
© PROGRESS/STW: public version 1.0 1

Embedded Systems
Roadmap 2002

Vision on technology for the future of PROGRESS

edited by

Ludwig D.J. Eggermont1

30 March 2002

1.For authors and other contributors see page 9

Embedded Systems Roadmap 2002

2 30 March 2002

CLP - gegevens koninklijke bibliotheek, Den Haag

Roadmap

Embedded Systems Roadmap 2002

March 30, 2002 / [ed. Ludwig D.J. Eggermont]

Utrecht: STW Technology Foundation/PROGRESS

ISBN: 90-73461-30-8
STW-2002

Keywords: Embedded systems, technology roadmap, embedded system design,
PWA, Personal Well-being Assistant, roadmapping

Published by:
Technology Foundation (STW)
P.O. Box 3021
3502 GA Utrecht
The Netherlands
Phone: +31 30 60 01 268
E-mail: progress@stw.nl

Project leader, editor and process facilitator:
Ludwig D.J. Eggermont,
Eggermont Consultancy
De Speldenmaker 19
5506 CE Veldhoven
The Netherlands, E-mail: ldje@iae.nl

© Copyright PROGRESS/STW 2002

 © PROGRESS/STW: public version 1.0, 30 March 2002 3

E
xecu

tive S
u

m
m

ary

Executive Summary

Opportunities and threats

The importance of embedded systems is undisputed1. Their market size is about
100 times the desktop market. Hardly any new product reaches the market with-
out embedded systems anymore. The number of embedded systems in a product
ranges from one to tens in consumer products and to hundreds in large profes-
sional systems. An average household employs easily 50 embedded systems now-
adays. This will grow at least one order of magnitude in this decade. Professional
systems will see a similar growth. Besides, many distributed systems will rely on
embedded systems for an ever larger part of their functions.

The strong increasing penetration of embedded systems in products and serv-
ices creates huge opportunities for all kinds of enterprises and institutions. At the
same time the fast pace of penetration poses an immense threat for most of them.
It concerns enterprises and institutions in such diverse areas as agriculture, health
care, environment, road construction, security, mechanics, shipbuilding, medical
appliances, language products, electronics, etc., etc. They all need to respond
timely in mastering the following technological and market challenges:
• Wide diversity and increasing complexity of applications
• Increasing number of non-functional constraints
• Increasing degree of integration and networking
• Increasingly multi-disciplinary nature of products and services
• Growing importance of flexibility and software
• Shrinking time-to-market

The current situation is especially threatening for small and medium-sized
enterprises. More than half of them will disappear in the next decade unless they
find means and ways to absorb and develop further the necessary know-how for
the embedded systems in their products and services. Great efforts will be
required for technology development, but this will not be useful if, at the same
time, not enough money is spent to obtain a sufficient number of persons with the
right level of education. The current prospect is worrying in this respect.

Purpose and scope of the Embedded Systems Roadmap (ESR)
Obtaining a clear picture of the essential technology developments for embedded
systems and finding the related technology gaps is therefore an essential task and
the purpose of the ESR. The scope is restricted to technologies for embedded sys-
tems incorporated into information processing, possibly networked, embedding
systems. A certain focus on System-on-Chip related technologies can be

1.Report Task force ICT-en-kennis (2001), Citing from the management summary:
4c) The market for embedded systems will grow exponentially also in the next dec-
ade..... Every company faces the challenge of changing over to embedded and distrib-
uted systems to not get off track.
See also pp. 33/34: Competing with embedded and distributed systems.

Embedded Systems Roadmap 2002

4 30 April 2002

E
xe

cu
ti

ve
 S

u
m

m
ar

y observed. This was not so much the intention but more the result of the selection
of the experts involved. When other areas become more important the roadmap
needs to be adapted to that situation.

Target groups
The Program Committee of the Dutch PROGRESS (PROGram for Research in
Embedded Systems and Software) chartered a Core-Team of persons represent-
ing the Dutch embedded systems community with this roadmapping task in
March 2001. This roadmap document is the result of their efforts. Major goal of
the document is to enable program management in the next phase of
PROGRESS. The main target group is therefore the PROGRESS PC, the program
managers of collaborating consortia, as well as their government contacts. But
the roadmap will be equally useful for industrial R&D strategy and marketing
managers and for group leaders of research groups at universities, institutes and
industry.

Positioning of a roadmap
To explain the position of a roadmap (and especially this one) with respect to
vision documents and research agendas or programs of projects the following
picture may be helpful:

Figure 1: Positioning of the Embedded Systems Roadmap

Human needs
that may be
satisfied by
technology

Desirable
functions

of technological
solutions

Visions

Domain
properties

and
constraints

Examples:

Stories/
Scenarios

Required
technologies

Roadmaps

Book of Visions 2001
(Wireless World)

Embedded Everywhere
(Networked embedded systems)

Research agenda
Programs of projects

Embedded
Systems
Roadmap

EDAA System Design Technology Roadmap
International Technology Roadmap for

Semiconductors (ITRS)
ITEA Roadmap on Software Intensive Systems

MEDEA EDA Roadmap

PROGRESS 2

Ambient Intelligence scenarios

Personal Well-being Assistant

Maslov's
theory of

motivation

Book of Visions 2001
(Wireless World)

Embedded Everywhere
(Networked embedded systems)

 © PROGRESS/STW: public version 1.0, 30 March 2002 5

E
xecu

tive S
u

m
m

ary
As shown in the figure above the Embedded Systems Roadmap came about in

a creative learning and search process that consisted of three phases.
In the first phase a vision on human needs in an application domain was cre-

ated on the basis of what motivates people most. These human needs were subse-
quently interpreted as desirable functions of potential technology oriented
solutions. From this resulted a vision on desirable technologies over time.

In the second phase this was further worked out in scenarios of rendez-vous of
several technologies. The scenarios combined the potential technology needs
with a view on the development of driving embedding system applications that
could fulfil a selection of representative user needs. The resulting domain paper
‘Personal Well-being Assistant: creating a society of well-being’ is added to the
ESR in Appendix 3. Geared towards future needs of designers of embedded sys-
tems is the domain paper ‘Domain of the Embedded Systems Designer’ in
Appendix 4. This paper presents scenarios of rendez-vous for designer needs.

In the third phase a roadmap structure was extensively discussed and agreed
upon. Technology information from the scenarios was extracted, refined and
mapped into the roadmap structure. In the latter part of this phase a consensus
process was entered in which extensive reviewing took place and in which also
interviewing of experts was employed in an international evaluation workshop.
This workshop served to reach further agreement on the ESR contents with the
international embedded systems community. It also created a wider view on the
field and served as an independent audit of the results.

Appendix 6 explains the roadmap process more comprehensively.

The roadmap structure
The Embedded Systems Roadmap has been segmented in two major parts:
1. The first part deals with the expected and desired developments in the major

characteristics of embedded systems. Apart from general aspects that influence
embedded systems, interaction and information processing are seen as the two
most important technology areas for embedded systems.

2. The second (and larger) part deals with the design of embedded systems. The
following areas are distinguished in this part:

• From idea to executable specification
• From executable specification to implementation
• Platform design
• HW/SW design
• Verification and validation
• Test, debug and integration

In each of these areas are high-lighted as much as possible the aspects that are
specific for embedded systems.

In an earlier version a separate chapter was devoted to embedded software.
Although there are many software-related problems in embedded systems, it was
found that they are so closely coupled to many other design issues that they were
best treated together with the other issues. This is not to say that software-only
problems are not important but only that many of them are not embedded-system
specific. And in the Embedded Systems Roadmap the focus is as much as possi-
ble on those aspects that are specific for embedded systems.

Embedded Systems Roadmap 2002

6 30 April 2002

E
xe

cu
ti

ve
 S

u
m

m
ar

y Major challenges
The major technology trends signalled in the Embedded Systems Roadmap create
the challenges given below.
• An increasing degree of heterogeneity and networking of embedded systems

can be expected to lead to a further complication of embedded systems design.
• A larger variety of information sources to interact with could easier be accom-

modated with fewer, but better co-ordinated standards on sensors and actua-
tors.

• Working out the consequences of ever more integration of all kinds of technol-
ogies in virtual and physical implementation is a central theme of information
processing in embedded systems.

• Designing the right system on target, without over- and without under-specifi-
cation, is the major challenge for high-level embedded systems design.

• Moving from executable specification to implementation, a characteristic trend
is that both transformations from software into hardware and those from hard-
ware into software become increasingly important to consider.

• In platform design a strong need originates to derive more instances from a
given platform to increase the cost efficiency or optimality of a platform.

• In hardware/software design a major challenge is to solve the design time
problem and bring features faster to the market.

• Verification and validation of designs remains a significant bottleneck to
design on target, while it is expected that for quality control reasons the burden
of testing will move closer to the end-user.

Opportunities for action
Six major issues of the Embedded Systems Roadmap have been prioritised by the
Core-Team. They constitute major opportunities for action and are summarised in
the following paragraphs in the given order of priority.
1. Promote, develop and facilitate the reuse of IP (Intellectual Property) blocks

on a broad scale, as an important enabler to increase design productivity. The
publicly available certified IP blocks should contain models, which can be
used to simulate, verify, debug, and test the embedded system including the IP
blocks at different levels of abstraction. IP blocks are to be easily integrated in
the embedded system by means of standardised interfaces. Note that IP blocks
may comprise both hardware and software.

