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ABSTRACT Moving towards autonomy, unmanned vehicles rely heavily on state-of-the-art collision
avoidance systems (CAS). A lot of work is being done to make the CAS as safe and reliable as possible,
necessitating a comparative study of the recent work in this important area. The paper provides a compre-
hensive review of collision avoidance strategies used for unmanned vehicles, with the main emphasis on
unmanned aerial vehicles (UAV). It is an in-depth survey of different collision avoidance techniques that
are categorically explained along with a comparative analysis of the considered approaches w.r.t. different
scenarios and technical aspects. This also includes a discussion on the use of different types of sensors for
collision avoidance in the context of UAVs.

INDEX TERMS Autonomous aerial vehicles, autonomous vehicles, collision avoidance, active and passive
sensors, optimisation-based, force-field based, sense and avoid, geometry based.

I. INTRODUCTION
Development of any unmanned vehicle has several key ben-
efits with the fundamental benefit of being able to operate
without a human pilot and to access difficult to reach or
hazardous areas without risking human lives [1]. Particu-
larly, fully autonomous Unmanned Aerial Vehicles (UAV),
or drones, are of key interest to the research commu-
nity due to their unique properties and many relevant
applications [2]–[4]. There is a lot of work going on in the
field of drones and swarm of drones, with recent years wit-
nessing a proliferation in the use of not only unmanned aerial
vehicles but also ground and surface vehicles (UGV&USV),
mostly for surveillance, mapping, and inspection [5], [6].

The autonomy level of an unmanned vehicle varies accord-
ing to the tasks at hand or the degree to which the vehicle
is able to make decisions without being explicitly controlled
by a remote operator [7], [8]. In general, unmanned vehicles
have different types of on-board sensors that can be used
for situational awareness and autonomous decision making
at run-time [9]. Overall, control can be manual, based on
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e.g. live video received from a camera mounted on a vehicle
(remote control); autonomous, based on feedback received
from a mounted camera and other types of sensors indicating
the approaching obstacles [10]–[12]; or something between
these two extremes (hybrid, semi-autonomous). Bearing in
mind the considerably low risk to human life, as well as
improved durability for longer missions and accessibility in
difficult terrains, the demand for such unmanned vehicles
is increasing rapidly, and their path planning in dynamic
environments remains one of the most challenging issues to
solve [13]. Due to their autonomy and ability to travel far
from the base stations or their operators (the range naturally
depends on the type and size of the vehicle) the need for hav-
ing an on-board mechanism to avoid collisions with objects
and other vehicles is obvious [14], [15].

A collision avoidance system is crucial for both
non-autonomous and autonomous vehicles. Collisions can
happen due to numerous reasons, let it be due to the oper-
ator’s/driver’s negligence, equipment malfunction, or bad
weather conditions. Considering conventional cars, accord-
ing to the data acquired from World Health Organisation’s
reports, approximately 20-50 million people are injured in
road accidents, and the number of fatal road accidents leading
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FIGURE 1. Collision avoidance system generalised modules.

to deaths is estimated to be approximately 1.25 million annu-
ally around the globe [16], [17]. Airplanes are safer; reports
from CNN and the Aviation Safety Network show that the
amount of annual deaths caused by commercial flight acci-
dents is in the range of a few hundreds [18], [19] in average.
However, helicopter and private/military airplane accidents
are not included in these statistics. The data for causes of fatal
accidents from January 1960 to December 2015 compiled by
planecrashinfo.com shows that about 58% of the accidents
were due to the human error [20]. This human factor can be
minimised by integrating intelligent decisionmaking capabil-
ities such as obstacle detection, collision avoidance, and path
planning with the autopilot system to make the system more
autonomous. In that way, intelligent autonomous collision
avoidance methods can significantly contribute to making
airplanes even safer and saving human lives. Moreover, with
the increasing usage of unmanned vehicles and especially the
exponential increase in the applications of UAVs in public
areas and our everyday lives, the need for intelligent and
highly reliable collision avoidance systems is obvious and
indisputable from the viewpoint of public safety. In contrast
with collision avoidance in cars, UAVs have the ability of
reaching difficult to reach and dangerous areas while posing
no potential danger to humans. Hence, UAVs should be
designed to be completely autonomous and able to flywithout
colliding with other objects, which requires fundamental
research [21].

This paper is a general survey to summarise the wide trends
and important work on collision avoidance in autonomous
systems published till now. In order to sketch different key
ideas and approaches, the concept of different collision avoid-
ance methods are encapsulated and summarised into different
categories. Figure 1 shows such classification that is based on
two main categories, i.e., perception and action. The chrono-
logical order in Figure 1 is top to bottom since in collision
avoidance first the perception is required and after that the
action. Perception, that is mainly obstacle detection, is the
first step for any collision avoidance system. In this phase,

sensors are utilised, in order to perceive the environment and
detect obstacles. There are various different types of sensors
available in the market, but they can all be categorised as
either active or passive sensors based on the principle of their
functionality (see Section 2). Active sensors have their own
source which transmits light or emits a wave and read the
reflected back-scatter. On the other hand, passive sensors only
read the energy discharged by the object, from another source
e.g. sunlight, reflected by the object. An action for collision
avoidance can be categorised into four major approaches:
geometric in which location and velocity information of the
node/UAV and obstacles is utilised, usually by simulating
the trajectories, to perform the reformation of nodes to avoid
the collision, force-field in which attractive/repulsive forces
are manipulated for collision avoidance, optimised through
which the already known parameters of obstacles are used
to optimise the route, and sense and avoid through which
run-time decisions for avoidance are made on the basis of
obstacle detection.

Collision avoidance systems range from either simply
warning the operator of the vehicle [22] to complex process
of autonomously controlling the system either completely
or partially to avoid the collision. The actuators can be
either applying brakes or steering the vehicle away from the
detected obstacle. Initially, the research in the field was based
on advanced highways (ground vehicles), which provided a
good base for advancements also in the areas of intelligent
aerial and surface vehicles [23], [24]. The authors in [25] pro-
vide an interesting approach in classifying the collision avoid-
ance into global and local path planning problems. Where
the global/conventional path planning reacts to the changes
in the environment and generates the optimal routes while
keeping the whole environment under consideration, whereas
in collision avoidance also referred to as local path planning,
the changes in the environment are dealt with locally as
they are detected and an avoidance maneuver is performed
accordingly to avoid the collisions to get back to the originally
planned path.

