5,512 research outputs found

    Unmanned Aerial Vehicles (UAVs): Collision Avoidance Systems and Approaches

    Get PDF
    Moving towards autonomy, unmanned vehicles rely heavily on state-of-the-art collision avoidance systems (CAS). A lot of work is being done to make the CAS as safe and reliable as possible, necessitating a comparative study of the recent work in this important area. The paper provides a comprehensive review of collision avoidance strategies used for unmanned vehicles, with the main emphasis on unmanned aerial vehicles (UAV). It is an in-depth survey of different collision avoidance techniques that are categorically explained along with a comparative analysis of the considered approaches w.r.t. different scenarios and technical aspects. This also includes a discussion on the use of different types of sensors for collision avoidance in the context of UAVs

    A Review on Collision Avoidance Systems for Unmanned Aerial Vehicles

    Get PDF

    A Review of Consensus-based Multi-agent UAV Applications

    Get PDF
    In this paper, a review of distributed control for multi-agent systems is proposed, focusing on consensus-based applications. Both rotary-wing and fixed-wing Unmanned Aerial Vehicles (UAVs) are considered. On one side, methodologies and implementations based on collision and obstacle avoidance through consensus are analyzed for multirotor UAVs. On the other hand, a target tracking through consensus is considered for fixed-wing UAVs. This novel approach to classify the literature could help researchers to assess the outcomes achieved in these two directions in view of potential practical implementations of consensus-based methodologies

    A survey on fractional order control techniques for unmanned aerial and ground vehicles

    Get PDF
    In recent years, numerous applications of science and engineering for modeling and control of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) systems based on fractional calculus have been realized. The extra fractional order derivative terms allow to optimizing the performance of the systems. The review presented in this paper focuses on the control problems of the UAVs and UGVs that have been addressed by the fractional order techniques over the last decade

    Autonomous three-dimensional formation flight for a swarm of unmanned aerial vehicles

    Get PDF
    This paper investigates the development of a new guidance algorithm for a formation of unmanned aerial vehicles. Using the new approach of bifurcating potential fields, it is shown that a formation of unmanned aerial vehicles can be successfully controlled such that verifiable autonomous patterns are achieved, with a simple parameter switch allowing for transitions between patterns. The key contribution that this paper presents is in the development of a new bounded bifurcating potential field that avoids saturating the vehicle actuators, which is essential for real or safety-critical applications. To demonstrate this, a guidance and control method is developed, based on a six-degreeof-freedom linearized aircraft model, showing that, in simulation, three-dimensional formation flight for a swarm of unmanned aerial vehicles can be achieved

    Decentralized 3D Collision Avoidance for Multiple UAVs in Outdoor Environments

    Get PDF
    The use of multiple aerial vehicles for autonomous missions is turning into commonplace. In many of these applications, the Unmanned Aerial Vehicles (UAVs) have to cooperate and navigate in a shared airspace, becoming 3D collision avoidance a relevant issue. Outdoor scenarios impose additional challenges: (i) accurate positioning systems are costly; (ii) communication can be unreliable or delayed; and (iii) external conditions like wind gusts affect UAVs’ maneuverability. In this paper, we present 3D-SWAP, a decentralized algorithm for 3D collision avoidance with multiple UAVs. 3D-SWAP operates reactively without high computational requirements and allows UAVs to integrate measurements from their local sensors with positions of other teammates within communication range. We tested 3D-SWAP with our team of custom-designed UAVs. First, we used a Software-In-The-Loop simulator for system integration and evaluation. Second, we run field experiments with up to three UAVs in an outdoor scenario with uncontrolled conditions (i.e., noisy positioning systems, wind gusts, etc). We report our results and our procedures for this field experimentation.European Union’s Horizon 2020 research and innovation programme No 731667 (MULTIDRONE
    corecore