2. Compilers and translators. There is a need for at least two kinds of compilers.
The first kind is retargetable towards various hardware designs in order to
deliver code efficiently executing on these designs. The second kind of compil-
ers derives the hardware architecture from the behavioural specification based
on several cost functions and simultaneously generates the software executable
for this hardware.

3. Specification. An urgent need exists for methods and tools that capture ideas in
models in analogy to the virtual reality modelling as has become accepted in
other areas such as the automobile industry. A knowledge base of re-usable
parts and metrically quantified design experience must be developed to aid the
designer in balancing constraints to obtain the final specification. Methods for

 © PROGRESS/STW: public version 1.0, 30 March 2002 7

E
xecu

tive S
u

m
m

ary
closing the gap between requirements and specification are lacking and are
urgently needed.

4. Design-Space Exploration (DSE). To develop methods and tools to evaluate
design decisions concerning the allocation of computation & communication
(tasks) to resources with the purpose of obtaining high-quality solutions. This
evaluation can be performed by co-simulation of executable models of hetero-
geneous building blocks at the appropriate abstraction levels.

5. Verification & validation. Apart from the highly desirable but difficult to real-
ise correctness-by-construction, formal verification and validation are the only
ways to solve the ever-growing simulation burden to verify the correctness of
design steps. Although formal verification and validation are not feasible for
all designs, they can be applied successfully in many cases. For this purpose it
is necessary to educate the designers early in these techniques and to design
more user-friendly verification tools by separating the verification and valida-
tion functionality from the underlying mathematics.

6. Test. The large diversity of hardware and software that comes together in an
embedded system in various shapes and quantities, needs to be addressed from
a single unified view on testing. The testing challenge is further aggravated by
the increasing role of redundancy and heterogeneous and polymorphic parts.
Increasingly we will need on-chip measures and dedicated test functions to
allow for an acceptable fault diagnosis, isolation and repair over the life cycle
of the product.

More detailed recommendations for action in each of the ten sub roadmap areas
may be found at the end of each sub roadmap section.

Acknowledgement and concluding remarks
This roadmap could not have made without the support of the organisations that
made their experts available for this project. This is therefore the right place to
acknowledge the contribution of:
• Philips Research
• Eindhoven University of Technology
• University Twente
• Groningen University
• Delft University of Technology
• Leiden University

In this document the ESR is presented as the roadmap for embedded systems
technology. It is based on extensive meetings of experts and on reviews from
many persons that have commented in one capacity or another.

This is not the end of the story, but just the beginning! A next step, as shown in
Figure 1, is to translate this roadmap into a research agenda or program of desira-
ble R&D projects. Depending on the focus of such a program certain areas will
have to be explored more in-depth. Besides, the many non-technology areas that
constitute critical success factors need to be addressed urgently.

Finally, this roadmap introduces the current state of trends and user needs and
the interpretation of their consequences. It will therefore be necessary to regu-
larly update the vision presented.

Embedded Systems Roadmap 2002

8 30 March 2002

© PROGRESS/STW: public version 1.0, 30 March 2002 9

Authors, Core-Team members and
other contributors

Editor Affiliation Remarks

Ludwig D.J. Eggermont Eggermont Consultancy http://www.iae.nl/users/ldje

Authors Affiliation Remarks

Bart Mesman TUE-EESI/Philips Research

Ben Spaanenburg RUG

Ed Brinksma Univ. Twente

Ed Deprettere Univ. Leiden-Liacs

Eric Verhulst Eonic

Floris Timmer BGenT

Hans van Gageldonk Philips Research

Ludwig D.J. Eggermont Eggermont Consultancy

René van Leuken TU Delft-Dimes

Thijs Krol Univ. Twente

Wim Hendriksen Route 67

Core-Team Members Affiliation Remarks

Bart Mesman TUE-EESI/Philips Research Since 2001-03-27

Ben Spaanenburg RUG Since 2001-10-18

Ed Deprettere Univ. Leiden-Liacs Since 2001-03-27

Hans van Gageldonk Philips Research Since 2001-03-27

Irek Karkowski TNO-FEL Until 2001-05-03

René van Leuken TUDelft-Dimes Since 2001-03-27

Thijs Krol Univ. Twente Since 2001-03-27

Wim Hendriksen Route 67 Since 2001-10-18

Project management and proc-
ess facilitation

Affiliation Remarks

Ludwig D.J. Eggermont Eggermont Consultancy Project leader and process
facilitator
Since 2001-02-01

Floris Timmer BGenT Facilitator until 2001-07-02

Stephan Eggermont Sensus Ass. project leader and DTP
Since 2001-03-27

Embedded Systems Roadmap 2002

10 30 March 2002

The authors like to thank the following persons for their contribution in improv-
ing earlier versions of this roadmap:

Ahmed Jerraya Jos Huisken

Arnold van Ardenne Jozef Hooman

Dirk Giesen Kees Goossens

Donatella Sciuto Kees Vissers

Eric Dortmans Lambert van den Hoven

Francky Catthoor Lars Philipson

Frans Beenker Loe Feijs

Frits Greuter Maarten Boasson

Frits Malotaux Marc Duranton

Frits Vaandrager Marc Engels

Ger van de Broek Marco Diepenhorst

Gerard Vos Martin Elixmann

Giovanni de Micheli Martin Rem

Hans Duisters Patrick Dewilde

Hans Toetenel Peter Marwedel

Harro Jacobs Pierre Paulin

Henk Corporaal Rix Groenboom

Herman Beke Roelof Hamberg

Huib Pasman Rolf Ernst

Jac Goorden Siebren de Vries

Jan Broenink Steven Luitjens

Jan Madsen Ton Zengerink

Jef van Meerbergen Wolfgang Nebel

Johan Lukkien Yervant Zorian

Jos Baeten

© PROGRESS/STW: public version 1.0, 30 March 2002 11

Scope

The Embedded Systems Roadmap focuses on the characteristics of electronic
information processing embedded systems and their design challenges. A focus
on embedded SoC can be observed in some parts of the ESR. This relates clearly
to the way the ESR came about. The contents of the ESR is to a large extent
determined by the interests, capabilities and competencies of the experts of the
Core-Team, the groups of Workshop participants and the reviewer community
involved.

Depending on the needs of the users of the roadmap, future versions of this
technology roadmap may cover more technologies like board design, packaging,
mechanical reliability, large scale embedded systems.

This document is intended for the following target groups:
1. Program managers of collaborating consortia and their government contacts
2. Group leaders of research groups at universities, institutions and industry
3. Individual researchers in the technology areas covered
4. Strategy and marketing managers of the embedded systems industry
It brings for each of its target groups the following:

Figure 2: Target groups and deliverables of the ESR

The ESR depends for its realisation on many developments outside the direct
application domain of embedded systems:
1. General trends in society related to individualisation, globalisation, mobility,

safety and security, fashion sensitivity, changing composition of households
and population

2. General trends in business and business models: flat organisation, focus on
core-business, multi-site/multi-company co-operations, e-business, shift to
services

3. General trends in technological areas necessary for the development and pro-
duction of Embedded Systems: ITRS: Moore’s law (semiconductor technol-
ogy: CPUs, memories, ASSPs, FPGAs, etc.), network and communication
capacity growth, databases, display technology, packaging technology, sensor/
actuator technology, MEMS technology, etc.

Quantified
technology

trends

Technology
priorities
over time

Technology
gaps

Technology
dependencies

Program
managers

x x x

Group lead-
ers

x x x

Researchers x x

Strategists/
marketing
mgr.

x x x x

Embedded Systems Roadmap 2002

12 30 March 2002

These aspects are not treated extensively in this roadmap, but reference is made,
where appropriate, to consequences or to documents related to these aspects. And
some of these aspects come into play in the domain papers, especially in the
domain paper on the Personal Well-being Assistant, in Appendix 3.

As many reviewers signalled a wide variety of non-technological aspects rele-
vant for embedded systems in one way or another, Appendix 5 contains a write-
up of many of these aspects.

© PROGRESS/STW: public version 1.0, 30 March 2002 13

Contents

Executive Summary 3

Authors, Core-Team members and other contributors 9

Scope 11

List of figures 17

List of sub roadmaps 17

1 On Embedded Systems 19

1.1 The importance and impact of Embedded Systems 19

1.2 Characteristics of Embedded Systems 19

1.3 What makes Embedded Systems special 21

1.4 The world of Embedded System designers 22

1.5 How to read the visual representations of the roadmap 24

2 Embedded systems 27

2.1 General Aspects 27
2.1.1 General trends and user needs 27
2.1.2 Technology requirements 28

2.2 Interaction 31
2.2.1 Introduction 31
2.2.2 General trends and user needs 31
2.2.3 Technology requirements 32
2.2.4 Recommendations. 33

2.3 Information processing 35
2.3.1 Introduction 35
2.3.2 General trends and user needs 35
2.3.3 Technology subdomain: Behaviour 36
2.3.4 Technology subdomain: Structure 37
2.3.5 Recommendations 40

3 Embedded systems design 43

3.1 From idea to executable specification 43
3.1.1 Introduction 43
3.1.2 General trends and user needs 43
3.1.3 Technology requirements 44
3.1.4 Recommendations 45

3.2 From executable specification to implementation 47
3.2.1 Introduction 47
3.2.2 General trends and user needs 47
3.2.3 Technology requirements 50
3.2.4 Recommendations 52

Embedded Systems Roadmap 2002

14 30 March 2002

3.3 Platform design 57
3.3.1 Introduction 57
3.3.2 General trends and user needs 57
3.3.3 Technology sub domain: Platform family selection and creation 60
3.3.4 Technology sub domain: Platform Instantiation 60
3.3.5 Recommendations 61