Obstacle detection, collision avoidance, path planning,
localisation, and control systems are the key parts required
by an unmanned vehicle to be fully autonomous and able
to navigate without being explicitly controlled [26]. Due
to the ability to work in a collaborative and cooperative
manner, swarms of UAVs are gaining even more attention
in the research community. The deployment of swarms or
multiple UAVs adds significant advantages over single UAVs
and has demand in vast and diverse areas, for instance in
military or commercial use, search and rescue, monitoring
traffic, threat detection especially at borders, and atmospheric
research purposes [27]–[29]. In a challenging dynamic envi-
ronment, tasks may become increasingly difficult for UAVs
due to on-board payload limitations (e.g., sensors, batter-
ies), power constraints, reduced visibility due to bad weather
(e.g., rain, dust), and complications in remote monitoring.
The robotics community is striving hard to address these
challenges and to bring the technological level suited for the
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FIGURE 2. Detection range and collision radius.

demanding environments ensuring success and safe naviga-
tion of the unmanned vehicles [30]–[32]. Obstacle detection
and collision avoidance are one of themost challenging issues
for autonomous vehicles and become even more critical
in dynamic environments with multiple UAVs and moving
obstacles [13], [33], [34].

In an autonomous drone/swarm of drones, a collision is
said to have taken place between a drone and any other object,
i.e., another drone or an external object or obstacle, when
the distance between them is less than the predetermined
collision radius Rc [35]. The collision radius and detection
range are illustrated in Figure 2. The condition can be math-
ematically expressed as:

||ru − ro|| < Rc (1)

where ru and ro are the position vectors of the drone and the
object, respectively.

An object is detected, i.e., obstacle detection takes place,
when the distance between the drone and the object is less
than the detection range and the object is in the field of view
of the on-board sensor system. This can be mathematically
expressed as:

||ru − ro|| < (dRange & FOV ) (2)

where dRange is the detection range radius and FOV is the
field of view of the drone dependent on the equipped sensor
system.

A collision avoidance system (CAS) for an unmanned
vehicle is responsible for ensuring that no collisions happen
with any obstacle whether moving or stationary. A CAS,
in order to be able to do that, must address the following
questions:
• How to detect an obstacle and determine its attributes
e.g., its velocity, size, and position

• How to determine if the object is approaching and there
is a risk of collision

• How to perform actual collision avoidance based on the
calculations done

There may be different descriptions of CASs stressing over
different sides of the system, but basically a CAS is composed
of sense, detect, and collision avoidance as shown in Figure 3.

The first step is to sense, in which the system observes its
surroundings or the environment. As soon as some point of
interest i.e., an obstacle comes within the range, the detection
phase of the system tries to assess the risk. Based on this, the
collision avoidance module does the necessary calculations
to compute the amount of deviation needed from the original
path in order to avoid the potential collision. As soon as
the calculations have been done, the system performs the
necessary maneuver to successfully avoid the obstacle.

Different subcategories, the comparison among different
categories and the aforementioned subcategories are dis-
cussed in more detail in each corresponding section. The
rest of the paper is organised as follows. Section 2 briefly
overviews and explains obstacle detection, and passive and
active sensors are discussed in detail. Section 3 focuses on
collision avoidance approaches and the environmental effects
in detail. The available methods and solutions are discussed
in Section 4 along with conclusion.

II. PERCEPTION: OBSTACLE DETECTION
Perception is the first step in any collision avoidance system.
In order to detect obstacles, the drone should be able to
perceive its surroundings and environment. For this, it needs
to be equipped with one or more sensors working as a per-
ception unit [36]. For remote sensing systems, sensors such
as imaging sensors with diverse resolutions are the essential
components. The usage of sensors is quite diverse, depending
on the needs. Some of the sensors that can be used in observa-
tion are LiDAR, visual cameras, thermal or IR cameras, and
solid-state or optomechanical devices [32], [37]. The types
of sensors are fundamentally divided based on their spectral
sensitivity, and the electromagnetic spectrum (see Figure 4)
of the bands used by remote sensing systems [38].

In order to detect an obstacle, different types of sensors are
used which can be mainly categorised into two sets:

• Passive Sensors
• Active Sensors

A. PASSIVE SENSORS
Passive sensors are the ones that detect the energy discharged
by the objects or the scenery under observation. Most of the
passive sensors being employed in sensing applications are
optical or visual cameras, thermal or infrared (IR) cameras,
and spectrometres [39], [40]. There are different types of
cameras which work on different wavelengths (see Figure 4),
for instance, visible light, infrared (short-wave, near-wave,
mid-wave, and long-wave infrared), and ultraviolet band
(UV). In [41], the authors present a methodology for tracking
and real-time detection of a vehicle using acoustic signals.
From noisy data, they extract the robust spatial features and
then process them through sequential state estimation to
acquire the output. They verify the proposed methodology
with practical acoustic data.

Optical or visual sensors are cameras such as monocular
or stereo cameras that work in the visible light [42], [43].
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FIGURE 3. General process for collision avoidance.

FIGURE 4. Electromagnetic spectrum.

Thermal or infrared cameras, in turn, have a longer wave-
length than the visible light range and work in the infrared
light, i.e. from 700nm to 14µm. Consequently, the fundamen-
tal difference between the two is that visual cameras form
an image using the visible light whereas thermal cameras
form images based on infrared radiation. While traditional
cameras have poor performance in low lighting, IR cameras
excel in such conditions [39]. All cameras rely on heavy
image-processing in order to extract useful information from
the chunks of raw data being provided by the sensor. The
extraction of points of interest requires a separate algorithm,
besides the additional algorithm needed for the calculation of
the range and other parameters of the obstacles, and requires
therefore extra processing power [44]. Besides the limitation
of field-of-view of the used sensor, visual cameras depend
heavily on the weather conditions as well, such as lighting
level, fog or rain [45], [46].

1) CAMERA
Visual sensors or cameras rely on capturing the images of
the environment and objects to give useful information to
be extracted. Visual cameras are typically monocular, stereo,
and event-based cameras [47]–[49]. The benefits of using
cameras are their small size, lesser weight, lower power
consumption, flexibility, and they can be easily mounted.
In contrast, the disadvantages of using such sensors are,
e.g., their high dependency on weather conditions, lack of
image clarity, as well as sensitivity to lighting conditions and
background colour contrast. These factors have a significant
impact on the outcome, as the quality of the captured image
drops drastically if any of those factors play part in it.

In [50], the authors propose an obstacle detection algorithm
based on amonocular camera for ground robots. An improved
Inverse Perspective Mapping (IPM) with a vertical plane

model is used to perform a coarse obstacle detection in the
bottom third of the image, which makes it only appropriate
for slow-moving robots ( 1m/s). Afterwards, the obstacles are
segmented using the Markov random field (MRF) framework
and the distance between the robot and the nearest obstacle
is obtained. On the other hand, the authors in [51] propose
an approach based on stereo cameras. Unlike monocular
cameras, in stereo cameras the absolute depth is obtained
using the intrinsic and extrinsic parameters of the cameras.
However, using stereo imagery increases the required compu-
tational power. Thus, the authors divide the captured images
into nine regions to reduce the computational cost and to cope
with highly complex systems with six degrees of freedom
(6DoF) such as drones. Moreover, a fuzzy controller is used
to smooth the response of the controller. Falanga et al. [52]
propose an algorithm based on event cameras for obstacle
avoidance to cope with high-speed movement of drones. One
of the main advantages of using event cameras for obstacle
avoidance is that their processing requirement is lighter than
that of traditional cameras to detect an obstacle, because of
the fact that an event camera only captures the changes in the
environment without any redundant data.

