306 research outputs found

    Objective and subjective assessment of perceptual factors in HDR content processing

    Get PDF
    The development of the display and camera technology makes high dynamic range (HDR) image become more and more popular. High dynamic range image give us pleasant image which has more details that makes high dynamic range image has good quality. This paper shows us the some important techniques in HDR images. And it also presents the work the author did. The paper is formed of three parts. The first part is an introduction of HDR image. From this part we can know why HDR image has good quality

    HDR-VDP-3: A multi-metric for predicting image differences, quality and contrast distortions in high dynamic range and regular content

    Full text link
    High-Dynamic-Range Visual-Difference-Predictor version 3, or HDR-VDP-3, is a visual metric that can fulfill several tasks, such as full-reference image/video quality assessment, prediction of visual differences between a pair of images, or prediction of contrast distortions. Here we present a high-level overview of the metric, position it with respect to related work, explain the main differences compared to version 2.2, and describe how the metric was adapted for the HDR Video Quality Measurement Grand Challenge 2023

    A local model of eye adaptation for high dynamic range images

    Get PDF
    In the real world, the human eye is confronted with a wide range of luminances from bright sunshine to low night light. Our eyes cope with this vast range of intensities by adaptation; changing their sensitivity to be responsive at di erent illumination levels. This adaptation is highly localized, allowing us to see both dark and bright regions of a high dynamic range environment. In this paper we present a new model of eye adaptation based on physiological data. The model, which can be easily integrated into existing renderers, can function either as a static local tone mapping operator for single high dynamic range image, or as a temporal adaptation model taking into account time elapsed and intensity of preadaptation for a dynamic sequence. We nally validate our technique with a high dynamic range display and a psychophysical study.(undefined

    High Dynamic Range Imaging by Perceptual Logarithmic Exposure Merging

    Full text link
    In this paper we emphasize a similarity between the Logarithmic-Type Image Processing (LTIP) model and the Naka-Rushton model of the Human Visual System (HVS). LTIP is a derivation of the Logarithmic Image Processing (LIP), which further replaces the logarithmic function with a ratio of polynomial functions. Based on this similarity, we show that it is possible to present an unifying framework for the High Dynamic Range (HDR) imaging problem, namely that performing exposure merging under the LTIP model is equivalent to standard irradiance map fusion. The resulting HDR algorithm is shown to provide high quality in both subjective and objective evaluations.Comment: 14 pages 8 figures. Accepted at AMCS journa

    Tone Reproduction in Virtual Reality

    Get PDF
    High dynamic range imaging has become very popular over the years in the field of computer graphics and games. The process of tone reproduction compresses the dynamic range of brightness in a scene to the lower range of display devices, thus making it an essential process in the graphics rendering pipeline. Various tone mapping operators have been tested for static viewing conditions. However, perceptual and temporal adaptation may vary for immersive viewing in a Virtual Reality environment. This thesis implements Ward et al. model (1994), Ward et al. model, Histogram Adjustment (1997) and Irawan, Ferwerda and Marschner model (2005) for static and immersive inputs. Faculty and students from the college took part in a personal survey to rate the tone mapped results based on their level of resemblance to real-life outdoor environments as well as the level of visibility in the lighter and darker regions. The proposed hypothesis states that immersion produces a measurable effect on our preference for a suitable tone reproduction model. This hypothesis is tested with the help of null hypothesis testing methods and some regression analysis on the data gathered from the survey

    A Model of Local Adaptation

    Get PDF
    The visual system constantly adapts to different luminance levels when viewing natural scenes. The state of visual adaptation is the key parameter in many visual models. While the time-course of such adaptation is well understood, there is little known about the spatial pooling that drives the adaptation signal. In this work we propose a new empirical model of local adaptation, that predicts how the adaptation signal is integrated in the retina. The model is based on psychophysical measurements on a high dynamic range (HDR) display. We employ a novel approach to model discovery, in which the experimental stimuli are optimized to find the most predictive model. The model can be used to predict the steady state of adaptation, but also conservative estimates of the visibility(detection) thresholds in complex images.We demonstrate the utility of the model in several applications, such as perceptual error bounds for physically based rendering, determining the backlight resolution for HDR displays, measuring the maximum visible dynamic range in natural scenes, simulation of afterimages, and gaze-dependent tone mapping

    Which tone-mapping operator is the best? A comparative study of perceptual quality

    Get PDF
    Altres ajuts: CERCA Programme/Generalitat de CatalunyaPublicat sota la llicència Open Access Publishing Agreement, específica d'Optica Publishing Group https://opg.optica.org/submit/review/pdf/CopyrightTransferOpenAccessAgreement-2022-06-27.pdfTone-mapping operators (TMOs) are designed to generate perceptually similar low-dynamic-range images from high-dynamic-range ones. We studied the performance of 15 TMOs in two psychophysical experiments where observers compared the digitally generated tone-mapped images to their corresponding physical scenes. All experiments were performed in a controlled environment, and the setups were designed to emphasize different image properties: in the first experiment we evaluated the local relationships among intensity levels, and in the second one we evaluated global visual appearance among physical scenes and tone-mapped images, which were presented side by side. We ranked the TMOs according to how well they reproduced the results obtained in the physical scene. Our results show that ranking position clearly depends on the adopted evaluation criteria, which implies that, in general, these tone-mapping algorithms consider either local or global image attributes but rarely both. Regarding the question of which TMO is the best, KimKautz ["Consistent tone reproduction," in Proceedings of Computer Graphics and Imaging (2008)] and Krawczyk ["Lightness perception in tone reproduction for high dynamic range images," in Proceedings of Eurographics (2005), p. 3] obtained the better results across the different experiments. We conclude that more thorough and standardized evaluation criteria are needed to study all the characteristics of TMOs, as there is ample room for improvement in future developments
    corecore