3.4 Hardware/software design 63
3.4.1 Introduction 63
3.4.2 General trends and user needs 63
3.4.3 Technology requirements 63
3.4.4 Recommendations 66

3.5 Verification/validation 69
3.5.1 Introduction 69
3.5.2 General trends and user needs 69
3.5.3 Technology sub domain: Formal verification 70
3.5.4 Technology sub domain: Non-formal verification 71
3.5.5 Technology sub domain: Integration 71
3.5.6 Recommendations 72

3.6 Test, debug and integration 75
3.6.1 Introduction 75
3.6.2 General trends and user needs 75
3.6.3 Technology requirements 76
3.6.4 Recommendations 77

Appendix 1 References 79

Appendix 2 Terminology and abbreviations 81

Appendix 3 Domain paper: Personal Well-being Assistant: creating a society of well-being 91
3.1 Domain description 91
3.1.1 Introduction 91
3.1.2 Purpose of this domain study 91
3.1.3 Rationale for the PWA-concept 91
3.1.4 Relation to Embedded Systems 92
3.2 PWA characteristics 92
3.2.1 The concept of personal 92
3.2.2 The concept of well-being 93
3.2.3 The concept of assistant 93
3.3 PWA classification 95
3.4 User Needs, Technologies and Rendezvous 96
3.4.1 Overview of PWA rendezvous 96
3.4.2 The Parent-PWA rendezvous 97
3.4.3 The Yup-PWA rendezvous 101
3.4.4 The Supersenior-PWA rendezvous 105
3.5 A day in the life of William in 2011: a letter to an old friend 110
3.6 Reference 111

© PROGRESS/STW: public version 1.0, 30 March 2002 15

Appendix 4 Domain of the Embedded Systems Designer 113
4.1 Domain description 113
4.2 Characteristics of Embedded Systems Design 114
4.2.1 Characteristics of Embedded Systems 114
4.2.2 What is special about the Design of Embedded Systems? 116
4.2.3 A Design Flow for Embedded Systems Design 116
4.3 Trends relevant for Embedded Systems Design 118
4.4 Vision on Embedded Systems Design 119
4.5 Embedded Systems Designer Needs 119
4.6 Overview of Embedded System Design scenarios 122
4.7 The Idea to Executable Specification scenarios 124
4.8 Scenarios for From Executable Specification to Implementation 133
4.9 The Platform Design scenarios 141
4.10 The Hardware/Software Design scenarios 148
4.11 The Embedded Software Design scenarios 152
4.12 The Verification/Validation scenarios 157
4.13 The Test, Debug and Integration scenarios 161

Appendix 5 Important Embedded Systems aspects of a not only technological nature 167
5.1 On objectives 167
5.2 Conceptual approaches 168
5.3 Educational 170
5.4 Economic 172
5.5 Process 173

Appendix 6 Roadmapping: objectives, process and concepts 175
6.1 Introduction 175
6.2 The roadmapping process 176
6.3 Major concepts of roadmapping 176

Embedded Systems Roadmap 2002

16 30 March 2002

© PROGRESS/STW: public version 1.0, 30 March 2002 , 17

List of figures

Figure 1 Positioning of the Embedded Systems Roadmap 4
Figure 2 Target groups and deliverables of the ESR 11
Figure 3 Embedded systems will be everywhere, but mostly unnoticable or invisible,

to enhance the functionality of the devices and equipment shown 20
Figure 4 Embedded systems in their environment 21
Figure 5 The overall design flow for embedded systems design 23
Figure 6 Steering DSE tools by a machine description 58
Figure 7 Steering DSE tools by machine descriptions on platform level 59
Figure 8 Scenarios of rendezvous for PWA families 97
Figure 9 Scenarios for Parent-PWA 98
Figure 10 Scenarios for the Yup-PWA 103
Figure 11 Scenarios for the Supersenior-PWA 106
Figure 12 What belongs to an embedded system? 115
Figure 13 Embedded systems themes 116
Figure 14 Y-chart 117
Figure 15 Sequence of design steps 117
Figure 16 Embedded systems design flow 118
Figure 17 Overview of scenarios 123
Figure 18 Scenario from idea to executable specification 131
Figure 19 Scenarios for Executable specification to implementation 141
Figure 20 Scenario for platform design creator 143
Figure 21 Scenario for Platform design instantiator 144
Figure 22 Scenario for HW/SW design 151
Figure 23 Scenario for embedded software design 156
Figure 24 Scenario for verification/validation 161
Figure 25 Scenario for test, debug and integration 163

List of sub roadmaps

General aspects 30

Interaction 34

Information processing 41/42

From idea to executable specification 46

From executable specification to implementation 54/55

Platform design 62

HW/SW design 68

Verification/validation 73/74

Test, debug and integration 78

Embedded Systems Roadmap 2002

18 30 March 2002

© PROGRESS/STW: public version 1.0, 30 March 2002 19

1 On Embedded Systems

Embedded systems are highly specialisable, often reactive, sub systems that pro-
vide, unnoticed by the user, information processing and control tasks to their
embedding system.

1.1 The importance and impact of Embedded Systems

Embedded systems are omnipresent nowadays. But as they are hardly noticable,
their importance and impact are often underestimated. They are applied as sub
systems in a wide variety of applications for an ever larger diversity of functions.
That their market size is 100 times as large as the desktop market can be easily
understood when one oversees some of their application domains:
• In consumer products traditional mechanical controls are since long replaced

by electronic embedded systems. Many further enhancements and numerous
new home control, kitchen appliances and white-good products have been
designed based on sensor/actuator signal processing by embedded systems.

• In audio and video consumer products embedded systems are used for control
processing in the user interface, the internal infrastructure control and for more
and more advanced audio and video signal processing, storage and I/O.

• In communications not only mobile phones but also the infrastructure depends
heavily on the use of standards implemented in embedded systems.

• In desktop and mobile computers embedded systems are indispensable for
computing, storage, communication, I/O and display functions.

• In professional areas like medical systems, traffic control, environment, secu-
rity, driving and car control, health care, airborne equipment, plant control,
agricultural equipment, etc., embedded systems make possible the creation of
systems with a functionality that can not be provided by human beings. In
these areas often an extensive infrastructure depends on distributed embedded
systems. In many areas e.g. health care, embedded systems may help to allevi-
ate manpower problems,

This extremely wide variety of applications of embedded systems implies that
our society has become to a large extent dependent on the proper functioning of
embedded systems.

1.2 Characteristics of Embedded Systems

The pervasion of embedded systems derives in the first place from the economy
of solution they provide while meeting a plethora of constraints. They obtain this
economy often by using to a large extent specific hardware and/or software com-
ponents, even for high-volume consumer-electronics applications. Here one
would expect custom solutions mainly. Also the possibility to share an embedded
systems platform over many different applications in a domain gives economy of
scale to the solutions in which they are used. The fact that they create a high
degree of flexibility in solutions by programmability and/or (re) configurability
makes them very attractive. Especially when standards have not been completely

Embedded Systems Roadmap 2002

20 30 March 2002

frozen this kind of flexibility is essential. Besides, in the past embedded systems
have shown to be able to make profitably use of the increasing economy of all
needed technologies in their evolution over time.

Figure 3: Embedded systems will be everywhere, but mostly unnoticable or invisible, to
enhance the functionality of the devices and equipment shown

Embedded systems are characterised by the following properties:
1. They are an information processing sub system of their embedding systems.
2. They provide specific and highly specialisable information processing services

to their embedding systems.
3. They are reactive, i.e. they interact with their physical environment often in a

continuous mode at a speed imposed by the environment.
4. They provide usually a complex functionality to their embedding system with

a combination of hardware and software specialised to meet a wide variety of
non-functional constraints.

5. They are mostly not visible or directly accessible by the users of the embed-
ding system although they are often used to increase the user-friendliness and
awareness of an embedding system.

Embedded systems interact with their environment via sensors and actuators or
via communication interfaces. Often they make use of interfaces to standard com-
munication infrastructures when used in distributed applications. Also ad-hoc
networking may be used.

Embedded systems may incorporate embedded systems themselves as shown
in the picture below.

1.3 What makes Embedded Systems special

© PROGRESS/STW: public version 1.0, 30 March 2002 , 21

1.3 What makes Embedded Systems special

Embedded systems are mostly reactive systems, which means that they react con-
tinuously to their environment at a speed imposed by the environment. This in
contrast with interactive systems that respond to external stimuli when they are
ready with calculating their response i.e. at their own pace, and with transforma-
tional systems that process a block of input data into a block of output data. Reac-
tivity imposes often real-time capabilities. This results in special requirements for
the hardware and software architecture of the platform to be used.

Figure 4: Embedded systems in their environment

Many non-functional constraints have a strong influence on design objectives
and architecture of embedded systems. Low cost is an inherent requirement as
embedded systems are not visible to the user, so their cost should be minimal.
Often being used in mobile or wearable appliances low power is also a standard
constraint for embedded systems. EMI and EMC: electromagnetic interference
and compatibility requirements are important due to the different environments of
which embedded systems can be part of. Hard timing constraints are imposed
often as a consequence of a required real time response e.g. when processing A/V
signals or when controlling an air plane by software only, instead of a mixture of
software and direct mechanical control by the pilot. Reliability, robustness and
safety constraints derive from situations where restart is impossible and a certain
degree of autonomous behaviour should be possible. Size and weight are usually
heavily constrained for embedded systems. System-on-Chip implementation is

Embedding System

Embedded
System y

Embedded
System x

Sensors

Communication
Interfaces

S

S

Embedded System z

A

A

CI

CI
Actuators

Embedded Systems Roadmap 2002

22 30 March 2002

also often required. All these difficult requirements and constraints make the
design of embedded systems especially complex as well as demanding.