2) INFRARED
Infrared (IR) cameras are sensors working in the infrared
band and are used in low-light conditions. They can also be
used together with visual cameras to overcome their poor
performance for instance in night times. However, since the
output of a thermal camera is blurry and distorted with
lower resolution as compared with RGB cameras, its data
can be analysed via extracting artificial control points and
analyse them for automatic inclination or the orientation of
the image [53]. For instance, the iRobot Roomba vacuum
cleaner [54] uses an infrared sensor and bump sensors to
detect obstacles. The bump sensor detects obstacles/objects
only after bumping into them, which may damage the robot.

B. ACTIVE SENSORS
Active sensors work on the mechanism of emission of radia-
tion and reading the reflected radiation. An active sensor has
its own transmitter (source) and receiver/detector. A trans-
mitter emits a signal that can be in the form of e.g. a light
wave, an electrical signal, or an acoustic signal; this signal
then bounces off an object, and the receiver of the sensor
reads the reflected signal [55], [56]. Their ability to penetrate
the atmosphere in most conditions is due to the fact that
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majority of such sensors work in the microwave portion of
the spectrum. Examples of ranging sensors are: LiDARs [57],
radars [58], sonar or ultrasonic sensors [59], [60], and active
infrared sensors [61], [62]. Such sensors have fast response,
require less processing power, can scan larger areas quickly,
are less affected by the weather and lighting conditions, and
can return the parameters of interest of the obstacles, such
as distance and angles, accurately. The authors in [63] use
millimetre wave (MMW) radar. In their system, by observing
the echoes produced by radar signals the distance between the
object and the vehicle is calculated for detecting and tracking
the objects. The performance is also evaluated in different
weather conditions and for different distances. Although the
radar based solutions are appealing, they are either too expen-
sive or heavy as a payload for smaller robots such as battery
operated UAVs [64], [65].

1) RADAR
A radio detection and ranging (radar) sensor functions by
transmitting a radio signal which upon encountering an object
bounces off of it back to the radar. Depending on the time it
took for the signal to bounce back, the distance between the
object and the radar is calculated. Radar systems have been
around for decades; they have good resistance to weather
conditions and hence are also applied to airborne systems.
Although airborne radar systems are quite expensive, they are
commonly used to provide data due to their accuracy.

Radars are based on either continuous waves or pulsed
waves. A continuous-wave radar, as the name suggests,
emits a continuous stream of linearly modulated signals (also
known as frequency modulated signals), while a pulsed-wave
radar emits powerful and short bursts of signals and hence
suffers from a blind spot in contrast to the continuous-wave
radars [66]. Radars are also used to detect the motion of the
objects such as their speeds. For instance, if an object is mov-
ing towards the radar, the frequency of the echo or bounced
off signal increases, and the change in the frequency is used
to calculate the speed at which the object is moving [67].
Microwave radar sensors are insensitive to weather condi-
tions but have relatively low frequency band and therefore
do not provide a sufficient angular resolution. However, the
millimeter wave radar sensors have benefits such as a finer
angular resolution and small size but are sensitive to weather
conditions [68]. The angular resolution is dependent on the
aperture size of the antenna but can be enhanced to some
extent by increasing the frequency.

Radars are appropriate for outdoor applications due to their
immunity against environmental conditions such as the abil-
ity to operate irrespective of lighting conditions or overcast
weather, and wide range coverage. However, only obstacle
detection can be done but exact reconstruction of an object’s
dimensions is not possible with radars due to their low output
resolution [69]. The authors in [67] used small-sized radar
for acquiring real-time range under all weather environments.
The setup is composed of a small-sized radar sensor and
obstacle collision avoidance system (OCAS) processor. The

data generated by the radar, such as the velocity of the obsta-
cles, azimuth angles, range of the obstacle, is used by OCAS
to calculate the avoidance criteria and send the commands to
the flight controller to perform necessary maneuvers to avoid
collisions. They evaluated the performance of the system and
at the required detection range, the probability of detecting
an obstacle is more than 90%. For collision avoidance, four
different scenarios were used to analyse its performance. And
the results showed that even if there is an error in the radar
data, successful collision avoidance probability is more than
85% due to the defined safety margins.

In [70], the authors provide a comprehensive study of the
advantages of using radar sensors with UAVs for obstacle
detection and the detection and calculation of other attributes
of the detected obstacle, such as the velocity of the obsta-
cle and the angular information using multichannel radars.
Furthermore, using forward facing radars, radar’s simulta-
neous multitarget range capability, the detection of targets
in the wide angular range of ±60◦ in azimuth is shown by
experimental results. In [71], in order to implement the pro-
posed autonomous collision avoidance strategy, the authors
utilised Ultra-Wideband (UWB) collocated MIMO radar.
One of the key benefits of radar cognition is the ability to
adapt UWB-MIMO radar transmission waveform for provid-
ing improved detection and therefore to guide the UAV it
provides approximation of the collision points. In [72], the
authors study radar systems for sense and avoid on UAVs
as they are one of the most reliable all-weather sensors that
precisely provide the ranging and closing speeds. A detailed
analysis for three radar bands, i.e., S (3 GHz), Ka (35 GHz),
and X (10 GHz) bands is provided and the advantages and
disadvantages are discussed for each individual band. After
studying the radar bands for sense and avoid technique, the
authors concluded with X-band the most favourable solution
due to its ease of installation as it can be integrated in the UAV
frame without extra volumes, and its cost, and performance
such as its ability to provide good angular accuracy. In [73],
the authors investigate the performance of radar sensor and
proposed the design of a prototype miniature lightweight
X-band radar sensor for UAVs, due to the capability of radar
sensors to provide comprehensive identification and detec-
tion of the targets/obstacles for the UAVs. The Doppler shift
caused due to the propulsion of the UAV, is used for the
reliable detection of the targets and subsequently utilised to
enhance the maneuvers of the UAV for avoiding the colli-
sions. The authors claim that this detection and identification
process is scalable and can be used for larger vehicles as well.

