25 research outputs found

    FAT-DBT engine (framework for application-tailorcd, co-designcd dynamic binary translation enginc)

    Get PDF
    Tese de Doutoramento em Engenharia Eletrónica e de Computadores (PDEEC)Dynamic binary translation (DBT) has emerged as an execution engine that monitors, modifies and possibly optimizes running applications for specific purposes. DBT is deployed as an execution layer between the application binary and the operating system or host-machine, which creates opportunities for collecting runtime information. Initially, DBT supported binary-level compatibility, but based on the collected runtime information, it also became popular for code instrumentation, ISA-virtualization and dynamic-optimization purposes. Building a DBT system brings many challenges, as it involves complex components integration and requires deep architectural level knowledge. Moreover, DBT incurs in significant overheads, mainly due to code decoding and translation, as well as execution along with general functionalities emulation. While initially conceived bearing in mind high-end architectures for performance demanding applications, such challenges become even more evident when directing DBT to embedded systems. The latter makes an effective deployment very challenging due to its complexity, tight constraints on memory, and limited performance and power. Legacy support and binary compatibility is a topic of relevant interest in such systems, due to their broad dissemination among industrial environments and wide utilization in sensing and monitoring processes, from yearly times, with considerable maintenance and replacement costs. To address such issues, this thesis intents to contribute with a solution that leverages an optimized and accelerated dynamic binary translator targeting resourceconstrained embedded systems while supporting legacy systems. The developed work allows to: (1) evaluate the potential of DBT for legacy support purposes on the resource-constrained embedded systems; (2) achieve a configurable DBT architecture specialized for resource-constrained embedded systems; (3) address DBT translation, execution and emulation overheads through the combination of software and hardware; and (4) promote DBT utilization as a legacy support tool for the industry as a end-product.A tradução binária dinâmica (TBD) emergiu como um motor de execução que permite a modificação e possível optimização de código executável para um determinado propósito. A TBD é integrada nos sistemas como uma camada de execução entre o código binário executável e o sistema operativo ou a máquina hospedeira alvo, o que origina oportunidades de recolha de informação de execução. A criação de um sistema de TBD traz consigo diversos desafios, uma vez que envolve a integração de componentes complexos e conhecimentos aprofundados das arquitecturas de processadores envolvidas. Ademais, a utilização de TBD gera diversos custos computacionais indirectos, maioritariamente devido à descodificação e tradução de código, bem como emulação de funcionalidades em geral. Considerando que a TBD foi inicialmente pensada para sistemas de gama alta, os desafios mencionados tornam-se ainda mais evidentes quando a mesma é aplicada em sistemas embebidos. Nesta área os limitados recursos de memória e os exigentes requisitos de desempenho e consumo energético,tornam uma implementação eficiente de TBD muito difícil de obter. Compatibilidade binária e suporte a código de legado são tópicos de interesse em sistemas embebidos, justificado pela ampla disseminação dos mesmos no meio industrial para tarefas de sensorização e monitorização ao longo dos tempos, reforçado pelos custos de manutenção adjacentes à sua utilização. Para endereçar os desafios descritos, nesta tese propõe-se uma solução para potencializar a tradução binária dinâmica, optimizada e com aceleração, para suporte a código de legado em sistemas embebidos de baixa gama. O trabalho permitiu (1) avaliar o potencial da TBD quando aplicada ao suporte a código de legado em sistemas embebidos de baixa gama; (2) a obtenção de uma arquitectura de TBD configurável e especializada para este tipo de sistemas; (3) reduzir os custos computacionais associados à tradução, execução e emulação, através do uso combinado de software e hardware; (4) e promover a utilização na industria de TBD como uma ferramenta de suporte a código de legado.This thesis was supported by a PhD scholarship from Fundação para a Ciência e Tecnologia, SFRH/BD/81681/201