Special design related challenges come from the specialisation and customis-
ing of target platforms in their use for embedded systems. It becomes possible by
detailed application know-how and the challenge is how to maintain some degree
of flexibility, with the related wish to increase the reuse of hw and sw compo-
nents.

A more recent trend which characterises many embedded systems and which
poses several new design requirements is the design of distributed co-operating
embedded systems.

The use of many disciplines and the heterogeneity of applied technologies are
the last but not the least important factors in making the design of embedded sys-
tems special.

1.4 The world of Embedded System designers

The design of embedded systems has become a quite complex matter. As a conse-
quence not a single person can master the complete trajectory from idea to testing
and system integration. With the increase in complexity rises the necessary
number of abstraction levels and more different specialists need to be involved to
come to ‘optimal’ overall solutions.

The design flow shown below illustrates this growing complexity of embedded
systems design by colouring the major specialist areas differently: systems archi-
tects, platform architects, board and System-on-a-Chip architects, (co-) verifica-
tion specialists, hardware and software designers, test engineers, system
integrators, etc. The world of the embedded system designer who, as a systems
architect, deals with understanding the domain and the idea of the principal, elic-
iting the requirements of his solution and converting this into an executable spec-
ification, is quite different from that of the embedded system designer who works
on architecting a platform for a specific application domain. And this again is
quite different from the challenges of the world of the embedded system designer
who works as a board or System-on-a-Chip designer to design a cost-efficient
solution.

It will be understood that the large number of disciplines involved gives easily
rise to mis-communication with the next person in the design flow. To address
this problem special attention should be paid to proper use and definition of the
terminology in all phases of the design and between all parties involved. There-
fore, one of the appendices of this Embedded Systems Roadmap is a paper with
terminology definitions.

If hidden semantic problems are not already bottleneck enough, the design sit-
uation is aggravated by the many different cultures that come together in embed-
ded systems design. The fact that these cultures are different is not the bottleneck
but the lack of understanding of the other specialists’ problems and solutions is.

Notorious in this respect is the communication, or better, the lack of communi-
cation between hardware and software worlds. This still hampers the evolution of
hardware/software co-design. Part of the difference in culture stems from the dif-
ferent ways of dealing with design abstractions. Hardware complexity has grown

1.4 The world of Embedded System designers

© PROGRESS/STW: public version 1.0, 30 March 2002 , 23

over the years. In line with Moore’s Law it has become necessary to add design
abstractions to master the exponential growth in available design elements at a
level: about one level is added every 8 years since 1970. A hardware designer
usually takes at most two levels into account in his design: the level at which he
specifies and solves his problems using the building blocks and their available
communication mechanisms from one level below. The efficiency of lower levels
is taken for granted by him from a perspective of design cost and time-to-market.
Software designers have similar complexity problems, but don’t have similar
physical forces leading to a shared view on how to deal with abstraction and hier-
archy. This difference in visibility and structuring of hierarchy poses significant
co-ordination problems in projects with combined hardware/software design.

Figure 5: The overall design flow for embedded systems design

Also the worlds of system architects at the highest level (yellow in the figure)
and of those involved in more implementation oriented design aspects (light-
brown in the figure) are quite different. The first ones deal with concepts and are
satisfied with executable specifications that simulate properly the product con-
cept, while the latter start from executable specifications that should incorporate
sufficient lower level information to simulate properly the actual hardware and
software behaviour of a product. What executable specification means can there-
fore differ significantly.

In conclusion: apart from expressing the iterative process of specification, con-
struction and verification for hardware/software co-design, a design flow for
embedded systems represents also a communication and co-ordination flow
between the different types of designers involved.

Embedded Systems Roadmap 2002

24 30 March 2002

1.5 How to read the visual representations of the roadmap

The visual representation of each sub roadmap shows which technologies play a
role at which moment in time in a specific technology sub domain in a sub road-
map. The division of the sub roadmap in technology sub domains is quite impor-
tant as it signals what the major areas of attention in a sub roadmap domain
should be. The order in which the technologies need to be developed as well as
some of the dependencies between technologies within the same technology sub
domain, within the same sub roadmap as well as between sub roadmaps are indi-
cated.

A start is made to classify technologies in different categories:
1. Evolution of state of the art: known problem, state of the art solution available,

work on necessary evolution is going on: green arrow. It is assumed that the
state of the art is known (but not necessarily by us!) and available when the
arrow starts and that the end point indicates when the subject is sufficiently
mature to not longer require R&D activities of the same nature as before.

2. Technology gap: known future problem, idea on how to obtain a solution also
known, indicated is the time at which working on the solution should or can
start (but not by whom or where) and how long it might take to make the solu-
tion available (also without attempting to estimate the required R&D man-
power or critical mass to develop a useable solution!): yellow arrow. This is in
fact the development of technologies to realise the rendezvous described in the
scenarios of the domain papers.

3. White gap: known future problem, no idea yet how to solve it: white arrow
with thick red line. It is often also not known if people are already working on
the technology (or even have found a solution already!).

A further refinement of this classification might be necessary in the future,
depending on the required use of this type of roadmaps.

In the roadmaps arrows may overlap. Arrows may contain other arrows to indi-
cate a hierarchical relationship. Successive arrows in line indicate a time depend-
ency in the development of the technology. Dependencies may exist, symbolised
by normal black arrows, that necessitate that certain technologies be first devel-
oped before it makes sense to start developing the indicated technology.

Each of the sub roadmaps of the Embedded Systems Roadmap uses the same
set of graphical symbols. The remaining symbols used and the semantics of these
symbols are as follows:

1.5 How to read the visual representations of the roadmap

© PROGRESS/STW: public version 1.0, 30 March 2002 , 25

1. Time axis:

The time period over which we want to discuss and predict which technologies
are needed for desired products and services and their design.

2. Essential trends:

The most important technical, economic or social factors that have a signifi-
cant influence on this sub roadmap. Indicated are the name of the factor, a short
description of its major result or consequence and a quantification of the result
or consequence of the trend.

3. Challenge:

A short message (with the character of a quote) that summarises the most
important future development or requirement of this sub roadmap domain

4. Technology sub domain:

Major structure element representing a technology sub domain of the sub road-
map, presenting the possibility to make a further refinement in technological
problem areas that need to be tackled.

2002 2005 2008 2011

E
SS

E
N

T
IA

L
T

R
E

N
D

S

Embedded Systems Roadmap 2002

26 30 March 2002

© PROGRESS/STW: public version 1.0, 30 March 2002 27

2 Embedded systems

2.1 General Aspects

‘Increasing heterogeneity’

2.1.1 General trends and user needs

To a large extent embedded systems are influenced by the same trends that apply
to other systems that use advanced technologies from the electronics, optics and
micro-mechanics areas.

In the first place this implies that embedded systems will continue to follow a
number of existing trends. The complexity of embedded systems will grow expo-
nentially, with a size increase of the micro-electronics components of a factor of
two every 18 months. Board solutions will follow similar complexity increase. To
fulfil the related need for increase in flexibility a significant growth in embedded
software will have to be accommodated as well. This may easily mean that soft-
ware cost will dominate embedded systems design cost.

Besides, the number of specification points of an embedded system will
increase at least one order of magnitude. This stems, apart from the increased
complexity and its accompanying functionality increase, also from the expected
growth in the number of different technologies needed in building an embedded
system. Herewith also the number of different professions involved will increase
proportionally. This number will continue to rise from an average of three now to
about nine in 2011.

To be able to design these heterogeneous systems at board and IC level and
stay within the time-to-market requirements that become more and more con-
strained, the amount of re-use of existing hardware, software and hw/sw compo-
nents has to increase drastically from a current 20% to at least 80%. This aspect is
coupled to the general need to increase design productivity significantly to be
able to cope with the increasing complexity timely. Besides, a reduction of a fac-
tor 10 in the non-recurring engineering (NRE) costs needs to be obtained.

Some of the relevant trends are captured in existing roadmaps that therefore
should be taken into account when discussing embedded systems development
trends. To these belong the International Technology Roadmap for Semiconduc-
tors (ITRS, formerly called SIA roadmap), the Roadmap for Software Intensive
Systems (ITEA), the EDAA Systems Design Technology Roadmap, Finkelsteins’
Software Roadmap, etc. Where and when these trends create dependencies for
embedded systems technologies will have to be indicated with linkages in the
Embedded Systems Roadmap.

Apart from the needs that originate from the application of advanced technolo-

gies as discussed above, embedded systems have to take into account user needs1

that derive from general trends in society related to aspects like individualisation,

1.See the domain paper in Appendix 3: Personal Well-being Assistant: creating a soci-
ety of well-being

Embedded Systems Roadmap 2002

28 30 March 2002

globalisation, mobility, safety and security, fashion sensitivity, changing compo-
sition of households and population. Increasing individualisation leads e.g. to
more diversity in products and services, and therefore to the need for more flexi-
bility in design, which in turn leads to an increasing software content. Globalisa-
tion of products and services necessitates multi-site design teams and increases
the need for standards. Growing needs for safety and security in electronic trans-
actions and mobile communications leads to functionality extensions that must be
designed-in. Increasing fashion sensitivity results in shorter product or service
life cycles, and thereby in a necessarily shorter time-to-market leading to shorter
available design time. All these trends signal the ever growing societal impact of
embedded systems.

