458 research outputs found

    Computational Methods for Cognitive and Cooperative Robotics

    Get PDF
    In the last decades design methods in control engineering made substantial progress in the areas of robotics and computer animation. Nowadays these methods incorporate the newest developments in machine learning and artificial intelligence. But the problems of flexible and online-adaptive combinations of motor behaviors remain challenging for human-like animations and for humanoid robotics. In this context, biologically-motivated methods for the analysis and re-synthesis of human motor programs provide new insights in and models for the anticipatory motion synthesis. This thesis presents the author’s achievements in the areas of cognitive and developmental robotics, cooperative and humanoid robotics and intelligent and machine learning methods in computer graphics. The first part of the thesis in the chapter “Goal-directed Imitation for Robots” considers imitation learning in cognitive and developmental robotics. The work presented here details the author’s progress in the development of hierarchical motion recognition and planning inspired by recent discoveries of the functions of mirror-neuron cortical circuits in primates. The overall architecture is capable of ‘learning for imitation’ and ‘learning by imitation’. The complete system includes a low-level real-time capable path planning subsystem for obstacle avoidance during arm reaching. The learning-based path planning subsystem is universal for all types of anthropomorphic robot arms, and is capable of knowledge transfer at the level of individual motor acts. Next, the problems of learning and synthesis of motor synergies, the spatial and spatio-temporal combinations of motor features in sequential multi-action behavior, and the problems of task-related action transitions are considered in the second part of the thesis “Kinematic Motion Synthesis for Computer Graphics and Robotics”. In this part, a new approach of modeling complex full-body human actions by mixtures of time-shift invariant motor primitives in presented. The online-capable full-body motion generation architecture based on dynamic movement primitives driving the time-shift invariant motor synergies was implemented as an online-reactive adaptive motion synthesis for computer graphics and robotics applications. The last chapter of the thesis entitled “Contraction Theory and Self-organized Scenarios in Computer Graphics and Robotics” is dedicated to optimal control strategies in multi-agent scenarios of large crowds of agents expressing highly nonlinear behaviors. This last part presents new mathematical tools for stability analysis and synthesis of multi-agent cooperative scenarios.In den letzten Jahrzehnten hat die Forschung in den Bereichen der Steuerung und Regelung komplexer Systeme erhebliche Fortschritte gemacht, insbesondere in den Bereichen Robotik und Computeranimation. Die Entwicklung solcher Systeme verwendet heutzutage neueste Methoden und Entwicklungen im Bereich des maschinellen Lernens und der künstlichen Intelligenz. Die flexible und echtzeitfähige Kombination von motorischen Verhaltensweisen ist eine wesentliche Herausforderung für die Generierung menschenähnlicher Animationen und in der humanoiden Robotik. In diesem Zusammenhang liefern biologisch motivierte Methoden zur Analyse und Resynthese menschlicher motorischer Programme neue Erkenntnisse und Modelle für die antizipatorische Bewegungssynthese. Diese Dissertation präsentiert die Ergebnisse der Arbeiten des Autors im Gebiet der kognitiven und Entwicklungsrobotik, kooperativer und humanoider Robotersysteme sowie intelligenter und maschineller Lernmethoden in der Computergrafik. Der erste Teil der Dissertation im Kapitel “Zielgerichtete Nachahmung für Roboter” behandelt das Imitationslernen in der kognitiven und Entwicklungsrobotik. Die vorgestellten Arbeiten beschreiben neue Methoden für die hierarchische Bewegungserkennung und -planung, die durch Erkenntnisse zur Funktion der kortikalen Spiegelneuronen-Schaltkreise bei Primaten inspiriert wurden. Die entwickelte Architektur ist in der Lage, ‘durch Imitation zu lernen’ und ‘zu lernen zu imitieren’. Das komplette entwickelte System enthält ein echtzeitfähiges Pfadplanungssubsystem zur Hindernisvermeidung während der Durchführung von Armbewegungen. Das lernbasierte Pfadplanungssubsystem ist universell und für alle Arten von anthropomorphen Roboterarmen in der Lage, Wissen auf der Ebene einzelner motorischer Handlungen zu übertragen. Im zweiten Teil der Arbeit “Kinematische Bewegungssynthese für Computergrafik und Robotik” werden die Probleme des Lernens und der Synthese motorischer Synergien, d.h. von räumlichen und räumlich-zeitlichen Kombinationen motorischer Bewegungselemente bei Bewegungssequenzen und bei aufgabenbezogenen Handlungs übergängen behandelt. Es wird ein neuer Ansatz zur Modellierung komplexer menschlicher Ganzkörperaktionen durch Mischungen von zeitverschiebungsinvarianten Motorprimitiven vorgestellt. Zudem wurde ein online-fähiger Synthesealgorithmus für Ganzköperbewegungen entwickelt, der auf dynamischen Bewegungsprimitiven basiert, die wiederum auf der Basis der gelernten verschiebungsinvarianten Primitive konstruiert werden. Dieser Algorithmus wurde für verschiedene Probleme der Bewegungssynthese für die Computergrafik- und Roboteranwendungen implementiert. Das letzte Kapitel der Dissertation mit dem Titel “Kontraktionstheorie und selbstorganisierte Szenarien in der Computergrafik und Robotik” widmet sich optimalen Kontrollstrategien in Multi-Agenten-Szenarien, wobei die Agenten durch eine hochgradig nichtlineare Kinematik gekennzeichnet sind. Dieser letzte Teil präsentiert neue mathematische Werkzeuge für die Stabilitätsanalyse und Synthese von kooperativen Multi-Agenten-Szenarien

