angle information. Data were taken from 9 healthy subjects during rest, paced breathing and exercise. The respiration was derived from the recorded ECG signals. The ECG-derived respiration was compared with the original respiration recorded through an impedance pneumography device. The derived respiration shows an excellent correspondence with the original respiration. Statistical analysis indicates that the ECG-derived respiration has a high correlation with the original respiration in the frequency domain. Our study provides a method to obtain the respiration from the ECG signal when respiration information is not directly available. This can be done either directly or from a Holter recording. It is therefore possible to do spectral analysis of heart rate variability and determine the frequency of the spectral peak occurring at the respiration frequency
    corecore