484 research outputs found

    Truck platooning: great prospect or unrealistic concept for military logistics in Europe?

    Get PDF
    Truck platooning is a technology that allows trucks to drive in a convoy one behind the other, communicating with each other and adapting themselves to the convoy. There are various configurations with different degrees of autonomy but, in most cases, there is still a driver on board, which distinguishes the concept from fully autonomous vehicles. In this article, Dominik Juling examines the advantages, hurdles and limits of military truck platooning in Europe, and provides examples of projects and technologies that are already operational. The benefits include a reduced number of drivers, increased safety for the crew and less resource consumption

    Energy-Efficient and Semi-automated Truck Platooning

    Get PDF
    This open access book presents research and evaluation results of the Austrian flagship project “Connecting Austria,” illustrating the wide range of research needs and questions that arise when semi-automated truck platooning is deployed in Austria. The work presented is introduced in the context of work in similar research areas around the world. This interdisciplinary research effort considers aspects of engineering, road-vehicle and infrastructure technologies, traffic management and optimization, traffic safety, and psychology, as well as potential economic effects. The book’s broad perspective means that readers interested in current and state-of-the-art methods and techniques for the realization of semi-automated driving and with either an engineering background or with a less technical background gain a comprehensive picture of this important subject. The contributors address many questions such as: Which maneuvers does a platoon typically have to carry out, and how? How can platoons be integrated seamlessly in the traffic flow without becoming an obstacle to individual road users? What trade-offs between system information (sensors, communication effort, etc.) and efficiency are realistic? How can intersections be passed by a platoon in an intelligent fashion? Consideration of diverse disciplines and highlighting their meaning for semi-automated truck platooning, together with the highlighting of necessary research and evaluation patterns to address such a broad task scientifically, makes Energy-Efficient and Semi-automated Truck Platooning a unique contribution with methods that can be extended and adapted beyond the geographical area of the research reported

    New Technology and Automation in Freight Transport and Handling Systems

    Get PDF
    This is an evidence review that examines the trends in manufacturing and global supply chains, looking at the international trade, technology and users, and how these may change between now and 2040. The review has been commissioned by the Government Office for Science within the Foresight project. The Foresight Future of Mobility project is run from within the UK Government Office for Science (GO-Science). The Foresight project was launched to try to understand the broad question "What benefits/ opportunities could the transport system of the future provide and what are the implications for Government and society?

    Platooning of connected automated vehicles on freeways: a bird’s eye view

    Get PDF
    A platoon of connected automated vehicles (CAVs) is defined as a group of CAVs that exchange information, so that they can drive in a coordinated way, allowing very small spacings and, still, travelling safely at relatively high speeds. The concept of vehicle platooning is not new. Scientific articles on platooning have been published since the 1970s, and the first large-scale pilot test on vehicle platooning was carried out in the mid 1990s in California. By 1992, the first vehicle platooning experiments were successfully concluded, and the four-vehicle platoon capability was demonstrated for visitors on the I-15 HOV lanes in San Diego in 1994. The main purpose of these early research works was to improve traffic efficiency and reduce vehicle consumption, as well as to develop the existing technology, which represented a strong limitation at the time. Precisely, the development of new technologies and communications in the last decade has given a new impetus to the research on vehicle platooning on freeways, as one of the most promising forms of cooperation among CAVs. These recent studies have extended the analysis beyond traffic efficiency, including safety, sustainability, business productivity, among other objectives. In this context, today, there are many scientific publications on vehicle platooning with different purposes, scopes, scenarios, and based on a wide diversity of vehicles and technologies (i.e. regular or segregated lanes, cars or trucks, vehicles with different SAE levels, etc.). In order to organize and consolidate the existing knowledge on the field, a comprehensive and systematic review must be performed. The present work represents a first approach to this ambitious objective. First, platooning is conceptualized in order to facilitate its analysis and comparison among studies. Second, key publications on platooning are analyzed to determine the most significant impacts that can be expected from its implementation. Finally, some important research gaps and disparate findings on the topic are identified.This research has been partially funded by the Spanish Ministry of Economy, Industry and Competitiveness, within the National Program for Research Aimed at the Challenges of Society (grant ref. PID2019-105331RB-I00).Peer ReviewedPostprint (published version