2) LiDAR
A light detection and ranging (LiDAR) sensor works very
similar way to radars. LiDAR sensors operate in two parts:
one part emits laser pulses onto the surface(s) and the other
reads their reflection to measure the time it took for each
pulse to bounce back in order to calculate the distance. Data
collection using LiDAR is fast and also extremely accurate.
LiDAR systems have becomemore affordable during the past
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TABLE 1. Sensor attribute comparison for Obstacle Detection: short (0-100 m), medium (100 - 1000 m), long ( > 1000 m).

two decades. Furthermore, over the years LiDAR sensors
have become much smaller and compact in size and lighter
in weight as compared with the earlier versions and are now
feasible for mounting on small and micro UAVs as well [69],
[74]. The systems based on LiDAR, especially 1D and 2D
LiDAR sensors, are more economical than the radars. The
authors in [57] tested their developed system under various
conditions with good accuracy, with different types of laser
scanner mounted on a vehicle. 3D LiDARs, also known as 2-
axis LiDARs, are conventional sensors for 3Dmapping or 3D
obstacle detection [75]. Due to the continuous movement and
ranging of LiDAR, motion warping present in the acquired
data makes the usage of these LiDARs strenuous. The authors
in [76] suggest that a way to overcome this is by incorporating
other sensors along with LiDAR. Exact pose estimation of
objects can be made with 3D LiDARs only. The authors
in [77] present a solution for distortion, caused by the motion,
by extracting intensity images from the 3D LiDAR scans and
matching the visual features.

Since LiDAR uses a short wavelength, it has the ability
to detect small objects and can reconstruct a monochrome
coloured 3D image of the environment. LiDAR’s major
weakness is that it cannot detect transparent objects such
as clear glass. Therefore, LiDAR needs to be accompanied
by another sensor, such as an ultrasonic sensor, that can
overcome this issue.

3) SONAR
Ultrasonic sensors work on the principle of emitting sound
waves and listening to its reflection back from an object to
calculate the distance between the object and the sensor [78],
[79]. The sound waves are generated at a frequency too high,
i.e., 25-50 KHz, for the human hearing frequency band [80].
The basic principle used to calculate the distance is similar to
the one used by radars or LiDARs, i.e., emit a wave, wait until
the bounced off wave from an object arrives, and calculate the
distance based on how long it took for the wave to reflect back
by using this simple formula:

d =
(v ∗ t)
2

(3)

where d is the distance, v is the speed of the wave, and t is the
time of flight.

Ultrasonic sensors are readily available and are much
cheaper than most of the other ranging sensors available in
the market. Unlike LiDARs, ultrasonic sensors are unaffected
by the transparency of the object; for instance, LiDARs have
difficulty in detecting clear glass while ultrasonic sensors are
not affected by the colour of the objects. However, if the
object reflects the sound wave in a different direction than the
receiver or if its material has the characteristics of absorbing
sound, the sonic sensor’s readings will be unreliable.

Table 1 shows that all the sensors have some limita-
tions and strengths over the others, making it evident that
not one specific sensor can be used to cover the collision
avoidance problem comprehensively. More than one sensor
can be used to cover larger area and make up for blind
spots, or multiple sensor types can be fused together, where
the weakness of one sensor can be counterbalanced by the
other(s).

According to Table 1, it can be understood that mainly
active sensors have better accuracy in contrast with inactive or
passive sensors. However, active sensors have higher power
consumption as compared with passive sensors, as active
sensors first transmit the signal and after that capture the data
for computation, while passive sensors rely on some external
power source for transmission, such as sun light or object’s
own source, and only reads the signal for computational
purposes. Another important comparison is the processing
requirement. The data captured via active sensors is directed
data, i.e., the data is specified for the detection, it does not
contain unnecessary data, like what exists in e.g., cameras.
This makes the processing of active sensor data easier as
compared with passive sensor’s data. Another issue as the
consequence of this phenomenon is the computation power
of processing the data that for active sensors is lower than
for passive sensors. For instance, in the case of camera(s),
due to heavy computations for image processing and filtering
the unnecessary information from the image, the processing
power is higher as comparedwith a LiDAR sensor whose data
is directed.

The other interesting analysis based on Table 1 is the effect
of noise, e.g., weather condition or light sensitivity, on the
data. Active sensors, because of directing the captured data
and having their own source for transmitting waves, are less
prone to noise than passive sensors. For instance, LiDAR
or ultrasonic sensors work in most environmental conditions
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FIGURE 5. Reactive collision avoidance.

FIGURE 6. Deliberative collision avoidance.

with or without daylight; cameras, on the other hand, need
optimal lighting to be able to create an image of the
environment.

Furthermore, using a passive sensor for detection of obsta-
cles is highly questionable as the algorithm designed may not
be able to distinguish between one or more objects in scenery
and can thereby cause collisions. One major example of such
an issue is that of a fatal accident involving a Tesla car, whose
collision avoidance system failed to distinguish between a
brightly-lit sky and a tractor trailer [81].

III. COLLISION AVOIDANCE
In general, collision avoidance approaches work on either
of the two principles: reactive or deliberative planning.
Figure 5 shows that in reactive control the agent/robot gathers
the information about its surroundings using local on-board
sensors and react based on that information. It allows for rapid
response to sudden changes in the environment. However,
reactive control can lead to a local minimum, may get stuck
in it, and may require another navigational technique to over-
come this problem.

In deliberative planning, shown in Figure 6, the agent
senses and updates the environmental map. Once the map
has been updated, an optimal path with collision free route
is calculated keeping the initial goal as a reference, and that
optimal route plan is then executed. For this, an accurate
map of the environment is needed to be able to work per-
fectly, which requires more computational power to do all the
required computations. This approach, as such, is not suitable
for dynamic environments in which variables change over
time. Hence, a hybrid approach, that can switch between the
reactive and deliberative modes depending on the environ-
mental needs, is more appropriate.

Collision avoidance algorithms can be categorised into
the following major methods: 1) geometric methods that
work by computing the distance between the agent/UAV and
the obstacle utilising the information such as velocities of
both UAV and obstacle and location of obstacle [82]–[85];
2) force-field methods, in which main idea is inspired by
attractive or repulsive electric forces that exist among charged

objects. In a swarm of drones, each UAV node is considered
a charged particle, and attractive or repulsive forces between
them and the obstacles are used to generate the path or the
route to be taken [4], [86]; 3) optimisation-basedmethods that
aim at finding the optimal or near-optimal solutions for path
planning and motion characteristics of each drone w.r.t. the
other drones and obstacles. These techniques rely on static
objects, with known locations and sizes, for calculating the
efficient route within a finite time period [87], [88]; and
4) sense-and-avoid methods that mainly focus on reducing
the computational cost, with short response time, by simplify-
ing the process of collision avoidance to an individual detec-
tion and avoidance of obstacles for each drone and deviating
the drone from its original path when needed, independently
of the other drones’ plans [35], [89], [90]. Each method is
explained in more detail in the following sections.

A. GEOMETRIC METHODS
Geometric approaches rely on the analysis of geometric
attributes to make sure that the defined minimum distances
between agents, e.g. UAVs, is not breached. This is accom-
plished by computing the time to collision by utilising the
distances between theUAVs and their velocities. If Automatic
Dependent Surveillance Broadcast (ADS-B) sensing is used
to obtain the mentioned attributes, the usage of the method is
restricted due to the sensitivity of ADS-B towards noise. It is
also classified as cooperative sensing as ADS-B needs coop-
eration between UAVs. However, if a UAV is equipped with
a vision-based sensor that can detect an obstacle’s location,
size and velocity using a passive device, a non-cooperative
sensing methodology is obtained, drastically increasing the
amount of on-board processing required [85], [91]–[93].

