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Executive Summary

Opportunities and threats

The importance of embedded systems is undisputed®. Their market size is about
100 times the desktop market. Hardly any new product reaches the market with-
out embedded systems anymore. The number of embedded systems in a product
ranges from one to tens in consumer products and to hundreds in large profes-
sional systems. An average household employs easily 50 embedded systems now-
adays. Thiswill grow at least one order of magnitude in this decade. Professional
systems will see asimilar growth. Besides, many distributed systems will rely on
embedded systems for an ever larger part of their functions.

The strong increasing penetration of embedded systems in products and serv-
ices creates huge opportunities for all kinds of enterprises and institutions. At the
same time the fast pace of penetration poses an immense threat for most of them.
It concerns enterprises and institutions in such diverse areas as agriculture, health
care, environment, road construction, security, mechanics, shipbuilding, medical
appliances, language products, electronics, etc., etc. They al need to respond
timely in mastering the following technological and market challenges:

e Wide diversity and increasing complexity of applications

* Increasing number of non-functional constraints

* Increasing degree of integration and networking

* Increasingly multi-disciplinary nature of products and services
e Growing importance of flexibility and software

 Shrinking time-to-market

The current situation is especially threatening for small and medium-sized
enterprises. More than half of them will disappear in the next decade unless they
find means and ways to absorb and develop further the necessary know-how for
the embedded systems in their products and services. Great efforts will be
required for technology development, but this will not be useful if, at the same
time, not enough money is spent to obtain a sufficient number of persons with the
right level of education. The current prospect isworrying in this respect.

Purpose and scope of the Embedded Systems Roadmap (ESR)
Obtaining a clear picture of the essential technology devel opments for embedded
systems and finding the related technology gaps is therefore an essential task and
the purpose of the ESR. The scope isrestricted to technologies for embedded sys-
tems incorporated into information processing, possibly networked, embedding
systems. A certain focus on System-on-Chip related technologies can be

1.Report Task force ICT-en-kennis (2001), Citing from the management summary:
4c) The market for embedded systems will grow exponentially also in the next dec-
ade..... Every company faces the challenge of changing over to embedded and distrib-
uted systems to not get off track.

See also pp. 33/34: Competing with embedded and distributed systems.
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Target groups

observed. This was not so much the intention but more the result of the selection
of the experts involved. When other areas become more important the roadmap
needs to be adapted to that situation.

The Program Committee of the Dutch PROGRESS (PROGram for Research in
Embedded Systems and Software) chartered a Core-Team of persons represent-
ing the Dutch embedded systems community with this roadmapping task in
March 2001. This roadmap document is the result of their efforts. Major goal of
the document is to enable program management in the next phase of
PROGRESS. The main target group istherefore the PROGRESS PC, the program
managers of collaborating consortia, as well as their government contacts. But
the roadmap will be equally useful for industrial R&D strategy and marketing
managers and for group leaders of research groups at universities, institutes and
industry.

Positioning of a roadmap

To explain the position of a roadmap (and especialy this one) with respect to
vision documents and research agendas or programs of projects the following
picture may be helpful:

I}!rl:;r:ar:ar;eggs Maslov's Examples:
. S - theory of
Visions galisiedioy motivation
technology
Book of Visions 2001
‘ (Wireless World)
Desirable
functions
of technological Embedded Everywhere
solutions (Networked embedded systems)

Y

Domain . . .
Stories/ R SIS Ambient Intelligence scenarios
Scenarios technologies: and . i
cEnEEiTS Personal Well-being Assistant
EDAA System Design Technology Roadmap
Embedded International Technology Roadmap for
Roadmaps Systems Semiconductors (ITRS)

Roadmap ITEA Roadmap on Software Intensive Systems

MEDEA EDA Roadmap

Book of Visions 2001
R h d (Wireless World)
esearch agenda PROGRESS 2
Programs of projects Embedded Everywhere
(Networked embedded systems)

Figure 1: Positioning of the Embedded Systems Roadmap
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As shown in the figure above the Embedded Systems Roadmap came about in
acreative learning and search process that consisted of three phases.

In the first phase a vision on human needs in an application domain was cre-
ated on the basis of what motivates people most. These human needs were subse-
guently interpreted as desirable functions of potential technology oriented
solutions. From this resulted a vision on desirable technologies over time.

In the second phase this was further worked out in scenarios of rendez-vous of
several technologies. The scenarios combined the potential technology needs
with a view on the development of driving embedding system applications that
could fulfil a selection of representative user needs. The resulting domain paper
‘Personal Well-being Assistant: creating a society of well-being’ is added to the
ESR in Appendix 3. Geared towards future needs of designers of embedded sys-
tems is the domain paper ‘Domain of the Embedded Systems Designer’ in
Appendix 4. This paper presents scenarios of rendez-vous for designer needs.

In the third phase a roadmap structure was extensively discussed and agreed
upon. Technology information from the scenarios was extracted, refined and
mapped into the roadmap structure. In the latter part of this phase a consensus
process was entered in which extensive reviewing took place and in which also
interviewing of experts was employed in an international evaluation workshop.
This workshop served to reach further agreement on the ESR contents with the
international embedded systems community. It also created a wider view on the
field and served as an independent audit of the results.

Appendix 6 explains the roadmap process more comprehensively.

The roadmap structure

The Embedded Systems Roadmap has been segmented in two major parts:

1. The first part deals with the expected and desired developments in the major
characteristics of embedded systems. Apart from general aspects that influence
embedded systems, interaction and information processing are seen as the two
most important technology areas for embedded systems.

2. The second (and larger) part deals with the design of embedded systems. The
following areas are distinguished in this part:

» From ideato executable specification

» From executable specification to implementation
e Platform design

e HW/SW design

* Verification and validation

» Test, debug and integration

In each of these areas are high-lighted as much as possible the aspects that are

specific for embedded systems.

In an earlier version a separate chapter was devoted to embedded software.
Although there are many software-related problems in embedded systems, it was
found that they are so closely coupled to many other design issues that they were
best treated together with the other issues. This is not to say that software-only
problems are not important but only that many of them are not embedded-system
specific. And in the Embedded Systems Roadmap the focus is as much as possi-
ble on those aspects that are specific for embedded systems.

© PROGRESS/STW: public version 1.0, 30 March 2002 5
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Major challenges

The major technology trends signalled in the Embedded Systems Roadmap create
the challenges given below.

An increasing degree of heterogeneity and networking of embedded systems
can be expected to lead to afurther complication of embedded systems design.
A larger variety of information sources to interact with could easier be accom-
modated with fewer, but better co-ordinated standards on sensors and actua-
tors.

Working out the consequences of ever more integration of all kinds of technol-
ogiesin virtua and physical implementation is a central theme of information
processing in embedded systems.

Designing the right system on target, without over- and without under-specifi-
cation, isthe major challenge for high-level embedded systems design.
Moving from executable specification to implementation, a characteristic trend
isthat both transformations from software into hardware and those from hard-
ware into software become increasingly important to consider.

In platform design a strong need originates to derive more instances from a
given platform to increase the cost efficiency or optimality of aplatform.

In hardware/software design a major challenge is to solve the design time
problem and bring features faster to the market.

Verification and validation of designs remains a significant bottleneck to
design on target, while it is expected that for quality control reasons the burden
of testing will move closer to the end-user.

Opportunities for action
Six major issues of the Embedded Systems Roadmap have been prioritised by the
Core-Team. They constitute magjor opportunities for action and are summarised in
the following paragraphsin the given order of priority.

1.

Promote, develop and facilitate the reuse of IP (Intellectual Property) blocks
on a broad scale, as an important enabler to increase design productivity. The
publicly available certified IP blocks should contain models, which can be
used to simulate, verify, debug, and test the embedded system including the IP
blocks at different levels of abstraction. |P blocks are to be easily integrated in
the embedded system by means of standardised interfaces. Note that 1P blocks
may comprise both hardware and software.

. Compilers and tranglators. Thereis aneed for at least two kinds of compilers.

The first kind is retargetable towards various hardware designs in order to
deliver code efficiently executing on these designs. The second kind of compil-
ers derives the hardware architecture from the behavioural specification based
on severa cost functions and simultaneously generates the software executable
for this hardware.

. Specification. An urgent need exists for methods and tools that capture ideasin

models in analogy to the virtual reality modelling as has become accepted in
other areas such as the automobile industry. A knowledge base of re-usable
parts and metrically quantified design experience must be developed to aid the
designer in balancing constraints to obtain the final specification. Methods for
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closing the gap between requirements and specification are lacking and are
urgently needed.

4. Design-Space Exploration (DSE). To develop methods and tools to evaluate
design decisions concerning the allocation of computation & communication
(tasks) to resources with the purpose of obtaining high-quality solutions. This
evaluation can be performed by co-simulation of executable models of hetero-
geneous building blocks at the appropriate abstraction levels.

5. Verification & validation. Apart from the highly desirable but difficult to real-
ise correctness-by-construction, formal verification and validation are the only
ways to solve the ever-growing simulation burden to verify the correctness of
design steps. Although formal verification and validation are not feasible for
al designs, they can be applied successfully in many cases. For this purpose it
is necessary to educate the designers early in these techniques and to design
more user-friendly verification tools by separating the verification and valida-
tion functionality from the underlying mathematics.

6. Test. The large diversity of hardware and software that comes together in an
embedded system in various shapes and quantities, needs to be addressed from
asingle unified view on testing. The testing challenge is further aggravated by
the increasing role of redundancy and heterogeneous and polymorphic parts.
Increasingly we will need on-chip measures and dedicated test functions to
allow for an acceptable fault diagnosis, isolation and repair over the life cycle
of the product.

More detailed recommendations for action in each of the ten sub roadmap areas

may be found at the end of each sub roadmap section.

Acknowledgement and concluding remarks
This roadmap could not have made without the support of the organisations that
made their experts available for this project. This is therefore the right place to
acknowledge the contribution of:
* Philips Research
 Eindhoven University of Technology
e University Twente
e Groningen University
e Delft University of Technology
e Leiden University

In this document the ESR is presented as the roadmap for embedded systems
technology. It is based on extensive meetings of experts and on reviews from
many persons that have commented in one capacity or another.

Thisis not the end of the story, but just the beginning! A next step, as shown in
Figure 1, isto trandate this roadmap into a research agenda or program of desira-
ble R&D projects. Depending on the focus of such a program certain areas will
have to be explored more in-depth. Besides, the many non-technology areas that
constitute critical success factors need to be addressed urgently.

Finaly, this roadmap introduces the current state of trends and user needs and
the interpretation of their consequences. It will therefore be necessary to regu-
larly update the vision presented.
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Scope

The Embedded Systems Roadmap focuses on the characteristics of electronic
information processing embedded systems and their design challenges. A focus
on embedded SoC can be observed in some parts of the ESR. This relates clearly
to the way the ESR came about. The contents of the ESR is to a large extent
determined by the interests, capabilities and competencies of the experts of the
Core-Team, the groups of Workshop participants and the reviewer community
involved.

Depending on the needs of the users of the roadmap, future versions of this
technology roadmap may cover more technologies like board design, packaging,
mechanical reliability, large scale embedded systems.

This document isintended for the following target groups:

1. Program managers of collaborating consortia and their government contacts
2. Group leaders of research groups at universities, institutions and industry

3. Individual researchersin the technology areas covered

4. Strategy and marketing managers of the embedded systems industry

It brings for each of itstarget groups the following:

Quantified Technology

technology priorities Technology Technology

trends over time gaps dependencies

Program

X b.¢ X
managers
Group lead-

X X X
ers
Researchers X .
Strategists/
marketing X X X X
mar.

Figure 2: Target groups and deliverables of the ESR

The ESR depends for its realisation on many developments outside the direct
application domain of embedded systems:

1. General trends in society related to individualisation, globalisation, mobility,
safety and security, fashion sensitivity, changing composition of households
and population

2. General trends in business and business models: flat organisation, focus on
core-business, multi-site/multi-company co-operations, e-business, shift to
services

3. General trends in technological areas necessary for the development and pro-
duction of Embedded Systems. ITRS: Maoore's law (semiconductor technol-
ogy: CPUs, memories, ASSPs, FPGAS, etc.), network and communication
capacity growth, databases, display technology, packaging technology, sensor/
actuator technology, MEM S technology, etc.

© PROGRESS/STW: public version 1.0, 30 March 2002 11
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These aspects are not treated extensively in this roadmap, but reference is made,
where appropriate, to consequences or to documents related to these aspects. And
some of these aspects come into play in the domain papers, especialy in the
domain paper on the Persona Well-being Assistant, in Appendix 3.

As many reviewers signalled a wide variety of non-technological aspects rele-
vant for embedded systems in one way or another, Appendix 5 contains a write-
up of many of these aspects.
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1 On Embedded Systems

Embedded systems are highly specialisable, often reactive, sub systems that pro-
vide, unnoticed by the user, information processing and control tasks to their
embedding system.

1.1 The importance and impact of Embedded Systems

Embedded systems are omnipresent nowadays. But as they are hardly noticable,
their importance and impact are often underestimated. They are applied as sub
systemsin awide variety of applications for an ever larger diversity of functions.
That their market size is 100 times as large as the desktop market can be easily
understood when one oversees some of their application domains:

e In consumer products traditional mechanical controls are since long replaced
by electronic embedded systems. Many further enhancements and numerous
new home control, kitchen appliances and white-good products have been
designed based on sensor/actuator signal processing by embedded systems.

e Inaudio and video consumer products embedded systems are used for control
processing in the user interface, the internal infrastructure control and for more
and more advanced audio and video signal processing, storage and 1/0.

 In communications not only mobile phones but also the infrastructure depends
heavily on the use of standards implemented in embedded systems.

e In desktop and mobile computers embedded systems are indispensable for
computing, storage, communication, I/0O and display functions.

e In professiona areas like medical systems, traffic control, environment, secu-
rity, driving and car control, health care, airborne equipment, plant control,
agricultural equipment, etc., embedded systems make possible the creation of
systems with a functionality that can not be provided by human beings. In
these areas often an extensive infrastructure depends on distributed embedded
systems. In many areas e.g. health care, embedded systems may help to allevi-
ate manpower problems,

This extremely wide variety of applications of embedded systems implies that

our society has become to a large extent dependent on the proper functioning of

embedded systems.

1.2 Characteristics of Embedded Systems

The pervasion of embedded systems derives in the first place from the economy
of solution they provide while meeting a plethora of constraints. They abtain this
economy often by using to alarge extent specific hardware and/or software com-
ponents, even for high-volume consumer-electronics applications. Here one
would expect custom solutions mainly. Also the possihility to share an embedded
systems platform over many different applications in a domain gives economy of
scale to the solutions in which they are used. The fact that they create a high
degree of flexibility in solutions by programmability and/or (re) configurability
makes them very attractive. Especially when standards have not been completely

© PROGRESS/STW: public version 1.0, 30 March 2002 19
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frozen this kind of flexibility is essential. Besides, in the past embedded systems
have shown to be able to make profitably use of the increasing economy of all
needed technologies in their evolution over time.

Figure 3: Embedded systems will be everywhere, but mostly unnoticable or invisible, to
enhance the functionality of the devices and equipment shown

Embedded systems are characterised by the following properties:

1.
2.

They are an information processing sub system of their embedding systems.
They provide specific and highly specialisable information processing services
to their embedding systems.

. They are reactive, i.e. they interact with their physical environment often in a

continuous mode at a speed imposed by the environment.

. They provide usually a complex functionality to their embedding system with

a combination of hardware and software specialised to meet a wide variety of
non-functional constraints.

. They are mostly not visible or directly accessible by the users of the embed-

ding system although they are often used to increase the user-friendliness and
awareness of an embedding system.

Embedded systems interact with their environment via sensors and actuators or
viacommunication interfaces. Often they make use of interfaces to standard com-
munication infrastructures when used in distributed applications. Also ad-hoc
networking may be used.

Embedded systems may incorporate embedded systems themselves as shown

in the picture below.
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1.3 What makes Embedded Systems special

1.3 What makes Embedded Systems special

Embedded systems are mostly reactive systems, which meansthat they react con-
tinuoudly to their environment at a speed imposed by the environment. This in
contrast with interactive systems that respond to external stimuli when they are
ready with calculating their responsei.e. at their own pace, and with transforma-
tional systemsthat process a block of input datainto ablock of output data. Reac-
tivity imposes often real -time capabilities. This resultsin special requirements for
the hardware and software architecture of the platform to be used.

Embedding System

Embedded System z

Sensors

Communication
Interfaces

Actuators

Embedded
System x

Figure 4: Embedded systems in their environment

Many non-functional constraints have a strong influence on design objectives
and architecture of embedded systems. Low cost is an inherent requirement as
embedded systems are not visible to the user, so their cost should be minimal.
Often being used in mobile or wearable appliances low power is also a standard
constraint for embedded systems. EMI and EMC: electromagnetic interference
and compatibility requirements are important due to the different environments of
which embedded systems can be part of. Hard timing constraints are imposed
often as a consequence of arequired real time response e.g. when processing A/V
signals or when controlling an air plane by software only, instead of a mixture of
software and direct mechanical control by the pilot. Reliability, robustness and
safety constraints derive from situations where restart is impossible and a certain
degree of autonomous behaviour should be possible. Size and weight are usually
heavily constrained for embedded systems. System-on-Chip implementation is
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also often required. All these difficult requirements and constraints make the
design of embedded systems especially complex as well as demanding.

Special design related challenges come from the specialisation and customis-
ing of target platforms in their use for embedded systems. It becomes possible by
detailed application know-how and the challenge is how to maintain some degree
of flexibility, with the related wish to increase the reuse of hw and sw compo-
nents.

A more recent trend which characterises many embedded systems and which
poses several new design requirements is the design of distributed co-operating
embedded systems.

The use of many disciplines and the heterogeneity of applied technologies are
the last but not the least important factors in making the design of embedded sys-
tems special.

1.4 The world of Embedded System designers

22

The design of embedded systems has become a quite complex matter. As a conse-
guence not a single person can master the complete trgjectory from ideato testing
and system integration. With the increase in complexity rises the necessary
number of abstraction levels and more different specialists need to be involved to
cometo ‘optimal’ overall solutions.

The design flow shown below illustrates this growing complexity of embedded
systems design by colouring the major specialist areas differently: systems archi-
tects, platform architects, board and System-on-a-Chip architects, (co-) verifica
tion specidlists, hardware and software designers, test engineers, system
integrators, etc. The world of the embedded system designer who, as a systems
architect, deals with understanding the domain and the idea of the principal, elic-
iting the requirements of his solution and converting this into an executable spec-
ification, is quite different from that of the embedded system designer who works
on architecting a platform for a specific application domain. And this again is
quite different from the challenges of the world of the embedded system designer
who works as a board or System-on-a-Chip designer to design a cost-efficient
solution.

It will be understood that the large number of disciplines involved gives easily
rise to mis-communication with the next person in the design flow. To address
this problem special attention should be paid to proper use and definition of the
terminology in al phases of the design and between all parties involved. There-
fore, one of the appendices of this Embedded Systems Roadmap is a paper with
terminology definitions.

If hidden semantic problems are not already bottleneck enough, the design sit-
uation is aggravated by the many different cultures that come together in embed-
ded systems design. The fact that these cultures are different is not the bottleneck
but the lack of understanding of the other specialists’ problems and solutionsis.

Notoriousin this respect is the communication, or better, the lack of communi-
cation between hardware and software worlds. This still hampers the evol ution of
hardware/software co-design. Part of the difference in culture stems from the dif-
ferent ways of dealing with design abstractions. Hardware complexity has grown

30 March 2002



1.4 The world of Embedded System designers

over the years. In line with Moore's Law it has become necessary to add design
abstractions to master the exponential growth in available design elements at a
level: about one level is added every 8 years since 1970. A hardware designer
usually takes at most two levels into account in his design: the level at which he
specifies and solves his problems using the building blocks and their available
communication mechanisms from one level below. The efficiency of lower levels
istaken for granted by him from a perspective of design cost and time-to-market.
Software designers have similar complexity problems, but don’t have similar
physical forcesleading to a shared view on how to deal with abstraction and hier-
archy. This difference in visibility and structuring of hierarchy poses significant
co-ordination problemsin projects with combined hardware/software design.

L S

<k Specification > <:/)7Ph ysical pmtotypei />

B e o

AN

[ Platform architecture design

K\

[ Platform instance design

System
Platfo_r[n integration

testability and
strategy o B Ly test

[ Domain systems architecture ]4—> +————»

Component
design

Interface
design

Components
(building blocks)

Figure 5: The overall design flow for embedded systems design

Also the worlds of system architects at the highest level (yellow in the figure)
and of those involved in more implementation oriented design aspects (light-
brown in the figure) are quite different. The first ones deal with concepts and are
satisfied with executable specifications that simulate properly the product con-
cept, while the latter start from executable specifications that should incorporate
sufficient lower level information to simulate properly the actual hardware and
software behaviour of a product. What executable specification means can there-
fore differ significantly.

In conclusion: apart from expressing the iterative process of specification, con-
struction and verification for hardware/software co-design, a design flow for
embedded systems represents also a communication and co-ordination flow
between the different types of designersinvolved.
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1.5 How to read the visual representations of the roadmap

24

The visua representation of each sub roadmap shows which technologies play a
role at which moment in time in a specific technology sub domain in a sub road-
map. The division of the sub roadmap in technology sub domains is quite impor-
tant as it signals what the major areas of attention in a sub roadmap domain
should be. The order in which the technologies need to be developed as well as
some of the dependencies between technol ogies within the same technology sub
domain, within the same sub roadmap as well as between sub roadmaps are indi-
cated.
A start is made to classify technologiesin different categories:

1. Evolution of state of the art: known problem, state of the art solution available,
work on necessary evolution is going on: green arrow. It is assumed that the
state of the art is known (but not necessarily by usl) and available when the
arrow starts and that the end point indicates when the subject is sufficiently
mature to not longer require R& D activities of the same nature as before.

)

2. Technology gap: known future problem, idea on how to obtain a solution also
known, indicated is the time at which working on the solution should or can
start (but not by whom or where) and how long it might take to make the solu-
tion available (also without attempting to estimate the required R&D man-
power or critical mass to develop a useable solution!): yellow arrow. Thisisin
fact the development of technologiesto realise the rendezvous described in the
scenarios of the domain papers.

)

3. White gap: known future problem, no idea yet how to solve it: white arrow
with thick red line. It is often also not known if people are already working on
the technology (or even have found a solution aready!).

)

A further refinement of this classification might be necessary in the future,
depending on the required use of this type of roadmaps.

In the roadmaps arrows may overlap. Arrows may contain other arrows to indi-
cate a hierarchical relationship. Successive arrows in line indicate a time depend-
ency in the development of the technology. Dependencies may exist, symbolised
by normal black arrows, that necessitate that certain technologies be first devel-
oped before it makes sense to start developing the indicated technology.

Each of the sub roadmaps of the Embedded Systems Roadmap uses the same
set of graphical symbols. The remaining symbols used and the semantics of these
symbols are as follows:
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1. Timeaxis;

008 1
(2002 | 2005 [2008 } [2011]

Thetime period over which we want to discuss and predict which technologies
are needed for desired products and services and their design.
2. Essentia trends:

P
£2
£2
i
E
]

The most important technical, economic or social factors that have a signifi-
cant influence on this sub roadmap. Indicated are the name of the factor, a short
description of its major result or consequence and a quantification of the result

or consequence of the trend.

3. Challenge:
A short message (with the character of a quote) that summarises the most
important future development or requirement of this sub roadmap domain

4. Technology sub domain:

SSE!

Mgjor structure element representing atechnology sub domain of the sub road-
map, presenting the possibility to make a further refinement in technological
problem areas that need to be tackled.
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2 Embedded systems

2.1 General Aspects
‘Increasing heterogeneity’

2.1.1 General trends and user needs

To alarge extent embedded systems are influenced by the same trends that apply
to other systems that use advanced technologies from the electronics, optics and
micro-mechanics areas.

In the first place this implies that embedded systems will continue to follow a
number of existing trends. The complexity of embedded systems will grow expo-
nentially, with a size increase of the micro-electronics components of a factor of
two every 18 months. Board solutionswill follow similar complexity increase. To
fulfil the related need for increase in flexibility a significant growth in embedded
software will have to be accommodated as well. This may easily mean that soft-
ware cost will dominate embedded systems design cost.

Besides, the number of specification points of an embedded system will
increase at least one order of magnitude. This stems, apart from the increased
complexity and its accompanying functionality increase, also from the expected
growth in the number of different technologies needed in building an embedded
system. Herewith also the number of different professions involved will increase
proportionally. This number will continue to rise from an average of three now to
about ninein 2011.

To be able to design these heterogeneous systems at board and IC level and
stay within the time-to-market regquirements that become more and more con-
strained, the amount of re-use of existing hardware, software and hw/sw compo-
nents has to increase drastically from a current 20% to at |east 80%. This aspect is
coupled to the general need to increase design productivity significantly to be
able to cope with the increasing complexity timely. Besides, areduction of afac-
tor 10 in the non-recurring engineering (NRE) costs needs to be obtained.

Some of the relevant trends are captured in existing roadmaps that therefore
should be taken into account when discussing embedded systems development
trends. To these belong the International Technology Roadmap for Semiconduc-
tors (ITRS, formerly called SIA roadmap), the Roadmap for Software Intensive
Systems (ITEA), the EDAA Systems Design Technology Roadmap, Finkelsteins
Software Roadmap, etc. Where and when these trends create dependencies for
embedded systems technologies will have to be indicated with linkages in the
Embedded Systems Roadmap.

Apart from the needs that originate from the application of advanced technolo-

gies as discussed above, embedded systems have to take into account user needs®
that derive from general trendsin society related to aspects like individualisation,

1.See the domain paper in Appendix 3: Persona Well-being Assistant: creating a soci-
ety of well-being
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globalisation, mohility, safety and security, fashion sensitivity, changing compo-
sition of households and population. Increasing individualisation leads e.g. to
more diversity in products and services, and therefore to the need for more flexi-
bility in design, which in turn leads to an increasing software content. Globalisa-
tion of products and services necessitates multi-site design teams and increases
the need for standards. Growing needs for safety and security in electronic trans-
actions and mobile communications leads to functionality extensions that must be
designed-in. Increasing fashion sensitivity results in shorter product or service
life cycles, and thereby in a necessarily shorter time-to-market leading to shorter
available design time. All these trends signal the ever growing societal impact of
embedded systems.

2.1.2 Technology requirements

28

The embedding systems into which embedded systems have to be incorporated
share in al application domains the overriding requirement of shortening the
time-to-market (TTM). The major bottleneck in this respect is currently hard-
ware/software co-design. The next hurdle to be taken is the easy integration of
subsystems of acquired IP blocks. Qualification and certification of IP constitute
amajor part of the easy integration challenge together with the development of
the necessary standards to make this feasible. Subsequently, the degree of inte-
gration will have increased to such a level that integration of what today are
called systems, becomes possible and poses its specific problems.

The systems architecture of embedded systems will be more and more based
on platforms, both board and IC level. Initialy these will be proprietary, both for
systems houses and for silicon platform providers. But the growing opportunity
to integrate more than one company can design will force the origination of
standards to enable easy IP exchange. This in turn will open the opportunity for
multi-vendor platforms.

In hardware design technology one new level of abstraction needs to be intro-
duced over the period of the Embedded Systems Roadmap to allow designers to
cope with the growing complexity. This prediction is in line with the develop-
ments over the first three decades of micro-electronics development where it
proved necessary to introduce about every 8 years a new level of abstraction. In
software design a reconsideration of how to deal with levels of abstraction is
urgently required as also embedded software reuse in |Cs depends on it. And this
is the first step to be taken to come more easily to higher levels of component
integration. Also here the standardisation efforts mentioned above are necessary
to be able to make the step from captive to merchant component integration.

The increasing heterogeneity will require that several technologies of imple-
mentation can be combined on a carrier technology. Especially in sensors and
actuators the need for wireless communication will create a drive for a further
integration of different technologies.

Magjor progressin the design of embedded systems has to come from the future
evolution of design space exploration (DSE) methods and tools. Initialy their
scope will be restricted to design and evaluation of instantiations of a platform.
But soon DSE has to be available in the platform creation phase, thereafter to be
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extended to the design phases where specifications are written, and ultimately
also playing arole in the early evaluation of the consequences of embedded sys-
tem requirements.

An overriding design constraint has become power consumption of embedded
systems. Major developments here should support the power analysis and mini-
mum dissipation architectures for the construction of embedded systems that
operate concurrently, later on to be followed by support for analysis and optimi-
sation of power dissipation of networked and distributed embedded systems.

For required developments of enabling and supporting technologies reference
is made to available roadmaps.
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2.2 Interaction

2.2.1 Introduction

‘Fewer standards, more information’

The most important activity in thisroadmap is standardisation. Individual sensors
need specialised drivers, which may easily lead to a huge programming effort
and/or an uncomfortably large amount of small IP cores. It is mandatory to limit
the huge number of ‘standard’ interfaces (>60) to a few robust and generic ones.
An |EEE committee has already started work in this area, but such is not likely to
be aone-time effort as the interaction between the sensory/actuating parts and the
embedded system will change with the addition of ‘intelligence’, i.e. the devel op-
ment of smart—sensors and actuators. The increased local autonomy brings self-
sufficiency aspects that, together with functional redundancy, will give a data-
driven broadcast nature to the co-operative communication between self-support-
ive parts and the embedding system.

2.2.2 General trends and user needs

The following trends and user needs relate to interaction:

Intelligence. This will lead to an increase in adaptability of sensors. Where
sensors and actuators have been conceived as analog devices at the extreme ends
of the information processing channel, more and more data will be processed
locally by the increased use of digital techniques. Currently we see aready the
Virtual Peripheral around smaller analog parts, while software-driven systems
(such as software radio) are just around the corner promising a factor 10 increase
in product design time. With increasing intelligence, we will achieve adaptable
systems that even reduce the service needs.

Service-oriented. When a service layer is added to smart-sensors and actuators,
it will enable them to be re-used in alarge diversity. The embedded systems will
easily personalise to a changing environment. The overall system might seem
more vulnerable from such a close interactive coupling between the parts, but
intelligent coupling can also serve to detect internal mishaps. In case of need,
malfunctioning will not be catastrophic as either the parts can be re-programmed
or other parts may take over the role. This will facilitate plug-and-play and will
on alonger term allow for hot swapping.

Industrial design. When more and more sensors are used in ever tinier area net-
works, as for instance house-holds, offices and malls, and the local intelligence
grows, the role of interactive communication will grow to dominate the architec-
ture. Asfixed lines are decreasingly affordable and will be replaced by e.g. short-
range wireless connectivity, the embedded function will not enforce a physical
shape for the product. Form and function become separated, and industrial design
will find new degrees of freedom.

Fault-tolerance. The growing market for sensors and actuators can only be cre-
ated by a decrease in price. To simultaneously increase the quality, sensors and
actuators should become more fault-tolerant. On the other hand, the sensing and
actuating plethora will change the architecture from resource-limited to quality-
driven. As the idea of ad-hoc network shows, this is based on a way of redun-
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dancy that involves more than the, in retrospection, primitive N-version scheme.
The quality of the embedded network (on the chip or distributed) will by defini-
tion not be dependent on the weakest node.

So far we have depicted the successive future trends as a gradual migration of
concerns from sensing/actuating devices towards an integrative communication
infrastructure. Therefore the sub roadmap falls apart in two parts. The first oneis
Interaction with sensors and actuators which consists of the sub domains Inter-
face and Character/property. And the second one is Interaction with the commu-
nication infrastructure. This consists of the sub domains Means, Purpose and
Complexity. Only some of the potential meeting points in such a scenario are
shown as otherwise the picture would become too blurred.

2.2.3 Technology requirements

32

Standardisation of data formats and data protocols is the first important require-
ment. Only thereafter can collaboration of networked sensors become a reality.
Standardisation will govern the availability of 1P cores on arange of abstraction
levels. Though for networks on chip, short range proprietary switched communi-
cation will remain to be of value, most of the interaction will become based on
public packet-based standards.

The development of smart-sensors and actuators includes the local processing
of data, such that data streams to controller systems will be at a higher level of
abstraction. This development may impose constraints on the embedded system
in the near future (e.g. analog/digital design, higher level protocol communica-
tion, etc.). By their adaptability, smart sensors will bring more freedom to the
design space, but by the proper choice of platform this freedom need not overly
complicate the design effort as detailed personalisation can be achieved by learn-
ing at any time. However, it does complicate the test, debug and integration issue
as parts may change their behavioural details over time.

The primitive sensor will deliver only pure measurement data. At thislevel itis
arbitrary whether such values are represented in the digital or the analog domain.
The coming of digital technology implies not only a standardised protocol on the
data transfer, but also the control of the collective behaviour. First such tactical
control will be shaped in terms of reactivity and agility. Later, when nodal intelli-
gence comes to bear, this will bring the communication to a strategic level. This
interplay between tactical steering and strategic monitoring will create self-direc-
tive interaction along the lines of communicating agents.