    Low power digital signal processing

    Get PDF

    Design synthesis for dynamically reconfigurable logic systems

    Get PDF
    Dynamic reconfiguration of logic circuits has been a research problem for over four decades. While applications using logic reconfiguration in practical scenarios have been demonstrated, the design of these systems has proved to be a difficult process demanding the skills of an experienced reconfigurable logic design expert. This thesis proposes an automatic synthesis method which relieves designers of some of the difficulties associated with designing partially dynamically reconfigurable systems. A new design abstraction model for reconfigurable systems is proposed in order to support design exploration using the presented method. Given an input behavioural model, a technology server and a set of design constraints, the method will generate a reconfigurable design solution in the form of a 3D floorplan and a configuration schedule. The approach makes use of genetic algorithms. It facilitates global optimisation to accommodate multiple design objectives common in reconfigurable system design, while making realistic estimates of configuration overheads and of the potential for resource sharing between configurations. A set of custom evolutionary operators has been developed to cope with a multiple-objective search space. Furthermore, the application of a simulation technique verifying the lll results of such an automatic exploration is outlined in the thesis. The qualities of the proposed method are evaluated using a set of benchmark designs taking data from a real reconfigurable logic technology. Finally, some extensions to the proposed method and possible research directions are discussed

    A Probabilistic Approach for the System-Level Design of Multi-ASIP Platforms

    Get PDF

    Memory hierarchy and data communication in heterogeneous reconfigurable SoCs

    Get PDF
    The miniaturization race in the hardware industry aiming at continuous increasing of transistor density on a die does not bring respective application performance improvements any more. One of the most promising alternatives is to exploit a heterogeneous nature of common applications in hardware. Supported by reconfigurable computation, which has already proved its efficiency in accelerating data intensive applications, this concept promises a breakthrough in contemporary technology development. Memory organization in such heterogeneous reconfigurable architectures becomes very critical. Two primary aspects introduce a sophisticated trade-off. On the one hand, a memory subsystem should provide well organized distributed data structure and guarantee the required data bandwidth. On the other hand, it should hide the heterogeneous hardware structure from the end-user, in order to support feasible high-level programmability of the system. This thesis work explores the heterogeneous reconfigurable hardware architectures and presents possible solutions to cope the problem of memory organization and data structure. By the example of the MORPHEUS heterogeneous platform, the discussion follows the complete design cycle, starting from decision making and justification, until hardware realization. Particular emphasis is made on the methods to support high system performance, meet application requirements, and provide a user-friendly programmer interface. As a result, the research introduces a complete heterogeneous platform enhanced with a hierarchical memory organization, which copes with its task by means of separating computation from communication, providing reconfigurable engines with computation and configuration data, and unification of heterogeneous computational devices using local storage buffers. It is distinguished from the related solutions by distributed data-flow organization, specifically engineered mechanisms to operate with data on local domains, particular communication infrastructure based on Network-on-Chip, and thorough methods to prevent computation and communication stalls. In addition, a novel advanced technique to accelerate memory access was developed and implemented

    A configurable vector processor for accelerating speech coding algorithms

    Get PDF
    The growing demand for voice-over-packer (VoIP) services and multimedia-rich applications has made increasingly important the efficient, real-time implementation of low-bit rates speech coders on embedded VLSI platforms. Such speech coders are designed to substantially reduce the bandwidth requirements thus enabling dense multichannel gateways in small form factor. This however comes at a high computational cost which mandates the use of very high performance embedded processors. This thesis investigates the potential acceleration of two major ITU-T speech coding algorithms, namely G.729A and G.723.1, through their efficient implementation on a configurable extensible vector embedded CPU architecture. New scalar and vector ISAs were introduced which resulted in up to 80% reduction in the dynamic instruction count of both workloads. These instructions were subsequently encapsulated into a parametric, hybrid SISD (scalar processor)–SIMD (vector) processor. This work presents the research and implementation of the vector datapath of this vector coprocessor which is tightly-coupled to a Sparc-V8 compliant CPU, the optimization and simulation methodologies employed and the use of Electronic System Level (ESL) techniques to rapidly design SIMD datapaths