2.1.2 Technology requirements

The embedding systems into which embedded systems have to be incorporated
share in all application domains the overriding requirement of shortening the
time-to-market (TTM). The major bottleneck in this respect is currently hard-
ware/software co-design. The next hurdle to be taken is the easy integration of
subsystems of acquired IP blocks. Qualification and certification of IP constitute
a major part of the easy integration challenge together with the development of
the necessary standards to make this feasible. Subsequently, the degree of inte-
gration will have increased to such a level that integration of what today are
called systems, becomes possible and poses its specific problems.

The systems architecture of embedded systems will be more and more based
on platforms, both board and IC level. Initially these will be proprietary, both for
systems houses and for silicon platform providers. But the growing opportunity
to integrate more than one company can design will force the origination of
standards to enable easy IP exchange. This in turn will open the opportunity for
multi-vendor platforms.

In hardware design technology one new level of abstraction needs to be intro-
duced over the period of the Embedded Systems Roadmap to allow designers to
cope with the growing complexity. This prediction is in line with the develop-
ments over the first three decades of micro-electronics development where it
proved necessary to introduce about every 8 years a new level of abstraction. In
software design a reconsideration of how to deal with levels of abstraction is
urgently required as also embedded software reuse in ICs depends on it. And this
is the first step to be taken to come more easily to higher levels of component
integration. Also here the standardisation efforts mentioned above are necessary
to be able to make the step from captive to merchant component integration.

The increasing heterogeneity will require that several technologies of imple-
mentation can be combined on a carrier technology. Especially in sensors and
actuators the need for wireless communication will create a drive for a further
integration of different technologies.

Major progress in the design of embedded systems has to come from the future
evolution of design space exploration (DSE) methods and tools. Initially their
scope will be restricted to design and evaluation of instantiations of a platform.
But soon DSE has to be available in the platform creation phase, thereafter to be

2.1 General Aspects

© PROGRESS/STW: public version 1.0, 30 March 2002 29

extended to the design phases where specifications are written, and ultimately
also playing a role in the early evaluation of the consequences of embedded sys-
tem requirements.

An overriding design constraint has become power consumption of embedded
systems. Major developments here should support the power analysis and mini-
mum dissipation architectures for the construction of embedded systems that
operate concurrently, later on to be followed by support for analysis and optimi-
sation of power dissipation of networked and distributed embedded systems.

For required developments of enabling and supporting technologies reference
is made to available roadmaps.

©
 P

R
O

G
R

E
S

S
/S

T
W

: p
ub

lic
 v

er
si

on
 1

.0
, 3

0
M

ar
ch

 2
00

2

T

ec
hn

ol
og

y
R

oa
dm

ap
 o

n
So

ft
w

ar
e

In
te

ns
iv

e
Sy

st
em

s

E
M

B
E

D
D

E
D

 S
Y

ST
E

M
S

R
O

A
D

M
A

P
:

G
E

N
E

R
A

L
 A

SP
E

C
T

S

E
m

be
dd

ed
Sy

st
em

s
A

pp
lic

at
io

n
D

om
ai

ns

D
es

ig
n

T
ec

hn
ol

og
y

T
re

nd
s

Su
pp

or
ti

ng
T

ec
hn

ol
og

ie
s

In
te

rn
at

io
na

l T
ec

hn
ol

og
y

R
oa

dm
ap

 f
or

 S
em

ic
on

du
ct

or
s

T
T

M
 r

eq
ui

re
m

en
ts

:

H
W

/S
W

Su
bs

ys
te

m
s

Sy
st

em
s

Sy
st

em
 a

rc
hi

te
ct

ur
e:

Pl
at

fo
rm

V
er

si
on

ed
 s

ta
nd

ar
ds

M
ul

ti-
ve

nd
or

 p
la

tf
or

m
s

D
SE

 o
f

pl
at

fo
rm

 in
st

an
ce

D

SE
 o

f
pl

at
fo

rm
 c

re
at

io
n

 D
SE

 o
f

pl
at

fo
rm

 +
 s

pe
c.

 D

SE
 o

f
pl

at
fo

rm
+

sp
ec

.+
re

qts

C
om

pl
ex

ity
E

xp
on

en
tia

l s
iz

e
in

cr
ea

se
 c

on
tin

ue
s

T
ec

hn
ol

og
y

sp
an

In
cr

ea
si

ng
 n

um
be

r
of

 p
ro

fe
ss

io
na

l d
is

ci
pl

in
es

In
cr

ea
si

ng
 n

um
be

r
of

 s
pe

ci
fi

ca
tio

n
po

in
ts

R
e-

us
e

H
ar

dw
ar

e,
 s

of
tw

ar
e

an
d

hw
/s

w
 c

om
po

ne
nt

s
D

es
ig

n
pr

od
uc

tiv
ity

N
R

E
 r

ed
uc

tio
n

re
qu

ir
ed

3
9

ESSENTIAL
TRENDS

In
cr

ea
si

ng
he

te
ro

ge
ne

it
y

20
%

80
%

A
bs

tr
ac

tio
n

le
ve

l

M
et

ho
ds

IC
:

em
b.

 s
w

 r
e-

us
e

C
ap

tiv
e

co
m

p.
 in

te
gr

at
io

n
M

er
ch

an
t c

om
p.

 in
te

gr
at

io
n

2
0

0
2

2
0

0
5

2
0

0
8

2
0

1
1

Fa
ct

or
 2

 e
ve

ry
 1

8
m

on
th

s

O
ne

 o
rd

er
 o

f
m

ag
ni

tu
de

Fa
ct

or
 1

0
re

du
ct

io
n

Po
w

er

C
ar

ri
er

:
si

ng
le

 p
cb

M
C

M
 +

 o
pt

ic
s

D
is

tr
ib

ut
ed

 +
M

E
M

S

C
on

cu
rr

en
cy

N
et

w
or

ki
ng

D
is

tr
ib

ut
ed

M
E

D
E

A
 E

D
A

 R
oa

dm
ap

E
D

A
A

 S
ys

te
m

 D
es

ig
n

T
ec

hn
ol

og
y

R
oa

dm
ap

R
oa

dm
ap

s

30

© PROGRESS/STW: public version 1.0, 30 March 2002 31

2.2 Interaction

‘Fewer standards, more information’

2.2.1 Introduction

The most important activity in this roadmap is standardisation. Individual sensors
need specialised drivers, which may easily lead to a huge programming effort
and/or an uncomfortably large amount of small IP cores. It is mandatory to limit
the huge number of ‘standard’ interfaces (>60) to a few robust and generic ones.
An IEEE committee has already started work in this area, but such is not likely to
be a one-time effort as the interaction between the sensory/actuating parts and the
embedded system will change with the addition of ‘intelligence’, i.e. the develop-
ment of smart–sensors and actuators. The increased local autonomy brings self-
sufficiency aspects that, together with functional redundancy, will give a data-
driven broadcast nature to the co-operative communication between self-support-
ive parts and the embedding system.

2.2.2 General trends and user needs

The following trends and user needs relate to interaction:
Intelligence. This will lead to an increase in adaptability of sensors. Where

sensors and actuators have been conceived as analog devices at the extreme ends
of the information processing channel, more and more data will be processed
locally by the increased use of digital techniques. Currently we see already the
Virtual Peripheral around smaller analog parts, while software-driven systems
(such as software radio) are just around the corner promising a factor 10 increase
in product design time. With increasing intelligence, we will achieve adaptable
systems that even reduce the service needs.

Service-oriented. When a service layer is added to smart-sensors and actuators,
it will enable them to be re-used in a large diversity. The embedded systems will
easily personalise to a changing environment. The overall system might seem
more vulnerable from such a close interactive coupling between the parts, but
intelligent coupling can also serve to detect internal mishaps. In case of need,
malfunctioning will not be catastrophic as either the parts can be re-programmed
or other parts may take over the role. This will facilitate plug-and-play and will
on a longer term allow for hot swapping.

Industrial design. When more and more sensors are used in ever tinier area net-
works, as for instance house-holds, offices and malls, and the local intelligence
grows, the role of interactive communication will grow to dominate the architec-
ture. As fixed lines are decreasingly affordable and will be replaced by e.g. short-
range wireless connectivity, the embedded function will not enforce a physical
shape for the product. Form and function become separated, and industrial design
will find new degrees of freedom.

Fault-tolerance. The growing market for sensors and actuators can only be cre-
ated by a decrease in price. To simultaneously increase the quality, sensors and
actuators should become more fault-tolerant. On the other hand, the sensing and
actuating plethora will change the architecture from resource-limited to quality-
driven. As the idea of ad-hoc network shows, this is based on a way of redun-

Embedded Systems Roadmap 2002

32 30 March 2002

dancy that involves more than the, in retrospection, primitive N-version scheme.
The quality of the embedded network (on the chip or distributed) will by defini-
tion not be dependent on the weakest node.

So far we have depicted the successive future trends as a gradual migration of
concerns from sensing/actuating devices towards an integrative communication
infrastructure. Therefore the sub roadmap falls apart in two parts. The first one is
Interaction with sensors and actuators which consists of the sub domains Inter-
face and Character/property. And the second one is Interaction with the commu-
nication infrastructure. This consists of the sub domains Means, Purpose and
Complexity. Only some of the potential meeting points in such a scenario are
shown as otherwise the picture would become too blurred.