Distributed and networked sensors and actuators will start to behave as intelli-
gent agents. The complexity of these systems will increase and without proper
precautions they will require increasing bandwidth for audio, video and wireless
communication. Breakthroughs in peer-to-peer communication will be required
together with novel scheduling algorithms for resource-unrestricted architectures.
Such local knowledge extraction gives only part of the solution, as this reduces
the mere data amount, not the communication intensity. Despite the past abun-
dant research on scheduling and control, the design metrics of collaborative adap-
tive systems will bein need of along and gradual development.
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Overall, there will be two aspects that may have a strong impact on the validity
of the time-line as set out in the sub roadmap. The first is the assured operating
conditions (as supply of electric energy). Embedding systems will become
strongly dependent on the functionality of their embedded parts. More and more
we see specialised systems that can not work properly without embedded sys-
tems, e.g. air planes but also combustion engines. If embedding systems become
a commodity, dependability will be ruling. Assured energy supply is becoming a
major factor in large-scale networks; embedded networks will not be an excep-
tion. Energy consumption comes into play to establish the integration means for
the embedded parts. Where in the past decade energy consumption per household
has increased with 3% per year in the Western hemisphere, this might easily set a
limit to the future complexity and spread of embedded systems.

2.2.4 Recommendations.

1. Participate in international efforts to standardise sensoria interfaces. Reduce
the today many sensor interface standards (approx. 60) to one or two and
include in the new standards the emerging new communication protocols
(CAN, fast seridl, etc.)

2. Foster development of smart sensors. Improve and expand the sensor ‘intelli-
gence' by integrating data processing capabilities and high-level communica-
tion protocol.
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2.3 Information processing

‘Ever more integration’

2.3.1 Introduction

For this sub roadmap we have taken the application as starting point. Therefore
this sub roadmap has the character of technology pull rather than of technology
push. It describes the characteristics of information processing in embedded sys-
temsin the future; how to design these information processing parts of embedded
systems istreated in the next chapter.

An overadl trend is towards more integration. The scope of applications for
embedded systems is broadening all the time, because of the ability to do more
integration. Therefore thistrend is taken as the theme and major challenge of this
sub roadmap: ‘ ever more integration’.

We distinguish two aspects of information processing for embedded systems:
behaviour and structure. For the behaviour we see a clear trend towards increased
intelligence of the devices. Embedded systems will show ever more intelligent
behaviour for the benefit of the embedding system and/or the user. Another clear
trend is towards more mobility and connectivity. Embedded systems are envi-
sioned to communicate with each other in order to gather information and to
show more intelligent behaviour.

When we consider the structure of embedded systems, constraints are typical
parameters that the designer has to deal with. On the other hand, advances in
technology offer al kinds of possibilities to actually build useful embedded sys-
tems.

We have divided the area of information processing relevant for embedded sys-
tems into two parts, following the above reasoning. First we consider behaviour,
and look at intelligence and connectivity as themes. We then consider structure,
with sub items constraints and possibilities. First we look at the overall theme:
ever more integration.

Note: an important aspect of information processing is the point of view of
services. Who is going to deliver what services to which devices? Other road-
maps and research agendas elaborate on these issues, for example [Embedded
Everywhere, 2002] and [Book of Visions, 2001]. In this sub roadmap we high-
light some important trends of information processing in the embedded environ-
ment, without the claim of being complete. We will not elaborate on the issue of
services in this sub roadmap. Also aspectsin the legal area, like (copy) rights on
content and software, and digital rights management (DRM) are not considered
here.

2.3.2 General trends and user needs

For integration we see the following trends:

e Theintegration is visible at the technology side: ever more electronics, hard-
ware and software, and sensors and actuators are integrated into one single unit
that implements the embedded system. Integration with storage of data (for
example optical storage and hard disks) and database functionality also takes
place.
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e Integration of embedded functionality takes place with other (non-technical)
environments, like clothes, diapers, etc.

2.3.3 Technology subdomain: Behaviour

36

Essential trends

For the intelligence of embedded systems, we consider the following trends:

While systems show re-active behaviour nowadays, they will show active and
even pro-active behaviour in the future.

There is a strong trend towards personalisation of devices. For example, there
are hard-disk VCRs on the market that construct a personal profile of the user and
start recording those broadcasts that fit into that profile. Numerous embedded
systems in other application areas can be listed that have some capability of
‘learning’ or ‘intelligence’ in this respect. The number of persona parameters
will grow.

Considering connectivity and mobility:

There is a trend towards ever more functionality both in base-stations as well
asinterminals. Thereisno clear shift between the functionality on the one side or
the other; it depends on the constraints on the implementation (e.g. power dissi-
pation) and the bandwidth of communication between the two where the func-
tionality will be implemented. Dynamic scheduling of computation over base
station and terminal will become necessary to better utilise the system's capaci-
ties. This has consequences for the services for terminals, for example the ques-
tion who will provide a service on the move. In this sub roadmap we will not
elaborate on the issue of services, but we refer to other sources, e.g. [Book of
Visions, 2001].

Technology Requirements

For the intelligence part of behaviour we have the following:

User interfaces will be a driving factor for functionality of embedded systems.
While we currently have to limit ourselves to the keyboard, speech and sound
recognition will become more and more used to communicate with the (embed-
ding) system. A lot of processing is involved in getting from the recognition of
simple commands to connected speech and even (natural) language communica-
tion. Friendly user interfaces are key for disabled people to work with devices
containing embedded systems. One can think of gesture recognition followed by
animated sign language for deaf people, for example.

For the audio domain alot of processing will be involved in the interpretation
of sounds. It isthen agap to identify and implement useful ways to use the result-
ing information in the system. Sound recognition might be a next step. The tech-
nologies developed in the audio domain are key to the aspects described in the
user interface domain. Sound interpretation is essential for connected speech,
while sound recognition is a prerequisite for doing language recognition in the
user interface.
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In the video domain we can aso distinguish steps in functionality. While we
can currently detect movement in a video stream, it is not yet feasible to do
proper localisation of objects and people. Interpretation of images is a capability
that is even further away in the future (after 2011). These technol ogies are impor-
tant before we can do gesture recognition and animated sign-language in the
domain of user interfaces.

Another strong activity in the video domain is moving from 2D to 3D. Already
alot of research isgoing on in this area. Examples are 3D reconstruction from 2D
images and video streams, and stereo vision. 3D will be a next step in the area of
entertainment, both in graphics (games) and video. Further, trends towards inte-
gration of these two domains are starting, as we can see from standardisation
efforts like MPEGA.

Considering connectivity:

Devices will become more and more connected in some kind of network. As a
first step we envision that devices will detect which other devices are nearby and
can be of any use, for example in getting information or delivering a service to
the embedding system or the user. In thisfirst step the device can construct a per-
sonal profile of the user. Striving for more intelligent behaviour, we need agents
to talk to each other and negotiate in a next step. For this, communication of the
embedded system to the embedding system and to the environment is necessary.

Closely related to networking devices, they need to access information availa-
ble in the network to do their job. While embedded systems nowadays access
local data, in the future this data might be retrieved from el sewhere. Web-connec-
tivity is envisioned as a strong driver to get information from a global network.
This strongly relates to the negotiating and independent agents mentioned previ-
ously.

In the area of transactions, for example in banking and money transactions, we
need standards that have to be subsequently implemented in systems. These sys-
tems will contain a lot of embedded systems. They will influence the people's
lives considerably.

Considering a network of connected devices, information management in the
network will become a seriousissue. As afirst step datawill be migrated through
the network depending on the need of the various embedded systems. Migrating
the application over the network is a next challenge to be solved in striving for
more efficient information processing of embedded systems.

2.3.4 Technology subdomain: Structure

Constraints are a key characteristic of embedded systems. The complexity and
functionality of information processing in embedded systems are limited by con-
straints on the implementation of these systems. On the other hand, advances in
technology allow for possibilities in building complex embedded systems with
new kinds of functionality.
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Essential trends

Much of the functionality of embedded systems will be implemented in hardware
and software. Therefore constraints on technology side of hardware and software
will heavily reflect on trends in embedded systems. For hardware we have the
usual parameters like chip area, cost, and power dissipation. As more and more
software is incorporated into embedded systems, also software will claim influ-
ence on these parameters.

For constraints we see the following trends:

Cost is an important parameter. In consumer electronics, for example, chip
prices in the range of a few dollars are common. These prices tend to stay the
same or even decrease over time.

The chip area will be approximately constant, but as more transistors can be

implemented in 1 cm?, more functi onality can be implemented using such chips.
The increase in software is reflected in more memory embedded in the system,
both for the program as well as for the data. Currently, a mobile phone contains a
few mega-bytes of software, and this amount is expected to increase over the
coming decade.

The power budget of such hardware also tends to stay the same over time, but
again as the functionality increases, we have more computational power per Wett.
For wired applications this is in the order of Watts; for mobile battery-powered
applications in the order of milliWatts, and for devices without a power supply
(e.g. smartcards) in the order of microWatts. Both the hardware and the software
influence the power dissipation in an embedded system. Here we encounter the
traditional trade-off between hardware and software: doing more in dedicated
hardware will result in astrong reduction in power dissipation at the cost of flexi-
bility of design. As the sub roadmap on Hardware/Software Design will explain,
the future use of reconfigurable hardware will offer anew dimension to thistrade-
off, aso to designers who do not have the facility to make their own chips and
hardware.

Transistor technology is not enough to bring the desired computational power;
therefore clever hardware and software techniques need to be researched. The
embedded systems design roadmaps highlight these aspects. For information
about transistor technology we refer the reader to the International Technology
Roadmap for Semiconductors [ITRS, 2001].

Bandwidth for both on-chip and off-chip communication will increase in the
future. For example, for wireless communication in mobile telephony the band-
width will increase from about 10 Kbit/s to the order of 10 MBit/s. A characteris-
tic of applicationsis that they will always use the available bandwidth.

Backward compatibility with other systems has always been an important con-
straint, and will remain so, as we build up more and more legacy.

Considering possibilities:
A glimpse of possibilities offered by embedded systems in the future is already
shown in the section on behaviour.
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Display technology is an important driver in realising embedded systems eve-
rywhere. In this roadmap we do not discuss aroadmap for display technology but
we refer to the ITEA roadmap to obtain more information on this subject [I TEA,
2000].

Technology requirements: Constraints

Energy supply is key for the widespread usage of embedded systems. Battery-
operated devices tend to become more and more energy-consuming, while the
roadmap for batteries shows only a few percent improvement per year, which is
by far not enough to supply the ever more complex operation of embedded sys-
tems. Therefore we need to look at other energy-sources as well, like induction,
fuel cells, and solar energy.

Electro-magnetic radiation of electronics will increase when the functionality
and complexity increase. This poses two problems. First, we need to shield some
embedded systems from others, because the operation is disturbed by the radia-
tion (EMI, electro-magnetic interference). Shielding is only partly a solution.
Therefore we need to research embedded systems and devices that have low elec-
tro-magnetic radiation. We do not know how to do this; therefore it is considered
a white spot. Asynchronous hardware (i.e. hardware without a central clock) is
known to deliver some solutions in this area, and might be an interesting avenue
for research. Apart from this technical aspect, the implications of radiation for
human health are unclear, and therefore considered with scepsis by society. Itisa
governmental task to put standardsin this area.

Dependability is an important issue. Fail-safe operation, robustness of systems
etc. can be key constraints on the design of embedded systems. A failure in the
controller of atoaster, for example, is not allowed to leave the system in heating
state after failure. One can imagine a wide spectrum of issues that are relevant in
the dependability area.

Technology requirements: Possibilities

For the hardware in embedded systems we see ever more integration: from multi-
chip solutions, viathe integration of smart sensors (it is considered a gap how to
do this), to single chip solutions. Even MEMS comes in sight for integration into
embedded systems. The sub roadmaps on embedded systems design highlight the
design issues for this kind of hardware and integration.

The data that the embedded system processes will have to be stored some-
where and communicated to and from the system. Databases are becoming more
and more common in embedded system design. Currently we have hard disks and
solid-state storage in our devices. Optical storage is a cheap way to distribute
large amounts of data or content. Small and cheap optical storage is a promising
aternative for bulky storage and is appropriate to distribute content, but we need
standards for this kind of storage. Thisis considered a gap to come to the integra-
tion of optical storage in embedded systems. From the technical point of view,
small discs require energy friendly hardware and software, especialy in the port-
able domain. Of course the development of solid-state memories and hard disks
will improve considerably.
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For components in embedded systems we will see a trend towards construc-
tions of components with reuse as a means to achieve higher efficiency. This is
described extensively in the sub roadmaps on embedded systems design.

Efficient algorithms will become necessary to allow for the envisioned intelli-
gent behaviour of embedded systems. Though a lot of research in this area has
been done already, we need to make the step towards applying the results in the
context of the constraints of embedded systems.

2.3.5 Recommendations

40

1. Power is considered as the most important constraints in embedded systems.
Therefore we have to use alternative power sources besides batteries, and alter-
native ways of charging the batteries besides direct wiring to the power grid.
Thereason for the former isthat batteries have alimited capacity and may con-
tribute considerably to the weight and volume of the apparatus. The reason for
the latter is the lack of access to the power grid in many circumstances (e.g.
mobile), and the trend or wish to charge the batteries invisibly to the user.
These alternative power sources and charging methods may derive from move-
ment, solar energy, electromagnetic induction, etc.

2. We envision the use of portable embedded systems connected to a base station.
Many processing tasks can be either performed by the portable device or the
base station. Because the portable device may be subject to extremely low
power restrictions, the allocation of processing is essentially determined by the
energy consumption (on the side of the portable device) of the processing vs.
the communication of data to and from the base station. Because the latter
changes under different circumstances (e.g. distance to base station), the allo-
cation of processing should be performed dynamically.

3. When the portable device is retrieving information from a (distant) source (e.g.
adatabase), the selective and intelligent processing can be performed as a serv-
ice by the source itself, rather than the power constrained portable device.
Research in this kind of information management is necessary to get the best
out of the embedded systems of the future.
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3 Embedded systems design

3.1 From idea to executable specification

‘To design the right product’

3.1.1 Introduction

A crucial and challenging aspect of embedded system design isthe steadily rising
internal and external complexity. The embedded system has grown considerably
since the early days of the simple micro-controller board, but it has also diffused
into a multi-disciplinary world. This intimate coupling to other disciplines, who
often defy a precise mathematical modelling, and the restrictive operating condi-
tions that should be derived from this environment make it hard to establish a
specification that can serve as input for a subsegquent transformation to a suitable
implementation.

This makes it mandatory to pay special attention to tools and techniques that
can support a designer to think and communicate about the problem at hand in a
firm effort to derive an agreed starting point for the remainder of the system
development. More often than not, getting from idea to executable specification
has been an art rather than a craft in the past. In other words, we are looking at
unchartered territory.

In order to be able to profit from more professional discipline, it is proposed to
explore several directions. First of all we need better metricity to quantify alterna-
tive specifications. Second we have to create modelling techniques that allow to
study a proposed embedded system within its future environment. Lastly we need
design space exploration styles that alow for requirement analysis in a mixed
technology framework.

3.1.2 General trends and user needs

As stated above, ailmost al products, whether consumer or professional, tend to
become increasingly complex. Thisis, in the first place, due to the general belief
that there is a need for more sophisticated products, and that technology is fairly
well capable of dealing with thisincrease in complexity. The growth in complex-
ity may originate from requirements related to performance, quality, accuracy,
safety and the like, or from an increasing demand for more functionality, a larger
variety of technologies and related disciplines, or awider domain of applicability.

The complexity inflation finds expression in the fact that products are con-
ceived as embedding systems that are compositions of embedded systems. The
TV receiver of tomorrow will contain embedded systems that the receiver of
today does not contain, turning the passive device of today into the (inter)active
one of tomorrow. Thisisjust one example, and many more could be given. If this
trend goes on, and it will, then the design of an embedded system will become as
challenging as was the design of a complete system in the past. And surely, the
design of a complete embedding system with all its embedded subsystems makes
the designers face many tough problems.
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Now, given the optimistic attitudes at both the demand and supply sides, it is
predictable that more and more ideas for more and new functionality in new and
existing systems or products will be proposed in the years to come.

Anideaisthe expression of a concept, often stated in non-technical terms e.g.,
‘We want to charge cars for the use of the public road infrastructure’ or ‘The
remote control of our TV receivers has to become more user friendly’. Such an
idea has to be trandated into a set of requirements. Some of these requirements
have to do with functionality and others have to do with conditions and con-
straints. The requirements may very well be incomplete and even conflicting as
e.g., privacy and fraud resistance are in a smart road system. Requirements cap-
turing and requirements analysis will remain a major challenge in this phase of
the design of embedding and embedded systems alike.

Designing and constructing small scale prototypes may be useful but will in
general not be scalable as the large scale system may behave differently than an
upscaled prototype. Similarly, the large scale system may have to reuse compo-
nents that do not appear as such in the prototype. Therefore, atrend in the design
of an embedded system is to see the trandation from requirements to specifica-
tions as part of the design process. from idea to specification, followed by from
specification to implementation.

The first part: from idea to specification has, of course, been always part of a
design tragjectory; however, the intuitive and ad hoc approach that has been com-
monly taken so far will no longer do for severa reasons. Firstly, increasing the
complexity of a system must not lead to an increase in design cost. This condition
cannot be satisfied when the design is based on repetitive prototyping because
prototyping is expensive. Secondly, if specifications are not the result of a well-
defined and systematic approach, then thereis no guarantee that the resulting sys-
temswill obey theinitia requirements because the specifications may already fail
to do so. Thirdly, even an expert who has been deriving specifications for many
years may fail to see all relations between requirements and specification, and
even more so between requirements and alternative specifications. At least tracea-
bility between requirements and specifications has to be provided to make rela-
tions explicit. But that is certainly not enough.

Thus, deriving specifications from requirements in a sound and methodol ogi-
cal way is sort of an emerging discipline that has to be given much attention in the
coming years.

3.1.3 Resulting technology requirements

44

Deriving specifications from requirementsis a process that, like any other process
has inputs, outputs, and state. The process itself is specified in terms of relations
between outputs and current inputs and state, and between next state and current
inputs and state. The process at hand here is iterative and exploratory by nature.
The relations between input, output, and state quantities are extremely difficult to
qualify and quantify. It is, therefore, necessary to rely on models. One can even
conceive of two models: an unconstrained model and a constrained model. The
unconstrained model consists of achain of abstract components and is ameansto
express the requirements in such a way that one can reason about them, that is,
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3.1 From idea to executable specification

that the decision making can be supported. Thisimplies that dependency and sen-
sitivity analysis of the model must be possible, locally and globally, at component
level, a chain level and at the level of emerging system properties. The con-
strained model is less abstract in that it incorporates two kinds of regquirements
that the abstract model doesn't: component (re)use requirements and require-
ments imposed by the second step in the design process, that is, the specification
to implementation step. A specification process that is based on these two models
will aso have to have a method for the mapping of the unconstrained model into
the constrained one. For this approach to work, the specification process and tool -
box must have access to a component library. Moreover, components can only be
included in the library when they are specified and described in such a way that
their properties can be imported in the model with a high degree of (blind) confi-
dence. Hence, the formalising of component properties is something that has to
be done, if not already done. Once the library is available, components may be
easily imported. However, it islikely that more than one component in the library
is a candidate that can be imported. Therefore, a method must be provided to
search for a set of components that are jointly somehow a best choice with
respect to the fulfilment of (emerging) system properties.

Now, the specification-deriving process being an iterative exploration process,
means to quantify decisions must be provided. Formally as well as practicaly,
this means that metrics-based analysis and exploration is the preferred approach.
It is, however, not known what the structure is of the metric space of embedded
systems. As a consequence, no metrics are known and hence the usage of metrics
is not common practice. This is a mgjor drawback that must be resolved in the
first place and with high priority.

Recalling that the trandation of requirements to specifications is an iterative
exploration process, this process has to be implemented and it has to be made to
work. This implies that exploration tools have to be designed, that candidate
specifications in the specification space have to be identified, that search tech-
niques have to be developed and, of course, that all of this has to be made effec-
tive to support the specification task efficiently.

3.1.4 Recommendations

The idea-to-specification roadmap depicts the technologies required to imple-
ment the following recommendations that have been identified for future R&D
programs:
1. Propose research programs to resolve the specification problem of embedded
systems by
* relating emerging system properties to individual system components,
 quantitatively evaluating specification decisions based on specification space
metrics,
« obtaining specifications through iterative exploration of the specification
space.
2. Propose avalidation program to evaluate the impact of the proposed methodol-

0ogy.
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3.2 From executable specification to implementation

3.2.1 Introduction

‘Mapping behaviour on hardware’

The design flow from idea to final product design can be divided into two parts,
the first being the flow from idea to some form of an executable specification and
the second being the flow from executabl e specification to the final design. Using
the same term ‘ executabl e specification’ in both parts of the design flow does not
mean that these executable specifications are based on the same model and are
described at the same level of abstraction or detail. The design flow from idea to
executable specification is elucidated in section 3.1; the design flow from execut-
able specification to implementation is the subject of this sub roadmap. A clear
border between these two parts of the design flow does not exist since pure top-
down design is not possible and there always exist a strong interaction between
these two parts of the design flow. In this sub roadmap, an ‘ executable specifica-
tion' is an executable specification of (a part) of the behaviour at some abstrac-
tion level. In practice it will be annotated with additional design constraints like
timing, power, throughput, etc. The level of abstraction and detail can vary over a
wide range. For example, it might be an executable Petri-net description, in
which only the communication between the different modules from which the
system is built, is described. On the other hand it might be a detailed VHDL
description that describes the behaviour in full detail while providing a strong
implementation suggestion. In practice the first executable specification in the
design process will never be complete. Hence, athough the design flows
described in this section and the design flow described in section 3.1 are quite dif-
ferent, there always will be a strong interaction between these design flows.

In principle, an executable specification describes the desired behaviour and
therefore the design flow from executable specification to implementation can be
summarized as the challenge * mapping behaviour on hardware’ .

3.2.2 General trends and user needs

Tools and representation

According to Moore's law the complexity of ICsin terms of the number of tran-
sistors on a chip, will double every 18 months. The production cost of ICs per
mm? will hardly change. So in order to keep the design cost reasonable with
respect to the production cost, the design cost per transistor will have to decrease
with afactor two every 18 months. For ICs that have a high degree of repetition,
like memories, this can be accomplished. But, for complex systems we will have
to count on improved tools that semi-automatically translate (compile) the
desired behaviour into the final design. This often will be on the account of less
efficient implementations. So tools for automatically mapping behaviour on hard-
ware will become extremely important. Moreover, from the preceding remarks
we may conclude that ever more systems will be implemented on programmable
and reconfigurable hardware.
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Furthermore, in future it will become impossible to guarantee the correctness
of adesign by just smulation, hence verification and validation of the design in
the various stages of the design flow will become ever more important, cf. the sub
roadmap on verification and validation, section 3.5. Furthermore, much more
attention is to be given to the correctness of the design tools, formalizing the
design process and improving the simulation tools. All three themes need atten-
tion in order to keep up with the increasing size and complexity of future designs.

Correctness of the design tools

When we start from the assumption that the executable specification correctly
reflects the desired system behaviour, then the correctness of the final design only
depends on the correctness of the automated and manual design steps in the
design process and the consistency of the design flow.

Correct tools transform, optimise or refine an intermediate design description
such that the behaviour of the resulting design isimplied in the behaviour of the
original design. Hence, the correctness of the result need not to be verified by
simulation and thus, correct tools lessens the simulation burden. How the correct-
ness of these tools is obtained, by formal verification or by exhaustive testing, is
not important. The only thing that counts is whether the tools can be trusted. For
example, an ordinary C-compiler is correct; it is trusted although it has not for-
mally been verified. Clearly, validation of tools could be more expensive than val-
idation a design or verifying a design step. However, tools have to be validated
only once and each design must be validated separately. So, eventually validating
tools is cheaper. Furthermore, tools are validated naturally during its extensive
usage, asis the case with the C-compiler mentioned before.

For the user it will be impossible to assess the tools that are on the market
beforehand. So these tools need to be certified. If an international organisation for
the certification of design toolsis started in the next few years, it must be possible
to have 30% of the (basic) design tools certified within ten years from now.
Although we think that this is possible, we fear that it is unlikely to happen
because of the structure of the CAD market, the complexity of the tools and the
desire of the users to use the latest tools.

Correctness of the design flow and the design representations

Due to the ever-growing complexity of the designs more emphasis will be on the
correctness of the design flow, on the capabilities of the design representations
and on the correctness of the semantics of these representations and therefore on
the formalisation of the entire design process. This in particular holds for the
design flow from executable specification to the final design. The different steps
in the design flow should be fitted together in a more appropriate and less error
prone manner. Manual or ad-hoc trandations of representations cannot be
accepted any more in the near future.

Specifications and design representations need to be augmented with means to
express properties that go beyond behaviour and structure. These languages must
make possible to express different time models and quantities such as real-time
constraints, throughput, power dissipation and required or available silicon area.
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These developments will put more emphasis on the formal semantics and mod-
els on which the design flow and the design representations are founded.

Moreover, at the level of executable specification (system level) we need an
integral representation of physics, mechanics, etc. together with behaviour and
structure.

Simulation and emulation

Simulating or emulating the embedding system on the, or in the embedded sys-
tem will become a necessity. Examples are a virtual reality model of the embed-
ding system in which the executable specification of the embedded system is
included, or for example a simulation environment that simulates the specifica-
tion of a processor and emulates the operating system mounted on it.

Compilers

The complexity in terms of the number of gates available for a design will con-
tinue to grow with afactor two every 18 months. Moreover designs will become
more ‘difficult’ due to the increasing technological possibilities.

In order to keep design cost in proportion to the production cost, the design
cost per transistor must follow a negative exponential curve as has been explained
in the introduction to this sub roadmap. Moreover more designs will have to be
made with roughly the same amount of designers. High-volume production will
be needed and thus in future there will be fewer different ICs, which however,
will be more programmable and will become reconfigurable. This all will require
further automation of the high-level synthesis process, design re-use and stand-
ardisation of the target architectures. Therefore, we foresee an increased usage of
compilersin its widest meaning. Notice that when we talk about compilersin this
sub roadmap, we do not only refer to the classical compiler that translates some
language into object code, but also to any trandlator that translates one representa-
tion into another representation including synthesis and optimisation. But, a com-
piler always operates on languages that express some form of behaviour (function
or algorithm); this behaviour is preserved in the compilation process.

The classical compilers, which map on afixed architecture, will become more
important. In particular compilers that optimise on the basis of different criteria
and compilers that map on new classes of architectures such asVLIW and recon-
figurable architectures will be needed. Retargetable compilers, which start from a
parametrisable architecture, i.e. a class of architectures, will become mature for
the classical architectures and compilersfor reconfigurable architecture will leave
its research stage. The ultimate goal is a compiler that automatically maps the
behaviour expressed by an executable specification, on hardware such that the
compiler determines both hardware and software.

Ten years from now it will be possible to automatically derive an optimising
compiler from the architecture description.

Specifying behaviour by means of an imperative language or some functional
language does not suffice. Currently, all kinds of specification methods are devel-
oped based on a model of concurrent processes, for example a Kahn model in
which the processes are described in C. We foresee that compilers will be needed
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that operate on these higher levels of behavioural description. For instance, inter-
active compilers that support the composition and decomposition of these proc-
esses and are able to map these behavioural descriptions on heterogeneous,
possibly reconfigurable, architectures.

The requirements for a language in which an executable specification can be
expressed are often conflicting. User friendliness for the specifier often means
inefficient execution. Therefore many compilers are needed that trandlate well-
readable executable specification into a specification that executes efficiently.
Typical examples are:

» (Inefficient) SDL to efficient C.
* (Inefficient) MathLab to efficient C.
* UML-RT to efficient C++.

3.2.3 Technology requirements
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Tool assessment and certification

Assessment and certification will be an essential part in solving the validation
(simulation) burden. Assessment of tools will be an expensive process. Therefore
it can only be done by an international organisation supported by the tool provid-
ersand tool users. The initiative should be taken by industry; universities can give
support by studying the assessment process. Raising such an international organ-
isation will take several years. In order to gather experience, the first assessments
should be tried out on existing well-know tools. Thereafter newly devel oped tools
can be taken up. Unfortunately, the structure of the CAD market, the complexity
of the tools and the desire of the users to use the latest tools make successfully
Setting up such an assessment organisation rather unlikely.

Design flow representation and formalisation

The design flow will become increasingly automated and therefore increasingly
dependent on its correctness. This can be solved by formalisation of the design
process and the devel opment of suitable design languages. Furthermore standard-
isation of tools and languages will contribute to the correctness requirements.

Further developments in the area of design representations (design languages)
will be needed. Currently, no design language or representation does exist that
can be used throughout alarge part of the design process. Many tools use a differ-
ent representation, which requires a lot of ad-hoc or even manual translations.
Furthermore, the current design languages are not able to express design con-
straints such as real-time, required throughput and power dissipation. In the end,
such design languages should contain constructs that make it possible to extract
architecture parameters from a design description.

In the first place, design-languages need to be devel oped that are able to model
different aspects of time and are capable to express real-time constraints. At the
same time research can be started in which other design constraints can be
expressed such as throughput, power, etc. Prototypes can be expected after six
years from now.
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Typicaly for embedded systems there is a need for design representations that
not only express behaviour, structure and geometry, but also are able to provide a
representation in which mechanical and physical behaviour are integrated.

Modelling the embedding system

Often, an embedded system is correct in relation to its specification. However,
embedded in its embedding systems it finally turns out to be incorrect. So the
specification of the embedded system was incorrect. It is therefore important to
have tools in which the specification of the embedded system can be simulated as
a part of the embedding system. Thisis already common practice in the automo-
tive industry. A simulation environment that supports simulation of both the
embedding system and the embedded system will be needed.

Moreover tools are needed to emulate efficiently complex software on a hard-
ware oriented design description.

Compilers

A highly automated design process will be needed in order to keep the design
cost in proportion to the production cost. For this reason, better compiler tech-
niques have to be devel oped.

We distinguish between classical compilers, retargetable compilers, compilers
of the second kind, compiler generators (common knowledge) and compiler gen-
erators of the second kind.

Notice that our emphasisis not on the front-end of the compiler but instead the
back-end.

Classical compilers map behaviour expressed in some language on a fixed
architecture. The complexity of these classical compilers depends on the kind of
target architecture, such as single-processor, VLIW and reconfigurable. Compil-
ers for VLIW need further improvement and compilers for reconfigurable archi-
tectures are still in its infancy. Moreover, these classes of compilers should be
able to optimise on the basis of different criteria, such as code size, throughpuit,
power consumption, real time constraints, etc.

‘Locality’ is a relatively new constraint for optimisation. In the current and
future 1C technology, delay and power are no longer determined by the standard
cells but instead by the length of the interconnect. Moreover, in the near future it
will take many clock cycles for transmitting a signal from one side of the chip to
the other.

Retargetable compilers get as input a specification of the behaviour, expressed
in some language (the source code) together with a description of the architec-
ture. Current retargetable compilers can only manage avery small class of archi-
tectures. The distinction between the different architecture is given by only a
number of parameters. Based on the source code and the description of the archi-
tecture, object code is generated that is optimised according to some of the crite-
ria mentioned above. Future retargetable compilers should start from larger
classes of architectures and eventually from an arbitrary architecture.
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Compilers of the second kind start from a specification of the desired behav-
iour (expressed in some language) and one or more optimisation criteria. The
compiler delivers both the hardware design and the object code. In these compil-
ersthe high-level synthesisisfully integrated in the compilation process.

Compiler generators of the first kind start from a syntax description of alan-
guage and derive a compiler from it for a fixed architecture. These compiler gen-
erators might be considered as common knowledge. However in the area of
optimisation still alot of work needs to be done.

Compiler generators of the second kind start from a description of the target
architecture in terms of hardware resources, interconnectivity, instruction set etc.
and derive a compiler from this data for afixed language.

All the compiler types that are mentioned above will be needed.

The development of these compilersis mutually dependent and partly depends
on common techniques of which we will mention afew.

A suitable representation of the target architecture will be needed for retargeta-
ble compilers, but also for compilersfor VLIW in which the number of resources
may be parameterised. Clearly, a suitable representation of the target architecture
will be needed for compilers of the second kind.

In most architectures, similar plural resources will be available, hence com-
bined resource allocation and scheduling will become a challenge.

Techniques to derive from the desired behaviour and the optimisation criteria
the architecture parameters, such as which and how many functions are needed,
the number of registers required, the required busses and even the choice of the
optimal architecture, need further research and development. These techniques
are needed for controlling the design process and will be part of compilers of the
second kind.

3.2.4 Recommendations
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1. Start an international organisation for the assessment and certification of
design tools.
Incorrect tools require that the results of these design tools need to be verified
by means of simulation. Due to the ever-increasing complexity of the designs
this practice will soon become infeasible.
Correct functioning design tools make lengthy simulations superfluous and
increase the reliability of the final design. Correct functioning design tools
makes possible ‘Correct by construction’. The assessment of design tools
should be based on testing and on formalisation of the underlying models.