To optimally solve the problem of collision between two
aircrafts, the authors in [94] present an analytical approach for
a planar case to resolve that conflict. Utilising the geometric
characteristics of the trajectories, closed-form analytical solu-
tions are acquired for optimal combinations of commands for
resolving the conflict. Minimum deviation from the normal
flight plan is achieved by minimising the velocity vector
changes. In [95], using a mixed geometric and collision cone
approach along with the information such as the coordinates
and the velocities of the aircrafts, conflict avoidance in a
3D environment is achieved. However, for the most general
cases, the authors rely on numerical optimisation methods
and acquire analytical results for special cases only.

In [96], the authors study geometry based collision avoid-
ance strategies for a swarm of UAVs. The proposed approach
uses line-of-sight vectors in combination with relative veloc-
ity vectors while considering the dynamic constraints of a
formation. By calculating a collision envelope, each UAV
can determine the available direction for avoiding a collision
and decide whether the formation can be kept while avoiding
collisions. For cooperative UAVs in a 3D environment, [97]
proposes a method for providing a selected UAV with an
optimal flight path. Considering changes only in vertical
directions, the authors use an integration equation of distance,
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track adjustment costs and time, under certain restrictions
such as performance and distance constraints, to generate an
optimal flight path to be navigated upon. An approach in
which tracking control is integratedwith a geometric collision
avoidance method is proposed in [98]. Upon detection of
obstacles, the obstacles with the highest risk are first selected.
Then, a boundary sphere is generated for each obstacle to
define the safe and risk areas, and tangent lines from the UAV
to the sphere, together with information on the direction of the
UAV’s movement, are used to calculate a collision detection
angle to determine the best direction of deviation to avoid the
possible collision.

In [99], the authors presented a new methodology of Fast
Geometric Avoidance Algorithm (FGA) based on kinematics,
the probability of collisions, and navigational limitations by
combining the geometric avoidance and the selection of start
time from critical avoidance. In multiple obstacles scenario,
instead of avoiding the obstacles simultaneously, FGA can
assign different threat levels to obstacles based on the critical
time for avoidance and avoid them sequentially and hence
increasing the avoidance success rate. Simulation results,
in same environment, showed a comprehensive reduction in
the computational time for FGA as compared to other similar
way-point generation method.

In [98], the authors proposed a methodology of guiding the
UAVs frommission start to destinationwhilst avoiding collid-
ing with any obstacles in their path and keeping a track of the
pre-defined trajectory. In order to achieve this optimally, the
authors propose combining the collision avoidance control
with the trajectory control of the system while solving these
tasks independently and later combining them by a designed
movement strategy. Making the computations simplified and
faster as collision avoidance control is provoked only in the
presence of obstacles. A tracking control law is designed by
computing the tracking errors, from the geometrical relation
between the UAV and pre-defined trajectory, to make sure
that the UAV stays as close to the reference as possible.
Similarly, upon detection of a possible collision, collision
avoidance control calculates the risk zones and angles to
calculate the best avoidance maneuver. However, the effec-
tiveness of the proposed approach was tested under static
conditions and more work is required to verify and validate
the usability in dynamic environments.

B. FORCE-FIELD METHODS
Force-field methods, also known as potential field methods,
use the concept of a repulsive or attractive force field either to
repel an agent/robot from an obstacle or to attract it towards a
target [92], [100]–[102]. The position where the obstacles lie
in the environment and their shape must be known, as this
approach relies on the motion and geometry of the robot
and the obstacles. In dynamic environments, these attributes
of the obstacles are not known in advance. In [103], the
authors present an idea of placing a potential field around a
robot rather than obstacles. In [104], the authors propose an
artificial potential field for finding the shortest path between

starting and destination points. A robot is repelled from and
attracted towards obstacle and target points, respectively,
due to the repulsive and attractive forces generated by those
respective points. Based on these two types of forces, the
robot calculates the aggregate force which then determines
the characteristics of the robot’s motion. A major drawback
of this method is that, for symmetric environments, it is very
sensitive to local minima and therefore does not necessarily
lead to a globally optimised solution.

In [101], the authors proposed a novel artificial potential
field approach called "enhanced curl-free vector field" for
optimal collision free routes generation under dynamic con-
ditions with multiple obstacles, where other UAVs are also
considered as moving obstacles as well. Instead of utilising
the conventional potential field, in this approach, enhanced
curl-free vector field, i.e., conservative field, is used by gen-
erating the field around the obstacle and determining the field
vectors, i.e., direction of the curl-free vector, based on the
velocity vector of dynamic obstacles and the corresponding
position vector’s angle from UAV to the obstacle and the
path angle of the UAV. The usability of this approach was
tested with simulations, however, this approach still needs
to be validated in 3D environments with static and dynamic
variables.

In [105], the authors present an optimised artificial poten-
tial field algorithm to provide smooth and safe trajectories for
UAVs in a 3D space. The proposed optimised artificial poten-
tial field (APF) algorithm provides an improvement over the
traditional APF algorithms by considering other UAVs and
their interactions as part of the method. The algorithm sees
other UAVs as dynamic obstacles while planning navigation
towards the target. The authors simulated various scenarios to
test their algorithm for unreachable target problem that exists
in the classical APF algorithm. Furthermore, the optimised
navigation was also tested through simulations where the
algorithm allows theUAV to plan at every instant while taking
into account the obstacles, other UAVs, and the destination.

In [106], a vehicular collision avoidance algorithm based
on artificial potential fields is presented. By relying on the
dimensions and also on the shape of the potential fields of the
obstacles/vehicles, the algorithm can appropriately guide a
vehicle either to slow down or accelerate to pass another vehi-
cle, depending on the vehicles’ velocities and the surrounding
traffic. However, this method has its limitations. For instance,
complex maneuvers can take place around other vehicles due
to local minima. Moreover, the step size used for the time
function has to be precisely adjusted, because a too large time
step can cause collisions or unstable behaviour.

The authors in [107] propose a 1D virtual force field
methodology for detection of moving obstacles. They claim
that the problem of efficiency loss in a traditional obstacle
force field (OFF) method is due to the lack of taking the
obstacles’ motion into account. This can be resolved by
the proposed prediction based obstacle force field method.
Focusing on unmanned ground vehicles (UGV), the approach
equips a UGV with a frequency modulated continuous wave
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radar to determine the predicted obstacle force field (POFF)
to accommodate the problem ofmoving obstacles, addressing
thereby the major weakness of conventional 1D virtual force
field algorithms. Using the obstacle’s velocity, the time-to-
collision is calculated, based on which the approach predicts
the estimated point of impact and generates the POFF.