2.2.3 Technology requirements

Standardisation of data formats and data protocols is the first important require-
ment. Only thereafter can collaboration of networked sensors become a reality.
Standardisation will govern the availability of IP cores on a range of abstraction
levels. Though for networks on chip, short range proprietary switched communi-
cation will remain to be of value, most of the interaction will become based on
public packet-based standards.

The development of smart-sensors and actuators includes the local processing
of data, such that data streams to controller systems will be at a higher level of
abstraction. This development may impose constraints on the embedded system
in the near future (e.g. analog/digital design, higher level protocol communica-
tion, etc.). By their adaptability, smart sensors will bring more freedom to the
design space, but by the proper choice of platform this freedom need not overly
complicate the design effort as detailed personalisation can be achieved by learn-
ing at any time. However, it does complicate the test, debug and integration issue
as parts may change their behavioural details over time.

The primitive sensor will deliver only pure measurement data. At this level it is
arbitrary whether such values are represented in the digital or the analog domain.
The coming of digital technology implies not only a standardised protocol on the
data transfer, but also the control of the collective behaviour. First such tactical
control will be shaped in terms of reactivity and agility. Later, when nodal intelli-
gence comes to bear, this will bring the communication to a strategic level. This
interplay between tactical steering and strategic monitoring will create self-direc-
tive interaction along the lines of communicating agents.

Distributed and networked sensors and actuators will start to behave as intelli-
gent agents. The complexity of these systems will increase and without proper
precautions they will require increasing bandwidth for audio, video and wireless
communication. Breakthroughs in peer-to-peer communication will be required
together with novel scheduling algorithms for resource-unrestricted architectures.
Such local knowledge extraction gives only part of the solution, as this reduces
the mere data amount, not the communication intensity. Despite the past abun-
dant research on scheduling and control, the design metrics of collaborative adap-
tive systems will be in need of a long and gradual development.

2.2 Interaction

© PROGRESS/STW: public version 1.0, 30 March 2002 33

Overall, there will be two aspects that may have a strong impact on the validity
of the time-line as set out in the sub roadmap. The first is the assured operating
conditions (as supply of electric energy). Embedding systems will become
strongly dependent on the functionality of their embedded parts. More and more
we see specialised systems that can not work properly without embedded sys-
tems, e.g. air planes but also combustion engines. If embedding systems become
a commodity, dependability will be ruling. Assured energy supply is becoming a
major factor in large-scale networks; embedded networks will not be an excep-
tion. Energy consumption comes into play to establish the integration means for
the embedded parts. Where in the past decade energy consumption per household
has increased with 3% per year in the Western hemisphere, this might easily set a
limit to the future complexity and spread of embedded systems.

2.2.4 Recommendations.

1. Participate in international efforts to standardise sensorial interfaces. Reduce
the today many sensor interface standards (approx. 60) to one or two and
include in the new standards the emerging new communication protocols
(CAN, fast serial, etc.)

2. Foster development of smart sensors. Improve and expand the sensor ‘intelli-
gence’ by integrating data processing capabilities and high-level communica-
tion protocol.

©
 P

R
O

G
R

E
S

S
/S

T
W

: p
ub

lic
 v

er
si

on
 1

.0
, 3

0
M

ar
ch

 2
00

2

St
an

da
rd

s
fo

r
O

pe
n

A
rc

hi
te

ct
ur

e

In
cr

ea
si

ng
 b

an
dw

id
th

: a
ud

io
 ;

vi
de

o
; w

ir
el

es
s

In
te

ra
ct

io
n

w
it

h
Se

ns
or

s
&

A
ct

ua
to

rs

In
te

ra
ct

io
n

w
it

h
C

om
m

un
ic

at
io

n
In

fr
as

tr
uc

tu
re

ESSENTIAL
TRENDS

In
te

rf
ac

e

C
ha

ra
ct

er
/p

ro
pe

rt
y

M
ea

ns

Pu
rp

os
e

C
om

pl
ex

ity

2
0

0
2

2
0

0
5

2
0

0
8

2
0

1
1

In
te

lli
ge

nc
e

In
cr

ea
se

 in
 a

da
pt

ab
ili

ty

Se
rv

ic
e-

or
ie

nt
ed

R
e-

us
e

in
 a

 la
rg

er
 d

iv
er

si
ty

In
du

st
ri

al
 D

es
ig

n
Se

pa
ra

tio
n

of
 f

or
m

 &
 f

un
ct

io
n

Fa
ul

t-
to

le
ra

nc
e

D
ec

re
as

e
in

 p
ri

ce
; i

nc
re

as
e

in
 q

ua
lit

y

10
%

70
%

F
ew

er
 s

ta
nd

ar
ds

,
m

or
e

in
fo

rm
at

io
n

In
te

lli
ge

nt
 c

lo
se

d-
lo

op

A
w

ar
e

Sc
he

du
lin

g

 D
at

a
fo

rm
at

s
fo

r
U

ni
fi

ed
 M

es
sa

gi
ng

Pr
oc

es
s

co
nt

ro
l b

y
ob

je
ct

iv
e

R

ea
ct

iv
e

 A

na
lo

g/
di

gi
ta

l

A
gi

le

{f
le

xi
bl

e)

m
an

uf
ac

tu
ri

ng

In
fe

rr
ed

 m
et

ri
ca

l m
od

el

Se

lf
-d

ir
ec

te
d

(i
nt

el
lig

en
t)

C
ol

la
bo

ra
tiv

e
m

et
ri

cs
S

el
f-

aw
ar

e
co

nt
ro

l

Pr
ed

ic
tiv

e
m

ai
nt

en
an

ce

In
te

gr
at

io
n

of
 M

E
M

S;
 n

et
w

or
ke

d
se

ns
or

s

R
aw

 d
at

a
ov

er
 lo

ca
l b

ro
ad

ba
nd

10
%

1%

E
M

B
E

D
D

E
D

 S
Y

ST
E

M
S

R
O

A
D

M
A

P
: I

N
T

E
R

A
C

T
IO

N

34

© PROGRESS/STW: public version 1.0, 30 March 2002 35

2.3 Information processing

‘Ever more integration’

2.3.1 Introduction

For this sub roadmap we have taken the application as starting point. Therefore
this sub roadmap has the character of technology pull rather than of technology
push. It describes the characteristics of information processing in embedded sys-
tems in the future; how to design these information processing parts of embedded
systems is treated in the next chapter.

An overall trend is towards more integration. The scope of applications for
embedded systems is broadening all the time, because of the ability to do more
integration. Therefore this trend is taken as the theme and major challenge of this
sub roadmap: ‘ever more integration’.

We distinguish two aspects of information processing for embedded systems:
behaviour and structure. For the behaviour we see a clear trend towards increased
intelligence of the devices. Embedded systems will show ever more intelligent
behaviour for the benefit of the embedding system and/or the user. Another clear
trend is towards more mobility and connectivity. Embedded systems are envi-
sioned to communicate with each other in order to gather information and to
show more intelligent behaviour.

When we consider the structure of embedded systems, constraints are typical
parameters that the designer has to deal with. On the other hand, advances in
technology offer all kinds of possibilities to actually build useful embedded sys-
tems.

We have divided the area of information processing relevant for embedded sys-
tems into two parts, following the above reasoning. First we consider behaviour,
and look at intelligence and connectivity as themes. We then consider structure,
with sub items constraints and possibilities. First we look at the overall theme:
ever more integration.

Note: an important aspect of information processing is the point of view of
services. Who is going to deliver what services to which devices? Other road-
maps and research agendas elaborate on these issues, for example [Embedded
Everywhere, 2002] and [Book of Visions, 2001]. In this sub roadmap we high-
light some important trends of information processing in the embedded environ-
ment, without the claim of being complete. We will not elaborate on the issue of
services in this sub roadmap. Also aspects in the legal area, like (copy) rights on
content and software, and digital rights management (DRM) are not considered
here.

2.3.2 General trends and user needs

For integration we see the following trends:
• The integration is visible at the technology side: ever more electronics, hard-

ware and software, and sensors and actuators are integrated into one single unit
that implements the embedded system. Integration with storage of data (for
example optical storage and hard disks) and database functionality also takes
place.

Embedded Systems Roadmap 2002

36 30 March 2002

• Integration of embedded functionality takes place with other (non-technical)
environments, like clothes, diapers, etc.

2.3.3 Technology subdomain: Behaviour

Essential trends

For the intelligence of embedded systems, we consider the following trends:

While systems show re-active behaviour nowadays, they will show active and
even pro-active behaviour in the future.

There is a strong trend towards personalisation of devices. For example, there
are hard-disk VCRs on the market that construct a personal profile of the user and
start recording those broadcasts that fit into that profile. Numerous embedded
systems in other application areas can be listed that have some capability of
‘learning’ or ‘intelligence’ in this respect. The number of personal parameters
will grow.

Considering connectivity and mobility:

There is a trend towards ever more functionality both in base-stations as well
as in terminals. There is no clear shift between the functionality on the one side or
the other; it depends on the constraints on the implementation (e.g. power dissi-
pation) and the bandwidth of communication between the two where the func-
tionality will be implemented. Dynamic scheduling of computation over base
station and terminal will become necessary to better utilise the system's capaci-
ties. This has consequences for the services for terminals, for example the ques-
tion who will provide a service on the move. In this sub roadmap we will not
elaborate on the issue of services, but we refer to other sources, e.g. [Book of
Visions, 2001].