    The Nexus between Artificial Intelligence and Economics

    Get PDF
    This book is organized as follows. Section 2 introduces the notion of the Singularity, a stage in development in which technological progress and economic growth increase at a near-infinite rate. Section 3 describes what artificial intelligence is and how it has been applied. Section 4 considers artificial happiness and the likelihood that artificial intelligence might increase human happiness. Section 5 discusses some prominent related concepts and issues. Section 6 describes the use of artificial agents in economic modeling, and section 7 considers some ways in which economic analysis can offer some hints about what the advent of artificial intelligence might bring. Chapter 8 presents some thoughts about the current state of AI and its future prospects.

    Is There a Law Instinct?

    Get PDF
    The widely held view is that legal systems develop in response to purposeful efforts to achieve economic, political, or social objectives. An alternative view is that reliance on legal systems to organize social activity is an integral part of human nature, just as language and morality now appear to be directly shaped by innate predispositions. This Article formalizes and presents evidence in support of the claim that humans innately turn to legal systems to organize social behavior

    Aging between Participation and Simulation

    Get PDF
    This publication aims to initiate an interdisciplinary discourse on the ethical, legal, and social implications of socially assistive technologies in healthcare. It combines practically relevant insights and examples from current research and development with ethical analysis to uncover moral pitfalls at the intersection between the promotion of social participation and well-being, and risks that may diminish the achievement of these ends

    Dynamics of Human-Robot Interaction in Domestic Environments

    Get PDF
    Domestic service robots are nowadays widely available on the consumer market. As such, robots have begun entering people’s homes and daily lives. However, it seems that the dissemination of domestic robots has not happened as easily and widespread as it was anticipated in the first place. Little is known about the reasons why because long-term studies of ordinary people using real robots in their homes are rare. To better understand how people interact, use and accept domestic robots, studies of human-robot interaction require ecologically valid settings and the user and their needs have to come into the focus. In this dissertation, we propose to investigate the dynamics of human-robot interaction in domestic environments. We first explore the field by means of a 6-month ethnographic study of nine households. We provided each of the households with a Roomba vacuum cleaning robot. Our motivation is to understand long-term acceptance and to identify factors that can promote and hinder the integration of a domestic service robot in different types of households. We would like to find out how people’s perception of the robot, and the way they interact with it and use it, evolve over time. Furthermore, as social factors were highlighted in previous studies on technology adoption in homes, we shed light on to what extent people view Roomba and other types of domestic robots as a social entity and to what extent they anthropomorphize it. Findings of this research can be used to guide the design of user-oriented robots that have the potential to lastingly become a valuable part within the home ecology. Then, we pursue the idea of developing our own domestic robot prototype that could be used in a household with children. We imagine a playful robot that aims to motivate young children to tidy up their toys. In a first evaluation of the robot in 14 family homes, we study the effect of a proactive and reactive robot behavior on children’s interaction with the robot and their motivation to tidy up. A follow-up experiment explores the possibility to sustain children’s engagement by manipulating the robot’s behavior in such way that it appears unexpected. We further investigate how far this influences children’s perception of the robot in terms of anthropomorphism. Our findings emphasize the importance of research in ecologically valid settings in order to obtain a better understanding of human-robot interaction, advance further the design of user-oriented robots and foster the long-term acceptance of these devices