2. More attention is to be spend on research on languages for- and representations
of specification and design.
Currently many specification languages and methods are available for express-
ing behaviour, however, only few are able to express time in an appropriate
way and we are in general unable to express design constraints like real-time
requirements, power requirements, area, etc.
Different tools used in a design flow often have different representation for-
mats with unclear semantics. A common representation format (language)
based on clear semantics and a model that rel ates the language to the presumed
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3.2 From executable specification to implementation

reality will considerably improve the quality and the efficiency of the design
flow.

It is important to get involved in international high-level language standards
working groups.

3. Research on compilers, translators and compiler generators must be intensi-
fied. Due to the new architectures, such as VLIW and reconfigurable architec-
tures, there exists an urgent need for better compilers, trand ators and compiler
generators
There is a need for two kinds of compilers. The first kind is retargetable
towards various hardware designs in order to deliver code efficiently executing
on the programmabl e blocks in the design.

The second kind of compilers derives the architecture from the behavioural
specification based on some criteria and simultaneously generates the executa-
ble.
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3.3 Platform design

3.3.1 Introduction

‘More from the same’

First an introduction of definitions and explanations:

A platform architecture is the maximal (and preferably optimal) superset of
functions and blocks that are part of the platform, designed with a certain
application domain in mind. The goa is to find the commonalities between
various designs, while still being able to create differentiating products.
Platform design is the activity of defining a platform architecture plus design
environment to be able to create instances based on the same theme. Therefore,
it's more from the same!

A platform product is a product instantiated from a platform.

A platform describes the material realisation (architecture) and the way to cre-
ate platform products, but also the support aspects: coding rules, test benches
and documentation standards. A platform is not equivalent to a system-on-a-
chip (SoC). In other words a platform is the combination of components, com-
munication architecture, rules, tools, test benches, and documentation. Hence,
platform includes board level realisations.

Note that 1P blocks in the following text means both hardware and software |P
blocks.

3.3.2 General trends and user needs

The following trends and user needs relate to the necessity for the creation and
usage of platforms:

The complexity of implementation and functionality shows an exponential
increase over time (afactor 2 every 18 months).

Electronic products will behave like fashion; the lifetime of a specific product
will decrease to about one month. Asthis cycleistoo short to design new prod-
ucts, these products need to be designed on a common basis: the platform.

In this respect, time-to-silicon needs to be reduced to one month. On the other
hand, suppliers in a competitive market want to differentiate their products
from those of the competitors.

The number of application domains that result in products based on a platform
will increase from currently about 4 to 100.

“Meet in the middle”’: the kind of blocks that are used in platforms will get a
higher level of abstraction.

The lifetime of a platform will double over the next decade.

The sub-roadmap falls apart in two parts:

Platform family selection and creation, which coincides with the scenario
‘Platform Design Creator’ in the ESD domain paper. It consists of three sub-
domains: design space exploration, standardisation, and design languages.
Patform unstantiation, which coincides with the scenario ‘Platform Design
Instantiator’ of the ESD domain paper. The keywords in this part of the road-
map are design space exploration and component integration

© PROGRESS/STW: public version 1.0, 30 March 2002 57



Embedded Systems Roadmap 2002

58

Design space exploration

Design space exploration is important both for the platform creator and for the
platform instantiator. To put the scene, consider tools for design space explora-
tion. Currently it is possible (i.e. coming out of the research labs) to create |P
blocksin aplatform fashion. It is described which blocks can beincluded inan IP
block, for example register files, functional units, and communication between
the two in ahardware DSP. Further, acompiler can be retargetable, to trandlate an
application written in alanguage like C to machine code (an executable) running
on an instance of this family of DSPs. A way to achieve this, isto let al tools be
steered by a machine description, which gives values for al parameters in the
platform. The following figureillustrates this:

12 parameters

DSE tool (2005)

Available 2003
Machine
Description

! HW synthesis Retarge.t able
: \ compiler
HW core Binary

Figure 6: Steering DSE tools by a machine description

Once this system is obtained, experimenting with different machine descrip-
tions can start design space exploration at the level of IP blocks. Thisis depicted
by the DSE tool (not available before 2005) in the above figure.

The next step to take is enable design space exploration in a structured and
(partly) automatic way. Which values of the parameters should be described in
the machine description to satisfy the constraints in the specification?

When such a method for structured design space exploration has been devel-
oped, structured DSE at the IP level becomes a redlity. A platform consists of
many |P blocks put together to perform the embedded system’s functionality. A
way to execute DSE at platform level isto exploit the DSE methods for the vari-
ous | P blocks separately and combine them at the platform level. In other words,
the same trick applies one level of abstraction higher, as is shown schematically
in the following figure:
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>10 parameters

|

DSE tool (2010+)

Machine

/ Description

Machine
HW synthesis HW synthesis Retargetable

/ Description
compiler compiler compiler

NN AN

! HW core Binary HW core Binary HW core Binary

Machine

Description

Retargetable Retargetable

platform instance

Figure 7: Steering DSE tools by machine descriptions on platform level

Component integration in SoC: Networks on Chip (NoC)

For Systems on Chip, a platform also comprises the communication protocols
and components. Currently, practical methods for designing the communication
infrastructure are bus-based and synchronous. Bus-based communication is not
considered very scalable however, whereas scalability is a prerequisite for the re-
usability of the platform. Synchronous communication at the system level isaso
becoming a burden, given the many on-chip clock domainsin future SoCs. Fur-
thermore, due to the increasing clock frequency it is expected that within ten
yearsit will take up to 30 clock periodsto transfer data from one side of achip to
the other. These problems with bus-based synchronous communication suggest
an approach where communication is Globally Asynchronous, Locally Synchro-
nous (GALS). An emerging communication paradigm in SoC that favours scala
bility and GALS isthe Network on Chip (NoC) approach. This approach is based
on the 7-layer OS| data communication protocol designed for general networks.
A distinguishing featurein SoC isthe predictability of the task executions and the
arrival of data from the environment. SoC designers will exploit this feature to
make SoCs more cost-efficient.
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3.3.3 Technology sub domain: Platform family selection and creation

This sub roadmap of this sub domain is about the people who create the platforms
and define which blocks and communication structures should be included in a
platform. Design space exploration, standardisation, and design languages are
key ingredients.

Technology requirements

For design space exploration a trend from single-processor systems to multi-
processor systems is visible. More generally, design teams of embedded systems
will incorporate not only hardware and software people, but also people from
other disciplines. Compilers are key in doing design-space exploration. The
above text shows that retargetable compilers are needed, as are compiler genera-
tors and ultimately compiler generators for multi-processor systems.

Re-use of IP blocks is essentia for the creation and usage of platforms. To
make | P blocks re-usable in embedded systems standardisation of interfaces and
functionality of blocksisrequired. In addition, models and other properties of |P
blocks (e.g. power dissipation, area) should be included into these standards. The
sub roadmap on hardware and software design also highlights these issues. Auto-
matic | P-wrappers are an essential pre-requisite for the usage of |P blocksin plat-
forms. Not only the blocks, but also the communication infrastructure to glue the
blocks together needs to get attention in the standardisation. Test and debug of
systems composed using platforms should be standardised in such a platform.

Models to express properties of 1P blocks are not essentially al the same. Still
it is necessary to be able to reason at the system level about the composition of
these blocks. Therefore, methods and tools that collaborate in this sense are
needed. A vision is, to go from single language design systems (e.g. like SystemC
or UML based), to cooperation between them, where a small number of lan-
guages seamlessly operate. Thisisin view of the section on design space explora-
tion above. Integration of other blocks to result in heterogeneous embedded
system makes the relevance of this case even stronger.

A general gap in this sub-domain is that the possibility to provide for system-
atic generation of platforms given an application domain, is not yet available.
Theissue hereis how to express a platform in terms of the parametersthat arerel-
evant in the application domain.

3.3.4 Technology sub domain: Platform Instantiation

60

The key concept in this sub domain is design-space exploration in deriving prod-
ucts from platforms.

Technology requirements

Proper methods and tools are the key parts to perform structured design space
exploration. Tools that can take ever more design parameters into account without
a sacrifice in user-friendliness and computational complexity should be devel-
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oped. Multi-disciplinary models are essential to do platform instantiation; these
models are dealt with in the sub roadmap ‘From Executable Specification to
Implementation’.

A platform management system and concurrent design methodology are aids
necessary for the platform instantiator, to systematically use the strengths of plat-
forms. Such a management system includes aspects like coding standards and
documentation standards that are to be used for platform-instantiated products.
Another essential ingredient is to be able to identify that an instance is indeed
compliant to the platform it was instantiated from. For Systems on Chip, a con-
siderable part of the design effort in platform instantiation is spent on making
HW-SW trade-offs (at component level) and the integration of componentsin a
communication infrastructure (at system level). Both are discussed in the section
on HW-SW design.

3.3.5 Recommendations

1 Start alarge demonstrator project for a GNU-like ES platform. The purpose of
such a demonstrator project is to facilitate the implementation of the next rec-
ommendations:

2. To enable and promote the development of IP blocks and communication
architectures, a project should be started to establish guidelines and working
practices to be used as a starting point for a (concurrent) platform design
methodology. This demonstrator project should also include a standardisation
effort.

3. Establish the requirements of a platform management system and of a concur-
rent design methodology.

4. Start work on hard & soft co-simulation for on-time applications. Tools to
support heterogeneous/hardware and software co-simulation including timing
and communication signals should be devel oped.

5. Development of high-level models for IP interfacing. I P blocks at the moment
usually lack high-level descriptions. The availability would improve the insight
of the behaviour of the IP aswell asimprove simulation efficiency.

6. Facilitate multi-disciplinary teams to meet on a regular basis. These meetings
serve as the exchange of ideas and common practice different teams and facili-
tate a common understanding. The result of these meetings could be the defi-
nition of a‘cooperating design languages design system.

7. For Systems-on-Chip, migrate from bus-based communication towards packet-
switched networks-on-chip, with HW routers.
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3.4 Hardware/software design

3.4.1 Introduction

‘Design effort versus cost-efficiency’

HW/SW design in Systems-on-Chip (SoC) comprises the tasks of partitioning the
application and determining on what type of HW each part of the application will
execute. If the platform contains a homogeneous set of processors, distribution of
the algorithm over the processors is also considered part of this task. The HW/
SW designer is also responsible for integrating the implementations of the parts
to aworking system. The HW/SW designer is driven by two main forces.

Firstly, silicon technology allows more and more integration, which makes
HW/SW design more complex, and cost of non-recurring engineering cost (NRE)
higher. For example, chip-mask costs have risen from $100K to $1M in 4 process
generations.

Secondly, the market demands a short design time and cost-efficiency. With
regard to the latter, energy consumption is becoming an increasingly more impor-
tant criterion in the context of both battery-operated devices and devicesthat gen-
erate a lot of heat. The issues of design effort and cost-efficiency are often
conflicting, and the trade-off between them is the main concern of the HW/SW
designer when exploring the design space of implementations for each part of the
application. For large systemsin a small market (e.g. wafer stepper, medical sys-
tems) however, the emphasis is on the software engineering aspects together with
the real-time constraints typical of embedded systems

3.4.2 General trends and user needs

Three main design trends result from this trade-off: reuse (IP blocks), design
tools, and the availability of an increasingly wider spectrum of possible imple-
mentations. In fact, the distinction between ‘HW’ and ‘ SW’ will blur into a grey
area, as will the distinction between their corresponding design flows. In order to
alow flexible reuse, it may even be advantageous to delay decisions regarding
implementation (details). In this implementation spectrum, (re-)configurable
components are a developing trend with potentially large industrial implications,
because they enable HW/SW design without fabricating silicon! This alows
smaller companies to process chips with state-of-the-art technology and make
their own HW/SW trade-offs. One distinguishes two levels of performing HW/
SW design: the system-level and the component level. We aso distinguish large
complex systems with a relatively small market, because the typical HW/SW
trade-offs are not representative for the design of these large systems.

3.4.3 Technology requirements

System level HW/SW design in SoC

At the system level, the HW/SW designer partitions the application into tasks that
can be executed on components, and integrates the components to make a work-
ing system. In order to do this partitioning efficiently, the designer should have at
his disposal sufficiently accurate cost/performance models of available (IP) com-
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ponents (HW and SW!), both for computation and communication. Desired but
lacking is a method to quickly estimate the relevant design criteria corresponding
to the composition of the computation and communication blocks. In order to do
the integration efficiently, the interfaces on the components have to be well-
defined and standardised. The designer should aso be familiar with the commu-
nication protocols implied by the platform, and have a simulation environment to
parameterise the communication and storage infrastructure and to validate the
integration of components. For this validation also behavioural models of the IP
blocks are required. Scalability of the communication infrastructure will be an
issue given the expected improvements in silicon technology. It is expected that
more attention will be paid to the development of communication infrastructure
due to the poor scaling of current bus-based communication, and to sub-micron
effects leading to unreliable communication, like signal cross talk, and timing
errors due to uncertain propagation delays. Therefore we expect communication
to be supported by packet switched networks similar to those found in computer
networks. The storage infrastructure will also gain in emphasis, because applica-
tions are becoming more data intensive, and more components will exhibit some
degree of programmability, requiring memory to store the program. Because of
the increasing dominance of memory in SOC cost, designers will feel the pres-
sureto try and reuse memories among the different tasks and/or processors.

Task-level parallelism (TLP)

Because the components can run in parallel, an important goal in HW/SW design
a the system level is the exploitation of this task-level paralelism. We consider
two situations. systems-on-chip (SOC), where task executions are relatively pre-
dictable, and systems (servers) in adynamic network, characterized by unpredict-
able arrival of tasks.

In SOC design, the exploitation of TLP is largely statically determined and
dominated by the task of clustering towards or identifying tasks in the applica-
tion. Besides the goa of enhancing the opportunities for TLP execution, an
important criterion is to minimize the amount of communication between the
tasks. This communication overhead can be amajor obstacle for the predictability
and scaling of the system performance (in the number of processors). With the
current design practice (mainly in C) and al the available legacy code it is con-
venient to automatically identify opportunities for task-level execution in arbi-
trary high-level (C) code, maybe just for quick estimation of implementation
cost. In the longer term this need can be expected to fade away given the current
development towards more modular, object-oriented system specification meth-
ods. Also the increasing use of IP blocks necessitates early specification of the
opportunities/constraints of using 1P blocks in the design. Because of the increas-
ing complexity of SOC and the incorporation of more data-dependent and control
behaviour, there is a trend towards less predictable system behaviour. In a static
schedule, worst-case assumptions are made to guarantee valid system behaviour.
If the control of the system is performed run-time, the system can more effi-
ciently cope with statistical and unexpected events by dynamic task scheduling
and allocation of bandwidth-, memory-, and processor resources. The main draw-
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back of these dynamic control mechanismsis that their functionality needs to be
validated and simulated together with the HW and SW. This is more complex
than validating a static schedule.

Component-level HW/SW design in SoC

At the component level, the HW/SW designer makes processors, either for usein
his project, or as an IP block that can be incorporated in many designs. IP blocks
are available now in the form of programmable microprocessors or DSPs. The
market for these flexible processors is sufficiently large to justify the design
effort. More specialised | P blocks are being generated by large companies for in-
house use. SW IP is still hardly visible. The component designer has an increas-
ingly wider spectrum of implementation choices to make trade-offs between cost
efficiency and design effort. In this implementation spectrum, (re-)configurable
logic is aclear trend. One expects that the concept of (re-)configurability will be
drawn to higher levels of abstraction, from gates via arithmetic components to
processor architectures (storage & communication, instruction set). This will
have an impact on the design effort, but also on the number of (instruction-)bits
reguired to configure and control the underlying HW. This will result in smaller
configuration times, less configuration/program memory area, and less power
consumption while fetching the configuration/instruction bits. The trend towards
configurability is not just true for HW, but can also be observed for the corre-
sponding mapping tools: retargetable and parameterisable compilers that also
allow convenient tool reusability and design-space exploration (DSE).

Tool support for partitioning and HW allocation will develop from profiling
tools to help the designer identify suitable targets for HW acceleration (current
situation) towards tools that automatically identify such targets and eventually,
tools that perform the partitioning and allocation process (semi-)automatically.
Current tools are somewhat limited in design flexibility (and therefore reuse),
because they typically have one language as a design entry, one implementation
as aresult, and often optimise to asingle design criterion.

Instruction-Level Parallelism (ILP).

Another important development is the tool support for the detailed mapping of
tasks to components once the implementation paradigm is chosen. The main
design objective at the component level is the exploitation of ILP. In the current
situation, compilers can efficiently exploit ILP for architectures (e.g. VLIW) that
are not very cost efficient (code size), whereas cost-efficient processors usually
require the designer to write assembly code to exploit ILP for the time critical
parts of the algorithm. In this situation, the processor architecture and the com-
piler are developed independently. One expects that in the future the processor
architecture and the compiler are devel oped coherently to make a practical trade-
off between code size and compilability (cost-efficiency and design effort).

© PROGRESS/STW: public version 1.0, 30 March 2002 65



Embedded Systems Roadmap 2002

Large SW systems in small markets

These systems include the control of an air plane, a wafer stepper, a medical
imagery system, and a telephone exchange server. Issues like safety-criticality
often play alarge role in the design of these systems. The dominant issue how-
ever, is the design effort. Advantages on both issues are offered by the re-use of
existing software. This software can be borrowed from previous projects or
bought from third parties. Some reasons for using existing embedded software in
future products are:

Up to 50% of embedded software code is related to exception handling and
error recovery, while less than 10% of its architecture is related to these items.

Very specific requirements on optimization of cpu cycles, memory, power etc.
in hardware related software is difficult to design top-down.

Software for embedded systems contains very detailed knowledge of the hard-
ware it controls. This knowledge is delivered bottom-up. So it is hard to gener-
ate this code with atop down code generation tool.

One of the prerequisites for re-use is that methods and tools for defining the
embedded software architecture support re-use. Else the architecture of the
product will go its own way without bothering about the past.

Some huge roadbl ocks prevent re-use.

Embedded software architectures are not re-used. Every project starts with
inventing its own architecture. Therefore third party software will not be com-
patible with this architecture.

Current software design tools don’t help with using old code. In the best case
these tools cross-compile code at the statement level.

Embedded software development environments are very diverse. Think about
computer language, compiler, configuration management, test environment,
hardware, real time operating systems of target system, operating system of
host system, communication protocols.

Universities only teach students how to build new systems from scratch, not
how to start with existing software.

Current embedded software methods and tools do not support re-use. The
embedded software expert therefore has a need for an embedded software 1P
market, where |P components, consultancy, maintenance and support can be
sold. And where consumers and producers meet to predict future needs.

3.4.4 Recommendations

1. Provide (certified) standardised models of 1P blocks regarding (cycle/bit-true)

behaviour, cost, and performance at different levels of abstraction.

2. Develop HW architecture and mapping tools coherently to obtain more advan-

tageous trade-offs between design effort and cost-efficiency. Examples are
processor core and compiler, or network-on-chip topology and tools for deter-
mining the routing of the data.

3. Increase the level and grain of reconfigurability to accommodate high-level

66

design decisions. Examples are reconfigurable instruction sets, memory organ-
ization, and communication infrastructure.
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4. Designers should be trained in the use of (higher-level) tools; the distance
between embedded system designers and tool designers should be bridged.

5. Embedded system designers need to be aware of the increasing spectrum of
implementation paradigms. This is especialy true for companies targeting a
relatively small market, because they have no ‘tradition’ in HW design
required for the emerging paradigm of reconfigurability.

6. Standardize API, architecture and external behaviour of an |P component
a. Intra process, inter process and inter processor communication.

b. Exception handling

c. Debugging facilities

d. Intra component verification and validation

e. Inter component verification and validation (JTAG like)
f. Interfacing with Real Time Operating system

g. Hooks for hot-swappabl e software
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3.5 Verification/validation

3.5.1 Introduction

‘To design on target’

In each and every step in the design flow of embedded systems it is important to
check whether the design implements the intended functionality. To this end we
distinguish various techniques: formal techniques and non-formal techniques.
Formal techniques try to either prove the system correct or check the entire state
space a design can be in. Non-formal techniques check only a part of the com-
plete state space of the design with the benefit of speed of verification.

Both for forma and non-formal verification the designer of an embedded sys-
tem needs to consider where he or she wants to use it for. Formal verification has
been researched extensively for control-like applications, while it has not yet
been used for data processing on a large scale. Timing and performance are
important aspects of embedded systems, thus these aspects need to be considered
for verification. Classical compilers do not deal with these aspects. Further, for-
mal verification relies on a certain model of reality: the designer of embedded
systems needs to have confidence that this model truly describes the reality!

Designs of embedded systems that are currently created in industry have such
large state spaces that the current state-of-the-art formal verification tools are not
capable to verify them completely. Therefore embedded system designersrely for
alarge part of their verification on techniques like simulation and emulation. As
designs are expected to grow in complexity the need for simulation shall be con-
tinuing its growth also.

On the other hand, as is also stated by the ITRS roadmap [ITRS, 2001] in its
section on Design, simulation does not scal e as designs grow; one can only cover
apart of the design space. Therefore a breakthrough is necessary to cope with the
design verification issue. This breakthrough is expected from the shift from non-
formal to formal verification techniques.

According to the ITRS roadmap the main near-term challenge is to make for-
mal and semi-formal verification techniques more reliable and controllable.
Capacity (i.e. the sizes of designs that can be formally verified), robustness, and
verification metrics are points of attention for the next five years. After 2007 new
techniques are necessary according to the ITRS. Design for verifiability, coping
with higher levels of abstraction, human factors in specifications (which need lan-
guages and specifications), and broadening the scope of formal methods to ana-
log/digital and hybrid systems are mentioned in the ITRS.

The ITRS does not detail the formal verification methods necessary. In the
roadmap for embedded systems we focus more closely on formal verification asa
means to cope with the verification challenge for the next ten years.

3.5.2 General trends and user needs

The world of verification and validation, as well as the world of embedded sys-

tems are undergoing rapid changes. We see afew trends:

e Moore's Law states that the complexity of systems will increase continuously
with afactor 2 every 18 months;
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* Dunn's law states that we have to improve the analytical power of verification
and validation tools for embedded systems with afactor 4 every 18 months;

* Thus a factor 2 improvement every 18 months has to come from methods,
algorithms, data structures, and implementation techniques;

* The increasing complexity of embedded systems will necessitate the use of
formal methods during the design of embedded systems;

e Verification and validation will not only be needed at low-levels of abstraction
(e.g. hardware) but also at higher levels of abstraction (e.g. architecture;
(hybrid) systems);

 Itisessential that the designer of an embedded system can use verification and
validation techniques in his design trajectory, without bothering about the
underlying mathematics. Further, the tools for verification and validation need
to become user-friendly.

Algorithms and data structures are the basic ingredients to do verification and

validation of embedded systems. They have been studied in this area for a long

time and many techniques are aready available. There are also numerous tools
available to do modelling, simulation, model checking, equivalence checking,
consistency checking, real-time and stochastic analysis.

The main problem is that these algorithms, data structures, and tools are only
practically applicable to small toy-size examples nowadays. It is important to be
able to do verification and validation on ever-larger examples. However, for an
example of a certain size some techniques are applicable while others are not
(yet). In about ten years from now the goal isto be able to verify systems with an
algorithmic complexity corresponding to that of explicit state model checking of
state space of the order of 10 tera-states. Given the anticipated use of symbolic
state space representations this includes the verification of large classes of infinite
state systems.

We have divided the Embedded Systems Roadmap on verification and valida-
tion into three parts. formal verification, non-formal verification, and the integra-
tion of formal verification techniques with the design flow for embedded systems.

3.5.3 Technology sub domain: Formal verification

70

In order to comply with Dunn's law we have to devel op fundamental algorithms,
efficient data structures, and implementation techniques to improve the perform-
ance of toolsfor verification and validation.

Technology requirements

In general, for formal verification we need proper formalisms (languages) to be
researched for two reasons:

1. What kinds of properties do we need to express in such alanguage;

2. How do we make the link with the (top-level) specification.

There are many formalisms which consider designing either bottom-up or top-
down. SystemC e.g., takes the bottom-up approach: it allows high-levels of detail
to be described in the design. UML is an example of a high-level formalism,
which misses the power to describe the semantics of low-level details. An embed-
ded systems designer wishes formalisms to bridge these two levels.
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A prerequisite for formal verification techniques are the algorithms they use.

One of the major problemsis that we need algorithms for the efficient explora-
tion of state spaces a design can be in. Nowadays we can traverse discrete state
spaces; in the near future it will be necessary to traverse symbolic state spaces.

Optimal search algorithms need to be devel oped.

A way to deal with more complex designsisto introduce hierarchy in the com-
plexity of the design. For this we need proper abstraction algorithms.

We digtinguish two main areas of techniques that are important to be
researched for formal verification: model checkers and theorem provers.

The usability of theorem provers relies partly on proper decomposition tech-
niques. Decomposition allows for hierarchy in the design; theory of composition
is necessary to prove properties of the composed system.

Model checkers are foreseen first for functional system models; after that we
need model checkers for soft/hard real-time systems. Also model construction,
model simulation, and test-case generation need to be considered for these two
stages. Static analysis techniques are important aids in doing model checking.

Ultimately it is desirable to integrate the theorem proving and the model
checking techniques.

3.5.4 Technology sub domain: Non-formal verification

Due to the growing complexity of designs, non-formal methods will remain
important to cope with the verification chalenge. We focus on simulation and
emulation as non-formal verification techniques as they traverse only a part of the
design space.

Currently we can simulate single (IP) blocks. In the near future we will need
simulation techniques of compositions of blocks; platforms should provide
guidelines in these. Currently there are aready activities in the area of system
simulation; they will become more important as designs grow in complexity.
When hybrid systems come into sight we will need simulation techniques to cope
with these systems and models.

Emulation has aways been important when the hardware (and the software) is
aready there, for example in prototype format. One of the purposes is to detect
bugs related to timing that cannot be detected in simulation due to the abstraction
of the (timing) models. As systems grow from single blocks to multiple blocks to
hybrid systems, emulation techniques need to keep up.

The links with the Platform Design sub roadmap are obvious when we will be
able to simulate or emulate systems at the block level or at the system level.

3.5.5 Technology sub domain: Integration

This sub domain focuses on the integration of formal verification and validation
techniques with the design flow of embedded systems. The ultimate goal is that
designerswill think it anatural thing to verify their designs.

First we need to get the tools and techniques for formal verification out of the
academic world into the industrial design world. Interfaces are one thing; even
more important isto teach the embedded systems designer to use formal verifica-
tion in the design flow. The only way this can be done is bi-directional. Current
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experts on formal verification need to adapt their tools and (user) interfacesto the
industrial design flow, and need to take large designs from industry as cases. On
the other hand, embedded system designers need to learn how to use these tech-
niques in their design flow. Configuration management and application-oriented
tool interfacing also are important issues in this context.

A next step is to actually integrate verification and validation in the design

flow, with seamless integration as a goal. To verify systems that will be built in
ten years from now, verification techniques should be able to deal with multi-core
and even hybrid systems.

3.5.6 Recommendations

72

1.

First a classification is needed when to do formal verification. In well-
described domains verification is possible, but simulation or prototyping can
be good alternatives. As verification comes at a cost (e.g. computational com-
plexity), designers of embedded systems have a serious trade-off to make.

. Verification of heterogeneous systems is key to future development of embed-

ded systems and should be further investigated.

. Representation formalisms (languages) on which formal verification operates

should be studied. The relation with the top-level specification is of utmost
importance to alow for integration of verification techniques in the embedded
systems design flow.

. The problem of exploring very large state spaces in a manner that is computa-

tionally efficient is one of the first prerequisites to make verification feasible in
the design flow for embedded systems. Hierarchical design is a very important
research topic to be studied to be able to verify large designs. Vendors of
(trusted) components for embedded systems need to express their information
for verification on the right levels of abstraction, in a formalism that the
embedded systems designer can deal with.

. Verification and validation should be made usable for every designer of

embedded systems, including tool support and courseware. In order to inte-
grate verification and validation in the design flow of embedded systems, it is
essential for computer scientists working in this area to study realistic cases.
These are needed to improve and adapt verification and validation techniques
for industrial relevance. These cases can serve as benchmark to monitor the
progress of methods and tools.
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3.6 Test, debug and integration

‘Quiality control will stretch from factory to field’

3.6.1 Introduction

Many worlds come together in test, debug and integration. Testing means to estab-
lish the quality of the product. Most, if not all, of the design and fabrication steps
are followed by a separate test. If a part is found to be incorrect, the nature of the
defect may be discovered by debug. Test and debug are ingredients of a 1-tech-
nology quality control scheme. Unfortunately parts from different technological
domains (micro-€electronics, mechatronics, biotronics etc.) are integrated in non-
trivial embedded systems, raising the problem of quality assurance (QA) and
fault diagnosis and isolation (FDI) to unknown high levels.

The world of embedded systems is computer dominated. Though the embed-
ding system features many different technologies, the attraction of the embedded
systems world is largely caused by the digitally programmable embedding core.
Hence we will assume an electronic embedded system with proper models of the
embedding and external world. This is not a major restriction, but the simple
admission that we will always test from an environment in which a software test
program can run and the unification of test views on hardware and software will
already keep us busy during the roadmap period.

3.6.2 General trends and user needs

Where originally an IC was fully tested, thisis already not economically feasible

and will in the future even become impossible. This is caused not only by the

sheer impossibility to test a complex design in a short time, but also because the

‘System on the Chip’ will have additional characteristics that pose new testing

problems such as:

* increased heterogeneity (more parts in different test technologies);

 increased programming diversity (more ways to structurally change the part
function);

* morein-system support to the needs to test a system in/off/on line;

* raised polymorphy as caused by the additional reconfiguration potential.

Next to theimproved (or autonomous) test of the part, the half-fabricate character

of the manufactured chip may lead to delayed testing: testing only when a func-

tion is programmed. And as programming can occur also at the moment of prod-

uct fabrication or even at the moment of instalment, testing may largely be off-

loaded to alater stagein thelife cycle.

Web technology may even allow the ultimate test to be performed under sup-
plier control at the user’s site. The user can either be the product manufacturer (or
even the local shop), where the chip is assembled into a (consumer or profes-
sional) product or the end-user, where the product is applied in connection to
other products. If the business model assumes the local shop to be fully responsi-
ble for the service to the end-user, al debug and test will take place at the shop
floor. The end-user will only need a failure indication, while the shop needs full
support from the manufacturer.
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In the long-term business model, a growing part of the test will be applied in
use. A web-like support will be mandatory. Thisis partly true because one can not
burden the average house dweller with the need to test an el ectronified house part.
But having the product as part of a digital network, the added advantage is that
any supplier can constantly monitor the life of delivered goods. Moreover it
seems that this will become a necessity rather than just a business model. Still,
debug support at the shop remains necessary as a trusted third party.

3.6.3 Technology requirements
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In the past one has seen an advance in multi-level, multi-mode simulation
because both analog and digital hardware must be handled at varying levels of
abstraction. With the rise of heterogeneity and polymorphy together with the
delayed commitment of functions to silicon the requirements will be raised. Fur-
ther developments will be urgently needed.

On the factory floor, the basic functionality of the ‘system on a chip’ is vali-
dated. The on-going development of process technologies will regularly change
the dominating fault model. Especially dynamic faults are posing problems, both
in communication protocols as in the IP core themselves. At higher abstraction
levels such problems will re-occur, for instance as a degree of non-functional
interaction between | P-cores.

Also software design will mature to the recognition of testability as a develop-
ment goal. Software engineering needs to have testability in mind, but so far
hardware and software have totally different views on the testability issue and use
atotally different terminology. More commonality seemsrequired. An exampleis
the software built-in self test (BIST) to facilitate self-test on-chip or in-product.
Another issue is the sensitivity of software patterns on the production fault profile
of a specific platform. It seems aso that the canyon between TDO and verifica-
tion & validation must still be closed.

At the shop floor, automated debug facilities are growing in importance
because of the shift in the moment when the specialising functions are finally
committed. On-chip test facilities will help to ease the debug effort, quantified in
operator skill and in test patterns communication needs. Fabrication errors will be
pushed away by reconfiguration and replacement.

The end-user expects total quality. This pushes the needs of self-test and self-
repair to the limits. To limit the additional on-chip test structures, a degree of
resource sharing will become mandatory. The test structures should not reduce
the testability and the quality of the overall system.

As a consequence, the life cycle phases of the system will become apparent in
a separate test view. This indicates a test process that permeates every aspect of
the overall endeavour. Such an outgrowth of the test impact from a design view
with some additional test measures over local pattern generatorsto an intertwined
process will require a number of innovations, as
¢ built-in test for hardware/software combinations;

* hierarchical propagation of compacted test results.
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3.6.4 Recommendations

From the sub domain roadmap, the following recommendations on future R&D
activities can be derived:

1.

Improved control management of tests for fabrication, product and application.
As the test sequence is potential a set of time-dispersed activities of changing
target and complexity, this process must be carefully monitored.

