20,855 research outputs found

    Alternative sweetener from curculigo fruits

    Get PDF
    This study gives an overview on the advantages of Curculigo Latifolia as an alternative sweetener and a health product. The purpose of this research is to provide another option to the people who suffer from diabetes. In this research, Curculigo Latifolia was chosen, due to its unique properties and widely known species in Malaysia. In order to obtain the sweet protein from the fruit, it must go through a couple of procedures. First we harvested the fruits from the Curculigo trees that grow wildly in the garden. Next, the Curculigo fruits were dried in the oven at 50 0C for 3 days. Finally, the dried fruits were blended in order to get a fine powder. Curculin is a sweet protein with a taste-modifying activity of converting sourness to sweetness. The curculin content from the sample shown are directly proportional to the mass of the Curculigo fine powder. While the FTIR result shows that the sample spectrum at peak 1634 cm–1 contains secondary amines. At peak 3307 cm–1 contains alkynes

    Human Reliability Analysis using a Human Factors Hazard Model

    Get PDF
    Human Reliability Analysis (HRA) has found application within a diverse set of engineering domains, but the methods used to apply HRA are often complicated, time-consuming, costly to apply, specific to particular (i.e., nuclear) applications, and are not suitable for direct comparison amongst themselves. This paper proposes a Human Factors Hazard Model (HFHM), which builds an HRA method from the tools of Fault Tree Analysis (FTA), Event Tree Analysis (ETA), and a novel model of considering serial Human Error Probability (HEP) more relevant to psychomotor-intensive industrial and commercial applications such as manufacturing, teleoperation, and vehicle operation. The HEP approach uses Performance Shaping Factors (PSFs) relevant to human behavior, as well as specific characteristics unique to a system architecture and its corresponding operational behavior. The HFHM tool is intended to establish a common analysis approach, to simplify and automate the modeling of the likelihood of a mishap due to a human-system interaction during a hazard event. The HFHM is executed commercial software tools (MS Excel and SysML) such that trade and sensitivity studies can be conducted and iterated automatically. The results generated by the HFHM can be used to guide risk assessment, safety requirements generation and management, design options, and safety controls within the system design architecting process. Verification and evaluation of the HFHM through simulation and subject matter expert evaluation illustrate the value of the HFHM as a tool for HRA and system safety analysis in a set of key industrial applications

    Development of a human factors hazard model for use in system safety analysis

    Get PDF
    2021 Fall.Includes bibliographical references.Traditional methods for Human Reliability Analysis (HRA) have been developed with specific applications or industries in mind. Additionally, these methods are often complicated, time consuming, costly to apply, and are not suitable for direct comparison amongst themselves. The proposed Human Factors Hazard Model (HFHM) utilizes the established and time-tested probabilistic analysis tools of Fault Tree Analysis (FTA) and Event Tree Analysis (ETA), and integrates them with a newly developed Human Error Probability (HEP) predictive tool. This new approach is developed around Performance Shaping Factors (PSFs) relevant to human behavior, as well as specific characteristics unique to a system architecture and its corresponding operational behavior. This updated approach is intended to standardize, simplify, and automate the approach to modeling the likelihood of a mishap due to a human-system interaction during a hazard event. The HFHM is exemplified and automated within a commercial software tool such that trade and sensitivity studies can be conducted and validated easily. The analysis results generated by the HFHM can be used as a standardized guide to SE analysts as a well as design engineers with regards to risk assessment, safety requirements, design options, and needed safety controls within the system architecture. Verification and evaluation of the HFHM indicate that it is an effective tool for HRA and system safety with results that accurately predict HEP values that can guide design efforts with respect to human factors. In addition to the development and automation of the HFHM, application within commonly used system safety Hazard Analysis Techniques (HATs) is established. Specific utilization of the HFHM within system or subsystem level FTA and Failure Mode and Effects Analysis (FMEA) is established such that human related hazards can more accurately be accounted for in system design safety analysis and lifecycle management. Lastly, integration of the HFHM within Model-Based System Engineering (MBSE) emphasizing an implementation into the System Modeling Language (SysML) is established using a combination of existing hazard analysis libraries and custom designed libraries within the Unified Modeling Language (UML). The FTA / ETA components of the hazard model are developed within SysML partially utilizing the RAAML (Risk Analysis and Assessment Modeling Language) currently under development by the Object Management Group (OMG), as well as a unique recursive analysis library. The SysML model successfully replicates the probabilistic calculation results of the HFHM as generated by the native analytical model. The SysML profiles developed to implement HFHM have application in integration of conventional system safety analysis as well as requirements engineering within lifecycle management

    An evaluation of NASA's program in human factors research: Aircrew-vehicle system interaction

    Get PDF
    Research in human factors in the aircraft cockpit and a proposed program augmentation were reviewed. The dramatic growth of microprocessor technology makes it entirely feasible to automate increasingly more functions in the aircraft cockpit; the promise of improved vehicle performance, efficiency, and safety through automation makes highly automated flight inevitable. An organized data base and validated methodology for predicting the effects of automation on human performance and thus on safety are lacking and without such a data base and validated methodology for analyzing human performance, increased automation may introduce new risks. Efforts should be concentrated on developing methods and techniques for analyzing man machine interactions, including human workload and prediction of performance

    Development of a decision support system through modelling of critical infrastructure interdependencies : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Emergency Management at Massey University, Wellington, New Zealand