    Advances in Computer Science and Engineering

    Get PDF
    The book Advances in Computer Science and Engineering constitutes the revised selection of 23 chapters written by scientists and researchers from all over the world. The chapters cover topics in the scientific fields of Applied Computing Techniques, Innovations in Mechanical Engineering, Electrical Engineering and Applications and Advances in Applied Modeling

    Aging between Participation and Simulation

    Get PDF
    This publication aims to initiate an interdisciplinary discourse on the ethical, legal, and social implications of socially assistive technologies in healthcare. It combines practically relevant insights and examples from current research and development with ethical analysis to uncover moral pitfalls at the intersection between the promotion of social participation and well-being, and risks that may diminish the achievement of these ends

    Development of Robust Control Strategies for Autonomous Underwater Vehicles

    Get PDF
    The resources of the energy and chemical balance in the ocean sustain mankind in many ways. Therefore, ocean exploration is an essential task that is accomplished by deploying Underwater Vehicles. An Underwater Vehicle with autonomy feature for its navigation and control is called Autonomous Underwater Vehicle (AUV). Among the task handled by an AUV, accurately positioning itself at a desired position with respect to the reference objects is called set-point control. Similarly, tracking of the reference trajectory is also another important task. Battery recharging of AUV, positioning with respect to underwater structure, cable, seabed, tracking of reference trajectory with desired accuracy and speed to avoid collision with the guiding vehicle in the last phase of docking are some significant applications where an AUV needs to perform the above tasks. Parametric uncertainties in AUV dynamics and actuator torque limitation necessitate to design robust control algorithms to achieve motion control objectives in the face of uncertainties. Sliding Mode Controller (SMC), H / μ synthesis, model based PID group controllers are some of the robust controllers which have been applied to AUV. But SMC suffers from less efficient tuning of its switching gains due to model parameters and noisy estimated acceleration states appearing in its control law. In addition, demand of high control effort due to high frequency chattering is another drawback of SMC. Furthermore, real-time implementation of H / μ synthesis controller based on its stability study is restricted due to use of linearly approximated dynamic model of an AUV, which hinders achieving robustness. Moreover, model based PID group controllers suffer from implementation complexities and exhibit poor transient and steady-state performances under parametric uncertainties. On the other hand model free Linear PID (LPID) has inherent problem of narrow convergence region, i.e.it can not ensure convergence of large initial error to zero. Additionally, it suffers from integrator-wind-up and subsequent saturation of actuator during the occurrence of large initial error. But LPID controller has inherent capability to cope up with the uncertainties. In view of addressing the above said problem, this work proposes wind-up free Nonlinear PID with Bounded Integral (BI) and Bounded Derivative (BD) for set-point control and combination of continuous SMC with Nonlinear PID with BI and BD namely SM-N-PID with BI and BD for trajectory tracking. Nonlinear functions are used for all P,I and D controllers (for both of set-point and tracking control) in addition to use of nonlinear tan hyperbolic function in SMC(for tracking only) such that torque demand from the controller can be kept within a limit. A direct Lyapunov analysis is pursued to prove stable motion of AUV. The efficacies of the proposed controllers are compared with other two controllers namely PD and N-PID without BI and BD for set-point control and PD plus Feedforward Compensation (FC) and SM-NPID without BI and BD for tracking control. Multiple AUVs cooperatively performing a mission offers several advantages over a single AUV in a non-cooperative manner; such as reliability and increased work efficiency, etc. Bandwidth limitation in acoustic medium possess challenges in designing cooperative motion control algorithm for multiple AUVs owing to the necessity of communication of sensors and actuator signals among AUVs. In literature, undirected graph based approach is used for control design under communication constraints and thus it is not suitable for large number of AUVs participating in a cooperative motion plan. Formation control is a popular cooperative motion control paradigm. This thesis models the formation as a minimally persistent directed graph and proposes control schemes for maintaining the distance constraints during the course of motion of entire formation. For formation control each AUV uses Sliding Mode Nonlinear PID controller with Bounded Integrator and Bounded Derivative. Direct Lyapunov stability analysis in the framework of input-to-state stability ensures the stable motion of formation while maintaining the desired distance constraints among the AUVs
    corecore