. Unification of hard- and software test. With the increase in flexibility in imple-

mentation and the number of abstraction levels, the allocation of the fault to
hard- or software becomes more difficult. In the current state-of-the-art, testing
has overlapping points of strength in hardware and software. Consequently a
more unified view is necessary to make function tests independent of the actual
morphology.

. Development of an extensive set of on-chip test measures (drop-in, re-wiring,

program). Increasing system complexity and delayed function tests will
require more potential to test on the chip.

. Integration of test for heterogeneous, polymorphic architectures. Each logic

technology as standard logic, reconfigurable logic, |ogic-enhanced memory or
pure memory needs different test algorithms. Mixing such different partsin the
same system and changing the actual implementation form of a function over
night requires additional attention to monitor the pluriformity in the larger sys-
tem
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Appendix 2.

Term

Terminology and abbreviations

Description

Abstraction level

A design can be described at different abstraction levels
that are characterised by data types and timing concept.
Higher abstraction levels have compact descriptions that
hide the details typical to lower levels.

Analogue behaviour

Behaviour of a system or component measured or
described in a continuous domain (time, amplitude, fre-
quency)

Analogue HDL

Hardware Description Language for modelling amongst
others

API

Application Programmer Interface -- a set of functions
that facilitate programmers in using today's complex
software programmes

Application domain

see Domain

Architecture

Overall design of a system. An architecture integrates
separate but interfering issues of a system, such as pro-
visions for independent evolution and openness com-
bined with overall reliability and performance
requirements. An architecture defines guidelines that
together help to achieve the overall targets without hav-
ing to invent ad hoc compromises during system compo-
sition. An architecture must be carefully evolved to avoid
deterioration as the system itself evolves and the
requirements change. [Clemens Szyperski, Component
Software]

Asynchronous Different activities in a system are not synchronised by a
common clock signal that generates the exact time
instances of computation.

ATM Asynchronous Transfer Mode

Behaviour Describes the relations between inputs and outputs of a

(part of) the design. The behavioural aspects concen-
trate on what must be designed, free of implementation
aspects

Behavioural compiler

A behavioural compiler interprets the behaviour of a sys-
tem that is described in a formal language, generating
an implementation at a lower abstraction level.

Bit-error rate

The non-negligible probability that an unwanted bit
reversal occurs during transmission and (de)coding of a
message in a digital communication system

Bus

An element in the architecture, which allows communi-
cation between components that are sending data and
other components that receive data. Many components
may be sending on the same bus, but not simultane-
ously.

Capturing

The process of collecting all information that is required.
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Term

Description

CASE

Computer Aided Software Engineering

Co-simulation

Simulation of a system by co-operating different simula-
tion kernels for the different semantic domains which are
part of the system model.

Complexity The number of independently interacting items or possi-
bilities in a given context, often the number of elements
in a set that can be described independently.

Component A component is a unit of composition with contractually

specified interfaces and explicit context dependencies
only. Context dependencies are specified by stating the
required interfaces and the acceptable execution plat-
form(s). A component can be deployed independently
and is subject to composition by third parties.[Szyperski]

Component-oriented pro-
gramming

Encapsulation+Polymorphism+Late binding+Safety

Computational model

The type of mathematical relations or formulae used as
a basis to constitute models for describing (sub)system
behaviour.

Concurrent engineering

The act of designing a system by several independent
parties acting simultaneously or quasi simultaneously
and whose contributions have to be co-ordinated.

Configuration management

Keeping track of different implementation options, with
their mutual dependencies and partial results.

Content

The data that is of direct value to the user

Contract

Specification attached to an interface that mutually binds
the clients and providers (implementers) of that inter-
face. Contracts can cover functional and non-functional
aspects. Functional aspects include the syntax and
semantics of an interface. Non-functional aspects relate
to quality-of-service guarantees. [Szyperski]

Core

An implementation in silicon, programmable, hardwired
or anything in between that allows it to be used as a
building block of a system.

Dataflow

Computational model which can execute completely on
the basis of the availability of data to its operations.

Design environment

The entire suite of software and hardware used by sys-
tem designers, ranging from workstation operation sys-
tems to dedicated design tools and libraries

Design flow Keeping track of and providing guidance for the execu-
tion of different management design steps in a suitable
order

DFL Data Flow Language. A language from Frontier Design

Company oriented towards data flow. The language
combines functional as well as procedural elements
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Term

Description

Discrete behaviour

Behaviour of a system or component measured or
described in a discrete domain (clock cycle count, digital
word values, finite state graphs, etc.).

Discrete event

A time-value pair describing a change in value of a sig-
nal of a system at that instance of time. In discrete event
systems value and time must be countable

Distributed processing

The processing is handled by multiple resources, nor-
mally operating in parallel and of which the geographical
location is arbitrary

Domain

(roadmap) An area of interest in which products/serv-
ices share certain characteristics

Domain papers

(roadmap) The vision written down and worked out in
scenarios of rendezvous

Driving application

A product/service that challenges technology capabili-
ties in a domain to the utmost, even to the extent that it
might imply the need for not-yet existing technologies

DSE

Design space exploration

Dynamic data flow

The production and consumption of data values (tokens)
and the execution of operations depends on the actual
data occurring at run time. Normally this originates from
"if-then-else" constructions in the behavioural specifica-
tion and complicates the scheduling problem

Embedded memory

Memory implemented on the same chip as the process-
ing elements (as opposed to off-chip memory) and fabri-
cated in a process technology optimised for embedded
logic circuits

Embedded logic

Logic which is fabricated in a process technology opti-
mised for memory circuits

Embedded software

Software belonging as integral part to a system, which is
normally not configurable or even visible to an outside
user

Embedded system

Embedded systems are highly specialisable, often reac-
Hive, sub systems that provide, unnoticed by the user,
Information processing and control tasks to their embed-
aing system

EMC

Electro Magnetic Compatibility: the immunity or suscep-
tibility of the system for undesired electromagnetic field
interference either due to mutual internal effects or inter-
action with the environment

Emulation

Replacing part of a real system by a simulation of its
model while maintaining the communication with the
real system

© PROGRESS/STW: public version 1.0, 30 March 2002

83



Embedded Systems Roadmap 2002

Term

Description

Encapsulation

Enclosure of a part of the state space of a system such
that only operations enclosed together with that part can
effect state changes on that part. Typical units of encap-
sulation are objects, classes, modules and packages
[Szyperski]

EPROM

Electrically Programmable Read Only Memory

Estimation of performance

Getting data on the physical behaviour of a system or
device based on timing, power consumption, heat dissi-
pation, signal propagation, etc.

Event

(roadmap) Something that happens in some point in
time

Expertise span

The number of different disciplines required to be cov-
ered in the design process

Finite state machines

Behaviour is described using states and transitions
between states and

Framework A particular architecture for a system.
Hardware Implementation of a system into a physical device
Heterogeneous A composition from parts with a different technological

origin, as for instance a different logic or physical struc-
ture.

HW acceleration

Acceleration of system simulation by using dedicated
hardware support for a fast execution of the system
model

Intellectual Property

The legal ownership of the knowledge incorporated into
a specification or (partial) design, which can represent
significant commercial value

Interface

Abstraction of a service that only describes the opera-
tions supported by that service (publicly accessible vari-
ables, procedures, or methods), but not their
implementation. [Szyperski]

see Intellectual Property

JAVA

An object-oriented programming language of which the
execution is possible on a variety of operating systems
due to the concept of virtual machine compilation

Latency

The time delay between an input event and its corre-
sponding output reaction. In this context caused by com-
putational, by on-chip communication as well as by
storage delay

Library

A collection of design descriptions, possibly at different
levels of abstraction, which are not specific to one par-
ticular design project, but often specific to the technol-
ogy of the supplier
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Term

Description

MATLAB A high-level software package in which applied mathe-
maticians, signal processing- and control engineers can
input and test their ideas

Module level A module is a system or circuit with a single, well-

defined and unified function

Multi-processing

Distributing the workload over several processing ele-
ments which can operate concurrently

Multi-processor architecture

A system in which there are several processors capable
of running software independently. Different architec-
tures are often distinguished in the interconnection
scheme to enable inter-processor communication

Multi-rate

Different parts of a synchronous digital system operate
at different clock speeds and where the different clock

signals must have a fixed phase relationship with each
other

Multi-tasking

Various tasks requested by a single user are executed
at the same time

Object oriented software

An approach to computer programming that emphasises
data and attaches procedures as "methods" to the
classes of data for which they are relevant. In object ori-
ented software everything in sight is an object which
belongs to a class. Objects are classified in a hierarchy
where each object class may be a subclass of a higher
one. The class definition consists of a list of constituent
objects called "attributes" and a collection of procedures
that can be applied to these objects.
Encapsulation+Polymorphism-+(implementation) Inherit-
ance

OMT

Object Modelling Technique: a methodology for design-
ing and implementing a (software) system in an object-
oriented way. It may replace SDL

Operating system

The software a computer runs to manage its resources:
display,

Polymorphism

The ability to view different kinds of entities through a
common projection [Szyperski 1998]

A function shaped in one from many ways; e.g. either in
software or hardware

Platform

The computer system and architecture used to design
software (sometimes used to specifically indicate the
operating software)

Platform architecture

The maximal (and preferably optimal) superset of func-
tions and blocks that are part of the platform, designed

with a certain application domain in mind. The goal is to
find the commonalities between various designs, while

still being able to create differentiating products.
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Term

Description

Platform design

The activity of defining a platform architecture plus
design environment to be able to create instances
based on the same theme. Therefore, it's more from the
samel!

Platform product

A product instantiated from platform

Power modelling

Devising mathematical formulae or algorithms to predict
the energy

PROGRESS Program for Research on Embedded Software and Sys-
tems
Protocol Describes the mechanism used for communication.

Many different levels of abstraction are possible

QoS (Quality of Service)

The non-functional aspects guaranteed under a contract
[Szyperski]

Re-targetable compiler

A compiler for software that transforms a program
expressed in a higher level programming language to
instructions of a given machine that is highly dependent
on the machine architecture

Re-use Modules (or cores) that are not designed for a particular
design project, but are obtained from a library or from
other designs

Real-time The ability of a system to guarantee that actual latencies

remain

Real-time kernel

A part of the operating system that is responsible for
(run time) scheduling, resource management and for
synchronisation between tasks in such a way that real-
time deadlines are met

Rendezvous

(roadmap) Event where technologies meet that are nec-
essary for the emergence of a new generation of a prod-
uct/service that fulfils a user need

Run time scheduling

Scheduling is deciding the execution moment for sub-
tasks or operations as part of the containing task. The
decision freedom is normally constrained by a pre-
scribed partial ordering and by limited resources. In run
time scheduling this is decided during the execution of
the containing task

Scenario (roadmap) Sequence of events

SDL Specification and Description Language: a general pur-
pose description language for communication systems,
standardised by the ITU (International Telecommunica-
tion Union) and widely used in telecommunication

Simulation Creating behavioural traces of a system by interpreting
or executing its model

Simulator A software utility capable of performing simulations of

properly described systems
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Term

Description

Single processor system

System in which all computation is performed sequen-
tially on a single processing element

Software

Specification of behaviour or procedures in an appropri-
ate textual format (code) and which is to be interpreted,

compiled and executed by a computer-like system capa-
ble of interpreting the software code independently

Specification

Each step in the design process starts by defining the
specification. A specification must present all the infor-
mation necessary to execute the relevant step and must
cover both behaviour as well as architecture (partial or
complete)

Spectral techniques

Analysing system behaviour by representing the system
data as well as transformations on these in the fre-
quency domain

Static data flow

The production and consumption of data values (tokens)
and the execution of operations does not depend on the
actual data values as encountered with run time sched-
uling, and thus can be completely analysed at compile
(design) time which results in a fixed (static) schedule

Sub-system A set of modules that are interacting in an independent
way and which form but one of the constituents of a
larger system

Synchronous All actions of and state changes in a system occur at

points in time indicated by a single (global) clock

Synchronous data flow

At each firing of an operation a well-defined number of
tokens is produced or consumed (allows multi-rate dig-
ital signal processing)

Synthesis

The act of transforming a specification into a more
detailed specification keeping the overall external
behaviour and meeting physical requirements

System characteristics

Aspects of the implementation of a system, decided
upon during its specification or design phase and valua-
ble to reach the overall functional and/or performance
criteria

System technology span

The set of design and implementation techniques used
to build a system, normally requiring knowledge from
different scientific disciplines

Throughput time

The rate at which the system can process input data to
output data

UNIX

Multi-user and multi-tasking operating system available
to a wide range of computer platforms of different ven-
dors. Originally developed and freely distributed as uni-
versity software, oriented towards such areas as
software development and network interconnection
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Term

Description

User needs

The expression, in non-technical terms, of the wishes of
(target groups of) end-users that may motivate a search
for fulfilment of these needs by product/service solutions
in which technology may play an important role

User interface

The part of a system that allows the user to input and
understand data, as generated by the system, in an
easy way. For the user the interface is the tool

Validation Checking whether system description satisfies specified
properties
Verification Determining whether two different system descriptions
of the same design (possibly at different levels of
abstraction) are conformant with respect to relevant
functionality
Vision (roadmap) The description of the common view on the
practical evolution of the major function characteristics
of product/service solutions that fulfil (some of) the user
needs
Web Documentation stored in central data base accessible
through the http internet protocol, allowing for cross-ref-
erences through links and using text, images, sound,
movies, programs, etc. to communicate information.
Windows NT Operating system developed by Microsoft allowing for a
multi-tasking environment
Yield The percentage of correctly functioning devices after
fabrication
Abbreviations
2D two-dimensional
3D three-dimensional
AN audio/video
ALU arithmetical and logical unit
ASIC application specific integrated circuit
ASIP application-specific instruction set processor
ASSP application specific standard product
BIST built-in self test
CAD computer aided design
CAN car automation network
COTSES Common Off The Shelf Embedded Software
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CPU

central processing unit

DSE design space exploration

DSP digital signal processor

EDA electronic design automation

EDAA european design and automation association
EMC electro-magnetic compatability

EMI electro-magnetic interference and isolation
ESR embedded systems roadmap

FDI fault diagnosis

FPGA field programmable gate array

GALS globally asynchronous, locally synchronous
GNU GNU's not unix

GP general purpose

HW hardware

I/0 input/output

IEEE institute of electrical and electronic engineers
ILP instruction-level parallelism

IP intellectual property

ITRS international technology roadmap for semiconductors
MCM multi-chip module

MEDEA micro-electronic developments for european applications
MEMS micro-electro-mechanical system

MoC model of computation

MPEG Motion Picture Experts Group

NoC network on chip

NRE non-recurring engineering

(O] open systems interconnection

pcb printed circuit board

PWA personal well-being assistant

QA quality assurance

RC reconfigurable computing

RT real-time

SDL system description language

SIA semiconductor industry association
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SW software

TDO timed digitiser option

TLP task-level parallelism

TTA time-triggered architecture

TT™ time to market

ul user interface

V&V verification and validation

VCR video cassette recorder

VHDL VHSIC (very high speed integrated circuit) hardware description language
VLIW very large instruction set wordlength
VLSI very large scale integration
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Appendix 3.

Domain paper: Personal Well-being Assistant:
creating a society of well-being

3.1 Domain description

3.1.1 Introduction

‘PWA (Personal Well-being Assistant or Persoonlijke Welzijn Assistent) is the
name of the first domain to be exercised for its driving potential with regard to the
technological evolution of embedded systems. In future other domains may be
identified to fill in missing technology areas.

It isanew domain that aims at supporting human beingsin their strive for well
being. As such it provides interesting opportunities to link fundamental research
on human behaviour and motivation from psychology with advanced technol ogi-
cal research topics from a.o. physics, micro-mechanics and micro-electronics.

The PWA concept is developed here in the context of embedded systems, but
thisisnot an inherent limitation to the PWA concept. This context originates from
the current assignment to facilitate an Embedded Systems Roadmap.

The PWA itself is not an embedded system but an embedding system. From an
embedding system can be derived the functionality and the non-functional con-
straints of the embedded system(s) which are to be incorporated into it.

3.1.2 Purpose of this domain study

The purpose of this document is:

e To createinput material for the process of construction of the technology road-
map for embedded systems;

e To investigate the domain in order to help find the most important needs for
technology evolution and to identify potential gaps in that evolution for
embedded systems;

e To identify important rendezvous of user needs and technology devel opment.
Such a rendezvous implies the convergence of needs and technologies leading
to the possibility of anew generation or class of products and/or services.
Further purposes are:

* To stimulate development of and experience with relevant technologies for
embedded systems;

e To facilitate the discussion between experts on technology roadmaps for the
domain;

» To create a common understanding of the impact of embedded systems on the
domain.

3.1.3 Rationale for the PWA-concept

The main reason for developing the PWA-concept in the context of the assign-
ment to facilitate an Embedded Systems Roadmap is the following. A product (or
service) example in an application domain of embedded systems is needed with
sufficient potential for driving and challenging technology evolution and which
preferably also has some relevance for society. It is a'so necessary to develop a
product concept that is not forbidding at some point in time any of the partici-
pants in the roadmapping process to stop contributing because of fear of having
to show any company confidential future product plans.
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Looking into evolution of existing appliances proofed to be difficult without a
general concept to steer their further development. This now has been found by
taking as a starting point the fulfilment of a very basic human need: the desire for
well-being. Investigating what this might imply at the personal level for different
age groupsin different situations has been shown to be a powerful mechanism for
discussing the needs in technology progress.

A further rationale for the PWA is the need to make a large leap forward in
time and be able to discuss user needs from the far future, 7 to 10 years ahead.
This requires a mental reframing that becomes easier by having a concept like a
PWA to start from.

The PWA-concept, further explained in the sequel, as a quite general concept,
implies that a nearly unlimited amount of functionality could be accumulated
withinit. It is, however, more probable that alimited number of different versions
originate, each one focused on its own target group and its specific needs and
desires. It is aso most probable that PWASs will not originate from scratch, but
will be based on currently existing appliances. These might then be re-focused to
serve awell-being purpose of a specific target group.

In the extensive exercises described below, the work context of target groups
has not been explored. This might be an interesting topic for a future follow up
study.

3.1.4 Relation to Embedded Systems

As indicated above, a large variety of PWA-appliances can be imagined, each of
them connected with the outside world and the person wearing it, and performing
a specific set of functions for its user. PWASs have to react to all kinds of sensor
signals and control al kinds of actuators. PWASs have to be able to communicate
speech, sound and pictures to other PWAs and to and from alocal or global com-
munication infrastructure. Apart from this the PWAs have to perform al kind of
processing functions: from interpreting sensor signals, generating actuator sig-
nals, processing speech, audio and video to accessing large databases and
processing the therewith related transactions to perform the required PWA func-
tions. Thisimplies ahuge variety in architectural needs of PWAs. Some functions
need to be realised in hardware, some in software. A large variety of hardware,
software and reconfigurable modules can be envisaged to fulfil these needs. The
modules or compositions of modules in such PWASs are embedded systems. For
cost and efficiency reasons there will be a drive to define as many common mod-
ulesfor arange of PWAs.

3.2 PWA characteristics

3.2.1 The concept of personal

92

A major characteristic of the PWA isthat it is oriented towards the individual . It
will be small enough to be wearable or portable and certainly lightweight. Also
there might exist akind of base or docking station to interface with alocal or glo-
bal communication infrastructure. When used in a car the docking station may be
an outgrowth of the current hands free phone infrastructure.

30 March 2002



It is important that the individual himself/herself is in control. This means
switching in and out all the features of the PWA asiit is a fundamental aspect of
well-being that oneself can control the degree of penetration into the personal pri-
vacy at any time. Thisimplies that the individual determines the highest privacy
level on which external influence can be executed. And also what level of security
isdesirable for the different kinds of transactions that can be performed from the
PWA. All of this applies not only for configuration at set-up time, but also later on
it must be easy to change all kinds of feature preferences.

Another characteristic is that the PWA will mostly be connected to an infra-
structure, be it apotential special PWA infrastructure at home, at work, in the car,
in hospital, or to a global “general purpose” infrastructure like the mobile phone
network or alocalisation system like GPS.

3.2.2 The concept of well-being
Well-being is a quite broad concept. It is a term that basically combines in one

word a generally felt most elementary human need. It touches upon fundamental
existence issues of individuals and covers the range of needs from caring for ele-
mentary living needs for oneself and his beloved ones up to and including the
self-realisation of the successful professional.

It has therefore widely different implications for individuals, for families, for
associations, for society asawhole. Thismeansthat it isagood, socially relevant
topic to use as underlying principle for the development of appliances that make
sense. And thiswill be reflected in the origination of different types of PWAS.

There will aso be a strong cultural element in the identification and priority
setting of needsto be supported by a PWA. This might lead to a strong geograph-
ically oriented development of different PWAs.

Through the wide scope of the subject it is guaranteed that also a sufficiently
wide coverage of technologies will be possible. It will depend upon usto exercise
our creativity to specify interesting and challenging problems for technology that
might help to increase the well being of individuals and groupsin our society.

3.2.3 The concept of assistant
Providing assistance by a PWA will be constrained by some desired properties:

1. The user must be in control: a PWA must be customised to user wishes. It will
not be acceptable that there are features in a PWA that cannot be switched off
or on by the user himself. An exception to this may be made when special
functions are performed e.g. when a PWA is used as a measuring device to
establish costs involved in using scarce resources like roads or other common
infrastructure facilities.

2. Help or assistance must be available on request. This again implies that the
user isin control of telling if he/she wants to be disturbed by its PWA or not.

3. Assistance should not be patronising, but should provide help with respect for
the person concerned. This poses quite some social challenges in relation with
the elderly.

4. Assistance should be provided in a context-sensitive way. This creates magjor
technological challengesin defining and updating automatically the status rele-
vant for a person with a PWA.
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The type of help that can be provided by a PWA may have specific characteris-
tics:
1. Monitoring/measuring.

Objects can be monitored: gas burner on or off, is a certain person present. A
generalisation is monitoring the status of an environment e.g. for safety pur-
poses. Person monitoring may extend from observing absence or presence to
monitoring of behavioural aspects. Also health monitoring falls in this cate-
gory. This may take extremely widely different forms from external observa-
tions and measurements to intra-brain measurements with wireless
transmission to an infrastructure. And, of course, it would be quite valuable if
one could monitor the degree of well being of a person in his’her environment.
A further type of help in this category could originate if the PWA gets also an
environment measurement function e.g. related to access and payment for use
of facilities like roads and other infrastructure facilities.

. Reminding.

This subject starts with a simple extension of the current generation of per-
sonal organisers to remind people about their appointments. The MediMinder
might be a PWA devoted to reminding and actively supporting taking medica-
tion in time and in the right dose.

This could be extended in various directions: reminding what day and timeit is
now (especially relevant for very old people), reminder for the context: show
where somebody is on a map, or indicate by an arrow which direction to take
to get home.

. Advising.

Thiswill be an area where it is important to show respect for the person being
advised. This will be imperative when older people are advised to use a PWA
and they cannot fully oversee the consequences of accepting this. They must
then be reassured that their privacy is not invaded unsolicited.

One can think about an advice not to drive if the PWA senses a dangerous situ-
ation e.g. finding to high alevel of alcohol in the air in the car. Or an adviceto
no longer continue with a tennis match if the PWA measures a body overload
situation for too long atime. A further extension of the advising function might
be, in connection with coupling to a service provided over a network, notifice-
tion that roadblocks are coming up, and then suggesting an alternative route.

. Intervening.

The most far-reaching type of assistance is having the PWA taking an interven-
ing action. In the future medication taking might be actively controlled from a
PWA. Much simpler functions are already now within practical reach: opening
and closing of doors e.g. for disabled, as soon as their PWA gives the appropri-
ate signal. Actuators can be controlled from a PWA, e.g. to switch of the gasif
it burns without a cooking device above it. It must be possible to set al kinds
of conditions by the user to ensure the user that no unwanted actions will take
place.

In the car the PWA can be used to take action when the driver loses attention
for the road e.g. by some unfavourable change in his medical condition. This
might be signalled by the PWA to the safety system of the car, which tries to
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get the drivers attention before braking automatically. The signa may even be
communicated to the safety systems of neighbouring cars.

3.3 PWA classification

PWA s can be classified according to their target group characteristics
1. Age. A number of age ranges can be distinguished that allow a useful cluster-
ing of functions, and for which an existing persona appliance exist which
could evolve further with afocus on well-being as a PWA:
* Teenagers. game console
«Young parents. baby phone
* Sportsmen: hart rate measuring appliance
* Young urban professionals: personal organiser
« Vital 55+: mobile phone
* Supersenior (70+): wearable electronic alarm
Other categories of users with specific needs will undoubtedly be formulated
over time, certainly when one would also look into other cultures than our
Western European culture. But even within Europe cultural differences are so
large that different types of PWA may evolve in different countries, be it
already with different language support. A major technological challenge
will be to optimise (=minimise) implementation diversity.
2. Needs taken care of:
In relation to well-being a natural hierarchy of needs was presented by
Maslow:
* Elementary living needs: food, water, sleep, sex
« Safety: protection from violence and natural disasters, health
* Love: for and from others, belonging
« Esteem: respect for self, from and for others, influence
* Self-actualisation
3. Geographical working area
A distinction can be made with respect to the geographical area where a PWA
is supposed to work:
* Individual wearing a PWA with only personal functions without the need for
attachment to a communication infrastructure
» Home, hospitals, university, disco, company building, sports complex, senior
citizen serviceflat. Each of these may have its own infrastructure for commu-
nication with the PWAs of its inhabitants/visitors.
 Global working PWA, most probably this implies a wireless connection to
the global mobile phone networks and their successors.
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3.4 User Needs, Technologies and Rendezvous

3.4.1 Overview of PWA rendezvous

96

The following picture presents an overview of the different types of PWA to
which we have paid attention until now. The light blue ones have been worked
out in some detail. Many others can still be devised, and may be should be, to bet-
ter serve the goal for which we have developed them: to find drivers of significant
technological change.

A first analysis has been performed to see which technological problems
would originate from the realisation of the sequence of rendezvous. This has led
to the remarks below. They are not to be seen as an exhaustive enumeration of
technological problems. But as a limited list of problems signalled, mainly with
the purpose to trigger you, the reader of this domain paper, to read this carefully,
and give additions and further comments based on the viewpoints of your own
expertise. Our theory is, that by involving a representative group of experts, we
can create a reasonable accurate picture of what needs to be tackled in the future,
and more or lessin what order this needs to be done as well.

Asyou will see the three PWAs are discussed in three different ways. This will
help to stimulate taking different viewpoints and approaches to finding the most
important technological problems and gaps related to the implementation of the
embedded systems of this variety of PWAs.

The horizontal axis represents the time line over which we want to make the
roadmaps. On the vertical axis are displayed for various user groups the starting
points of the evolution followed by a sequence of three rendezvous between user
needs and technological capabilities, covering the whole period until 2011, or
even extending beyond that in the last shown rendezvous. This extension relates
directly to the estimated time for developing the complex algorithms and other
technologies needed for implementation of the PWASs at that point in time.

From the PWAs shown three families are further worked out in the sequel: the
first one as generations of a Parent-PWA, the second one is the generation line for
the Yup-PWA and as the third one the Supersenior-PWA has been investigated.
Names have been given to some of the PWASs in a generation line to emphasise
the evolution in functionality within such a PWA-family.
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Scenarios of rendezvous for PWA-families I

User groups m 2005 [T2008 |}

Parent-PWA
BabyCare

Parent-PWA
DistantCare

Parent-PWA
ToddlerCare

Community
care
Yup-PWA
SafeWare

Simple
separate

Wearable
alarm /]

Box under
phone

Sensory
awareness

Adv. sensory
awareness

commynicator

Sensor-based
awareness

Wearable
Heart Beat
Monitor

Wearable
Incident
monitor

Wearable
distributed
jincident monitor

Distributed
PWA Base
Station

Stationary PWA
Base Station

Smart voice to
text and text to
voice

real time voice to text
and text to voice for
daily communication

Smart white
stick

Talking and
reading white
stick

Figure 8: Scenarios of rendezvous for PWA families

3.4.2 The Parent-PWA rendezvous
Introduction

The Parent-PWA describes the needs of the (young) parents that want to be sup-
ported in their care taking of a child(-ren). Parents want to be able to monitor
their children. There is a clear separation between the device the parent is using

© PROGRESS/STW: public version 1.0, 30 March 2002 97



Embedded Systems Roadmap 2002

and that of the child, making necessary some kind of communications method.
The personal aspect of who is in control shows a gradual shift from parent to
child as the child grows up. Though it is oriented towards the individual, it has a
number of neighbourhood aspects (baby-sitting), requiring an infrastructure. The
well being of the child shows a development of the needs over time that has to be

addressed.

Scenarios: Parent-PWA

Vi N
k Child )
2002 |2005 | {2008 | 2011

User Needs/Functionalities

Young parents have the following needs:

- Monitor the safety of their babies and children while at sleep and playing in bed (vital functions check,
food testing & advice, measure simple and useful things to keep their children well cared)

- Keep a (distant) eye on their first movements around the house and in the neighbourhood

- Influence the learning and development process, gradually transfering control of the process to the child,
preventing unwanted influences, educational games, archive 'first steps’

- Communicate in a parent community about common problems and solutions

- Make it easier to raise children, combine career with care

Vision Generations of appliances with increasing functionality
(from monitoring to measuring and interpreting)
and connectivity (from home to global)
driven by communication

Parent-PWA
BabyCare

Parent-PWA
DistantCare

Parent-PWA
ToddlerCare

Scenario of

Babyphone
rendezvous

Community
care

Parent
access

Figure 9: Scenarios for Parent-PWA
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2002

2005

2008

2011

Major functions

Increase communication between children, parents and members of the local commu-
nity. Make help and information more accessible to parents and children.

Vital functions check.

Tracking & tracing.

Technologies

Sensors/actuators Sound recording Humidity measure- | Body measure- | Emotion measure-
ment ments (respiration | ment (stress,...)
Warning generated | surveillance) In-body
Speech/sound Amplification Sound interpreted Child recognition Play friends recog-
Warning = loud- Warning signals nition
ness
Image/video No Movement detec- | Baby-sitting at a Child playgroup
tion distance supervision
Movement interpre- | Child localisation Advanced video
tation processing
Info transport/stor- At home At home At home and At shopping mall
age Wireless Wireless neighbourhood Wireless to global
Low data rate Wireless to global | network
network .
Higher data rate Video data rate
Software content Small Large Very large
Configurable Adapting
Gaps Security Endurance
Reliability
Perceived radiation
effect
Other Handicapped par-

ents & children?

‘I do not support technology used to encourage fear of strangers or isolation of individuals or family units. Parents
and children should be given more opportunities to seek help from those around them. In isolation there are
increases in child abuse and under-development’ [PROGRESS workshop 2001, author unknown]

Wetness detection

Short discussion of application aspects of the Parent-PWA rendezvous

Remarks about problems and technology challenges in some detailed applica-
tions in the Parent-PWA rendezvous:

* Integrate with the baby phone

* The sensor has to be very low cost and very low power.

» The market is extremely large.

© PROGRESS/STW: public version 1.0, 30 March 2002

99



Embedded Systems Roadmap 2002

» Communication is most likely to be RF-based. The part of the system in the
diaper is most likely to be active. The amount of power (electro-magnetic
field) needed to allow the sensor to be passiveis socially not acceptable.

» We don’'t know how difficult the integration of the production with diaper
production is going to be

 Thereis also a professional market, aiming at diapers for personsin hospitals
and homes for the elderly, allowing higher cost and lower volume

* ‘“Wetness' is depending on the skin condition of the baby, the capacity of the
diaper and leaking. The diaper has to be adapted to these different aspects

« Electrical resistance gives a good indication, but a zero risk is needed before
parents will adopt it

* Infrared image is also usable. Very advanced processing is needed.

Location detection  * Accessto parts of the house based on the age of the child asks for an infrastruc-
ture which is unlikely to be widely available soon (electronic locks, ‘ambient
intelligence’)

« Location detection of people by camera pattern recognition is a long-term
issue, there is too much processing power needed for this moment (2020).
Integrate other information & sensors.

* Recognition without contact sensors or carrying an apparatus needs integra-
tion of multiple sensors and databases to reduce the needed processing power
(recognising one out of four people known to be in the building is much eas-
ier than having to select them from al Dutch citizens)

* Put a chip in the child's bike (power and space available), integrate with
speedometer

* Recognition of who's handling a phone, game boy through finger/voice print
is both needed to adapt the behaviour of the apparatus and to identify who's
inaroom. How to handle privacy? In your own houseit is easy, but you don’t
want everyone's identity broadcast.

« For this application the wireless range needed is limited. Integration of differ-
ent networks can handle the WAN aspects. The video bandwidth that is
needed can be limited by making the frame-rate dependent on movement.