In [108], the authors consider a robot a particle in a force
field. Upon insertion of the robot in the potential field, the
repulsive forces generated by the obstacles will repel the
robot away from them, and the attractive forces generated
by the target will attract the robot towards it. Experimental
results through simulations showed that the response of this
approach can be fast and reactive for static environments,
requiring further work in analysing the response of this
approach in dynamic environments. Furthermore, the pro-
posed algorithm does not tackle the problem of local minima
where the sum of attractive and repulsive forces is zero.

C. OPTIMISATION BASED METHODS
Optimisation based methods rely on calculation of the avoid-
ance trajectory based on geographical information. Proba-
bilistic search algorithms aim to provide the best search areas
based on the available uncertain information. To address
the high computational complexity of these algorithms, sev-
eral optimisation methods have been developed, such as
ant-inspired algorithms, genetic algorithms, Bayesian opti-
misation, gradient descent based methods, particle swarm
optimisation, greedy methods, and local approximations.
In [109], for instance, the authors use a minimum time search
algorithm with ant colony optimisation to ensure successful
calculation of optimised collision-free search paths for UAVs
under communication-related constraints.

Focusing on unmanned surface vehicles (USV), the authors
in [110] discuss collision detection and path planning meth-
ods by considering global and local path planners, analysing
the most common techniques from the classical graph search
theory as well as intelligent methods like artificial neural
networks and evolutionary algorithms. The authors highlight
the inadequacy of existingmethods by concluding that almost
none of the existing approaches appropriately address sea or
weather conditions and/or involve the dynamics of the vessel
when the path is generated. Hence, further studies are needed
in this area.

In [111], the authors present an algorithm that predicts
the next coordinates of a UAV based on the set of possible
commands it is going to execute in a short period of time. The
algorithm formulates a cost function for the optimal trajectory
by considering the target coordinates and the current position
of the UAV. Based on this cost function, the best set of future
commands is selected. Then, a collision detection method is
applied, and if a potential collision is found, the next best set
of commands is chosen and evaluated similarly. The process
can involve several recalculations of the cost function to
eventually find the optimal collision-free solution.

In [112], the authors propose a newmethodology, based on
particle swarm optimisation, for path planning of autonomous

vehicles in unknown environments. In this approach, the data
on the environment gathered by the sensors is utilised by
assigning different weights to different types of territories,
and based on those weights the algorithm classifies different
possibilities of navigating through the terrain. The algorithm
then selects the optimal path based on this classification.

D. SENSE & AVOID METHODS
Sense-and-avoid methods mainly focus on reducing the com-
putational power needed, with short response times, by sim-
plifying the process of collision avoidance to individual
detection and avoidance of obstacles, to control the path
of each drone in a swarm without knowledge on the plans
of other drones. In a formation, the location of each drone
w.r.t. the other drones is defined, and the collision avoidance
process deals with individual path planning for drones in
order to avoid possible crashes both between drones within
the swarm and between drones and external obstacles in
the environment. Sense and avoid based collision avoidance
is known for its ability to react quickly and it is therefore
an appropriate method for dynamic environments. In this
approach, an agent/robot is equipped with different types of
sensors such as LiDAR, sonar, and radar. For instance, radar
reacts quickly to any object that comes within the detection
range of the sensor, even though it cannot see the details of
the object [35], [113], [114].

A 2D LiDAR based approach, proposed in [115], presents
a methodology where the objects are classified into two
categories, static or dynamic. The algorithm is also capable
of approximating the velocities of the dynamic obstacles.
The proposed algorithm is demonstrated to be efficient as
compared with similar existing methodologies in terms of
required computational power and memory.

The authors in [116] use a computer vision technique for
detecting animals and avoiding collisions with them. They
have used more than 2200 images to train their system and
performed tests based on video clips of animals on high-
ways. The algorithm provides satisfactory results with 82.5%
accuracy and successfully detects animals in order to avoid
collisions. However, the proposed solution is highly speed
dependent and will not help in preventing collisions at speeds
exceeding 35km/h. In fact, at higher speeds, it may not be able
to detect objects at all. Furthermore, the provided solution
can have a very poor performance especially in bad weather
conditions, in low or too bright lighting, in foggy conditions,
as well as in shiny (highly reflective) surroundings.

In [117], the authors use five ultrasonic (US) sensors along
with a predefined neural network module in MATLAB to tri-
angulate and detect the precise position and shape of objects.
They consider three different shaped objects for their testing.
Furthermore, the five US sensors used in their solution are
more than required for locating a detected object, as the
precise 2D location can be found using only two US sensors,
and the third dimension (depth) can be found by adding the
third US sensor. Moreover, their results are satisfactory only
when the objects are regular shaped; they report that their
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neural network is not able to correctly identify objects with
irregular shapes.

In [3], the authors use low-cost sensors (US sensors and IR
scanners) to develop a simple solution for obstacle detection
and collision avoidance. They employ inertial and optical
flow sensors as a distance derivative for reference to get better
data fusion. The resulting solution has a low computational
cost, saving memory and computing time, and it enables
a UAV to efficiently avoid collisions without any need for
simultaneous localisation and mapping.

In [118], the authors fuse an US sensor with a binocular
stereo vision camera to implement object detection and avoid-
ance. A new path is calculated by an algorithm based on the
Rapidly exploring Random Tree (RRT) scheme, using stereo
vision as the main approach to detect obstacles around a UAV.
The US sensor is utilised especially in situations where the
camera fails to detect the obstacles [118].

In [119], a real-time 3D vehicle detection method (RT3D)
is proposed, using a pure LiDAR point cloud to predict the
location, orientation and size of vehicles. The authors use
a pre-RoI pooling (region of interest pooling) convolution
technique to pre-processmost of the data in order tomaximise
efficiency. Furthermore, to increase the detection accuracy of
location, orientation and size of vehicles, they also propose a
pose-sensitive feature map design activated by relative poses
of vehicles. Using the KITTI benchmarks data-set [120],
[121], they demonstrate that the designed RT3D system deliv-
ers a competitive accuracy compared with the existing state-
of-the-art methods, reportedly being also the first approach
that completes detection within 0.09s, i.e. in a time shorter
than the scan period of mainstream LiDAR sensors.

The author in [122] proposes a 3D reactive obstacle avoid-
ance technique. The algorithm detects an obstacle in a UAV’s
path, makes the craft hover on its position, calculates the best
escape route, and then instructs the UAV accordingly. This
proposed method was efficient enough in detection of various
obstacles such as trees, communication towers, with the mean
collision time being 0.08ms and the mean escape point search
time being 0.49ms. The method is demonstrated using stereo
vision and laser-based sensing schemes. The limitation of
such methodology is the on-board memory for 3D maps as
the escape point search can only be done within the bounds
of the saved map, so increasing the size of map will increase
the efficiency of escape point search.