    Get PDF
    Critical Infrastructure (CI) networks provide functional services to support the wellbeing of a community. Although it is possible to obtain detailed information about individual CI and their components, the interdependencies between different CI networks are often implicit, hidden or not well understood by experts. In the event of a hazard, failures of one or more CI networks and their components can disrupt the functionality and consequently affect the supply of services. Understanding the extent of disruption and quantification of the resulting consequences is important to assist various stakeholders' decision-making processes to complete their tasks successfully. A comprehensive review of the literature shows that a Decision Support System (DSS) integrated with appropriate modelling and simulation techniques is a useful tool for CI network providers and relevant emergency management personnel to understand the network recovery process of a region following a hazard event. However, the majority of existing DSSs focus on risk assessment or stakeholders' involvement without addressing the overall CI interdependency modelling process. Furthermore, these DSSs are primarily developed for data visualization or CI representation but not specifically to help decision-makers by providing them with a variety of customizable decision options that are practically viable. To address these limitations, a Knowledge-centred Decision Support System (KCDSS) has been developed in this study with the following aims: 1) To develop a computer-based DSS using efficient CI network recovery modelling algorithms, 2) To create a knowledge-base of various recovery options relevant to specific CI damage scenarios so that the decision-makers can test and verify several ‘what-if’ scenarios using a variety of control variables, and 3) To bridge the gap between hazard and socio-economic modelling tools through a multidisciplinary and integrated natural hazard impact assessment. Driven by the design science research strategy, this study proposes an integrated impact assessment framework using an iterative design process as its first research outcome. This framework has been developed as a conceptual artefact using a topology network-based approach by adopting the shortest path tree method. The second research outcome, a computer-based KCDSS, provides a convenient and efficient platform for enhanced decision making through a knowledge-base consisting of real-life recovery strategies. These strategies have been identified from the respective decision-makers of the CI network providers through the Critical Decision Method (CDM), a Cognitive Task Analysis (CTA) method for requirement elicitation. The capabilities of the KCDSS are demonstrated through electricity, potable water, and road networks in the Wellington region of Aotearoa New Zealand. The network performance has been analysed independently and with interdependencies to generate outage of services spatially and temporally. The outcomes of this study provide a range of theoretical and practical contributions. Firstly, the topology network-based analysis of CI interdependencies will allow a group of users to build different models, make and test assumptions, and try out different damage scenarios for CI network components. Secondly, the step-by-step process of knowledge elicitation, knowledge representation and knowledge modelling of CI network recovery tasks will provide a guideline for improved interactions between researchers and decision-makers in this field. Thirdly, the KCDSS can be used to test the variations in outage and restoration time estimates of CI networks due to the potential uncertainty related to the damage modelling of CI network components. The outcomes of this study also have significant practical implications by utilizing the KCDSS as an interface to integrate and add additional capabilities to the hazard and socio-economic modelling tools. Finally, the variety of ‘what-if’ scenarios embedded in the KCDSS would allow the CI network providers to identify vulnerabilities in their networks and to examine various post-disaster recovery options for CI reinstatement projects

    A novel qualitative prospective methodology to assess human error during accident sequences

    Get PDF
    Numerous theoretical models and techniques to assess human error were developed since the 60's. Most of these models were developed for the nuclear, military, and aviation sectors. These methods have the following weaknesses that limit their use in industry: the lack of analysis of underlying causal cognitive mechanisms, need of retrospective data for implementation, strong dependence on expert judgment, focus on a particular type of error, and/or analysis of operator behaviour and decision-making without considering the role of the system in such decisions. The purpose of the present research is to develop a qualitative prospective methodology that does not depend exclusively on retrospective information, that does not require expert judgment for implementation and that allows predicting potential sequences of accidents before they occur. It has been proposed for new (or existent) small and medium- scale facilities, whose processes are simple. To the best of our knowledge, a methodology that meets these requirements has not been reported in literature thus far. The methodology proposed in this study was applied to the methanol storage area of a biodiesel facility. It could predict potential sequences of accidents, through the analysis of information provided by different system devices and the study of the possible deviations of operators in decision-making. It also enabled the identification of the shortcomings in the human-machine interface and proposed an optimization of the current configuration.Fil: Calvo Olivares, Romina Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ingenieria. Instituto de Capacitación Especial y Desarrollo de Ingeniería Asistida por Computadora; ArgentinaFil: Rivera, Selva Soledad. Universidad Nacional de Cuyo. Facultad de Ingenieria. Instituto de Capacitación Especial y Desarrollo de Ingeniería Asistida por Computadora; ArgentinaFil: Núñez Mc Leod, Jorge Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ingenieria. Instituto de Capacitación Especial y Desarrollo de Ingeniería Asistida por Computadora; Argentin

    Endeavor agility on consumption value through affirming an acceptable degree of utilization esteem for new items

    Get PDF
    Purpose: This comparative study holistically assesses the agility that turns into the standard of business and methods for progress. Design/Methodology/Approach: The contribution and the relevant methodology based on a duality of purposes. They are (i) quantitative research system that utilized to complete the investigation and (ii) both fundamental and auxiliary sources used to assemble information. Findings: Based on the holistically implied arguments and yielded results, it proposed that the writing audit results various parameters to clarify nimbleness and utilization esteems, which utilized to build a survey. At that point, the examination led to design a fitting example between use esteems and hidden agility measurements. Practical implications: Addressing to dual purposes, this study sheds new light on the Mallintercept method block strategy that utilized to gather reactions. Originality/Value: Although this study organically builds upon recent studies, this area gives a detail examination of the investigation. The survey has a field containing the segment profile of the respondents. This examination applies the utilization esteem model as the essential system, which incorporated the practical worth, the social worth, the passionate worth, the epistemic worth, and the restrictive worth.peer-reviewe
    • …
    corecore