* There's a sub-division between built-in and stand-alone devices. Built-in
devices might have to be customised (child's bike is used for afew years and
then sold to the neighbours). We need standards for this reconfiguration, both
to new users and to upgraded hard/software. (>2007)

« |dentification of all devices makes for excellent theft prevention (and a pri-
vacy problem)

« Trend: processing moves from ‘ base-station’ to near the sensor.

* All data has to be encrypted (not like the current wireless ether-net), other-
wise everyone can listen in on wireless communications. Mechanisms are
needed for selective, fine-grained disclosure. The neighbours can look when
they are baby-sitting.

* When the video system in the shopping mall is capable of tracking children it
is also capable of tracking customers. The number of camera’s needed sug-
geststo build them into alamp.
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» When all these devices need a power adapter the number of adapters needed
might start to be a barrier to adoption of further devices. A standard would be
welcome.

« Children are already carrying a handy (to call mom and 112). A much smaller
transponder would be needed for smaller children.

* The localisation problem basically consists of:

- The child islost or

- Has to come home (for dinner) but is somewhere in the street or

- Isplaying with afriend at home somewhere or

- Isnot allowed to play in dangerous areas

* A transponder that has to be carried can be ruled out. It should be so small
that it can be put in all garments. Then we need ultra-low power and ultralow
data rate sensors, using movement as a power source, resilient against drop-
ping/breaking, and finally usable for all items.

» Transponder use is largely an infrastructure question; they can already be
built into shoes.

* Security has to be very tight, and adapt to emergency situations

Head lice detection « Very high resolution camera needed
* Build into each classroom?
* Other sensors possible?

Sudden Infant * The detection if ababy is still breathing is difficult. Lots of processing power
Death Syndrome is needed to do it with (infrared) cameras. Recognising how the baby is lying
(SIDS) iscritical.
* Parents want to know if ababy liesonitsbelly. Use +/- 5 camera’sto create a
3D image
» The temperature in the close neighbourhood of the baby shouldn’t be too
high.

 Characterisation of the baby’s behaviour is difficult. Individual differences
are large and time-dependent

« Recognition has to be very fast, response time < 1.5 minute.

* The life-saving aspects are too difficult for a home-situation. First application
in hospitals. Re-animation is an option in a hospital, but not at home. The
preventive aspects are worthwhile.

3.4.3 The Yup-PWA rendezvous

Introduction

TheYup-PWA rendezvous are intended to cover the evolving needs of the single,
young urban professional (Yup). It is the age range of the young grown-up who
has |eft the parental home, has finished his higher studies successfully and just
started aprofessional life with abright career ahead. Needs relate to alarge extent
to meeting the right person, to start building an own lasting social contact envi-
ronment, to have interesting leisure experiences in sports and entertainment, and
to build an interesting and profitable professiona life. In terms of well being
there is a constant need for safety: feeling safe in contacts with other people, in
going out and in more personal appointments, in driving and in having sex.
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Even in the desire for excitement and challenges the need for safety will sur-
face in the form risk analysis. Being on the safe side helps building self-confi-
dence and trust in own capacities, and is therefore important for well being. The
picture of the rendezvous takes the existing personal organiser as the status quo,
and sketches a potential future development thereof with emphasis on providing
support for well being of the Yup in terms of providing help in improving saf ety

in al kinds of different situations.

2002

2005

2008

2011

Technologies

Sensors/actuators Touch screen Ul Larger colour dis- Speech-based Ul Disco emotion
Mini-keyboard play, sound+ Personal stress measuring for
Stress detection to | measurement safety
prevent RSI Extended body Alcohol percent-
Sports load meas- measurements age processing
urements Safe food date Food safety
Kitchen safety labelling processing advice
(dustbin monitor) Health check of Gene check of
Fertile period indi- potential parent potential partner
cation
Speech/sound Single-word recog- | Short sentence Connected speech | Sentence transla-
nition input input tion
Single word trans- Text-to-speech out- | (1 language)
lator output put Music recognition
Image/video No Web-cam High-resolution High-resolution
Limited person rec- | camera video
ognition Sport stroke Distant street
Personal profile improvement safety check
matching when Advanced dating Picture and location
entering disco services display of profile
matching person
Info transport/stor- Global via GSM Global via GPRS Global via UMTS Info exchange with
age . Info exchange with | other types of PWA
Info (_exchange with other PWAs
local infrastructure
Software content Large Large Very large Very large
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Scenarios: Yup-PWA

2002 { 2005 I { 2008 I 2011
User Needs

Single, young urban professionals (Yups) have the following needs regarding:
1. Physiological functioning:

Advice on safety in foods, eating and drinking, especially when going out or during exotic travelling

Reassurance of safe home and environment upon entering neighbourhood
2. Safety:
Safety in car driving
Safety in scheduling and meeting interesting people
Safety in doing exciting things
Sports performance without overload
Smart advice on safely dealing with financial situation
Support for clever shopping
3. Love and belonging:
Safety in having sex
Guidance for finding interesting partners
Obtaining emotion support from peers
4. Esteem:
Participate in any activity with trendy visibility
Obtain peer recognition by fashion
Assistance to improve social status
5. Self-actualisation:
Support of learning processes (Improving self-knowledge, self-trust, self-image and influence)
Assistance in self-improvement: communication skills

Vision
Generations of organiser appliances with increasing
number of safety supporting areas (from monitoring to
measuring and advising) at increasing levels of
connectivity (from PWA to local other PWA to global)
Scenario of
rendezvous Mobile Video commu- 3D confe-

phone nication PWA rence PWA

Yup-PWA
SafeWare

Personal
organiser

Me&You
PWA

Personal
organiser

Atmosphere
creator PWA

Virt. envir.
creator PWA

Simple Sensory Adv. sensory Sensor-based

separate awareness awareness awareness
commuynicator

Figure 10: Scenarios for the Yup-PWA
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User Needs

Sensors

Speech/sound

104

Short discussion of several aspects of the Yup-PWA rendezvous

Remarks about problems and technology challenges in the Yup-PWA rendezvous:

Focus of this PWA is strongly on safety. An interesting combination might be
found in the not unusual desire for challenge and excitement in this age category
e.g. in the context of safety during travel in high-risk countries. This would put
mainly high demands on the infrastructure for diagnosis at a distance, access to
massive knowledge databases, etc.

A further explicit user need might be help in assessing risks of whatever nature
they may be.

Major technology problems stem from smallness, light weight and low power
needs:

* Sensors need to be on the body or in clothing: attachment problems

« Sensors which need to measure continuously pose a problem with how to
attach to what part of the body and with their power supply

* Sensors need to become wireless for connection to the PWA

» Will there be sensors that transmit to more than one PWA or to the PWA-
infrastructure?

* Sensors need a unique identification of themselves and of the PWA to trans-
mit to; this to avoid abuse of private information

* For security reasons sensor communication to its PWA needs to be protected
by encrypting the measured signals

* Sensors will develop in two directions:

1. Lower cost, very cheap stickers, one time programmable, major
problem is sufficient power
2. Smarter: more processing within the sensor

* MEMS can beinserted into the veins for diagnostic purposesto reach optimal
performance in sports by measuring sugar content in blood, thickness, acidi-
fication, etc. Not yet available/feasible for consumers, but there is a profes-
sional market for people doing sports professionally.

* A mgjor problem is that the development of sensors takes place at a rather
low pace. This may become a technology gap that hampers further evolution
of the PWA domain.

» Measuring stress is probably still a research topic: it is not clear what to
measure, and how to process the measurements to a useful feedback signal

» Lowering stress requires first recognition of stress from physical signals
(probably measured directly in the brain) and building up a database with
results. These can than be used to give advice to help prevent stress. Antici-
pation of stressin social contacts from measurementsis still far away

» Emotion measurements can probably be derived from analysing voice behav-
iour, from gesture recognition and brain activity. All these are still major
unsolved problems

* Mgjor problem is still to acquire a high quality sound without acoustical
interference from the environment and from which disturbing sounds (noise)
can be removed. Environment compensation is non-existent in its widest
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scope; some noise cancelling processing is available for fixed acoustic envi-
ronments

» Major problems still exist in speaker recognition: recognition of the same
speaker under awide range of conditions (normal voice, voice when having a
cold, voice when tired, voice when gasping for breath) is not yet existing, and
is essential for user friendliness.

* Idiom trangdlation seems to be possible. It is however not clear if this can be
done for a sufficiently low price

» Many functions require advanced ways of pattern recognition

» Music recognition is seen as a problem of pattern recognition and fast access
to massive parallel databases. Strategies for making smart problem partition-
ing are not yet available

Image/video * Mgjor problems are, apart from the necessary algorithm investigations, may

be mostly in supporting technologies like the optical creation of 3D images

* Person recognition is seen as a combination of pattern recognition and fast
massive parallel database access

* Stroke improvement is mainly a pattern recognition and interpretation prob-
lem, for which probably not yet algorithms exist

* Distant street safety warning signals is a subject that is in its automatic ver-
sion far out: it is a problem of pattern recognition over time and the corre-
sponding interpretation algorithms. Thereis currently not much known about
thisarea

» When devel oped street safety warnings might develop further as a service for
which a subscription fee can be bought for a certain region

* Many PWA functions might be offered as subscription services

« Safe driving may give rise to an interesting set of person-oriented measure-
ments: alcohol, degree of tiredness, sleep, in general decreasing attention to
what goes on at the road. But also more genera interpretation of other
driver’s behaviour in traffic might generate useful (=well-being increasing)
signals: entering a road giving figures about degree of loading of the road,
percentage of drivers with anomalous (=dangerous) behaviour.

Information trans- « All information transport needs to be wireless. Significant extensions of the
port current capacities are needed to make PWA networks possible
* Sensor communication to the PWA also needs to be wireless, with a reasona-
ble range, speed, reliability and price. This poses mgjor challenges for all
types of sensors
» Low power communication will be essentia
» Many of the proposed functions require access to massive databases to search
through with a high speed. This poses enormous demands on the communi-
cation infrastructure

Software size » Will increase; reliability amajor problem

3.4.4 The Supersenior-PWA rendezvous
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User needs/Functions

Wearable

Scenarios: Supersenior-PWA

2005 11 2008 |I
| 2002 : 1 2005 | { 2008 | : 2011 I

Emergency alarm  + heart beat monitoring
by pressing a knob Reassurance, advice Auto login for visitors disposable
No immediate Voice controlled in public environment Luxury
feedback Display & sound on TV? Localisation support decorative versions
Assistance comes  Alarm to partner Limited memory assistance

Automatic emergency alarm

Remote monitoring heart-

diagnosis for registered

action e.g. sending doctor

+ incident detection  + low cost versions->

Home base station

Vision

Simple box
under telephone for

Medicine box reminds
medicine intake

Stationary PWA Dynamic PWA
base station base station
Speaks, flashes, hums auto relocates if
Extended memory required
support

Back up of wearable

in case of lost

Knows where to find things
Answers questions: where is ...

automatic emergency Feedback to remote
doctor

Local monitoring
Unified signaling
Reminds day and date
Voice controlled

calling

Trends: Increasing number of 70t people ("Grey wave" in 2015)
Increasing wish to remain self-supportive
Vision: PWA evolves from novelty to fashion

Functionalities will become available as services

Evolution:Functionalities implemented in base station will 'move' to wearable
Single wearable will evolve to wireless distributed over the body

PWA wil evolve from medical (professional) to consumer good

Scenarios of
rendezvous

Technologies

Wearable
Heart Beat
Monitor

Wearable
Incident
monitor

Wearable
distributed
incident monitor

Wearable
alarm

Distributed
PWA Base
Station

Box under
phone

Local
MediMinder

Stationary PWA
Base Station

Sensors/actuators Knob Heart beat Movement detection Movement interpreted
Blood pressure Warning generated Smart warning
Diet monitoring Diabetes measurement  Epilepsy detection
Speech/sound No Sound interpreted Simple conversation
Warning signals
Image/video No No Image in wearable Video plus image
recognition
Transport Wireless Wireless At home and neighbours
at home outside Wireless to local network  Wireless to global
network
Low data rate Higher data rate
Software content Very small Large Huge Very huge
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Figure 11: Scenarios for the Supersenior-PWA
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Introduction

The general purpose of a Supersenior PWA can be summarised as follows:
* To aid elderly people to live longer on their own
* To support them in a non-patronising way
* Thisis especially important in the Netherlands because a kind of Delta Plan
is needed for the * Grey Wave' coming around 2015

Description of the Supersenior-PWA rendezvous

2001
Present situation: Emergency alarm by pressing a knob on the device that hangs

on somebody’s neck. The device sends a radio signal to a box under the tele-
phone, which dials a predetermined number to a service. A human person at this
service recognises the phone number and calls one of the neighbours, who has a
key, with the requests to take alook. If this phone call fails, the service warns the
police or sends somebody to have alook at a certain cost.

Supervision on medicine intake is difficult in the Netherlands for people that
live on their own.

At present a significant part of super senior society refuses to actually wear an
alarm device. Some are of the opinion that they will be able to walk to it in case
of need, which isin many situations not the case.

2004

Wearable Heart Beat Monitor
Thisdeviceis characterised by:

« Day and night wearable e.g. around the neck

» Water resistant

« Voice controlled (Dutch + dialects, later for other languages as well)

» Simple large emergency knob and voice control for help

» Connected viawireless body LAN to heart beat sensors (Ilow weight)

* Possihility to set alevel for automatic alarm

* The device speaks via small loudspeaker or the television which is automati-
cally switched on to dedicated channel

* Gives feedback in natural way, reassurance at predetermined intervals or on
verbal request: ‘Heart OK? answer: ‘Yes'.

* Asksin case of alarm, permission to call a dedicated service or the nurse or
physician. In case of no reaction, it will make the call

* Informs, in case of alarm, partner who may be disabled (deaf or in a wheel
chair).

* The power of the device will come from weak electromagnetic field e.g. dur-
ing sleep? (Battery exchange is out of the question)

* Could be extended with blood pressure measurement.

« Can be extended with diet monitoring (you say what you eat and it warns you
if it is not good for you or too much, or you should drink another glass of
water.
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Local MediMinder®

» Medicine box that provides, monitors and reminds medicine intake

* Voice controlled in mother language (Dutch + dialects, later for other lan-
guages aswell)

 Connected to service to indicate irregularities, physician or chemist to indi-
cate low medicine levels

« Indicates day of the week date and time in maother language

» General signalling: provides audible and or visible signal (also on TV) that
something requires attention like:

» Firealarm

» Medicine intake time

» Something burning on the kitchen cooker (again)

» Front door bell rings

» Email arrived

» Phone cal

2007

Wearable incident monitor
Same functions plus:

* Incident detection: may be in combination with TV cameras that analyse
images and detect incidents. No storage of images.

 Auto login for visitorsin LAN in elderly peoples home

* Auto login of GSM based PWAs of owners that want to be under surveillance
alsoin public areas.

* Localisation support to find direction to home. A compass like needle points
direction to go

* Limited memory assistance

« Extendable with unit for early epilepsy warning

Local Stationary Base Station
MediMinder has evolved into Local Base station. Same functions plus:

 Speaks. Simple conversations in real time. Can wake you up, or tells a joke,
reads the headlines of your favourite newspaper via Internet or abible text.

 Back-up for wearable, if lost in toilet

» Extended memory assistance:

» “"Where are my keys' ?You need to tell it were you put things before or vital
thingslike keys could be labelled and localised by the Base Station who gives
direction indication.

» “Who is having birthday today? or ‘What is the weather?

2010

Wearable disposable incident monitor
Same functions plus

* Distributed over the body
* Low cost versions
» Some parts are disposable
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User Needs

Sensors

Speech/sound

Image/video

Information trans-
port

Other

* Luxury decorative functions (in 2001 you have ballpoints for 0,1 Euro and
500 Euros)

Distributed Stationary Base Station
 Extended with simple natural language conversations

* Helpsto find things

Short discussion of several aspects of the Supersenior-PWA rendezvous

Remarks about problems and technol ogy challenges in the Supersenior-PWA ren-
dezvous:

* Dynamically configurable functionality. Configurable to circumstances and
development of the needs of the user:
Requires special user interface and dialogues

 Battery powered in the beginning, Later with low-power |Cs powered by
external EM fields

*» Acceleration detector in wearable

» For unified signalling (all relevant messages come from one place):
front door bell, phone, fire alarm, cooking plate, email arrived

» Simple conversation requires knowledge and handling

 User friendly may require new technologies for sound interpretation

 User friendly may require new technologies for speech interpretation. To be
solved are: distinguishing words, recognising words taking into account sub-
ject and context, real time

» Missing today: Reliable voice control with natural feedback

* Recognition of emotions e.g. panic (from pitch?)

« Continuous design problem: what to realise in the wearable and what in the
Base Station?

« Video processing to analyse images and recognise patterns. Much to be done
on image pattern recognition

« Problem: how to offer visual information: required adaptability by the user
and use of standard television as display

NB: retina projection will come far after 2010

* Pattern recognition: distinguish between someone has fallen down on the
floor and someone who is cleaning the carpet

« Continuous design problem: what to realise in the wearable and what in the
Base Station?

* Auto test with feedback ‘Wearable is OK’

* Base station could become distributed as well

* Auto login (when in another elderly people home) challenges:
 No protocols exist to login in arbitrary network

* Important to choose for an existing network like GSM
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3.5 A day in the life of William in 2011: a letter to an old friend

110

John, you asked me to describe aday of my life, so herel am at 76.

Today is June 12th 2011. My PWA base station greeted me cheerfully this
morning with the voice of my wife. You know, when Dora was still with me she
programmed it for fun that way. But now | don’t know whether she was aware
that she might pass away beforeme ......

| took the hart pill that the PWA offered me and prepared to go for awalk.

These PWAS are so clever today. | don't know how, but it knows - perhaps
because | moved my stick - that | wanted to go out. ‘Darling’, it said, ‘I advice
you to take my small assistant with you when you go out’. So | took the small
wearable PWA out of it and put it around my neck. ‘Are you fully loaded? |
asked and it said, ‘ Yes'.

This assistant is very small and lightweight and it monitors my hart. It speaks
to me every ten minutes to assure that every thing is OK. In the past men refused
to wear these things, but it looks like a piece of jewellery. And when | call ‘Dora,
| see her photograph in its display for 10 seconds, but that is enough. | get imme-
diately access when | call ‘Help’, ‘Doctor’ or ‘Misses Pride’ from the elderly
peoples home were | live. | feel very safe. Before | got it, | was quite afraid and
limited by the painful remembrance of a severe hart attack.

Another nice feature is, that when | call ‘Home' an arrow appears in the dis-
play window to indicate the right direction. It islike a compass needle. Itsindica-
tion is independent of how you direct the device. It is not very precise but good
enough to return into the neighbourhood to where | recognise the houses.

| went home to drink coffee in the lounge, after the nice walk. The PWA
watches my diet too. You say to it what you eat or drink and it responds. At lunch
I met Peter, an old acquaintance. We spoke about holidays and he wanted to see
some photographs. So we went to my apartment and | put the small PWA back
into the robot. |1 know, that the doctor said that | should remain under vigilance
but | feel sometimes alittle childish withit. | asked the PWA base station: ‘Where
are the photographs from holidays in 20007 He answered: ‘In the electronic pho-
tograph display’. Just by asking some questions we found the photographs from
Kautenbach in Luxemburg.

After he left | took a nap. In the afternoon | awoke by the unified signaliser
function of the PWA: it signalled that there was something to pay attention to. It
was a phone call from one of my sons. Unified signaliser is an improved version
of the previous unified messaging. It calls my attention to gas that remains burn-
ing sometimes (1), TV programs | could want to see, who is at the front door, and
what medicines to take.

When | took my glass of sherry, the PWA reminded me of my diet, but | said
‘Shut up’ and took another glass. The nice thing of it isthat it never losesits tem-
per, like the cleaning woman does, who accuses me of being dirty in the kitchen.

After dinner | watched the television program with the Elisabeth Concourse for
piano. | have recorded it in my home mass storage and the PWA can help me to
find it back.
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Nothing can replace Dora, but | am alucky man not to be too much dependent
on my family or others at present. By the way, it seems that Sony is preparing a
PWA in the shape of their well-known dog. It follows you everywhere in the
house. At night it will sleep at the side of your bed. It would be nice if it could
fetch my dslippers.

3.6 Reference

1. A.H. Maslow, ‘A Theory of Human Motivation’, Psychologica Review 50
(1943): 370-96.
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Appendix 4.

4.1

411

Domain of the Embedded Systems Designer

Domain description

Introduction

We discuss in this paper the design of Embedded Systems. In terms of the needs

of thisfield three areas where needs originate, may be distinguished:

» Needs that originate from the nature of the Embedded Systems themselves

e Needs that stem from performance demands and non-functional constraints
placed upon Embedded Systems

e Needs that come from the wishes of designers of Embedded Systems and
which relate to methods and tool s desirable and/or indispensable for the design
of Embedded Systems

In this domain paper we will focus on the last mentioned category of needs. The

PWA domain paper is intended to cover the second category of needs. The first

category of needsis not yet covered.

Apart from the needs that originate from within the field of design of Embed-
ded Systems, we will have to take into account needs that derive from:

e Genera trends in society related to individualisation, globalisation, mobility,
safety and security, fashion sensitivity, changing composition of households
and population

* General trends in business and business models: flat organisation, focus on
core-business, multi-site/multi-company co-operations, e-business, shift to
services

e Genera trends in embedding systems: more functionality, higher complexity,
more technologies involved

e Genera trends in technological areas necessary for the development and pro-
duction of Embedded Systems. Moore's law (semiconductor technology:
CPUs, memories, ASSPs, FPGAS, etc.), communication capacity growth, data-
bases, display technology, sensor/actuator technology, MEM S technol ogy.

Where and when these trends create dependencies for Embedded Systems tech-

nologies we will have to indicate that with linkages in the Embedded Systems

Roadmap.

4.1.2 Why Embedded Systems exist

Embedded Systems are a new term for and an outgrowth of the compositions of
individual components that still make up most of today’s (sub-)systems-on-a
board. The components used are standardised in several aspects and are often
programmable. This makes them widely applicable and reliable for use in (sub-
)systems design. The term Embedded System has come up to distinguish the flex-
ible, reactive electronic data processing part of a total system solution (the
embedding system) from its other subsystems. Technology progress enables to
implement complete hardware/software subsystems on a single board or chip.
High-volume Embedded Systems applications are often implemented nowadays
as Systems-on-a-Chip (SoC).
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Making a Roadmap devoted solely to Embedded Systems implies that the
Embedded Systems area represents a specia field of technical activity that
deserves a specia treatment. Embedded Systems thank their existence to the
Embedding Systems that incorporate them. The importance of the Embedded
Systems field derives from:

e Economy of solution by using to alarge extent standard hardware and/or soft-
ware components, even in high-volume consumer-electronics applications

e Economy of solution provided by platform sharing over many applications

 Flexibility of solution by programmability and/or (re)configurability

» They have shown in the past to be able to make profitably use of the increasing
economies of all needed technologies

4.1.3 Classification of Embedded Systems

Embedded Systems can be classified according to severa criteria. For the pur-
pose of a Roadmap the following classification helps in reaching a useful struc-
ture for the Roadmap:

e Application domain: speech, audio, video, control

e Implementation technology: hardware, software, hardware/software

e Functional performance: real time throughput, etc.

* Non-functional constraints: latency, power, cost, etc.

4.1.4 Purpose of this domain study

This domain study serves as atrigger for discussions in the Core-Team meetings
and the Embedded Systems Roadmap Workshops about what are major stum-
bling blocks for increasing the design productivity of Embedded Systems design-
ers. This subject has, of course, to be broken down in much more detail to come
to practically useful statements about what needs to be done in R&D. For that
purpose we will discuss the design flow of Embedded Systemsin general. Subse-
guently we will draw conclusions on the needs for specific tasks at specific levels
in the total design trajectory. This should be further analysed as to what that
means for linkages between Roadmap subjects.

4.2 Characteristics of Embedded Systems Design

4.21
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Characteristics of Embedded Systems

Embedded Systems are characterised by the following properties:

e They are a subsystem of their embedding systems

» They provide information processing services to their embedding systems

e They are reactive, i.e. they interact with the physical environment of their
embedding systems

e They provide usually acomplex functionality to their embedding system

* They are mostly not visible or directly accessible by the users of the embed-
ding system

The following sketch serves to make our choices clear with respect to what

belongs to the Embedded System and what not. As there is some arbitrariness in

these choices the purpose is also to avoid extensive discussions on the topic of

Embedded System definition in our Workshops on the Embedded Systems Road-

map.

30 March 2002



There are many application domains for embedding systems, and embedding
systems may contain many embedded systems. Embedded systems themselves
may also contain other embedded systems.

Embedding System

Embedded System z

Sensors

Communication
Interfaces

mbedded
System x

Figure 12: What belongs to an embedded system?

The picture below shows visually some of the positioning and major characteris-
tics. It is not shown that an embedding system may contain more than one
Embedded System. The focus in the picture is on the interfaces between the
Embedded System and the embedding system and its environment. It gives a
clear indication of our choice that all communication to the external world takes
place via the embedding system. The direct interfacing between the processing
functions of the Embedded System and the embedding system e.g. via shared
memory access or message passing, is only suggested by an arrow and not further
detailed. Direct interfacing between several (hierarchical) Embedded Systems of
one embedding system is not shown. Not indicated is that an application domain
isusually covered by alarge variety of embedding systems. Also other functions
and user interfaces that an embedding system itself might provide are not indi-
cated. Degspite all these missing elements this picture has been quite helpful in
bringing clarity in some Core-Team discussions.

Three important themes play amajor role in Embedded Systems:
1. Interaction (by hardware and software) with the external world of sensors,

actuators and communication networks.
2. Processing of data with the performance and under the constraints imposed by

the embedding system
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3. The design of Embedded Systems. This last topic is the major subject of this
domain paper for the Embedded Systems Roadmap.

Embedding System

mbedded System
Themes:- interfacing

- processing
-how to design

Figure 13: Embedded systems themes

4.2.2 What is special about the Design of Embedded Systems?
The design of Embedded Systems is special due to the following aspects:
e Many non-functional constraints
- Strong influence on design objectives and architecture
- Low cost (being invisible to user)
- Low power (mobile, wearable)
- EMI and EMC: electromagnetic interference and compatibility
- Hard timing constraints (real time response, A/V)
- Reliability, robustness and safety (restart impossible, autonomous)
- SoC, Size, weight, ...
* Specialisation and customisation of target platforms
- Possible by detailed application know-how
- Challenge is how to maintain some degree of flexibility
- Related is the wish to increase the reuse of hw and sw components
 Distributed co-operating embedded systems

e Use of many disciplines and heterogeneity of applied technologies

4.2.3 A Design Flow for Embedded Systems Design
Design proceeds by top-down refinement, level by level, using bottom-up defined
models and components, alternated with bottom-up composition/integration and
verification. At each of the decomposition/refinement levels a mapping is made of
the required functionality onto the target platform architecture. Subsequent per-
formance analysis gives rise to potential modification of function or architecture
choices. The following figure depicts this symbolically in a so-called Y-chart:
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Functions Architecture

(MoC) (MoA)
Mapping
Performa_nce
analysis
I /i

Implementation

Figure 14:Y-chart

To discuss the progress of systems design with the purpose to derive target plat-
form architecture for a specific domain, the foll owing picture shows the sequence
of design steps of the preferred method for such a case:

Application domain

. . . . Generic domain
Domain analysis: domain functions — systems architecture
Platf hi finiti Platform
atform architecture definition architecture

v

Instance architecture definition ?latform
l instance

. Rapid VLSI Software
Implementation prototype design At

Figure 15: Sequence of design steps

A more detailed picture of an Embedded Systems design flow (the V-chart) is pre-
sented in the following figure. It covers, apart from the platform design for a spe-
cific application domain, also the design, test and system integration of an
instance of the platform architecture, finally leading to a physical prototype of the
intended Embedded System. As this concerns only the Embedded System, an
integration flow hasto be realised for the integration with the embedding system.
It isto be understood that at each level a mapping process takes place from func-
tion onto architecture (or structure). The green feedback circles symbolise the
iterative verification that takes place at each level to check the consistency of
input and output specifications of each level. As any design starts by specifying
the desired result and specification is both the input and output of any design
activity, it isonly indicated at the top level. but plays of course amajor role in the
whole design flow.
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Specification Physical prototype
[ Domain systems architecture E—J—q—’

N

[ Platform architecture design @—P
\ System

Platform integration
testability and

strategy test

[ Platform instance design

Component
design

Interface
design |

Components
(building blocks)

Figure 16: Embedded systems design flow

4.3 Trends relevant for Embedded Systems Design

4.3.1 General trends

For Embedded Systems design a number of general trends are relevant:

1. Increasing individualisation: this leads to more diversity in products and serv-
ices, and therefore to the need for more flexibility in design, which in turn
leads to an increasing software content

2. Increasing fashion sensitivity: this results in shorter product/service life cycle,
and therewith in a necessarily shorter time-to-market leading to shorter availa-
ble design time

3. Globalisation of products and services: multi-site design teams, need for stand-
ards

4. Increasing need for safety and security in transactions and communications
leads to functionality extensions that must be designed-in.

4.3.2 Trends related to the evolution of Embedded Systems

The design of Embedded Systems is strongly influenced by the following evolu-

tions:

1. Increasing product/service complexity: more functions, more intelligence,
higher data rates, more storage: need for reuse

2. Increasing multi-disciplinary solutions and heterogeneity: more digitisation,
more measurements, more sensors/actuators, more complex project manage-
ment

3. Increasing communication needs. more networked (also the designers!), wire-
less, internet

4. Shorter life cycles: shorter time-to-market: decreasing available design time
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5. More mobile/wearable devices: strong need for power reduction.

4.4 Vision on Embedded Systems Design

We are currently experiencing what could be called the ‘ embedded system design
crisis similar to what the software designers have experienced in the past few
decades. The software community has been working hard to overcome this crisis
by introducing concepts like components (and frameworks), component-based
software design and scripting languages. Key issues are re-use (domain engineer-
ing - commonality and variability), interfacing, portability and rejecting complex-
ity in favour of simplicity (for reliability), intentional programming.

A similar revolution is needed in embedded systems design. Apart from tech-
nological challenges (miniaturised sensors and actuators, low power,...), the inno-
vation must come from software that is made available to the designer to support
his design space exploration at higher levels of abstraction. This software should
comply with current software standards and provide mathematically sound mod-
els, fast retargetable simulators and interpretation and visualisation tools that
jointly allow for fast exploration, performance/cost evaluation and decision mak-
ing. Re-use of software and hardware components and explicit modelling of
generic interfaces must be advocated as much as possible. Mastering the com-
plexity of embedded systems design will have to come from enforcing simplicity
and imposing some design invariants to avoid state explosion in any possible
dimension (complexity, cost, design time, etc.). Abstract design does not prevent
the final system from being efficient: while the abstract designer approaches the
details from the top, the bottom-level designer makes his IP components upwards
available in terms of pre-defined models and parameters. Although ‘a correct by
construction’ design methodology is difficult to achieve, we should strive at cor-
rectness by construction as much as possible.

Re-use: Re-use is a must. Although components can be seen as black boxes,
they must have an explicit interface specification, and the interface must be
generic enough that the component can be integrated in many structures. Related
issues are portability and parameterisation of components.

4.4.1 Attractive design targets
1. Factor 30 design productivity increase
2. Bug free software design
3. Deadlock free system design.

4.5 Embedded Systems Designer Needs

A number of Embedded Systems Designer needs have been formulated to stimu-
late further discussion. The list is by no means exhaustive, but just serves to trig-
ger the creation of a proper framework of methods and tools for Embedded
Systems Design. The scenarios and rendezvous in the next chapters are a further
first attempt to classify and catch the most important and highest priority items
for Embedded Systems Designers. There it will be quite important to signal
dependencies between the needs in different areas, and the linkages between the
technologies that are going to be devel oped to satisfy the needs.
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1. Higher design productivity: easier reuse of heterogeneous hw/sw modules, bet-
ter formal techniques. Shorter time-to-market and differentiation (distinguish
from the competitor) demand a higher design productivity. This goes throughout
the entire design process. Reuse is part of this; we need formalisms to enable
reuse of hardware and software components. Formal techniques are necessary to
allow for verification: checking whether descriptions at various levels of abstrac-
tion conform to each other. The more extended use of 1P will shift the emphasis
within ES design towards the ability to ‘knot things together’ (to integrate).
Again, communication is the starting point for this type of design.

2. Easier handling of flexibility: exponentia growth of software: shift from hw to
sw, reconfigurable computing. Thisis akey point in the design of embedded sys-
tems for the coming decades. It isamajor part of the design space exploration. In
the past (i.e. until now, 2001), the issue was to choose what to implement in hard-
ware and what to implement in software. The exponential growth to more flexi-
bility (software) will flatten, ssimply because of current and future power
limitations. However, increasing mask costs for chip fabrication necessitates the
possibility for ‘subtle’ changesin the functionality after fabrication. Reconfigura-
ble hardware offers a trade-off between design flexibility and power efficiency,
and will therefore comprise a major design paradigm in the future. With the
emerging reconfigurable architectures there is even a third dimension: what to
implement in hardware, software, and in reconfigurable parts of the architecture.
At the tools this creates a new gap: tools for mapping parts to reconfigurable
architectures as well as tools to do design space exploration in the above men-
tioned three dimensions.