In [123], the authors propose a solution in which the pos-
sible paths are represented by lines with different colours.
A robot having the ability to distinguish between various
colours can then select the desired line autonomously to reach
the target. This system is not viable in dynamic environments
nor in bad lighting conditions. Furthermore, the robot is
totally dependent on the visibility of the lines and does not
take into account the presence of an obstacle on a line itself,
lacking dynamic capabilities completely in such situations.

In [124], the author proposes to equip vehicles with adap-
tive cruise control along with a collision avoidance sys-
tem in such a way that collisions with other vehicles are

autonomously avoided by braking at slower speeds and by
steering at higher speeds. In [125], forward-looking cameras
are used for real-time obstacle detection and avoidance. The
presented fuzzy control based method is in principle applica-
ble to different types of unmanned vehicles; in the paper, it is
experimented on a small quadrotor UAV. The authors use a
camera that is mounted in front of UAV to avoid collisions via
visual servoing through image processing. In this approach,
the collected data is wirelessly sent to a laptop for further
processing, where obstacles are marked with specific colours,
and this information is then employed to guide the UAV
around the obstacles. The algorithm avoids the obstacles by
pushing them to either the left or right side of the image.
A potential problem in this setup is that communication
delays between the drone and the controlling computer can
lead to an accident in situations where an obstacle is very
close or moves rapidly towards the UAV.

In [126], the authors propose a methodology which uses
two cameras for detecting the obstacles in the range of 30 to
100 meters and up to the speed of about 22km/h. In order to
differentiate between the sea and sky, this approach relies on
the sea-sky line and assumes that the obstacles are moving
in a regular manner. Different filters are applied to detect the
obstacles. A limitation of the scheme is that it does not take
into account rough sea waves, haphazardly moving obstacles
and overcast situations.

In [127], a simulated UAV equipped with a LiDAR sensor
is inspected using a feed-forward based algorithm. The UAV
is mainly controlled by the operator, and the algorithm esti-
mates the path of the UAV by using the current inputs from
the operator and the future for a predefined period of time.
The algorithm checks for any possible collisions with objects
and diverts the UAV from the original path when needed by
keeping it as close to the operator’s input as possible.

E. ENVIRONMENTAL EFFECTS
Environmental disturbances exist in all industrial systems and
have a huge impact over especially UAVs and therefore are
one of the key factors in the design of stability controllers of
such systems. This environmental disturbance, such as safe
and controlled landing of theUAVs under dynamic conditions
such as oscillatory or moving platforms [128] or maintain-
ing the geometric configuration of multiple or swarm of
UAVs [129] or wind effect [130], is estimated by the designed
controller and then a feedback control action is taken based on
that. Different methodologies or algorithms designed to deal
with such uncertainties have the common goal of estimation
of uncertainties or disturbances to design a compensation
controller that minimises their effect on the system. Such
methods are also referred to as disturbance/uncertainty esti-
mation and attenuation (DUEA) [131]–[133].

In [133], in order to optimise the coverage in urban areas,
presence of obstacles, the authors proposed a method of
triangular mesh generation which also considers the wind
field and perform online adjustments accordingly to min-
imise the energy loss due to the identified wind field. For
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wind field identification, the proposed methodology anal-
yses the behaviour of the wind vector statistically and for
sequencing/re-sequencing of way-points and optimisation of
trajectories it is then added to the next generation autonomous
UAS flight management systems. 11% improvement of
energy consumption is reported in the presence of wind, while
in the presence of gusts of wind an energy efficiency of upto
9% is reported in the results.

In [134], the authors proposed an ce rejection con-
trol (ADRC) guidance law for collision avoidance of UAVs
to tackle with the instability caused by disturbances such as
wind, sensor noise, and unknown obstacle acceleration. The
designed ADRC controller was overlapped with the collision
avoidance as a stabilising feedback control system. The sta-
bility of the nonlinear ADRC is proved using simulations and
the results show that the designed technique can deal with
multiple disturbances.

In [135], the authors developed a two mode controller to
tackle with extreme winds that may take the UAV out of its
stability bounds. The designed controller functions in normal
mode if the thrust and sensor limitations are not exceeded
by the environmental conditions or in case they are, then
the controller switches to the drift mode, in which a drift
frame is generated, based on the UAV’s thrust, drag and
wind estimation, and the stabilising trajectories are gener-
ated. The stabilised trajectory is generated by the UAV by
intertial frame trajectory tracking requirement in the drift
frame. Authors validated the performance of the designed
controller through simulations by comparing the performance
of controller equipped UAV with the UAV which does not
utilise the drift mode.

IV. DISCUSSION AND CONCLUSION
In the previous sections, we presented a comprehensive lit-
erature review on collision avoidance systems and strategies
used for unmanned vehicles. As any collision avoidance
system needs a means to be able to sense or perceive its
surroundings, we also analysed the different types of sensors
relevant to unmanned vehicles, classifying them into active
and passive devices in a traditional manner. The consid-
ered collision avoidance approaches were divided into four
main categories: geometric methods, force-field methods,
optimisation based methods, and sense and avoid methods.
These different classes of approaches have some benefits and
trade-offs that are assessed and summarised in this section.

An active sensor has its own transmitter, a source of energy,
for emitting a wave, with a given range of wavelengths, and
a receiver for reading incoming waves reflected back from
objects in the environment. A passive sensor, in contrast, only
detects the light or energy discharged or reflected by objects,
relying on an external source of energy to be present. For
instance, a camera, a passive sensor, relies on an external
light source to illuminate the scenery for it to work properly,
whereas LiDAR, an active sensor, emits its own laser pulses
onto the scene under observation and reads the back-scatter
for further processing. Therefore, accuracy of data provided

by a camera depends on the quality and intensity of an exter-
nal light source, while LiDARdoes not have such a limitation.

As active sensors contain both transmitter and receiver,
they consume in general more power than passive sensors
that just read data. On the other hand, active sensors capture
directed data, i.e., reflected versions of the signals emitted
by the sensors themselves, which simplifies the data process-
ing phase significantly. In the case of passive sensors such
as visual cameras, the computational requirements are very
high, because the raw image data needs to be thoroughly
filtered and processed to find the relevant points of interest.
Consequently, a camera based collision avoidance approach
has a high computational cost, making it challenging espe-
cially for scenarios where very fast object detection and
decision making is needed. On the other hand, in appropriate
lighting conditions, it can provide more detailed information
on the environment than an approach based on an active
sensor such as LiDAR, sonar or radar. Having said that,
lower processing needs (i.e. faster response times) and better
tolerance against difficult lighting and weather conditions
make ranging systems more suitable for efficient collision
avoidance compared with camera based methods.