    Energy-Efficient and Semi-automated Truck Platooning

    Get PDF
    This open access book presents research and evaluation results of the Austrian flagship project “Connecting Austria,” illustrating the wide range of research needs and questions that arise when semi-automated truck platooning is deployed in Austria. The work presented is introduced in the context of work in similar research areas around the world. This interdisciplinary research effort considers aspects of engineering, road-vehicle and infrastructure technologies, traffic management and optimization, traffic safety, and psychology, as well as potential economic effects. The book’s broad perspective means that readers interested in current and state-of-the-art methods and techniques for the realization of semi-automated driving and with either an engineering background or with a less technical background gain a comprehensive picture of this important subject. The contributors address many questions such as: Which maneuvers does a platoon typically have to carry out, and how? How can platoons be integrated seamlessly in the traffic flow without becoming an obstacle to individual road users? What trade-offs between system information (sensors, communication effort, etc.) and efficiency are realistic? How can intersections be passed by a platoon in an intelligent fashion? Consideration of diverse disciplines and highlighting their meaning for semi-automated truck platooning, together with the highlighting of necessary research and evaluation patterns to address such a broad task scientifically, makes Energy-Efficient and Semi-automated Truck Platooning a unique contribution with methods that can be extended and adapted beyond the geographical area of the research reported

    A survey on vehicular communication for cooperative truck platooning application

    Get PDF
    Platooning is an application where a group of vehicles move one after each other in close proximity, acting jointly as a single physical system. The scope of platooning is to improve safety, reduce fuel consumption, and increase road use efficiency. Even if conceived several decades ago as a concept, based on the new progress in automation and vehicular networking platooning has attracted particular attention in the latest years and is expected to become of common implementation in the next future, at least for trucks.The platoon system is the result of a combination of multiple disciplines, from transportation, to automation, to electronics, to telecommunications. In this survey, we consider the platooning, and more specifically the platooning of trucks, from the point of view of wireless communications. Wireless communications are indeed a key element, since they allow the information to propagate within the convoy with an almost negligible delay and really making all vehicles acting as one. Scope of this paper is to present a comprehensive survey on connected vehicles for the platooning application, starting with an overview of the projects that are driving the development of this technology, followed by a brief overview of the current and upcoming vehicular networking architecture and standards, by a review of the main open issues related to wireless communications applied to platooning, and a discussion of security threats and privacy concerns. The survey will conclude with a discussion of the main areas that we consider still open and that can drive future research directions.(c) 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

    Planning of Truck Platoons: a Literature Review and Directions for Future Research

    Get PDF
    A truck platoon is a set of virtually linked trucks that drive closely behind one another using automated driving technology. Benefits of truck platooning include cost savings, reduced emissions, and more efficient utilization of road capacity. To fully reap these benefits in the initial phases requires careful planning of platoons based on trucks’ itineraries and time schedules. This paper provides a framework to classify various new transportation planning problems that arise in truck platooning, surveys relevant operations research models for these problems in the literature and identifies directions for future research

    Large-Scale Multi-Fleet Platoon Coordination: A Dynamic Programming Approach

    Full text link
    Truck platooning is a promising technology that enables trucks to travel in formations with small inter-vehicle distances for improved aerodynamics and fuel economy. The real-world transportation system includes a vast number of trucks owned by different fleet owners, for example, carriers. To fully exploit the benefits of platooning, efficient dispatching strategies that facilitate the platoon formations across fleets are required. This paper presents a distributed framework for addressing multi-fleet platoon coordination in large transportation networks, where each truck has a fixed route and aims to maximize its own fleet's platooning profit by scheduling its waiting times at hubs. The waiting time scheduling problem of individual trucks is formulated as a distributed optimal control problem with continuous decision space and a reward function that takes non-zero values only at discrete points. By suitably discretizing the decision and state spaces, we show that the problem can be solved exactly by dynamic programming, without loss of optimality. Finally, a realistic simulation study is conducted over the Swedish road network with 5,0005,000 trucks to evaluate the profit and efficiency of the approach. The simulation study shows that, compared to single-fleet platooning, multi-fleet platooning provided by our method achieves around 1515 times higher monetary profit and increases the CO2_2 emission reductions from 0.4%0.4\% to 5.5%5.5\%. In addition, it shows that the developed approach can be carried out in real-time and thus is suitable for platoon coordination in large transportation systems.Comment: IEEE Transactions on Intelligent Transportation Systems, accepte
    • …
    corecore