3. Specification methodology that allows reuse of hw/sw modules at embedded
system level. Thispoint is related to point 1 above, but it is restricted to the high-
est levels: the levels of specification.

4. Design capturing at high system level with specification debugging facilities.
This takes place at the higher levels of abstraction. Methods and tools are needed
to play around at the level of specification, also before doing a hardware/soft-
ware/reconfigurable partitioning where the same issues of specification recur. At
higher levels of abstractions we a so need to take the non-functional requirements
into account as discussed at point 6 below.

5. Co-ordination environment for different computational models in embedded
multi-processor systems. Once point 9 and 10 below (e.g. the concepts) have
been found out, it is the next step to build tools that combine the various compu-
tational models and allow the designer to reason about the compl ete system with-
out bothering about the specifics of the separate formalisms. This comes after
points 9 and 10. 5. Thisis also related to the increasing emphasis on integration
(point 1).

6. Design space exploration, also at high system level, taking non-functional con-
straints into account. In order to do that efficiently, with less pressure on the
designers’ intuition and experience, power and cost models are required for the
various potential implementations. This is key for embedded systems, as they
have the extra constraints (e.g. size, power dissipation) that are characteristic for
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them. These constraints are known at the highest levels of the design, even before
actual specification. We need a way to model these constraints in some way or
another in the earliest specification phase so that we can deal with them right
from the beginning. The embedded system designer's nightmare is to have the
complete system implemented then finding out that it doesn't fit in the box it is
supposed to fitin.

7. System level partitioning and allocation optimised for distributed multi-tasking
embedded systems. This relates to tackling multiple embedded systemsin acom-
plete system. We will need the same set of tools we will have for designing
embedded systems, but then a level up, where we combine multiple embedded
systems into anew ‘super’ system (e.g. the embedding system).

8. Compiler techniques for minimum power. There are various ways to interpret
this. If we look at compiling a high-level language (e.g. C) to machine operations
running on an architecture, one could think of generating instructions that result
in minimal power dissipation when running on an architecture. Thisisarelatively
new area, and could be an interesting research topic. If we look at compiling a
description of hardware to actual silicon, techniques like clock gating can be done
to save power. Quite alot of research on how to do this is aready taking place,
and not particular to embedded systems. If we look at compiler techniques for
reconfigurable architectures there is a wide not-yet explored field of research,
also related to design space exploration on the HW/SWi/reconfigurable level.
Example: a reconfigurable unit to do application-specific computation in a low-
power fashion. The most significant power savings expected from future compiler
technology is in reordering memory accesses thereby tuning the application to a
given cache size. Extrapolating, one might expect future caches to yield more
deterministic behaviour, probably controlled by the application software itself
rather than the processor hardware.

9. Verification and debugging of embedded systems with heterogeneous compu-
tational models. At different levels of abstraction we have different formalisms
with different semantics today. It will be important in the future to have a means
of doing verification between the various levels of abstraction. To do thisin a
structured way, it is essential that the various (heterogeneous) models can ‘talk to
each other’ by means of clearly defined interfaces etc. Research in necessary to
highlight the differences in expressive power of the various formalisms, as well
asthetransfer of relevant information from one formalism to another.

10. Extended formal verification methodologiesto include higher level embedded
system properties relating to e.g. protocol analysis, bus arbitration and schedul-
ing. Thisis a speciaisation of point 9 to the higher levels of abstraction. It also
takes into account the interfaces between the embedded system and the embed-
ding system.

11. Accessibility and flexibility of tools. Apart from what we believe that a
designer needs in the future, there is one thing that designers have aways
demanded: the possibility to interfere with what the tool is doing. The designer
often has a pretty good idea what he wants, and the design effort is dominated by
the ability to ‘tell’ the tool what the designer wants.
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12. The ability to exploit application specific characteristicsin silicon (or recon-
figurable logic). Because of the huge power and cost savings associated with
hardware acceleration together with the low profit margins in high-volume elec-
tronics and the increasing need for power minimisation, designers will continue
to exploit application knowledge in silicon. This will be a show stopper for
design productivity, unless tool support is offered. Libraries with highly opti-
mised |P designs are only partly a solution to the problem. Although many DSP
cores are available as IP, these DSPs only provide basic functionality. In the
future we can expect these DSPs to be provided with reconfigurable logic to
allow the customer to tune the DSP to his application. Because of the huge power
and cost savings associated with application tuning, the customers knowledge of
the application and his ability to exploit that knowledge in silicon will probably
comprise the most important competitive distinguishing feature (at the processor
level).

4.6 Overview of Embedded System Design scenarios

122

The choice of areas for the scenarios is based on the Embedded Systems Design
Flow, the V-chart. Each of the scenarios exists of three rendezvous. This number
is more or less arbitrary, and may be changed in the course of the roadmapping
process. It is also possible that several scenarios in parallel can or must be fore-
seen e.g. in the test and integration scenario where this will be a must to cover
both areas properly. In other areas natural dichotomies may exist, or there may be
different opinions on what the most probable scenario is. Besides, in several areas
there will exist quite different needsthat call for different scenarios of rendezvous
of different technologies.

In the sequel all scenarios and the rendezvous of which they consist, need to be
further detailed as to:

1. What is the current status with respect to methods and tool s?

2. What is the rationale for the chosen scenario of evolution: What are the needs,
what nature do they have (feature, productivity improver, show stopper)?

3. What technologies, both methods and tools, need to be developed for meeting
the needs? How big ajob is it? How probable is it that others will solve the
problem?

4. What dependencies do exist between the scenarios and rendezvous?

The next page shows an overview of the scenarios generated in the different

areas:
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Figure 17: Overview of scenarios
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4.7 The Idea to Executable Specification scenarios

4.71

124

Introduction

From idea to implementation.

What do we mean when we say that we want to turn an idea into an implementa-
tion? An idea is a conception of a certain application. An implementation gives
concrete architectural form to the application. Turning an idea into an implemen-
tation comes to a translation of an application specification into an (software/
hardware/reconfigurable) architecture description.

There is no unique implementation for a given idea or application, and there is
no unique way to go from a given idea to any one of these possible implementa-
tions. This observation cannot but enforce some compelling design constraintsin
order to keep the design complexity manageable and the design cost affordable.
To begin with, an application always belongs to some application domain, and it
iswise and beneficial to focus on the domain rather than on each and every appli-
cation in isolation. Thus the architecture will have to be an instance of a domain
platform and the idea-to-implementation translation procedure will have to be
applicable for al applications in the domain, if not for a set of related domains.
Thus, the architecture description will have to be derived from the specification
of the platform and, moreover, application and platform specifications must
match in order to allow the trandlation procedure to be cost-effective, both in
terms of time and reliability. The conclusion, then, must be that both specifica-
tions must be given in terms of models and that the translation from application to
architecture must be in terms of mapping the application model into the architec-
ture model.

The introduction of a platform that should serve as a common implementation
basis for applicationsin adomain requires that this platform, and hence the appli-
cations, must be introduced at a high level of abstraction, which in turn implies
that there are till many possible implementations for any given application in the
domain. However, the total amount of possible implementations of a given appli-
cation has now been greatly reduced, simply because no applications outside the
domain can be considered and no architectures that are not instances of the plat-
form can be taken into consideration. Thus, the models in terms of which the
application and architecture specifications are given, as well as the translation or
mapping of the former into the latter are all domain specific and start at a high
level of abstraction. Of course, hone of the possible implementations is abstract
and, therefore, we can conceive of an abstraction pyramid, at the top of which
resides the idea and whose basis is the space of all possible implementations. The
set of feasible implementations, i.e., those that satisfy all constraints that are part
of not only the application specification, but also the platform specification and
the translation method, must then be reachable from the level at witch the specifi-
cations are given, by means of a sound design methodol ogy that takes these spec-
ifications down the pyramid.

The above reasoning leads to the conclusion that the path from idea to imple-
mentation consists of two major parts. Thefirst oneisto take the ideato a specifi-
cation, the second one is to take the specification to an implementation. The idea-
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to-specification part goes from the top of the abstraction pyramid the level where
specifications have got the form of models. The specification-to-implementation
part is a stepwise refinement part in which decisions based on explorations turn
the abstract into the concrete. Each and every transition from one level of the
abstraction pyramid to the next one narrows down the design space to a region
that is a tighter envelop of the feasible implementations. Models get refined and
the mapping of application models into architecture models may change nature
whenever the models do. We return now to the specification issue in the next sec-
tion.

From idea to specification.

An ideais a conception of an application in a particular application domain. An
idea may initially be vague, and the fist step to be taken before delving into the
specification problem isto get the idea as sharp as possible. Thiswill most proba-
bly include a few brainstorm sessions among experts, as well as the construction
of some aternative scenario’s on the back of an envelope. Once the experts
believe that the application is feasible (implementable), they will decide on the
choice of scenario to be taken further. Details are too far away to be visible
though. We are, of course, not dealing with trivial applications. Trivial applica-
tions have trivial implementations. We are also not dealing with very specialised
applications. Special applications have special implementations. The applications
that are of interest are those that comes in versions, families and generations.
They range from wafer steppers, to distributed pay road systems, to x™ generation
radio telescopes and mobile communications systems, to persona well-being
assistants, to intelligent micro, nano and pico robots, to autonomous MEMS co-
operating through ad hoc networks, to down-to-earth automotive and multimedia
type applications. Taking such applications to reality requires that we be more
specific as to what exactly is to be that reality. That is, the idea must be worked
out, and a system specification must be conceived and presented.

First, the application domain to which an application belongs must be identi-
fied. If no system platform for that domain is available, then such a platform must
be defined/designed. This task is crucial and far from simple to accomplish. The
platform determines the design space and must be capable to meet the design
constraints. These constraints, however, come partly from the specification of the
application and partly from the design methodology. It thus follows that specify-
ing an application and defining a platform are part of the design methodology
itself that should support these tasks.

Now, what is a specification? A specification of an application deals with the
what of the application (the so-called behaviour) and not with the how (which is
part of the architecture specification). It also gives certain constraints that must be
met by any possible implementation. An application should never be under-spec-
ified nor over-specified, whether it is in executable form or not. Let me illustrate
this point by means of two examples. The fist one illustrates what could be
referred to as the idea is the specification archetype The second example is the
counterpart of the first oneillustrating the specification is the idea archetype.
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Example 1. The idea is the specification.

It is well known that (mobile) wireless channels are unreliable. Moreover, they
are the more so, the higher is the bit rate that is riding on the channels carrier
wave. How to disentangle those two conflicting requirements or, devise an idea
that is word an application. The ideais simple: split up the information data into
low-bit rate streams and transmit these steams over multiple channels (using mul-
tiple carrier frequencies) so as to maximize the product of combined-channel reli-
ability and information density. The idea is, in fact, so simple that simple
calculations suffice to prove the feasibility, and a quick prototyping can pave the
way to global markets. No more of a specification is needed, except for the con-
straint that carrier frequencies should be far enough apart that no cross talk can
hamper the success of the idea.

Example 2. The specification is the idea.

Speech, when interpreted as an amost harmonic signal, is in many respect
astounding. It is one of the rare physical signals that can be compressed to an
extent that matches almost al mathematical artefacts. In less than two decades,
compression factors of up to 30 have been achieved, and the end is most likely
not in sight. Moreover, leading experts in the field have demonstrated that the
complexity of the compression algorithms need not be excessively high, provided
they are built on a deep understanding of fundamental, if subtle, properties of the
speech signal. As aresult, the development of algorithms that squeeze speech sig-
nals to the bone requires great care, and these algorithms will, then, serve as a
specification for almost all applications that originate from almost all ideas that
are versions of one main idea: have voice communication over networks, such as
the internet, that are hostile to natural, uncompressed speech.

The ‘the-idearis-the-specification’ example illustrates how systems can be eas-
ily under-specified. An idea is not and can never serve as a system specification,
simply because ideas, by their very nature, need to be worked out before they can
be implemented as applications. When taking an idea as a system specification,
there will most likely be too much freedom left to the designer which may get lost
because of lack of precision in the specification. The resulting system may turn
out to perform poorly, and this result could probably have been foreseen if the
idea would have been taken more carefully to a specification, i.e., if sufficiently
many what-if questions would have been considered in the first place. Multi-tone
systems (as specified in example 1) have been built and after that, the what-if
guestions that should have been addressed before, have let to better specifications
and beautiful implementations of these (referring to the so-called orthogonal fre-
guency division multiplexing aternative to the multi-tone multiplexing and to the
corresponding efficient and robust fast Fourier transform based implementation).

The ‘the-specification-is-the-idea’ example illustrates how a system can be
possibly over-specified; ‘possibly’ because — in contrast to the first example, in
which the under-specification is unquestionable — in this example, only a poten-
tial over-specification is built-in. Whether this executabl e specification is an over-
specification or not depends on which one of the many possible applications —
which, as you may remember, came sort of after this particular specification —is
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considered. Each one of these applications may come with additional constraints
that the designer cannot fulfil because he may get stuck because of lack of free-
dom in the specification. He cannot pilfer that freedom from the behavioural
specification, simply because that part of the specification is not familiar to him
and seems to him to be untouchable. Even the developer of the algorithm may not
have a clue as to whether more freedom can be given to the designer, because her
algorithm is the result of a series of modifications to earlier compression algo-
rithms, developed by her and her colleagues, with the sole objective of incorpo-
rating into it the sophistication which was found necessary to reach the ever more
compelling compression ratio. It islikely, however, that this algorithm can indeed
be turned into a specification that gives the designer more freedom for, if not, one
may then have doubts about the suitability of the algorithm in the first place.

So, an application specification must provide all information that is necessary
aswell as sufficient for adesigner to be ableto get by.

Application specification together with platform specification may together be
called system specification. Recall that both are part of the design methodol ogy
that, itself, is depending on the application domain. The implication is that both
specifications will have to be given in terms of models. These models will most
likely be structured in the sense that they are composed of computations and
communications. That is naturally so for the system platform and must, then, also
be the case for the application because both must match for the mapping step to
be void of hidden artefacts. Thus, the original idea will have to be expressed in
terms of such models by decomposing the highest level specification into compu-
tations and communications. Such a decomposition must not lead to an increase
in complexity. This condition is more stringent than imposing a separation of
concerns, it is requiring an orthogonalisation of concerns. There is a behaviour
(application) and an organization (architecture), and there are computations
(processes, processors) and communications (interactions of autonomous enti-
ties). Moreover, all specifications, whether original or derived, must be accompa-
nied by validation metrics and assessments which have to be taken down the
design pyramid, that is, which will be refined together with the models and the
mappings. On any particular level of abstraction, including the highest one, no
decisions should be taken if not necessary, and no complexity should be added if
not necessary. And similarly for the constraints. In addition to that, the design
methodology must not tolerate any intrusion on its own rules. Heuristics can only
be accepted when based on sound arguments and when they do neither compli-
cate nor obstruct the transparency of the next stepsin the design procedure.

A design methodology as proposed aboveis till to be taken to maturity. There
are still many issues to be addressed before we are that far. A methodology is a
composition of methods and relations between methods. |mplementation of mod-
els, methods and their relations requires good software practice. It is said that, in
the past, the hardware design community has been more successful than the soft-
ware design community. The time when hardware designers captured gates in
logic diagrams is far behind us whilst software developers are still writing state-
ment after statement. However, the fact that embedded systems design is heading
towards crisesisfor agreat deal due to the fact that designing embedded systems
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has entered a phase in which software design (for tooling the design methods, for
example) has become the dominant challenge. Good software practice is where
the roadmap should take the embedded systems designers.

In many cases, an application is given in the form of an executable specifica
tion. Thisis amost always in terms of an imperative model of computation. This
model matches the shared memory model of architecture, which israpidly fading
away in embedded systems land. Embedded systems are exploiting parallelism
beyond instruction level paralelism and, therefore, specifications have to be
given in terms of communicating tasks. Turning imperative models into network
models is a very difficult task. The from-idea-to-specification part of the design
methodology that is described above must be extended with a specification explo-
ration part similar to the implementation exploration part. Defining an architec-
ture platform for an application domain is a major breakthrough in embedded
systems design, yet this is focusing too much on the architecture part of the sys-
tem: It will be necessary to introduce, in addition, a specification platform and an
accompanying methodology for the exploration of the application space defined
by that platform. Thisis the only way in which the wide gap between application
developers and system designers can be bridged.

There is a final aspect that has to be addressed. All parts that constitute the
methodol ogy described must be such that reusability, retargetability and reconfig-
urability are possible and common practice. Thisis not only true for the system
platform, it isequally valid for the application specification and the methods used
to explore, validate and design applications and architectures. Embedded circuit
design and embedded software development should not be the task of the embed-
ded system designer at the architectural level. An embedded system designer at
this level typically does not know how to design circuits and does not know how
to develop embedded software. Thisisthe task of those who design circuit IP and
develop software |P. However, for thisto work, it is necessary that such IP blocks
(software, hardware, tools) be designed in a way that the architectural level
embedded system designer can integrate them into his design methodology and
system, without having to go to extremely steep and long learning curves. He
must get all specifications and validation methods that are relevant to his needs, at
al levels of abstraction he needs. This concept is crucial and will only work if
designers are willing to accept that it will take time before a policy of maximum
reuse will be common usage. Universities should take the lead here by putting
their toolboxes and building blocks in the public domain and encourage the
embedded systems communities al over the world to make use of the offered
objects as much as possible. No assessment can be more effective than an assess-
ment published in the open, public domain. Thisisthe only way in which one can
guarantee that re-use is realy beneficial. There is still a long way to go before
embedded systems designers will have access to a global database containing
tools, application and architecture components that can be integrated in design
methodologies and designs. Only then will embedded system designers have
come to terms with complexity management, time-to-market problems and cost
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issues. An embedded system need not be optimal: It must meet the constraints,
must have spare capacity to be capable of capturing future application evolutions,
and must be reliable, safe and robust.

4.7.2 Scenario: From ldea to Executable Specification

Introduction

There you are, walking back to your office and thinking about the new products
your company decided to develop. Only very vague requirements are known, and
you, the just appointed Embedded Systems Architect, are filled with lots of ques-
tions and very few answers. Two years from now the factory will crank out the
first version of the new product line like mad. And you have to figure out how to
translate these vague requirementsinto areal commercial product.

The top specifications are clear: create a Gizmo, performing a number of func-
tions. Of course it also must be networked, low cost and it is not allowed to pro-
duce any heat. And a lot of other ‘common sense’ requirements of course. You
know what | mean. And by the way, please present next week a budget proposal
for the devel opment of the Gizmo.

Its functions require integrated mechanics, optics, eectronics and software.
But one level deeper you see hundreds of inputs and hundreds of outputs, which
must be connected somehow. Too big to get agrip on.

How does top level design start?

Today, 2001 AD, you don’t have much help. How do you become an Excellent
Embedded Systems Architect in the first place? The answer is both simple and
embarrassing: by learning it from another Excellent Architect. In the Netherlands
we cdl it a ‘master-journeyman’ relation: you learn it by looking carefully at
your master. She can't tell you what makes her a good Architect. She only can
show you how to behave like one. It's called ‘ creativity’, ‘gut feeling’, ‘experi-
ence or another immeasurable qualification. Neither words nor metrics exist to
measure the quality of a decision of an Embedded Systems Architect. You even
don’t know if your problems have become smaller or bigger after the decision.

No tools are available to help you in the creative process. You can only com-
pare your decisions with decisions taken which you remember from previous
projects.

You need to talk to customers, people of factory, finance, service and people of
the project itself with a mechanics, electronics, physics or computer science
background. What is the common language all these people understand? It does
not exist.

Today’s Universities and Technical High schools don't deliver Excellent
Embedded System Architects. No, you became an electrical engineer, or a phys-
ics engineer, or ... when you have worked for a few years in a company, maybe
you are spotted by an Architect as a person who has the right background to
become an architect. When you are not spotted: bad luck. When you are spotted
by a not-so-good architect, bad luck again. So today people, born as Excellent
Embedded Systems Architects don’t become one because of bad luck.
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Specification environment

Some useful ideas from the software engineering community can be adopted
here. Broadly speaking, embedded system specification can be either imprecise/
incomplete (in plain English) or in terms of an executable behaviour (commonly
in an imperative language) augmented with a set of constraints. In the latter case,
the imperative model of computation is most likely (at least partially) not the cor-
rect model to be used. Parsing from the imperative model of computation to the
more appropriate model is something that is to be done. In case the specification
is given in plain English, method and tools must be conceived and devel oped to
iteratively derive a precise (if incomplete) specification. Any specification should
automatically provide input to a verification/validation tool for the verification/
validation of all behaviour-equivalent models derived fromit.
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Scenario: from idea to executable specification I
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Figure 18: Scenario from idea to executable specification
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Scenario: Reuse of decisions

Research is needed to figure out which items of design decisions are needed for
later reference by an Embedded Systems Architect.

Interview the top 10 architect/designers of today and find out how they work

A repository must be made where an Embedded Systems Architect can docu-
ment his formal and informal design decisions to improve the creative process.
Later these documented decisions can be used for exploiting analogies.

Also tooling is needed to compute the effects of a design decision. Is adesign
decision a step in the right direction or not? How to prove? One of the questions
iswhat can be learned from other artists? How do they work?

A repository must be made where an Embedded Systems Architect also can
access decisions taken by other Embedded Systems Architects in the same com-
pany, or even worldwide.

Scenario: Exploration of Needs (implicit/explicit)

Vocabulary, common for customer and designers, for description of fuzzy needs
and constraints. Also words are needed to describe the quality of design deci-
sions.

When we know the words, they can be used in the repository.

Scenario: Handling of Complexity

The godl is to find al relevant boundary conditions and make a design, which
adheresto it.
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A generic set of toolsis available per discipline to help the Embedded Systems
Architect with the top-level decisions. Tools do not use each other’s data.

The toolbox contains all necessary tools, but without interaction.

An integrated toolbox is available for Embedded Systems Engineers, which
supports them in taking the right design decisions at a number of levels of
abstraction.

Scenario: Training

Means and methods are needed to spot natural-born Excellent Embedded Sys-
tems Architects as soon as possible. Tests must be developed. Masters must be
appointed.

As soon as somebody qualifies to become an Embedded Systems Architect, he
or she should be exposed to structured master classes, which are given by the best
available Masters.

In this stage we expect that Architecture training is still a post experience train-
ing.

The art of System Design now becomes knowledge of System Design and
knowledge transfer can be incorporated in the curriculum of Universities and
Technical High Schools.

4.8 Scenarios for From Executable Specification to Implementation

4.8.1 Introduction
The design flow from ideato final product design can be divided into to parts, the
first being the flow from idea to an executabl e specification and the second being
the flow from executable specification to the final design. These two parts of the
design flow have quite different characteristics.

The significance of these two parts of the design flow heavily depends on the
application. For example, in case of a wide-area traffic control system, the
moment at which the executable specification is obtained, only little improve-
ments and optimisations are left. However in case of a signal processing algo-
rithm that is to be implemented in an ASIC, emphasis is on the optimality of the
implementation in terms of speed, throughput and cost, while the executable
specification is easily derived from the mathematical description of the algorithm.
Another example is the area of high-throughput applications with real-time con-
straints. Mapping of an algorithm on a fixed architecture then is far from simple
and often requires much more effort than the definition of the algorithm.

Clearly, there exist no clear border between both parts of the design flow. In
practice the executable specification might be on different levels of abstraction,
more or less refined and in general in the beginning incomplete. Hence, during
the second phase in the design flow there will be a strong interaction with thefirst
phase.

An executabl e specification is supposed to be written in some executabl e spec-
ification language or programming language. A model that depends on the lan-
guage used, links the executable specification to the desired reality. In general
such an executabl e specification only specifies the behaviour, i.e. given an initial-
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isation, the relation between the stream of input events and the stream of resulting
output events. Hence, the specification must be annotated with a number of prop-
erties about timing, real-time constraints, chip area, power dissipation, etc.

In this scenario, we will focus on the design flow from executabl e specification
to fina design, the implementation, in which we assume that the design starts

from an executable specification that reflects the desired (bit true) externall
behaviour of the system to be designed, together with a number of properties
about timing, real-time constraints, chip area, power dissipation, etc.

The flow from executable specification to the description of the final design
again can be divided into two parts, viz. high-level synthesis and low-level syn-
thesis. Thefirst includes composition, decomposition, refinement, scheduling and
resource alocation. Low-level synthesis includes, logic optimisation, retiming,
placement and routing.

The technological possibilities are ever increasing; ever more complex embed-
ded systems become feasible. But, design productivity it not keeping up with
these developments. This so-called ‘ embedded systems design crises’ can only be
solved by more efficient design flows supported by more efficient tools. Thiswill
be on the account of |ess efficient implementations.

An interesting metaphor stems from the early days of computer programming.
The first computers were programmed in assembly language. With the growing
computing power ever more complex programs became feasible which resulted
in high level programming languages, subroutine libraries for generally used
functions and compilers. Even these languages turned out not to be sufficient.
New programming paradigms, such as object orientation, were developed
together with middleware concepts like com-objects. These new programming
paradigms increased the software productivity considerably, but on the account of
less efficient software designs in terms of computational overhead and storage
overhead. Nonetheless, if efficiency is really crucial, all kinds of optimisation
tools are available and some parts are still written in assembler.

A similar development is foreseen for embedded system design methodol ogy.
However, in contrast with software development, that maps behaviour onto just
one architecture, embedded system behaviour can be mapped on a variety of
architectures.

Clearly, different tools and design flows are needed for an implementation as
ASIC, ASIP, DSP, VLIW or some reconfigurable architecture.

In order to improve design productivity and to cope with the technologies that
will be offered in the near future, improvements are needed in the following
areas.

e Design toolsincluding compilers
» Languages and design representations

1.We differentiate between the internal and external behaviour of a system. The exter-
nal behaviour reflects the desired behaviour on the ports of the system, i.e. therelation
between the streams of events at theinput port and the output ports. Theinternal behav-
iour describes the relation between al variables in the system description. Animple-
mentation is correct if its external behaviour equals the external behaviour of the
specification.
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» Design styles
Thisis clarified with the following statements:

Statements:

For each product group a design platform will be needed. Such a platform sup-
ports a particular design flow towards a particular architecture. It will be built
from design tools and design languages that are also used in other platforms.

Design tools need to be concise and generally applicable. Dedicated or too spe-
cialized design tools tend to be hardly used and therefore will never become bug-
free.

Design productivity is greatly improved when the simulation burden is
reduced. Tools that are correct, i.e. preserve external behaviour, can obtain the lat-
ter.

Design languages or design representations with clear and unambiguous
semantics must be standardized. Design tools should operate on these languages
instead of on formats that are dedicated to these tools. A design language is char-
acterized by the fact that it represents the design during many stagesin the design
flow.

Design productivity can be increased considerably by using IP blocks, but only
if these IP blocks are correctly specified at the appropriate levels of abstraction.
For example aVHDL description at gate level for a processor is not sufficient. A
high level description at which the processor together with a program can be sim-
ulated must be provided too.

IP blocks must be standardized in a similar way as class libraries are now
being standardized for object oriented programming languages.

Design tools that provide correctness-by-construction are more important than

similar tools that provide more efficient implementations but are not bug-free.

System on a chip will become reality in the sense that:

e A chip will never be implemented on the bases of single design paradigm.
(Areaand complexity are becoming too large)

e Communication between the subsystems on the chip will be (quasi) asynchro-
nous and based on protocols implemented by hardware. (Data transfer from
one side of the chip to the other will take more than 10 clock cycles)

e Operating systems will become a part of the chip design and will partly be
implemented in hardware. (Dynamic process scheduling)

Tools for design space exploration:

Tools that provide estimated information about the area, delay throughput, power
dissipation in an early stage of the design flow are highly desirable. This requires
fully automated and integrated design tools that automatically generate a design
at an appropriate abstraction level in such a detail that these properties can be
estimated with sufficient accuracy.
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Executable specifications:

The main purpose of an executable specification is to validate the design in an
early stage of the design process. This validation will be done by means simula-
tion and possibly by the formal verification of particular properties. Simulation
regquires asimulation platform that is fast. Hence, it must be based on an efficient
language such as C or a derivative of it.

For reasons of flexibility, such a simulation model must be based on a set of
communicating processes. The model should be inherently free from deadlock,
starvation and flooding, or it must be possible to automatically proof these prop-
erties.

Design description languages:

A suitable design description language is needed that

e unambiguously expresses behaviour,

e unambiguously expresses structure,

* isapplicable at all stages of the design flow from executable specification to a
description in terms of registers adder and gates

e isgeneraly accepted and standardized.
All design tools should operate on such a design description language.

Compilers:

Compilers for embedded systems will be used on a per-block basis. A system (on
a chip) will be built from several blocks each having its own particular architec-
ture and therefore requiring its own compiler.

In the embedded systems design flow, compilers can be divided into two
classes:

e Compilersthat are used for trandating between different design representation
formats. Such compilers or trandators will always be needed, as a single
design representation language that can be applied from an executable specifi-
cation to the final design description, is utopian.

e Compilers that map a behavioural description onto a particular architecture.
These compilers should be able to optimise on the basis of different criteria,
such as area, speed, throughput and power dissipation.

Compilers that map the behaviour expressed in a design description language
onto a particular architecture will become very important. The only way to
improve the design productivity is design reuse and automation of the design
process. Compilers used in the software world are trandating a high-level pro-
gramming language into an intermediate language, which thereafter is transated
to the abject code belonging to a particular architecture. In both parts some opti-
misation is performed. The latter, however, is limited because both the language
and the architecture are of a general-purpose nature.

Compilers for embedded systems should be able to map on different architec-
tures. So they should operate on a program and a description of a parameterised
architecture and produce the object code and possibly also produce the parame-
ters of the architecture.

30 March 2002



Another approach is to design compiler generators, which start from an archi-
tecture and a language and automatically generate a compiler for that architec-
ture, possible with some user intervention.

VLIW, (including Transport Triggered Architectures) and reconfigurable archi-
tectures are very promising for embedded system applications. Compilers for
these architectures hardly exist or are still in itsinfancy.

The following remark might be considered as belonging to the scenario ‘ldea-
to-executabl e specification’ aswell.

Multi-paradigm design tools and multi-paradigm design representations:

In many cases sensors and mechanical subsystems are part of the embedded
system. The behaviour and properties of these sensors and mechanical subsys-
tems need to be described together with the digital part of the embedded system.

4.8.2 Designer needs and Vision

From the preceding we may extract the following designer needs:

1. Mapping directly behaviour on complex architectures with reasonable effi-
ciency.

2. Less dependency on simulation for verifying the automated design steps.

3. Better design representations.

4. Improved specification languages.

5. Improved reusability of parts of designs.

Summarizing our vision leads to four main points, viz.:

1. Designs will become more complex.

2. Design cost per transistor will decrease on the account of less efficient designs
(implementations).

3. Compilerswill play an increasingly important role.

4. Compilation will include high-level synthesis.

These items can be linked up with many other; some of are to be considered as

recommendations.

1. Design tools become concise and generally applicable at different platforms.
They will alow correctness-by-construction. They will operate on standard
design representation languages. Less attention is paid to optimising the last
20%.

2. Currently developed languages and styles for writing executable specification
will become mature and standardized. Standardization and research is needed.

3. Next to languages for specification and hardware description, a standard
design representation that can be used in alarge part of the design process, will
be needed.

4. Design reuse will become mature, standardized and the I P-blocks will be pro-
vided with standard interfaces, specification at different abstraction levels and
atest sequences. Further development is needed.

5. Compilersfor parameterisable architectures will become available.

6. Compiler generators that generate a compiler from the architecture and the lan-
guage will become available.

7. Compilers that optimise toward different criteria will become available. Low-
power will be more important than area.
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4.8.3 Conclusions

138

8. Communication between the subsystems on the chip will be (quasi) asynchro-
nous and based on (standardized) protocols implemented by hardware.
Research is needed.

9. Operating systems will become a part of the chip design and will partly be
implemented in hardware. (Dynamic process scheduling) How?

10.Tools for design space exploration will become available (Tools that deliver
information about the area, delay throughput, power dissipation in an early
stage of the design flow)

11.The designer community will more and more become aware of the need to
formalize the design flow and to prove the correctness of the tools.

From the preceding remark the following research areas that need attention can

be derived:

» Designtools

» Languages for executable specifications

» Design languages

e Designreuse

» Compilersfor parameterised architectures

» Generatorsthat derive compilers from architecture and language

e Compilersthat optimise on different criteria

e Protocolson achip

e Operating systems on a chip partly hardware implemented

» Toolsfor design space exploration

e Formalization of the design flow

In order to diminish the embedded systems design crises, all eleven areas men-
tioned above require research and devel opment.