Discussed collision avoidance approaches can be com-
pared from different perspectives and by defining differ-
ent evaluation metrics. The evaluation metrics generally are
determined based on the expected goals of the algorithm in
its use case and limitations of the platform. Each collision
avoidance algorithm has its own pros and cons w.r.t. the
different evaluation metrics that make the algorithm suitable
for a specific use case. An overview of the advantages and
disadvantages of the most common methods in the-state-of-
the-art is shown in Table 2. To illustrate a general comparison
among different aspects of the algorithms, we have cate-
gorised the algorithms independently based on ten evaluation
metrics that are depicted in the table and explained as follows:

The first metric is real-time performance: The RTP of
sense and avoid and geometric is better than compared to the
force-field and optimisationmethods, as sense and avoid does
not required too much processing to avoid any changes in
the environment i.e., obstacles approaching. Also geometric
methods are fast and computationally light. However, disad-
vantage of geometric methods as compared to sense&avoid
is that in geometric the time of computation and algorithm
complexity is highly dependant on the algorithm implemen-
tation.

The second metric is velocity constraint (VC), i.e., the
velocity of the obstacles is taken into consideration: Accord-
ing to the literature reviewed, taking VC into considera-
tion, it is to handle VC using sense&avoid and geometric
approaches, however force-field and optimisation methods
are more suitable for pre-defined planning and does not take
into account the UAV dynamic at each interval.

The third metric is static and dynamic environment: For
handling the dynamic environments, sense&avoid approach
is the easiest and lightest since it offers local computations to
react to any changes observed by the on-board sensor system
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TABLE 2. Performance comparison between state-of-the-art collision avoidance approaches: real-time performance (RTP), velocity constraint (VC), static
and dynamic environment (SDE), deadlock (DL), swarm compatibility (SC), robustness (R), 3D compatibility (D), communication dependence (CD), escape
trajectories (ET), pre-mission path planning (PPP).

and can work both indoors and outdoors in static or dynamic
environments. Force-field does not have good performance
in narrower passages and in dynamic environments it has a
common issue of leading to a local minima. Optimisation on
the other hand is best suitable for static environments, as it
requires pre-planning and has to optimise the whole routine
for any changes detected. It would also require more memory
to store the large areas of map for better optimisation.

The fourth metric is deadlock: Optimisation and geomet-
ric methods does not have the deadlock/local minima issue.
Force-field methods can lead to a local minima, however,
sense&avoid methods do not handle this issue locally and
require another methodology to tackle this issue.

The fifth metric is swarm compatibility: All the mentioned
approaches can be utilised for large teams of UAVs. How-
ever, sense&avoid method requires the assistance of an addi-
tional algorithm for communication handling between the
UAVs.

The sixth metric is robustness: All mentioned approaches
are capable of being robust depending on the way they are
implemented.

The seventh metric is dimensions: Sense&avoid, geomet-
ric, and optimisation methods have a lot of work handling
3D environments. However, a lot researchers are focusing
on testing feasibility of utilising force-field methods for 3D
dynamic environments.

The eighth metric is communication dependence:
Sense&avoid methods do not have communication depen-
dence as they work locally and take decisions locally without
communicating with other UAVs or systems. Some discussed
literature based on force-field methods rely on communi-
cation with other UAVs, while most other work does not,
showing that force-field methods do not rely that much on
CD and it depends on the model and implementation. Other

approaches, however do rely on communication with other
nodes/UAVs.

The ninth metric is escape trajectories: The escape tra-
jectories offered by different approaches can be summarised
as: sense&avoid offer escape trajectories at run-time and
locally, the escape trajectories for optimisation methods are
pre-defined based on the optimised path chosen, force-field
methods offer escape trajectories based on the E-field that
offers attraction/repulsion, and geometric methods have pro-
tocol based escape trajectories.

The tenthmetric is pre-mission path planning: Sense&avoid
and geometric methods do not require pre-mission path
planning.In geometric methods path planning is done based
on the collision cone and the velocity obstacle. Optimisation
and force-field methods require pre-mission path planning to
perform optimally.

Based on the discussion and our understanding, we provide
a summarised attributes table as in shown in Table 3. Among
the approaches, the geometric and force-field methods have
the highest complexity level in terms of algorithm design
(computational cost). The optimisation based methods are of
medium complexity, while the sense and avoid approaches
rank lowest for complexity in this comparison.

The geometric and force-field approaches are communi-
cation dependent. i.e., they rely on close interaction between
the individual agents/robots constituting a swarm. The opti-
misation based methods are quite static and have therefore no
concept of communication. The sense and avoid approaches
are not communication dependent either as they are based on
local sensing of the environment and local processing of the
information in each individual agent/robot separately.

According to Table 3, it is quite evident that among the
approaches the optimisation based collision avoidance meth-
ods are suitable only for static environments, since the whole
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TABLE 3. CAA comparison w.r.t. summarised attributes: indoors (In), outdoors (Out).

environment needs to be known in detail, and the optimal
solutions are discovered based on high-definition maps and
pre-defined coordinates. Hence, they require pre-mission
path planning unlike the other considered approaches.

The sense and avoid methods run locally and do not require
any pre-planning, are the most robust among the considered
approaches, and are suitable not only for static indoor and
outdoor environments, but also for dynamic indoor and out-
door environments. In contrast, the force-field methods are
only suitable for static indoor or outdoor environment, as they
require more processing time and do not provide appropriate
results for dynamic environments on their own, without help
of other approaches.

Based on the literature studied, there is a clear trade-off
between computational time requirements, complexity, opti-
mal solution requirements, pre-mission path planning, and
the ability to adapt to static/dynamic environments. Depend-
ing on the demands of operational requirements, in which the
algorithm is to be deployed, the appropriate algorithm needs
to be selected or one can also look into combining more than
one collision avoidance techniques (or two layered collision
avoidance strategy [145]) to meet their needs. Moreover,
to ensure the safety of the UAVs, the deployment of sense and
avoid methods, which are the simplest among the considered
approaches and robust with low data overheads and low
response times, would be a safe choice in all kinds of envi-
ronments for avoiding the static/dynamic obstacles locally.
However, a more efficient path planning algorithm needs to
be integrated along with it to make sure it does not get stuck
in a local minima and manages to reach the destination after
avoiding the collisions. Furthermore, since sense and avoid
approach is not dependant on any external communications
and reacts immediately to any chances in the environment,
has quick response times, and low data overheads, so it can be
used as a failsafe/standalone approach to ensure the safety of
the UAVs especially for highly dynamic environments, where
situations can change rapidly and a high degree of adaptivity
and flexibility is of utmost importance.

Furthermore, further research and development can be
directed on the extension and validation of the developed
algorithms in 3-dimensional environments with dynamic con-
straints bringing the simulations closer to real world environ-
ments and moving towards the real-time testing. For instance,
the 3-D collision avoidance algorithm designed in [93], colli-
sion avoidance and navigation using translational coordinates

in [113], formation control and collision avoidance in [35],
efficiency of the designed controller for countering the envi-
ronmental disturbances in [130], can be further extended and
tested under various realistic scenarios.
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