Technology Requirements

For the intelligence part of behaviour we have the following:

User interfaces will be a driving factor for functionality of embedded systems.
While we currently have to limit ourselves to the keyboard, speech and sound
recognition will become more and more used to communicate with the (embed-
ding) system. A lot of processing is involved in getting from the recognition of
simple commands to connected speech and even (natural) language communica-
tion. Friendly user interfaces are key for disabled people to work with devices
containing embedded systems. One can think of gesture recognition followed by
animated sign language for deaf people, for example.

For the audio domain a lot of processing will be involved in the interpretation
of sounds. It is then a gap to identify and implement useful ways to use the result-
ing information in the system. Sound recognition might be a next step. The tech-
nologies developed in the audio domain are key to the aspects described in the
user interface domain. Sound interpretation is essential for connected speech,
while sound recognition is a prerequisite for doing language recognition in the
user interface.

2.3 Information processing

© PROGRESS/STW: public version 1.0, 30 March 2002 37

In the video domain we can also distinguish steps in functionality. While we
can currently detect movement in a video stream, it is not yet feasible to do
proper localisation of objects and people. Interpretation of images is a capability
that is even further away in the future (after 2011). These technologies are impor-
tant before we can do gesture recognition and animated sign-language in the
domain of user interfaces.

Another strong activity in the video domain is moving from 2D to 3D. Already
a lot of research is going on in this area. Examples are 3D reconstruction from 2D
images and video streams, and stereo vision. 3D will be a next step in the area of
entertainment, both in graphics (games) and video. Further, trends towards inte-
gration of these two domains are starting, as we can see from standardisation
efforts like MPEG4.

Considering connectivity:

Devices will become more and more connected in some kind of network. As a
first step we envision that devices will detect which other devices are nearby and
can be of any use, for example in getting information or delivering a service to
the embedding system or the user. In this first step the device can construct a per-
sonal profile of the user. Striving for more intelligent behaviour, we need agents
to talk to each other and negotiate in a next step. For this, communication of the
embedded system to the embedding system and to the environment is necessary.

Closely related to networking devices, they need to access information availa-
ble in the network to do their job. While embedded systems nowadays access
local data, in the future this data might be retrieved from elsewhere. Web-connec-
tivity is envisioned as a strong driver to get information from a global network.
This strongly relates to the negotiating and independent agents mentioned previ-
ously.

In the area of transactions, for example in banking and money transactions, we
need standards that have to be subsequently implemented in systems. These sys-
tems will contain a lot of embedded systems. They will influence the people's
lives considerably.

Considering a network of connected devices, information management in the
network will become a serious issue. As a first step data will be migrated through
the network depending on the need of the various embedded systems. Migrating
the application over the network is a next challenge to be solved in striving for
more efficient information processing of embedded systems.

2.3.4 Technology subdomain: Structure

Constraints are a key characteristic of embedded systems. The complexity and
functionality of information processing in embedded systems are limited by con-
straints on the implementation of these systems. On the other hand, advances in
technology allow for possibilities in building complex embedded systems with
new kinds of functionality.

Embedded Systems Roadmap 2002

38 30 March 2002

Essential trends

Much of the functionality of embedded systems will be implemented in hardware
and software. Therefore constraints on technology side of hardware and software
will heavily reflect on trends in embedded systems. For hardware we have the
usual parameters like chip area, cost, and power dissipation. As more and more
software is incorporated into embedded systems, also software will claim influ-
ence on these parameters.

For constraints we see the following trends:

Cost is an important parameter. In consumer electronics, for example, chip
prices in the range of a few dollars are common. These prices tend to stay the
same or even decrease over time.

The chip area will be approximately constant, but as more transistors can be

implemented in 1 cm2, more functionality can be implemented using such chips.
The increase in software is reflected in more memory embedded in the system,
both for the program as well as for the data. Currently, a mobile phone contains a
few mega-bytes of software, and this amount is expected to increase over the
coming decade.

The power budget of such hardware also tends to stay the same over time, but
again as the functionality increases, we have more computational power per Watt.
For wired applications this is in the order of Watts; for mobile battery-powered
applications in the order of milliWatts; and for devices without a power supply
(e.g. smartcards) in the order of microWatts. Both the hardware and the software
influence the power dissipation in an embedded system. Here we encounter the
traditional trade-off between hardware and software: doing more in dedicated
hardware will result in a strong reduction in power dissipation at the cost of flexi-
bility of design. As the sub roadmap on Hardware/Software Design will explain,
the future use of reconfigurable hardware will offer a new dimension to this trade-
off, also to designers who do not have the facility to make their own chips and
hardware.

Transistor technology is not enough to bring the desired computational power;
therefore clever hardware and software techniques need to be researched. The
embedded systems design roadmaps highlight these aspects. For information
about transistor technology we refer the reader to the International Technology
Roadmap for Semiconductors [ITRS, 2001].

Bandwidth for both on-chip and off-chip communication will increase in the
future. For example, for wireless communication in mobile telephony the band-
width will increase from about 10 Kbit/s to the order of 10 MBit/s. A characteris-
tic of applications is that they will always use the available bandwidth.

Backward compatibility with other systems has always been an important con-
straint, and will remain so, as we build up more and more legacy.

Considering possibilities:

A glimpse of possibilities offered by embedded systems in the future is already
shown in the section on behaviour.

2.3 Information processing

© PROGRESS/STW: public version 1.0, 30 March 2002 39

Display technology is an important driver in realising embedded systems eve-
rywhere. In this roadmap we do not discuss a roadmap for display technology but
we refer to the ITEA roadmap to obtain more information on this subject [ITEA,
2000].

Technology requirements: Constraints

Energy supply is key for the widespread usage of embedded systems. Battery-
operated devices tend to become more and more energy-consuming, while the
roadmap for batteries shows only a few percent improvement per year, which is
by far not enough to supply the ever more complex operation of embedded sys-
tems. Therefore we need to look at other energy-sources as well, like induction,
fuel cells, and solar energy.

Electro-magnetic radiation of electronics will increase when the functionality
and complexity increase. This poses two problems. First, we need to shield some
embedded systems from others, because the operation is disturbed by the radia-
tion (EMI, electro-magnetic interference). Shielding is only partly a solution.
Therefore we need to research embedded systems and devices that have low elec-
tro-magnetic radiation. We do not know how to do this; therefore it is considered
a white spot. Asynchronous hardware (i.e. hardware without a central clock) is
known to deliver some solutions in this area, and might be an interesting avenue
for research. Apart from this technical aspect, the implications of radiation for
human health are unclear, and therefore considered with scepsis by society. It is a
governmental task to put standards in this area.

Dependability is an important issue. Fail-safe operation, robustness of systems
etc. can be key constraints on the design of embedded systems. A failure in the
controller of a toaster, for example, is not allowed to leave the system in heating
state after failure. One can imagine a wide spectrum of issues that are relevant in
the dependability area.

Technology requirements: Possibilities

For the hardware in embedded systems we see ever more integration: from multi-
chip solutions, via the integration of smart sensors (it is considered a gap how to
do this), to single chip solutions. Even MEMS comes in sight for integration into
embedded systems. The sub roadmaps on embedded systems design highlight the
design issues for this kind of hardware and integration.

The data that the embedded system processes will have to be stored some-
where and communicated to and from the system. Databases are becoming more
and more common in embedded system design. Currently we have hard disks and
solid-state storage in our devices. Optical storage is a cheap way to distribute
large amounts of data or content. Small and cheap optical storage is a promising
alternative for bulky storage and is appropriate to distribute content, but we need
standards for this kind of storage. This is considered a gap to come to the integra-
tion of optical storage in embedded systems. From the technical point of view,
small discs require energy friendly hardware and software, especially in the port-
able domain. Of course the development of solid-state memories and hard disks
will improve considerably.

Embedded Systems Roadmap 2002

40 30 March 2002

For components in embedded systems we will see a trend towards construc-
tions of components with reuse as a means to achieve higher efficiency. This is
described extensively in the sub roadmaps on embedded systems design.

Efficient algorithms will become necessary to allow for the envisioned intelli-
gent behaviour of embedded systems. Though a lot of research in this area has
been done already, we need to make the step towards applying the results in the
context of the constraints of embedded systems.

2.3.5 Recommendations

1. Power is considered as the most important constraints in embedded systems.
Therefore we have to use alternative power sources besides batteries, and alter-
native ways of charging the batteries besides direct wiring to the power grid.
The reason for the former is that batteries have a limited capacity and may con-
tribute considerably to the weight and volume of the apparatus. The reason for
the latter is the lack of access to the power grid in many circumstances (e.g.
mobile), and the trend or wish to charge the batteries invisibly to the user.
These alternative power sources and charging methods may derive from move-
ment, solar energy, electromagnetic induction, etc.

2. We envision the use of portable embedded systems connected to a base station.
Many processing tasks can be either performed by the portable device or the
base station. Because the portable device may be subject to extremely low
power restrictions, the allocation of processing is essentially determined by the
energy consumption (on the side of the portable device) of the processing vs.
the communication of data to and from the base station. Because the latter
changes under different circumstances (e.g. distance to base station), the allo-
cation of processing should be performed dynamically.

3. When the portable device is retrieving information from a (distant) source (e.g.
a database), the selective and intelligent processing can be performed as a serv-
ice by the source itself, rather than the power constrained portable device.
Research in this kind of information management is necessary to get the best
out of the embedded systems of the future.