    Proceedings of the 5th International Workshop on Reconfigurable Communication-centric Systems on Chip 2010 - ReCoSoC\u2710 - May 17-19, 2010 Karlsruhe, Germany. (KIT Scientific Reports ; 7551)

    Get PDF
    ReCoSoC is intended to be a periodic annual meeting to expose and discuss gathered expertise as well as state of the art research around SoC related topics through plenary invited papers and posters. The workshop aims to provide a prospective view of tomorrow\u27s challenges in the multibillion transistor era, taking into account the emerging techniques and architectures exploring the synergy between flexible on-chip communication and system reconfigurability

    A hardware-software codesign framework for cellular computing

    Get PDF
    Until recently, the ever-increasing demand of computing power has been met on one hand by increasing the operating frequency of processors and on the other hand by designing architectures capable of exploiting parallelism at the instruction level through hardware mechanisms such as super-scalar execution. However, both these approaches seem to have reached a plateau, mainly due to issues related to design complexity and cost-effectiveness. To face the stabilization of performance of single-threaded processors, the current trend in processor design seems to favor a switch to coarser-grain parallelization, typically at the thread level. In other words, high computational power is achieved not only by a single, very fast and very complex processor, but through the parallel operation of several processors, each executing a different thread. Extrapolating this trend to take into account the vast amount of on-chip hardware resources that will be available in the next few decades (either through further shrinkage of silicon fabrication processes or by the introduction of molecular-scale devices), together with the predicted features of such devices (e.g., the impossibility of global synchronization or higher failure rates), it seems reasonable to foretell that current design techniques will not be able to cope with the requirements of next-generation electronic devices and that novel design tools and programming methods will have to be devised. A tempting source of inspiration to solve the problems implied by a massively parallel organization and inherently error-prone substrates is biology. In fact, living beings possess characteristics, such as robustness to damage and self-organization, which were shown in previous research as interesting to be implemented in hardware. For instance, it was possible to realize relatively simple systems, such as a self-repairing watch. Overall, these bio-inspired approaches seem very promising but their interest for a wider audience is problematic because their heavily hardware-oriented designs lack some of the flexibility achievable with a general purpose processor. In the context of this thesis, we will introduce a processor-grade processing element at the heart of a bio-inspired hardware system. This processor, based on a single-instruction, features some key properties that allow it to maintain the versatility required by the implementation of bio-inspired mechanisms and to realize general computation. We will also demonstrate that the flexibility of such a processor enables it to be evolved so it can be tailored to different types of applications. In the second half of this thesis, we will analyze how the implementation of a large number of these processors can be used on a hardware platform to explore various bio-inspired mechanisms. Based on an extensible platform of many FPGAs, configured as a networked structure of processors, the hardware part of this computing framework is backed by an open library of software components that provides primitives for efficient inter-processor communication and distributed computation. We will show that this dual software–hardware approach allows a very quick exploration of different ways to solve computational problems using bio-inspired techniques. In addition, we also show that the flexibility of our approach allows it to exploit replication as a solution to issues that concern standard embedded applications

    Discrete Event Simulations

    Get PDF
    Considered by many authors as a technique for modelling stochastic, dynamic and discretely evolving systems, this technique has gained widespread acceptance among the practitioners who want to represent and improve complex systems. Since DES is a technique applied in incredibly different areas, this book reflects many different points of view about DES, thus, all authors describe how it is understood and applied within their context of work, providing an extensive understanding of what DES is. It can be said that the name of the book itself reflects the plurality that these points of view represent. The book embraces a number of topics covering theory, methods and applications to a wide range of sectors and problem areas that have been categorised into five groups. As well as the previously explained variety of points of view concerning DES, there is one additional thing to remark about this book: its richness when talking about actual data or actual data based analysis. When most academic areas are lacking application cases, roughly the half part of the chapters included in this book deal with actual problems or at least are based on actual data. Thus, the editor firmly believes that this book will be interesting for both beginners and practitioners in the area of DES
    corecore