The development of tools for embedded system design depends on afew large
tool providers and a large number of small ones. The cost of tool development is
that high that it isimpossible, even for large design companies, to develop a pro-
prietary tool suite. So new tools will have to cooperate with the existing ones.
This will strongly influence the developments in the field of embedded system
design in an unpredictable way. This particularly holds for the design flow and
the way of design representation. Nonetheless, research in these areas is of
utmost importance.

In order to improve design productivity, all kind of compilers and compiler
generators as described above are needed. However, currently only compilers for
small application areas are available. Fortunately, developments in this area are
less dependent on existing tools and design representations, although it must be
possible to incorporate them in existing design flows. A particular compiler will
only be used for asmall part of the system.
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Designer Needs

1. Mapping directly behaviour on complex architectures with reasonable efficiency

Scenario: From executable specification to
implementation

2008

2. Less dependency on simulation for verifying the automated design steps
3. Better design representations

4. Improved specification languages

5. Improved reusability of parts of designs

Vision:

Scenarios of
rendezvous:

Major functions
Technologies

Languages for exe-
cutable specifica-
tions

Design languages

1. Designs will become more complex
2. Design cost per transistor will decrease in exchange
for faster, less efficient designs (implementations)

3. Compilers will play an increasingly important role
4. Compilation will include high-level synthesis

Current status
of design
epresentation

Currentstatus
of compilers

Separated
scheduling and
resource
allogation

Different proprie-
tary models availa-
ble and tested

Expressing
real-time
constraints

Efficient
retargetable
compilers for

Combined
scheduling and
resource
allogation

Start of standardi-
zation

Including different
models of time

Real-time con-
straints
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Expressing
power, area,
etc.

Efficient
compilers for
reconfigurable
architgctures

Scheduling and
resource

the HVY design

Standard(s)
accepted

Including area and
power constraints

allocation steering

Extracting
architecture
parameters

Both HW and
SW efficiently
generated by
compiler

Means for extract-
ing architectural
parameters
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Retargetable com-
pilers (for parame-
terised
architectures)

Generators that
derive compilers
from architecture
and language

Compilers that opti-
mise on different
criteria

Formalization of the
design flow

Methods

Executable
specification
languages

Design
languages

Design
reuse

Protocols on a chip

OS on chip partly in
HW implemented

Tools

Compilers for
parameterised
architectures

Compiler genera-
tors from architec-
ture and language

Compilers that opti-
mise on different
criteria

Tools for design
space exploration
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Small class of
architectures.
Few parameters.
Simple architec-
tures.

Start research.
Some knowledge
available

Only number of
executions

Parameterised
multi-data path
multiprocessor.

Real time.
Instruction count

Ongoing research, which should get more

attention

On-going research
on formalisation of
design flow

Different proprie-
tary models availa-
ble and tested

Results of only a
few tools can be
trusted

First research ver-
sions available to
show the feasibility

Area.
Power.

Formalization of
substantial parts of
tools is feasible

Formalisation of
substantial part of
tools is feasible

Standards for mod-
els accepted

In the design flow
only a few tools can
not be trusted

Reconfigarable
architectures

First field trials

Standards in use

Tools are becom-
ing certified
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Gaps

Correctness-by-construction

Standard design representation languages
Standardization of writing styles for executable specification
Standard design representation

Further development of IP-blocks

Compilers for parameterisable architectures
Compiler generators

Compilers that optimise toward different criteria
Research on on-chip communication mechanisms
Critical OS components implemented in hardware
Tools for design space exploration

Figure 19: Scenarios for Executable specification to implementation

4.9 The Platform Design scenarios

4.91

Introduction

Definition

Platform design is: based on acommon architecture in which blocks can be easily
adapted, such that in alimited time a‘ certified’ new platform instantiation can de
developed, which will differentiate it self from other implementations. Platform
design allows for the development of ‘afamily of products'.

A platform instantiation contains various hardware and software as well as
reconfigurable IP blocks, interconnect between these blocks as well as to the
environment (i.e. the embedding system).

Note: what is the difference / relation between digital/analog and ‘platform
design???

Why a platform?

Electronic products in the market will behave like fashion (Vision). Products have
small derivationsin taste, colour, etc. and functionality, but are designed on struc-
turally the same basis.

Designs become more complex (vision); a single designer cannot have the
complete overview at the detailed level anymore. Therefore (s)he wants to raise
the level of abstraction of building blocks to be still able to create complex design
in a shorter design-time. The ultimate goal isto do product creation by push-but-
ton platform instantiation (rendezvousin 2010+).

Shorter time-to-market, while still having the opportunity to create products
that differentiate in the market place (company need).

4.9.2 Needs and Trends

Trends:

1. Electronics in the market will behave like fashion;
2. Time-to-market becomes shorter;
3. Sub-micron technologies allow for evermore-complex designs.

Needs:

1. Create differentiating productsin their market fast:
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- Performance (speed, power, etc.) better than product of competitor;
- Features: more functionality than product of competitor;
2. Platform designer need: which basic architecture to select for the application
domain of the platform. Which blocks and interconnect to allow in a platform:
3. Platform instantiator need: which blocks to include in a specific instance.
Which parameters to select for each block. Also: plug-n-play instantiation.

4.9.3 Scenarios for Platform Design
We make the distinction between two groups involved in platform design: the
people who create a platform and the people who instantiate a platform. There-
fore we have two scenarios. one for the ‘ Platform Design Creator’ and one for the
‘Platform Design Instantiator’.

Scenario: Platform Design Creator

2005 | 2008 1
| 2002 = {2005 | {2008 § I 2011 I

Designer Needs

1. Cope with flexibility in design (reduce flexibility in a sensible way)
2. Create differentiating products in their market

3. Which blocks and interconnect structure to include in the platform

1. Electronics behave like fashion
2. Ever more complex designs
3. Shorter time-to-market

Vision:

Platform
patterns

Scenarios of
rendezvous:

Application
driven platform
design

Platform
methodologies
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Major functions
Getting to know
platforms
Technologies
Methods
Tools

Standardising
blocks in platforms

Choosing the right
level of abstraction
Guidelines on the
use of interfaces
Coding rules
Documentation
standards

Models of blocks
and interfaces that
are based on the
same language
Raise the level of
abstraction of com-
munication
between the blocks

Database of certi-
fied components

Standardising plat-
forms

Standards on:

- Components and
interfaces

- Coding rules

- Documentation
Project manage-
ment keeps the
instance(s) consist-
ent with the plat-
form

Database of certi-
fied platforms

Figure 20: Scenario for platform design creator
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Semi-automatic
platform creation

Automatic assist-
ance in choosing
parameters of plat-
form

Tools produce a
proposal of choices
in the database of
certified platforms
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Scenario: Platform Design Instantiator I
2005 | 2008 |
|2002 I {2005 I {2008 I I 2011 |

Designer Needs

1. Cope with flexibility in design (reduce flexibility in a sensible way)
2. Create differentiating products in their market

3. Plug-n-Play platform instantiation

1. Electronics behave like fashion
2. Ever more complex designs
3. Shorter time-to-market

Vision:

Scenarios of Platform Platform Semi-automatic
rendezvous: usage instance platform
reasoning instantiation

Major functions

Getting to Design trade-offs: man- | Structured design space | Automatic design
know plat- ual design space explo- | exploration space exploration
forms ration
Technologies
Methods Uniform models of Standards on communi-
(non)-functional con- cation interfaces between
straints blocks

Models for new styles of
communication
between blocks in the

platform

Error correction in com-

munication

Security issues in plat-

form

Tools Tools that reason about Tools doing part of

properties in an instance, | the design space
at the instance level of exploration auto-
abstraction matically

Tools to check the con-
sistency of an instance
with the platform

Tools for code rule
checks

Tools for (automatic) gen-
eration of documents

Figure 21: Scenario for Platform design instantiator
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4.9.4 Remarks on scenarios of rendezvous for Platform Design
The following text discusses for the two separate scenarios, the technology
requirements.
Distinction between technology requirements for the platform designer creator
and for the platform designer instantiator (user).

Platform Design Creator

Current status (2002): ‘Initial discoveries’

Currently there are platforms available, for example the DVP (digital video plat-
form) (Philips). This is an example of a product family. Also, on the processing
core level, families of architectures are defined. These developments help us to
discover the right levels of abstraction to define a platform on. Furthermore, they
teach us that it's not only a matter of defining and using a platform, it is also
important to keep instances consistent with the platform (i.e. project manage-
ment).

Standard interfaces have to be designed by learning from experiments with the
starting reuse of hardware 1P blocks, software | P macro-blocks.

‘Platform methodologies’ (2005)

Theinitial developments giverisetoin sightsin theright levels of abstraction and
detail that should be supported in a platform. This phase should result in propos-
als of sets of guidelines for the design of interfaces of blocks in a platform, cod-
ing rules, documentation standards, components etc. Standardization is needed
for some of these aspects!

Design space exploration methods and tools are important to give the platform
designer ameans of reasoning: which blocks to include in the platform?

Models are needed for the boundaries of the various (hardware, software,
reconfigurable) blocks in the platform such that their interfacestalk the same lan-
guage!

For the interconnect (the communication structure between the blocks and to/
from the embedding system), we need to raise the level of abstraction. We should
not only talk about the communication implemented by buses, but by the commu-
nication protocol that runs on top of it (cf. moving one level up in the communi-
cation stack).

Further, standard hardware IP and software IP blocks should be placed in a
database site of certified components. This database contains reference specifica-
tions for the IP blocks.

‘Platform patterns’ (2008)

Tools should be provided to automate the aspects that our now in standards due to
the previous phase. The standardization on documentation, coding rules, compo-
nents and their interfaces, etc. is now complete. Project management tools should
be available to keep an eye on the consistency between the platform on the one
hand and instances derived from the platform on the other hand. In terms of the
certified database for |P components, we need a platform-layered database (i.e.
certified platforms).
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‘Application domain driven platform design’ (>2011)

Once we have established the previous phase, we can think of one level higher up
in abstraction, by starting to think about methods that, given an application
domain and a set of possibilities for platforms, assist in determining the bounda-
ries and parameters needed for a specific platform. The application domains drive
the choice of (IP) blocks in the platform and the decomposition with its inter-
faces. Given a set of constraints, tools search the database of certified platforms
to come up with a proposal for the choice of possible platform usage.

Platform Design Instantiator

The key term in this scenario is design space exploration. An ideal design explo-
ration tool is atool that accepts as its input a desired performance/cost ratio, and
returns the values of all the free parametersin the design platform plus some per-
turbation/sensitivity analysis. Although this ‘inverse problem’ approach may be
possible in some cases, it is not in most cases. Therefore, the current approach is
to view the problem as a ‘direct problem’: choose parameter values and measure
the corresponding performance/cost ratio through simulation. Of course, there is
arelation between simulation speed/cost and the level of abstraction (detail). To
bridge the gap between the ‘direct’ and the ‘inverse’ exploration approaches,
tools should be made available to interpret the performance numbers output by
the simulator, to visualise them and help the designer by suggesting the changes
he wants to make in his parameter space (of both the architecture and the behav-
ioura specification). Parameters should be as orthogonal as possible (and design
methodology constraints should be non-conflicting). Learning curves should alto-
gether disappear.

Current status (2002): ‘Initial instantiation’

Designers have their first experience with designing instances from existing
(often ‘ad-hoc’) platforms. Reuse of hardware and software IP blocks including
their interfaces are done. These experiences are vital to communicate to the plat-
form designers to find the right level of abstraction, as well as to think about
keeping instances consistent with the platform, project management tools, etc.
The basic idea of platformsis that they speed up the design. When this turns out
not to be the case then the platform instance designers are the people who can
pinpoint at issues that hamper to reach this goal.

‘Methods for platform usage’ (2005)

A big issue is the absence of models to model the non-functional constraints of
embedded systems. They need to be modelled and quantified in a uniform model,
which enables the platform user to reason about the consequences of choosing
specific blocks to obtain an instance of the platform for a specific application.

In general, implementing a function in hardware offers a low-power solution,
while implementing the same function in software offers flexibility in design.
Therefore, the platform instantiator has a task in making a trade-off between
hardware, software, and reconfigurable blocks when instantiating a platform
towards an embedded system. Other trade-offs are for example making the design
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memory-centric (in which the computational blocks use asingle shared memory),
or computation-centric (in which all computational blocks have their own mem-
ory). The former might be the better choice for control-oriented applications, the
latter in data-intense applications like in video-streaming (MPEG).

We need models how to deal with new styles of communication (e.g. asynchro-
nous buses, asynchronous communication between ‘islands of synchronous
blocks), and their effect on global system performance and characteristics. For
this, we need models that represent hardware and software (and reconfigurable)
blocks that have the same communication on the interfaces, such that they under-
stand each other. Also, we need models of the characteristics of communication,
like error correction (low-level) and security issues (high-level, especialy rele-
vant for communication of data from and to the environment of the embedded
system).

‘Platform instance reasoning’ (2008)

Using models to quantify functional as well as non-functional constraints the
designer can do a structured design space exploration. Further, interfaces between
blocks should be standardized such that the designer can manualy put blocks
together to obtain an instance, and then reason about the performance, power dis-
sipation, etc. The knowledge gained by these ‘manual’ design space explorations
(supported by tools) creates the necessary ingredients for the next phase.

Also, there should be tool support for aspects of platforms like documentation
(generation), coding rules checks (and automatic semantics-preserving rewrit-
ing), consistency of interfaces between blocks etc. Also, automatic checks are
needed which keep an eye on the consistency between the platform instance and
the rules of the platform itself.

‘(Semi-) Automatic platform instantiation’ (>2011)

The godl is to have tools that perform (a part of) the design space exploration
when instantiating a platform for a specific application automatically, taking the
functional and non-functional constraints as well as platform data (which blocks
may be used, which interfacing structures etc.) into account. Fully automatic plat-
form instantiation is far in the future. Therefore only first steps to automatic
design space exploration are feasible in the time frame of the embedded systems
roadmap.

4.9.5 Recommendations
1. Standardization on communication (protocols) architectures and on the inter-
faces between blocks in the platform;
2. Common model of communication between the hardware, software, and
reconfigurable blocks,
3. Database of certified components;
4. Models and tools to do structured design space exploration.
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4.10 The Hardware/Software Design scenarios

4.10.1 Introduction
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Definition

HW/SW design is: the process of partitioning the specification and deciding for
each part, the type of implementation from a spectrum ranging from hardwired
(dedicated HW) to General Purpose (Software) computing blocks. Note that this
spectrum includes (re-)configurable computing (RC) hardware. Software com-
prises all programs running on programmable blocks.

This partitioning process is present at two levels: At the system level, the parti-
tioning isin terms of tasks that are allocated to processors. These processors may
range from Application-Specific ICs (ASICs) to GP processors. The type of proc-
essors and the communi cation protocolswill for alarge part be determined by the
platform architecture. The other level of the partitioning process concerns ‘flexi-
ble’ processor cores in the sense that a default data path and/or instruction set can
be augmented with functional units (ALU, etc.) or instructions tuned to the appli-
cation (-domain). ‘Partitioning’ at this level should be interpreted as identifying
frequently occurring patterns of computations (within the allocated task) that are
suitable for hardware acceleration.

Hardware acceleration can be performed using either dedicated silicon or (re-
)configurable logic. The trade-offs made during the partitioning process are
affected by
e The constraints implied by previous design steps, e.g. choice of platform, com-

munication protocols, size of FPGA HW, etc.

e Projected market share vs. cost of NRE, non-recurring expenses. This is the
one-time cost (vs. e.g. silicon cost) independent of the production volume, and
comprises mainly chip mask costs and design effort. The latter will increase
with the detail of HW/SW design.

e Theavailability of design tools and designers with the required expertise.

HW-SW design, for the happy few?

Traditionally, HW design implies silicon fabrication, which is the domain of

(large) companies. HW design takes a considerable effort and is justified from

either the perspective of:

o Market: asufficiently large market (High VVolumes Electronics, HVE) to justify
the cost of NRE

e Design Congtraints: performance (e.g. video or network processing) or power
consumption (e.g. mobile computing).

A potentia evolution from this monopoly is marked by the development of (re-

)configurable technology, e.g. a RISC processor core with a limited amount of

FPGA for the ‘computational kernels' of the code. In the current situation, there

are aready commercialy available stand alone processors augmented with

FPGA, and the corresponding tools to do modest HW-SW design at the processor

level. This development alows small companies and universities to benefit from
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HW-SW design. An interesting question in this respect is how these companies,
without expertise or culture in HW design, will grow familiar with HW/SW
design in the context of (re-) configurability.

4.10.2 Needs and Trends

Trends:

1. Time-to-market becomes shorter;

2. Reconfigurability allows more design trade-offs

3. Reconfigurability allows small companiesto perform HW/SW design

4. Sub-micron technologies allow for evermore-complex designs.

5. In silicon fabrication technology, wire delay is growing dominant over compu-
tational delay

Needs:

1. Quick quantitative feedback w.r.t. the cost criteria on high-level decisions
involved in the partitioning process.

2. IPreuse, abstraction, DSE at high level

3. Separation of concerns. HW-SW, independent levels of design, modular design

4. Express/extract/exploit parallelism to restrict cost.

4.10.3 Scenario: HW/SW Design

Terminology:

* |P blocks: processors, ASICs, memories

e Library components: ALUSs, register files

» Cost criteria al relevant criteriato be minimized, like power consumption and
silicon area.

» Performance: Required performance translated from real-time constraints

e Pardlelism: Tasks (task-level parallelism) or instructions (instruction-level
paralelism) can/will/should execute simultaneously

» Embedded SW: software that can be embedded without additional effort. For
DSPs this is machine code. For GP processors, it can be C-code provided it
takes virtualy no effort to generate machine code for that processor using a
compiler

© PROGRESS/STW: public version 1.0, 30 March 2002 149



Embedded Systems Roadmap 2002

Designer Needs

Vision:

Scenario of
rendezvous:

Major functions

Technologies

Methods
re-use

Tools

Tool
development

150

Scenario: hardware/software design

1. Productivity improvement
2. Co-verification/validation
3. Acceptable level of NRE

o} 7o ]

1. Quick quantitative feedback w.r.t. the performance and cost criteria on high level decisions
involved in the partitioning process

2. IP reuse, abstraction, DSE (design space exploration) at high level

3. Separation of concerns: HW-SW_RC, independent levels of design, modular design

4. Express/extract/exploit parallelism to restrict cost

Emphasis on
HW and SW
design

Ad hoc HW/SW/RC
design

IP block available,
commercially and in-
house

Library components
available

HW synthesis tech-
niques used for map-
ping on RC HW
Companies invest in
training designers to
exploit tool support

Tools do not solve all
the needs of the
designer

SW compilers & sili-
con compilers from
different vendors

HW/SW/
partitioning
supported by
estimation

Quick quantitative
feedback on high-level
decisions

Interfaces between IP
block standardised
Small companies
learn HW/SW/RC
design

Cost models of library
components and IP
blocks

DSPs are designed for
easy compilation

More interaction
between designers &
tool builder  Vendors
offer design service

SW compilers & sili-
con compilers with a
common design entry
(language?) that
expresses parallelism

supported by
partitioning tools

HW/SW
partitioning

Less expertise
required for HW/
SW/RC design
Less user interac-
tion

Reuse of IP blocks
fully accepted and
common practice

Tool support for
HW/SW/RC parti-
tioning and integra-
tion

SW compilers & sil-
icon compilers in
common framework

levels of HW/SW

Higher
abstraction

partitioning

‘Automatic’ parti-
tioning

‘Lego’ methodol-
ogy for composing
embedded systems

Tools for modelling
and executable
specifications
(Prototyping)
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Gaps Standardised inter- Confidentiality of

faces between IP designs

blocks Portability of (high- &
Cost/performance low level) code for
models for IP and DSPs

library components
Interdisciplinary com-
munication
Architecture and
mapping tools are
developed independ-
ently

Figure 22: Scenario for HW/SW design

4.10.4 Remarks on scenario of rendezvous for Hardware/Software Design
A number of themes are present in this scenario. Most notably, HW-SW designis
atask where tool support and a reuse methodology are expected to play a domi-
nant role. Asaresult, in this scenario there is an emphasis on the problems related
to the devel opment of these tools, and problems related to reusing HW/SW com-
ponents.

Current status: ‘Ad Hoc HW/SW design’ (2002)

Low-level models (suitable for synthesis to silicon) and high-level models (suita-
blefor e.g. simulation) are commercially available for IP blocks and library com-
ponents. There is however alack of cost-models of these (and RC!) components,
which makes design space exploration a tedious job because cost figures are
obtained by (detailed) implementation of the partitioning decisions. Another
problem is the lack of standardization on the communication principles and on
the IP interfaces. Therefore, designers have to build their own interfaces to the
communication infrastructure for integrating and connecting the I P blocks, which
often takes place in an Ad Hoc manner.

No tool support is yet commercialy available for HW/SW partitioning, so
designersrely on their experience to identify suitable targets for HW acceleration
(directly in silicon or in RC hardware). After partitioning, HW and SW compila-
tion are performed. The tools available for HW compilation require training and
experience to use properly. High expectations w.r.t. ease of use, and underesti-
mating the effort to master the tool, will lead to frustration and resistance to use
the tool in the future. Also the physical distance between the HW designer and
the tool designer is responsible for the limited interaction between them. This
hampers both tool development and a smooth learning experience. SW compila-
tion for general-purpose processors is very well supported with robust, reliable,
push-the-button tools. For digital signal processors (DSPs), tools for SW compi-
lation are not very robust and require alot of user interaction to arrive at a satisfy-
ing solution. One reason for this is the fact that these processors have implicitly
been developed for high performance/cost ratio for optimised assembly, and not
for ease of SW compilation.
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‘HW/SW design with limited tool support’ (2005)

IP vendors deliver performance and cost models with their IP blocks that enable
ES designers to do design space exploration (using e.g. Excel as a database for
the cost models) without the need for detailed implementation in order to get
guantitative feedback. IP interfaces are standardized, which allows designers to
integrate and connect the IP blocks in a systematic manner. HW, SW, RC compi-
lation have a common design entry, so that the result of HW/SW partitioning can
be easily transferred to the HW, SW, and RC compilation tools without extensive
rewriting. Partly (re-) configurable processors and architectures allow small com-
panies to learn and perform HW/SW design.

The physical distance between HW designer and tool vendor will probably
remain because of the issue of confidentiality of the design. Instead, tool devel op-
ment and a smooth learning experience are enhanced either by design companies
doing in-house tool development, or by tool vendors offering design services.
DSPswill be designed that allow efficient or easy-to-use compilation.

‘HW/SW design with tool support’ (2008)

Tools are available to help partitioning the application. Because HW, SW, and RC
compilation tools are embedded in a common framework, the tool is able to ana-
lyse (using performance/cost models) for each part of the application, the suita-
bility of implementing that part with the available paradigms (ASIC, RC, DSP,
GP) without too much user-interaction. The tool can suggest a partitioning and a
suitable implementation paradigm for each part. As a result, designers without
much experience and expertise can still perform HW/SW design. Reuse of IP
blocks is common practice and well supported with standard communication
infrastructures and tools that allow plug-n-play of 1P blocksin the design.

4.10.5 Recommendations

1. Standardization on interfaces between | P blocks;

2. Develop performance and cost models of I P blocks and library components;

3. Train designersin the use of (higher level) tools, and create a tool-oriented cul-
ture in the design community; Decrease the distance between ES designer and
tool designer;

4. Design architectures (processor, multiprocessor) from the perspective of map-
ping applications to the architecture.

4.11 The Embedded Software Design scenarios

4.11.1 Introduction
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The specific user needs

The users of embedded software design are the domain experts, who have to
build embedded systems. Domain experts are control engineers, physicists, optics
engineers, electronics engineers, user interface designers, systems architects,
etcetera
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The users want to be able to build and modify the embedded software of the
system themselves. In this way they expect to be faster to deliver the system on
specs and in time. Also they want to be able to improve the system specifications
in an evolutionary way of working.

The embedded software not only supports the end user requirements. To sup-
port the designers, the production engineers and the service engineers it aso
includes performance software, calibration software and diagnostics software.

Programmers producing embedded software are seen as overheads, causing
undesired delays of the project. So programmers must do the work off the critical
path of a project.

Users are building systems, where embedded software is only a part of the
problem.

The generic design trends

Developing embedded software is growing to an unmanageable size. Something
must be done to keep embedded software devel opment teams small (team size <
100 designers).

New fashions in software engineering come and go in afew years, where fam-
ilies of embedded systems have economical lifetimes of ten to twenty years.
(Re)Use of existing software (build in the previous millennium) is a must in
embedded systems.

Component based development is a trend, but not at all common in the world
of embedded systems. Too much environment is missing to make it work.

Formal methods and their tools are very difficult to implement, because they
do talk the language of the software engineer, and not the language of the user.

The term ‘software architect’ is devaluating rapidly, while the importance of
excellent software architecture isincreasing. How to spot the real good architects
in their younger years and how to put them on the fast lane to become a CSA
(Chief Software Architect). No academic training is currently available.

Today programmers want to build new software in new products. In embedded
systems most work is done in modifying and extending existing software. A
change of mind is needed where re-using existing software is considered to be
Cool. And building everything from scratch is considered as un-cool.

The architecture of the embedded software development environment is miss-
ing. As a result research on methods and tools is very scattered, because the
framework where all these methods and tools are seamless integrated is missing.

Vision: Within 10 years embedded software is produced by domain experts.

Large chunks of software will be incorporated in the embedded system using the
web by domain experts. By drag and drop the embedded system is put together.

Producers of embedded systems components are offering their solutions tot
systems integrators. There is a business model where producers of reusable soft-
ware are rewarded for their efforts. Building and supporting Common Off The
Shelf Embedded Software (COTSES) components is not for free of course, but
cheaper and faster than re-inventing the wheel.
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A COTSES Architecture Team has defined and is maintaining the Architecture
of COTSES. Standardization of development, interfacing, error recovery, mes-
sage passing, documentation, testing, delivery and change control of COTSES is
controlled.

A COTSES Quality Assurance Team is responsible for overall stability of the
COTSES. One of the biggest dangersis unreliable and unstable COTSES compo-
nents.

Methods and tools must be made where Users can select COTSES based on
vague requirements, put them together and generate the glue software between
the COTSES. Maybe something can be learned from ECAD tooling.

Scenario: Embedded Software Design

See below.

4.11.2 Remarks on scenarios of rendezvous for Embedded Software Design

154

Introducing Common Off The Shelf Embedded Software (COTSES) on a world-
wide basis within afew years used by all companiesfor all domain areasis afew
bridges too far. Therefore some intermediate steps are needed to be able to reach
the goal.

1. The architecture of COTSES modules and their framework must be defined.
Universities must use their international network and work together to define a
working structure. The Linux development way of working may be a good
starting point. The architecture must be finalized and change controlled in
2004.

2. The COTSES development environment needs research and must be devel oped
and rolled out. This includes standardized configuration management, auto-
matic test case generation, regression test tools, compilers, design tools, repos-
itory tools of COTSES, tools to find the best suited COTSES, etc.

When this is defined, COTSES can be developed within companies, with reuse

within the same company (intra company reuse of COTSES). Problems with IP

and payment of fees are not a problem in this case. Quality Assurance is an in-
company problem: You are punished with your own bugs when you don’t do it
right. But it is possible to purchase and include third party software, using the
same architecture. Companies can convert existing software to new architecture.

Companies can decide which COTSES is company confidential and which may

be used by third parties (when the feeis received).
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Scenario: embedded software design I

| 2002 |———{ 2005 |———{ 2008 |

Designer Needs

. Tool from Scratch to Modelling

. Software Impact Analysis methods and tools for extensions of existing systems
. Requirements & Tracability tools

. How to incorporate large existing components in design

. Accessable World Wide Library of usable components and quality assurance
. Design Verification method and Tools

. Graphical Tool Support & executable models

. Early validation of design decisions, executable models

. Generation of software based on models

10. Automatic Testgeneration from Design

11. Tools for automating testgeneration from design?

OO ~NOOOTAWN

Vision:
1. Application Domain experts build their own Embedded
Software
2. Existing Software will be reused in a controlled way
3. Less time spent in software- and system-integration
Scenario of
rendezvous:

Programmers
type LoC
Limited reuse

COTSES
architecture
defined

Intra-company
COTSES
reuse

Major functions

Reusing embed-
ded software in a
controlled way
Less program-
ming, more assem-
bling

Technologies

Inter-company
COTSES reuse
by domain

Methods

Programmers want
to write their own
new code

Executable models
of software and tim-

ing
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Executable models
including computer
hardware

Existing software is
reused in a control-
led way

experts

Multi disciplinary
executable models

Users build their
own systems from
large blocks
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Tools

Integrated design
tools

Design tools where
you can import soft-
ware blocks you
want to reuse
including a test

Partly multi discipli-
nary tools

Common architec-
ture (or ‘bus’) where
components fit in
(agreed framework
for embedded soft-

Multi disciplinary
tools (software plus
appliance)

SW/HW co-design
Courseware

Gaps

Other

environment ware components)

Reverse engineer-
ing tools
Bad-weather
behaviour model-
ling tools

Standardization on re-usability and interfacing

Lack of standardization on error recovery,

Lack of experience/learning

Lack of continuity on gaps: new languages, modelling, tools, views

IP to Dollars (IP2$$) business model for users and providers of components

Figure 23: Scenario for embedded software design

Software Engineers are till building the embedded software, but reuse of stand-

ardized COTSES is the norma way of working. COTSES components fit

together more or less. A reasonable amount of glue software is till needed to
build systems.

This milestone should be reached in 2007.

To be able to use COTSES in inter-company and international environments
some items need to be solved. When domain experts integrate COTSES modules,
also extensive tooling is needed.

1. Quality control and change control of published COTSES must be solved.

2. The pricing, business model and IP security must be solved.

3. Methods and supporting tools must be available where COT SES producers can
define, build, test, verify and validate their products.

4. Methods and supporting Tooling must be available where domain experts can
select the COTSES they want to use, both intra- and inter- company, based on
vague requirements. With help of software architects the Embedded Software
architecture must be designed, which uses the defined COTSES. The remain-
ing glue software must be generated from the requirements. The test scripts
must be generated. The embedded software must be generated. Test of the
embedded system can start.

This milestone should be reached in 2010.

4.11.3 Recommendations:
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1. Teach studentsin this way of thinking
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4.12 The Verification/Validation scenarios

4.12.1 Introduction

Verification and validation include a wide range of techniques in the spectrum of
formal verification to simulation and emulation. Formal verification attempts to
check the complete state space a design can be in. Non-formal verification tech-
niques check only a part of the design space. Though it isless accurate, thegainis
speed in verification. Simulation and emulation are examples of non-formal veri-
fication.

In the future designs will become more complex. Formal verification tech-
niques will become necessary to deal with the verification problem because simu-
lation and emulation do not scale with the complexity of the design. Therefore
this text will emphasize formal verification techniques.

4.12.2 General trends and user needs for validation & verification (V&V)

Introduction

It is very difficult to estimate the state-of —the-art of embedded system validation
and verification 10 years from now. Both the world of embedded systems tech-
nology and that of validation and verification methods and tools are very dynamic
and undergoing rapid changes that will have substantial influence on their future
relationship.

In line with the philosophy of a roadmap we will work from the angle of what
will be required to accommodate the necessary changes, instead of trying to fore-
tell the actual future.

Moore’s law and V&V

Moore's law affects V&V in two ways. On the one hand, the increasing power
and memory of embedded systems leads to increased complexity of the embed-
ded software in those systems. This leads to a substantia increase of the effort
that is needed to assure the correctness and reliability of such systems. Moreover,
traditional V&V techniques, mostly based on simulation and testing do not scale
up well as they cannot handle the doubly exponentia growth: the number of
potential simulation/test scenarios grows exponentially in the state space of asys-
tem, which in turn increases exponentially over time as a consequence of Moore's
law. This leads to excessively growing costs in terms of resources for system val-
idation (currently 30-50% of the total development cost)

On the other hand, Moore’s law influences the performance of V&V tools pos-
itively. The exponential growth in terms of processing power and available mem-
ory trandates directly into a proportional growth of the analytical capability of
such tools. In reality, the situation is even better: forma methods research into the
algorithms and data structures used for the implementation of V&V tool func-
tionalities has more than doubled the positive effect of Moore's law over the past
decade.

Current industrial ES designers are by-and-large unaware of the latter devel op-
ments.
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V&V and ES designers

An important reason why ES designers are not following V&V developments
very closely has to do with the fact that V&V methods and tools currently require
substantial skills and knowledge that is unrelated to their domain expertise. Typi-
cally, working with such tools requires mathematical modelling skills, knowledge
of algebraic and/or logical techniques, and familiarity with the idiosyncrasies of
the tool implementations.

Current V&V methods and tools are inadequate for normal industrial usage.

Complexity and variety of ES

The complexity of ES can be enormous. In spite of the positive contribution of
Moore's law to V&V tools (see 1.2), the analytical capacity of tools will always
be significantly smaller than the complexity of ES at any given point intime. Typ-
icaly, tools must therefore be applied to ES models that abstract away from as
much irrelevant detail as possible, whilst still providing a basis for the analysis of
interesting properties.

In addition, there is a tremendous variety of ES system, ranging from deter-
ministic, sequential systems of limited complexity on smart cards to full-blown
distributed, multiprocessor, networked systems involving complicated quality-of-
service requirements.

Currently, there is no well-understood set of abstraction principles that can be
used to efficiently produce such models for the various types of ES in combina-
tion with the kind of analysisthat is required.

Mission and Vision
Mission
The main mission of the ESV&V community (both universities and companies)
is keeping up with Moore's law and its consequences (e.g. Dunn’s law):
How to improve the analytic power of V&V methods for ES systems by a
factor four every 18 months, for the next 10 years.

Interpreting this mission one should take into account that Moore's law itself
does already contribute afactor 2 every 18 months. The mission therefore implies
that additional improvements in methods, algorithms, data structures and imple-
mentation techniques also contribute a factor 2.

Vision:
On the user side of things we can suggest another milestone:

In 2010 SE designers are capable to carry out effective V&V of their
designs using a wide array of (semi-)automated tools.

Thisformulation carefully avoids the mentioning of “ push-button” technology, as
user interaction will always be required to produce convenient analytical models.
The intended reading is that the SE designer will have a tool box consisting of
many different tools whaose correct use does not require expert knowledge of the
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underlying theory and/or implementation. Still, working with such tools will and
should affect the way in which ES are analysed and designed, and will require
new skills on the part of their users (cf. business process redesign).

V&V technology needs:

V&YV technical development:
1. Development of fundamental algorithms, data structures and implementation
techniques to improve the performance of V&V tools
- state space exploration algorithms
- special purpose inference engines
- efficient data structures
- composition principles
- abstraction principles
- optimisation techniques
- static analysis techniques
- decomposition techniques
2. Development of tool functionalities that support ES design.
- requirement specification
- model construction & transformation
- model simulation
- model checking
- consistency checkers
- model driven test generators/executors
- real-time, stochastic, performance analysis
- theorem proving
3. Development of user-friendly V&V methodol ogy.
e V&V configuration management
e application-oriented tool interfacing
e V&YV scenario library
e V&V user guidelines

Measuring progress:

The space/time improvements that are achieved are best measured by adopting a
number of benchmark applications for various application domains. Many such
benchmarks have aready been established by the scientific community, but these
typically address only progress with respect to the fundamental techniques (i.e.
issues mentioned under point 1). Efforts must be made to find good industrial
benchmarks for the various application domains.

Goals

Both formal and non-formal verification techniques will have to be able to cope
with ever-larger designs. Soft and hard real-time systems will become available
and need to be verified. Also hybrid systems are foreseen in the future. Simula-
tion, emulation, and formal techniques need to keep up with these developments.

But there is more to be done: formal verification needs to be integrated with
the embedded system design flow. The embedded system designer should be able
to perform formal verification without bothering about the underlying mathemat-
ics and techniques. Researchers from academia and industry need to sit together
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to get this job done. Case studies of industry-size need to be considered for for-
mal verification; tools need to interface to each other and eventually need to be
integrated to form one seamless design flow.

4.12.3 Recommendations
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1.

Research on V&V methods and tools for ES can only be successful if thereisa
long term and stable commitment from both academia and industry to make
the necessary investments.

. It should be established what kind of embedded systems are most relevant in

the context of these proposals, as different systems require different R&R
approaches with different resulting time frames. Such knowledge can be used
to further profile the V&V roadmap.

. Based on 2 alist of industrial relevant benchmarks for ES V&V technology

should be compiled. This list will be essential to monitor the progress of the
V&V methods and tools.;

. To develop V&V tools beyond the stage of academic prototypes requires

implementation capacity that lies beyond the capabilities of academic institu-
tions. Scenarios for tool technology transfer between academia and industry
should therefore be anticipated and elaborated.

. If industrial V&V technology is to cope with the exponentially increasing

growth of the complexity of ES systems new V&V methods must be intro-
duced. This entails extensive programs for technology transfer, education and
the development of new design and implementation processes that will require
substantial resources (time, money). Scenarios for such changes should be
anticipated and elaborated.
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Designer Needs

Scenario: Verification & Validation (V&V)

| 2002 : I 2005 I I 2008 I : 2011 I

1. Verification and validation of ever more complex designs
2. Verification and validation of hybrid designs

3. Higher coverage (i.e. better quality) of verification and validation
4. Faster verification and validation

5. Seamless incorporation of V&V techniques in the embedded systems design flow

Vision:

Scenario of
rendezvous:

Major functions

Technologies
Methods

Tools

Gaps

Other

1. The designs to verify will become more complex
2. Higher coverage of V&V techniques has to come from formal techniques
3. Push-button verification is essential in the design flow

m Block verifier System verifier Design Verifier

(Formal) Verification (Formal) verification of (Formal) verification
of IP blocks systems is integral part of he
design flow
. . . Integration of theorem
E“)Lscrete state_space algorithms Symt')ohc state space proving and model checking
stract algorithms algorithms
Search algorithms Optimal search algorithms

Static analysis techniques

Formal verifier
Theorem provers for small Theorem provers for

0 ; Simulators for hybrid

examples medium-sized examples systems
Model checkers for discrete state Model checkers for softthard  Emuylators for hybrid
space exploration real-time systems systems
Simulators for IP blocks Simulators for composition of verification tools integrated
Emulators for IP blocks IP blocks with design flow for

Emulators for composition of gmpedded systems

IP blocks
Formal verification of systems Formal verification of hybrid

systems

Figure 24: Scenario for verification/validation

4.13 The Test, Debug and Integration scenarios

4.13.1 Introduction

Testing concerns the quality assurance for the entire design, fabrication and appli-
cation cycle. Every effort in pushing the limits of the micro-electronics technol-
ogy has to create a coherent view on testing. The quality of the test of an
embedding system is the expression of the expectation that the part will work in
the specified manner in a partly specified environment and that malfunctions will
have only a limited impact. We will largely focus on the System on Chip. This
will be the lead theme in formulating the trends that can be expected in testing.
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Such systems will be service oriented in the sense that the design only creates the
potential for the product line, that the design will be augmented for a specific
product from the line while lastly the product needs to be adaptable to the situa-
tion in which it isto be applied.

Testing will therefore not be a mere quality assurance at one point in time, but
rather apart of the product design that will have influence over the entire lifetime.
Integrated test is meant to reduce factory cost while raising product quality. This
is mandatory as the embedding system can not be assumed to remain stable.

4.13.2 Needs and Trends

Testing used to be a single platform, single technology business. This restricted
problem space allowed for in-depth modeling and analysis. There was board test,
memory test, digital chip test and so on: each with their algorithm set-up and each
prospering in splendid isolation. In the meantime the microelectronic scene has
changed considerably. With decreasing lithographical dimension, more and more
functionality isintegrated on asingle carrier, at the expense of more complicated
timing physics. Today’s board is to-morrow’s chip. Small fabrication dimensions
and high volume have a strong economic relation. But there is a limited amount
of products that can be produced in high-volume in a single application. This
observation has stimulated an increasing use of ways of obtaining flexibility,
leading to e.g. programming facilities like hard-wired instruction ROM, flashable
parameter EPROM and reconfigurable FPGA.

Where the plain vanilla ISA (Instruction Set Architecture) creates functional
richness on alimited amount of control/data signas, the introduction of configu-
ration registers and ultimately of configurable interconnect explodes the amount
of logic paths to be tested. This added to the increased system complexity neces-
sitates on-chip support. And as the chip becomes a system, this test support will
follow the same development route as the system itself, ultimately leading to a
configurable part that in turn must be tested.

In the end, the system will support both functional and test programming from
anumber of communicating blocks. As communication is the core of the offered
functionality, separate attention is required to validate the interna timing from
the electrical glitches to the abstract protocol.

162 30 March 2002



Designer Needs

Scenario: Test, debug and integration

2008

2011

1. The chip designer needs more support for fault characterisation of flexi-custom architectures

(test & debug)

2. The product designer needs better tooling for test-view development (debug & integration)
3. The application designer needs more support for diagnosis and reconfiguration (debug)

Vision:

Scenarios of
rendezvous:

Methods

Tools

Gaps

testing

2. Adaptivity takes the pressure from the final test by

1. Formal core validation is essential for polymorphous

facilitating a distribution of concerns

Hierarchical man-
upilation of existing
test pattern sets

Hierarchical
test

Moving interface
and communica-
tion standards onto
the chip

Support for charac-
terisation of new
fault models

Mixed HW & SW
test

Support for hetego-
neous system
designs

Transparent
combi test

Cut-and-Fold nota-
tions

Unified test tech-
niques for HW/SW
mixes

Open development
framework for test
design & verifica-
tion

Merging validation
and testing

Control of on-chip
modular test & con-
figure

Figure 25: Scenario for test, debug and integration
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4.13.3 Remarks on scenario of rendezvous for Test, debug & integration

164

Meddling complexity

Complexity of embedded parts has many aspects. Next to the bare number of
transistors on a chip, it has also to do with the many technologies that interact
through the part, the diversity of microelectronic concepts applied within the part
and the judicious mixture of hardware and software programming, potentially all
thisin a networked service composition.

Today the influx of switching technology has melted the digital and analog
domain into devices where both can be personalized from the same software pro-
gram. Ass the system moves onto the chip, it becomes more reactive and the test-
ing has to take the embedding system into account. Eventually the testing scope
has to widen even further as the system isan integral part of a micro-system.

IP cores have originally taken the role of ahalf fabricate. Such parts come with
test patterns that validate the part as a whole. This has sufficed for systems that
merely added some functionality to the existing core. However, in a multi-core
environment such parts will also be required to aid in supporting the test of other
parts. Clearly such methods place demands on the granularity of the design,
where the overhead is too large for small parts while larger parts are too tightly
integrated to provide the required level of test support.

Where we see the levels of programming increase and a range of hardware/
software interactions come into play, the test methodology needs to provide a
more integral view. Today software and hardware test are overlapping in method-
ology and growing towards one another; for embedded systems this trend needs
to be continued. The mutual test support of 1P core need to become generic in this
sense that a sound algorithmic basisis required.

Mixing various core in various technologies with a large amount of non-com-
mitted functionality will lead to heterogeneous architectures, which should
become reflected in the test strategy. To alarge degree thiswill become facilitated
by on-chip circuitry such that the test program itself addresses such problems on
amore abstract level.

Debug & test

The various levels of programming reflect a shift in the moment of final personal-
ization from fabrication to application. As a consequence we will see a changing
emphasis from in-line to on-line test. This is necessitated by the fact that an
indepth test becomes even more impossible than it is to-day; it is facilitated by
the fact that modifications remain possible till a later moment in the life of the
system.

There will remain a constant desire for appropriate fault models. With each
next step in process devel opment, the dominant fault model may be different and
should be adequately accommodated. From such fault models grow a wide range
of fault instances that bring failure interaction between the wires but a so between
design parts.
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The premise of off-line test when the part becomes a product is stability. The
reguirements can be loosened by allowing for redundancy and eventually replace-
ment through the use of non-committed parts. The judicious application of such
measures needs to be based on principles of modularity, as changes have to
assume the prior success of fabrication test and have only alocal effect.

At the application level, the user can hardly be bothered with applying and
interpreting tests. A proper system of quality assurance remains indispensable,
though the functionality is still open for adaptations. This can only be guaranteed
when the embedding system takes arole and in turn this embedding system needs
to have access over a well-defined mechanism such as a test bus. To limit this
interdependence the test resources on the chip must be sharable and therefore part
of an hierarchical ordering.

Modularity and hierarchy can be applied in an arbitrary mix. The result may
have many forms and a careful standardization in terms of system architectureis
required to handle such a polymorphic arrangement.

Integrated test

Where complexity meddling focuses on the test technology to facilitate the actual
test and Debug & Test focuses on the test technique to use the potential of the
Design & Test, a middle layer is required to glue such concepts together. This
Integrated Test aimsto provide a clear view on the overall product test that can be
used over the lifetime of the product.

Access & Control lifts the issue of observability and controllability to the sys-
tem level. Where the system becomes more and more integrated, the sequencing
of parts to take care of the product as well as of the test behavior becomes a
scheduling problem. The polymorphic architecture of heterogeneous parts
together with the need sharing test resources in a supportive manner can not be
pre-determined.

To keep the test problem manageable will then induce a need to bring stand-
ards on communication protocols and core tests on the chip. Reducing the com-
plexity by using strict standardsis supported from the presence of non-committed
functionality to the degree that adaptive repair will play an important role.

Test drop-ins are a basic means to bring test facilities on the chip. In a sense,
they are the IP cores of the test domain. With the increasing amount of non-com-
mitted functionality, the momentary field programming for test will also creep
onto the chip. Mixtures of tests for the already installed functionality and for the
still open functionality have to be part of a single test program.

Thetest program will not merely reflect the current situation but will also indi-
cate how failures can be repaired by introducing new programs. Thisis especially
mandatory for application tests as the end user can not be expected to come with
the required level of Test & Diagnosis. Hence, the overall test program may be
influenced interactively by the embedding system. In other words, the embedded
system will have not only a Design view but also a Test view towards its environ-
ment.
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4.13.4 Recommendations

166

The large diversity of hardware and software, that comes together in an embed-
ded system in various shapes and quantities, needs to be addressed from a single
unified view on testing. The testing problem will further be aggravated by the
increasing role of redundant and reconfigurable parts. Increasingly we will need
on-chip measures and dedicated test functions to allow for an acceptable fault
diagnosis, isolation and repair over the life-time of the product. Introduction
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Appendix 5. Important Embedded Systems aspects of a not only
technological nature

5.1 On objectives

If one defines a roadmap for 10 years, and one wants also to look at the condi-
tions that need to be fulfilled for its successful implementation, one has to
broaden one’s view considerably outside the pure technological arena. The objec-
tives of the roadmap have to be put into a larger perspective. From a variety of
viewpoints a number of observations can be made about conditions for success,
but also about what aspects have to be brought into line with one another to come
to a successful realisation of the roadmap.

E.g. from an economic perspective it may be observed that embedded systems
represent a fragmented market, but at the same time they represent a market
likely close to 100 x larger than the desk-top market and this market still leaves a
lot of headroom for technology skills to prevail over marketing. The objective of
the ESR could therefore be to use the embedded market as a technology vector to
give Europe the leading world-wide position just like Europe took the lead in
wireless telecommunications. This places the ESR in an environment which
imposes that many more consequences are worked on than just technological
ones.

E.g. to gain a European leadership also requires that the international depend-
encies are analysed and dealt with. Standards need to be international to be effec-
tive, although there are examples where the local scale is sufficient to allow local
(and hence protected) standards. The problem of basic components and technol-
ogy however is more severe. In normal (peaceful) conditions they should not be
perceived as being problematic, but as many of the basic technologies are US
owned (or patented), thereis a certain dependency risk. Hence, whileit is not effi-
cient to seek complete independence and supremacy, Europe should at least have
leadership in asufficiently large domain to have a strong bargaining and negotiat-
ing position. This also implies that there is an economic dependency factor. If the
economic and social environment does not provide the right incentives to develop
and compete in this technology race, with also new players in Asia becoming
powerful factors, the ESR will not give Europe the leading position, but a fol-
lower’s position.

It will be useful to collect observations like the above and to investigate what
initiatives need to be taken to create success in a long-term effort from several
points of view. The following is a start of such an investigation and consists
mainly of contributions from reviewers of he first internal version of the ESR.

The following points of views or aspects are considered bel ow:

1. Concepts: how to best meet the challenges posed in the ESR?

2. Education: how to build the engineering work force that can execute the ESR?

3. Economics: how to create the infrastructure (in its social definition) that sup-
ports and musters such a goal?

4. Process: how to develop and/or acquire the necessary technology?
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5.2 Conceptual approaches

168

This is the area where the ESR document focuses on in its approach to handle
complexity and heterogeneity. The underlying theme is one of the needs to bring
multiple domains (now only loosely linked or even separate because of underly-
ing historical reasons) in a unifying ‘systems domain. The challenge here is that
this means that conceptual bridges must be made from very high levels abstrac-
tion to very detailed implementation details, across multiple vertica domains
while achieving the ambitious goal that embedded systems are developed very
fast (live times shrink), more reliable (greater dependency), cheaper (widespread
use) and less resource hungry (sustainable use). At the same time, the embedded
devices must operate correctly in an autonomous as well as in an interconnected
way as they become part of a bigger ‘ meta-embedded world'.

The ESR roadmap is biased towards the SoC market and its way of approach-
ing design problems. While thisis an important technology vector onits own, this
seems to forget that board level design and packaging it into a application prod-
uct, will not go away but will aso have their challenges.

A favourite paradigm for tackling complexity stems from CSP (Communicat-
ing Sequential Processes). CSP comes from the parallel processing domain as a
formal, rather arcane mathematical language, but in the ESR context it servesasa
framework to reason about systems that are composed of multiple sub system
modules with well-defined interfaces. Once the ‘interface’ is well defined (which
also means that the internal state-machine operates correctly and the interface
definition is complete), it is no longer needed to know the inner workings to use
the sub system module to build larger systems. This is the basis for a black-box
approach to system design.

Let’stake an example. For the design engineer an embedded system might be a
‘box’ of which he knows how it works, but for the end-user, it often will be a
‘black box’ with input and output ‘ connectors'. E.g. it can have sensors to meas-
ure certain entities, it can have knobs and handles, it can have a screen, mikes
and/or speakers and it can operate on other devices. The inside can be anything
(mechanical, hydraulic, electronic) as long as it does the job. These interfaces
with the outside world define what the embedded system is supposed to be doing
and also defines (or rather restricts) its operational envelop in terms of boundary
conditions (e.g. temperature, weight, cost, energy consumption, timely behav-
iour,...). Good system engineering comes down to opening the black box and fill-
ing it up with well-defined sub system modules taken into account the boundary
conditions. Hence, the job is reduced to define new black boxes until a level is
reached where implementation issues make further reduction impractical or
undesired. In practice, the main issues are:

1. -To select the sub system modules so that they satisfy the requirements and so
that they can be us as ‘trusted components
2. -To clearly and unambiguously define the interfaces.

Of course, this leads to a recursive process as this is the way to design trusted
sub systems from trusted ‘basic’ components. At each stage, the designer must
make trade-off decisions between what is supposed to be optimal and what isfea-
sible. This can ultimately result in avery costly (time- and resource-wise) process
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if the wrong trade-offs have been made. Hence the need for simulation. As simu-
lation is done on ‘computers’ (another type of black boxes mainly designed to
execute crude simulations of area- world entity), the CSP concepts come to res-
cue. It is sufficient to have a set of programming ‘tools/languages’ that can accu-
rately execute such a smulation of (concurrent) modules. Hence with a proper
selection of ‘ programming/simulation’ tools, one can have ‘ executable’ specifica-
tions and simulations that can even be used for the final implementation (if the
final implementation level of agiven sub system component happensto be a com-
puting device).

While this black-box decomposition methodology provides for a ‘ correct-by-
design’ approach, it also allows constructing systems in a bottom-up approach
with built-in testability. Of course, designing the basic component can be a much
more error-prone process, but once that achieved, it should be clear that the key to
this methodology is to separate the functional content from the interface content/
protocol. This is exactly what CSP is al about. Just like the ESR outlines, this
comes down to starting to work with well-defined (and standardised) interface
protocols. This is a bit in contrast with the current practice in e.g. SoC design
where the interfaces are even silicon technology dependent or defined in terms of
the electrical signals. If extrapolated, this will come down to defining a standard
electrical interface with a standardised ‘ communication’ protocol. Note that e.g.
the telecommunication sector has already adopted such an approach (e.g. TCF/
IP), but that at some point this approach will need to be made universal. The
result should be a ‘plug-and-play’ connectivity with for most user level devices
the capability to ‘hot reconnect’. This in itself requires a higher- level protocol
and state monitoring of the ‘interface’ device. Such approaches already exist. E.g.
IEEE 1355 (pioneered from the INMOS transputer, itself a computing device
architected to mimic the CSP model). ESA has adopted this as ‘ SpaceWire' (add-
ing LVDS signalling) and is using it as the basis for on-board system architec-
tures (OHMA: Open Heterogeneous Module Architecture). SpaceWire is used to
connect computing processors between each other, with sensors, between boards
and even to mass memory devices. Also the industry, driven by the needs of the
telecommuni cations sector, has begun to adopt such architectures. The last onein
therow is StarFabric (PCIMG 2.17) that resembles |EEE 1355. The CompactPCl
industry is by the way a nice example of how things could evolve. This industry
has adopted a wide range of standards specifications at various levels and has
adopted a solid technology base to foster the re-use and integration of modules
developed by third parties. PCIMG3.X illustrates also the move away from the
bus and the adoption of a ‘switched fabric’ interconnect technology. Often what
is found at the board level, is introduced some time later at the SoC level when
the economics of the technology permit it.

Note that my view is not so optimistic as to the complementary need expressed
in the ESR report. This is the view that methodol ogies need to be developed to
enable re-use and integration of existing tools and components. While thisis the-
oretically possible (like defined above, by devel oping interface adaptors or trans-
lators), this is often behest with problems and serious obstacles often at the
semantic level. Often current tools and components have rather restricted or ill-
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defined semantics (the embedded software industry is full of them, even if they
are so-caled standards like POSIX or ADA). As these were not developed with
interfacing in mind, the inner semantics are often visible in their interfaces, hence
making that often impossible to match with semantics defined for another tool or
component. Developing areliable and satisfactory system in such away is often a
bad compromise in the best case and not necessarily faster than a development
from ‘scratch’.

The biggest challenge however for the ESR lies in the educational domain. As
such the ESR defines in fact an industrial process, not so much a technology.
While various tools can be developed to support this industrial process, it isfirst
of all to be executed by humans (who have skills and intelligence but also severe
limitations in adopting new «paradigms»). The key to this might be to radically
change the way «engineers» (but it applies equally well to many other classes of
the workforce) are educated. Part of the problem stems from the history where
«ex-cathedra» is seen as the most-efficient way to educate. The challenge is two-
fold: one the one hand one must work to develop the diverse engineering disci-
plines into a set of «predictable» methodologies (read: industrial processes),
while on the other hand experimentation and heuristics must alow the engineer
to make the right trade-off decision. To put it into perspective: a construction
engineer has tools to build bridges in a predictable way (the computer even does
the calculations for him).

On the other hand we are still not at a point where we have a clear qualification
for «software engineering», and certainly not for «system engineering». Think
here what aso Prof. Hugo De Man often puts forward. The reason is that soft-
ware and system engineering are not fully understood disciplines. If one takes
into account that the ESR puts emphasis on these domains, we are in trouble. Our
view is that the engineering education can be greatly improved by re-introducing
two main areas of attention.

The first one is that engineering is first of all a domain that is full of experi-
mentation. First devel oping the crafts and skills (by experimentation) is more nat-
ural (see e.g. children learning to use a computer or speak their own language)
than learning a skill by having explained the theoretical model. However this
does not mean that the theoretical model is to be put aside. On the contrary, good
engineering (and this applies to many other domains as well) is based on what
one calls the «KISS» principle: Keep It Simple and Smart». Thisis for all those
who engineer things (e.g. such as our law makers). There is an alternative «Keep
It Simple and Stupid» that applies for the users. Designing a «thing» or «system»
means that when well done the resulting solution should be elegant and simple,
but this also means that the problem should be well understood. If the solutionis
complex, often the problem domain was not well understood. (again this applies
to many other domains as well).

In order to develop these skills, engineers must go through a process whereby
they must acquire a solid and broad background know-how (to discover analo-
gies), the skills to analyse problems and to formulate requirements in an unam-
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biguous way, to acquire craftsmanship and heuristic know-how to strengthen
their intuition. Therefore heuristic know-how and «background» know-how must
be complemented by an acquisition of the theoretical models that explain the
why’s and how’s. Therefore formal methods of reasoning must be developed to
acquire the skills to reduce a problem domain to its essential core. Such formali-
sation also helps to design-in reliability because it forces to think about the oper-
ating boundaries of the system. Given that we propose a CSP type approach, it
should be clear that formal reasoning is also important because the CSP approach
depends a lot on a formal and well defined interface behaviour between the sub
system components. The reliance on simulation also necessitates this, as a simu-
lation model is only as good as its specification. System engineering is the
culmination of all these skills. It brings together different domain skills at the
interface level. It requires background know-how on all the sub system modules
in order to make the right trade-off decisions (including economical ones).

Thisiswell illustrated by the design of a PWA. It covers many aspects: first of
all, does it really serve a purpose (or is this just another experimental gadget?),
How is the man-machine interface? How can we design it to let it do what it is
supposed to do? How doe we keep it below a certain price cost? Isthis even feasi-
ble? How do we solve the battery problem? How de we put it in an attractive
shape? How do we make it reliable? etc. At this level, a good system engineer
must be capable of traversing not only multiple domains (mechanical, el ectronic,
software, chemical, economical) that cover the specification level down to the
practical implementation details, he must also develop the skillsto know what the
impact of many of his trade-off decisions will be.

A quite nice example of multi-disciplinary education is the seminar for first
year electronics students at KU Leuven entitled ‘Ontwerpseminarie H838:
Design of a People Mover'. Contact Hugo De Man for more information:
deman@imec.be.

We would like to illustrate the inadequateness of the current university educa-
tion, although there are of course many places (often ‘polytechnic’) where the
courses remedy this to some extend. E.g. a computer scientist, educated in a
mathematical mindset will often not even know how an ‘int’ looks like in the
hardware, or certainly not know that this depends on the executing processing
machine. On the other hand an electronics engineer, of which the majority ends
up writing software, will never have been trained in the formal reasoning methods
that computer scientists have been taught in. The result is that neither of them is
prepared to tackle the challenge of the ESR. The reason for this ‘ chasm’ is partly
historical, partly the lack of flexibility in the government controlled education
systems (with professors being nominated for live, having barely a budget to
equip the labs and other things).

This brings me to the second important change that is needed: education and
training must become a lifetime occupation. The exponential advance of science
and technology poses severe dilemmas that impose on the one hand further spe-
cialisation, on the other hand information gathering from different domainsto be
able to understand the ‘system’. This might lead to two classes of engineering:
(system) design on the one hand and system implementation on the other hand.
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Both require continuous re-training and re-education to be able to meet the needs
of the ESR.

To achieve the ESR, which is a medium to long-term objective, one must put in
place a complete supporting environment. The educationa part of this is one of
the domains with the longest-term impact. But the speed of change (lifetimes of
one month) and the production volumes involved (widespread use) also indicate
that thisindustrial process will be or is very capital and know-how intensive. The
speed of change also entails rapid decisions and higher risk taking. Even if we
have an engineering force that is prepared to tackle the system-engineering task,
this must be tightly integrated in a business and social environment that is sup-
portive and capable of following. The challenges are manifold:

1. -Economic: does the environment provide capital and infrastructure in an ade-
quate way?

2. Social: does the (local) society accept this «rapid» change model?

3. -Human resources: does the (local) society provide the management skill sets
(e.g. marketing, financial management, ...). Isthere apool to draw from?

It should be clear that the ESR challenges are not just technological. It can
only achieve leadership if the community supports it. Counter examples are e.g.
Japan, who clearly has the technology skills, but where management and power
positions are kept by an older generation that is risk and change averse. Another
example is China who developed the engineering skills and is open for rapid
changes, but where the society still has to develop the financial and business
backbone and the processes to put these skills at work. In this context, the aging
population in Europe could be a serious structural obstacle to change.

Using IP creates many economic challenges:

1. A sound business model, which challenges IP component builders to market,
sell, deliver and support the right components where domain experts are wait-
ing for.

2. An embedded software |P market, where | P components, consultancy, mainte-
nance and support can be sold. And where consumers and producers meet to
predict future needs.

3. Standardisation of API, architecture and external behaviour of alP component
a. Intra process, inter process and inter processor communication.

b. Exception handling

c. Debugging facilities

d. Intra component verification and validation

e. Inter component verification and validation (JTAG like)

f. Interfacing with Real Time Operating system

g. Hooks for hot-swappabl e software
4. Standardised IP component data sheet
5. Standardised | P component test data sheet
6. Standardised |P component publishing mechanism (like a webring with tools)
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5.5 Process

The above outlined methodology can be applied even today, but an efficient
implementation requires the availability and hence eventual development and
refinement of tools, standards and basic technologies and their working together
in well-structured processes.
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Appendix 6. Roadmapping: objectives, process and concepts

6.1 Introduction

The kind of technology roadmap that is presented in this document is a needs-
driven inventory of technological possibilities of the embedded systems domain
over time. This in contrast to classical product-technology and technol ogy-push
roadmaps.

As instrument for technology planning and co-ordination a technology road-
map for adomain has the objective to ddliver:
1. A common vision on future needs and developments of adomain
2. Guidance for directing R&D of technologiesin adomain
3. A rationale for collaboration activities
4. A strategy for long-term investments
A roadmap may also contribute to creating a common terminology to ease com-
munication in adomain, and it may provide better ways to classify related work.

User needs and
technology =—| Vision on domain
expectations

Vision on needs and goals

¢ Consensus-based relations

Connects needs and between roadmap elements

possibilities Roadmap “What, Why, When”
over time * Scenarios of rendezvous
* Time span: 5 to 10 years
Inventory of technologies and gaps
Strategy and * Program policy
technolo . i
OBY Strategy and Program Program of projects
planning  Time span 1 - 3 years

The process for obtaining a technology roadmap for a specific domain can
therefore be positioned between vision development for such a domain and strat-
egy definition for reaching defined goals in the domain by aresearch agenda or a
programme of projects. A technology roadmap helps both in setting goals for
technology development of a domain and in balancing off technology push argu-
mentsin priority setting against user or market needs.

It is by now well known that roadmaps do not originate easily, but require a
carefully managed and facilitated process to come about, even now the methodol-
ogy is reasonably well established. See e.g. the EDAA and ITEA roadmaps.

In the sequel the major concepts of roadmaps and the required roadmapping
process are succinctly described.
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6.2

The roadmapping process

The success of a roadmapping process depends to a large extent on a team of
project leader and facilitator or a facilitating project leader who can guide the
process and preferably has a general understanding of the domain. He will start
by interviewing the major stockholders to establish the purpose of the roadmap.
Thereafter he will outline the whole process, get an agreement with the stock-
holders on content and funding. Subsequently a Core-Team is formed, under
responsibility of the principal stockholder, to perform the iterative search and
learning process that making a roadmap is. Then execution follows with a
sequence of CT meetings and workshops. Intermediate workshops are organised
to add to the results and improve them where possible. It gives also an opportu-
nity to obtain consensus with alarger group of interested persons and to have the
results evaluated by independent experts.

Roadmapping process

L

Roadmap
Version 1.0

Process |

Plan

Meeting Notes
Draft Roadmap

Meeting Notes
Domain papers

Orientation
meeting

Core-Team working environment

Prepar ation Improvement

~ phase . i Construction phase _:  phase
6.3 Major concepts of roadmapping
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A technology roadmap of the kind presented here looks quite far ahead: about 10
years. This poses the problem that not yet a market exists that can specify what is
needed. It isjust too far out for that. This necessitates special methods and corre-
sponding processes to get sufficiently reliable information to base strategies on.
Scenario writing is used in combination with reframing techniques to assure this.

Scenarios are written about driving applications in a specific domain. A
domain is an area of interest in which products/services share certain characteris-
tics. A driving application is a product/service that challenges technology capa-
bilities in a domain to the utmost, even to the extent that it might imply the need
for not-yet existing technologies.
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The writing of scenarios is based on an exploration of user needs in that
domain for the driving application. User needs are the expression, in hon-techni-
cal terms, of the wishes of (target groups of) end-users that may motivate a search
for fulfilment of these needs by product/service solutions in which technology
may play an important role. To come to a solution of interest to the user avision
needs to be developed of how the fulfilment of user needs will evolve over time.
A vision is here a description of the common view on the practical evolution of
the major function characteristics of product/service solutions that fulfil (some
of) the user needs.

Theresult of al thisiswritten down in domain papers. Domain papers embody
the vision in scenarios of rendezvous, in which a scenario is a sequence of events
and a rendezvous is an event where technologies meet that are necessary for the
emergence of anew generation of a product/service that fulfils a user need.

Characteristics of rendezvous:

1. At least two technologies are involved that need to converge in time

2. They can meet or miss

3. The outcome is uncertain: they can match or not

4. Externa events can influence outcome and success

Rendezvous are in a sense the equivalent of the milestones and deliverables of
projects. The uncertainty involved made it however necessary to introduce this
new concept.

The information in the domain papers is subsequently used in the roadmap.
This requires that first agreement is obtained about the structure of the roadmap.
Once agreed upon the domain paper information can be mapped into it. Next the
correct ordering of technologies and the identification of technology gaps is per-
formed. A series of interviews with experts is necessary to get a sufficiently
detailed view on what technology gaps really mean and what should be done
about them. Also an evaluation and checking with a group of international experts
is necessary to complete afirst version of the ESR. Thisleadsto afinal session of
the Core-Team to conclude on its series of recommendations.
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