©
 P

R
O

G
R

E
S

S
/S

T
W

: p
ub

lic
 v

er
si

on
 1

.0
, 3

0
M

ar
ch

 2
00

2

A
cc

es
s

to
 a

 d
at

a
an

yw
he

re
:

w

eb
-c

on
ne

ct
iv

ity

C
on

ne
ct

ed
 s

pe
ec

h

E
M

B
E

D
D

E
D

 S
Y

ST
E

M
S

R
O

A
D

M
A

P
:

IN
F

O
R

M
A

T
IO

N
 P

R
O

C
E

SS
IN

G
 1

2
0

0
2

2
0

0
5

2
0

0
8

2
0

1
1

B
eh

av
io

ur
:

In
te

lli
ge

nc
e

B
eh

av
io

ur
:

C
on

ne
ct

iv
it

y

ESSENTIAL
TRENDS

U
I

A
ud

io

V
id

eo

N
et

w
or

ki
ng

 d
ev

ic
es

In
fo

rm
at

io
n

ac
ce

ss

T
ra

ns
ac

tio
n

In
fo

. m
an

ag
em

en
t

E
ve

r
m

or
e

in
te

gr
at

io
n

In
te

gr
at

io
n:

T

ec
hn

ic
al

: s
el

ec
tiv

e
re

tr
ie

va
l o

f
in

fo
rm

at
io

n,
 u

se
 o

f
da

ta
ba

se
s,

 m
ul

tip
le

 s
en

so
rs

, .
..

N
on

-t
ec

hn
ic

al
: e

m
be

dd
ed

 s
ys

te
m

s
in

 a
 n

on
-t

ec
hn

ic
al

 e
nv

ir
on

m
en

t:
cl

ot
he

s,
 d

ia
pe

rs
, b

od
y,

 ..
.

B
eh

av
io

ur
:

-
In

te
lli

ge
nc

e:
Fr

om
 r

e-
ac

tiv
e

to
 a

ct
iv

e
an

d
ev

en
 p

ro
-a

ct
iv

e
(‘

le
ar

ni
ng

’)

Pe
rs

on
al

is
at

io
n

of
 d

ev
ic

es
: 1

 ‘
pe

rs
on

al
’

pa
ra

m
et

er
 →

 2
0

‘p
er

so
na

l’
 p

ar
am

et
er

s

-
C

on
ne

ct
iv

ity
:

Pr
oc

es
si

ng
 in

cr
ea

se
s

bo
th

 in
 b

as
e

st
at

io
n

an
d

te
rm

in
al

: m
or

e
pr

oc
es

si
ng

 s
ch

ed
ul

in
g

w
ill

 b
e

do
ne

 d
yn

am
ic

al
ly

 (
10

%
 →

 4
0%

)

K
ey

bo
ar

d

Sp
ee

ch
L

an
gu

ag
e

re
co

gn
iti

on

So
un

d
in

te
rp

re
ta

tio
n

So
un

d
re

co
gn

iti
on

M
ov

em
en

t d
et

ec
tio

n
L

oc
al

is
at

io
n

of
 o

bj
ec

ts
 a

nd
 p

eo
pl

e

in
te

rp
re

ta
tio

n
of

 im
ag

es

C
re

at
io

n
of

 s
ta

nd
ar

ds
 o

n
se

cu
ri

ty
Im

pl
em

en
ta

ti
on

 b
as

ed
 i

n
st

an
da

rd
s

G
es

tu
re

 r
ec

og
ni

tio
n

A
ni

m
at

ed
 s

ig
n-

la
ng

ua
ge

s

A
cc

es
s

to
 lo

ca
l d

at
a

A
cc

es
s

to
 d

at
a

ne
ar

by
:

lo
ca

l,
in

 n
et

w
or

k

3D
 v

id
eo

 a
nd

 g
ra

ph
ic

s
2D

D
is

co
ve

ry
 o

f
lo

ca
lly

 n
ea

rb
y

de
vi

ce
s

D
is

co
ve

ri
ng

 n
ea

rb
y

ag
en

ts
N

eg
ot

ia
tin

g
ag

en
ts

D
is

co
ve

ri
ng

 r
em

ot
e

ag
en

ts

M
ig

ra
tio

n
of

 d
at

a
M

ig
ra

ti
on

 o
f

ap
pl

ic
at

io
n

41

©
 P

R
O

G
R

E
S

S
/S

T
W

: p
ub

lic
 v

er
si

on
 1

.0
, 3

0
M

ar
ch

 2
00

2

St
an

da
rd

s
on

 c
he

ap
 a

nd
 s

m
al

l (
op

tic
al

)
st

or
ag

e

R
eu

se

2
0

0
2

2
0

0
5

2
0

0
8

2
0

1
1

St
ru

ct
ur

e:
C

on
st

ra
in

ts

St
ru

ct
ur

e:
P

os
si

bi
lit

ie
s

Po
w

er

E
M

I

D
ep

en
da

bi
lit

y

In
te

gr
at

io
n

D
at

a
re

pr
es

en
ta

tio
n

an
d

st
or

ag
e

C
om

po
ne

nt
s

A
lg

or
it

hm
s

R
ob

us
tn

es
s

to
 p

ow
er

 f
ai

lu
re

s
et

c.

90
%

 B
at

te
ry

70
 %

 B
at

te
ry

 +
 1

0%
 in

du
ct

io
n;

 f
ue

l c
el

ls
<

50
%

 B
at

te
ry

;
10

%
 s

ol
ar

;
fu

el
 c

el
ls

So
lid

 s
ta

te
; h

ar
d

di
sk

In
te

gr
at

io
n

of
 o

pt
ic

al
 s

to
ra

ge
10

0
G

B
 s

ol
id

 s
ta

te

M
ul

ti-
ch

ip
Si

ng
le

 c
hi

p
an

d
M

E
M

S

C
on

st
ru

ct
io

n
of

 c
om

po
ne

nt
s

In
te

gr
at

io
n

of
 s

m
ar

t s
en

so
rs

Si
m

pl
e

re
tr

ie
va

l o
f

in
fo

rm
at

io
n

In
te

lli
ge

nt
 r

et
ri

ev
al

 o
f

in
fo

rm
at

io
n

Sh
ie

ld
in

g
L

ow
-E

M
I

de
vi

ce
s

E
M

B
E

D
D

E
D

 S
Y

ST
E

M
S

R
O

A
D

M
A

P
:

IN
F

O
R

M
A

T
IO

N
 P

R
O

C
E

SS
IN

G
 2

ESSENTIAL
TRENDS

St
ru

ct
ur

e:

-
C

on
st

ra
in

ts
:

1.
 c

os
t,

po
w

er
 b

ud
ge

t,
an

d
ch

ip
 a

re
a

w
ill

 r
em

ai
n

co
ns

ta
nt

 o
r

de
cr

ea
se

2.
 B

an
dw

id
th

 w
ill

 in
cr

ea
se

 (
w

ir
el

es
s:

 1
0

K
bi

t/
s

->
 1

0
M

bi
t/

s)

3.
 B

ac
kw

ar
ds

 c
om

pa
tib

ili
ty

 w
ill

 r
em

ai
n

an
 is

su
e

-
Po

ss
ib

ili
tie

s:

D
is

pl
ay

s:
 s

ee
 I

T
E

A
 r

oa
dm

ap
 [

IT
E

A
 2

00
0]

L
ea

rn
in

g

E
ve

r
m

or
e

in
te

gr
at

io
n

42

© PROGRESS/STW: public version 1.0, 30 March 2002 43

3 Embedded systems design

3.1 From idea to executable specification

‘To design the right product’

3.1.1 Introduction

A crucial and challenging aspect of embedded system design is the steadily rising
internal and external complexity. The embedded system has grown considerably
since the early days of the simple micro-controller board, but it has also diffused
into a multi-disciplinary world. This intimate coupling to other disciplines, who
often defy a precise mathematical modelling, and the restrictive operating condi-
tions that should be derived from this environment make it hard to establish a
specification that can serve as input for a subsequent transformation to a suitable
implementation.

This makes it mandatory to pay special attention to tools and techniques that
can support a designer to think and communicate about the problem at hand in a
firm effort to derive an agreed starting point for the remainder of the system
development. More often than not, getting from idea to executable specification
has been an art rather than a craft in the past. In other words, we are looking at
unchartered territory.

In order to be able to profit from more professional discipline, it is proposed to
explore several directions. First of all we need better metricity to quantify alterna-
tive specifications. Second we have to create modelling techniques that allow to
study a proposed embedded system within its future environment. Lastly we need
design space exploration styles that allow for requirement analysis in a mixed
technology framework.

3.1.2 General trends and user needs

As stated above, almost all products, whether consumer or professional, tend to
become increasingly complex. This is, in the first place, due to the general belief
that there is a need for more sophisticated products, and that technology is fairly
well capable of dealing with this increase in complexity. The growth in complex-
ity may originate from requirements related to performance, quality, accuracy,
safety and the like, or from an increasing demand for more functionality, a larger
variety of technologies and related disciplines, or a wider domain of applicability.

The complexity inflation finds expression in the fact that products are con-
ceived as embedding systems that are compositions of embedded systems. The
TV receiver of tomorrow will contain embedded systems that the receiver of
today does not contain, turning the passive device of today into the (inter)active
one of tomorrow. This is just one example, and many more could be given. If this
trend goes on, and it will, then the design of an embedded system will become as
challenging as was the design of a complete system in the past. And surely, the
design of a complete embedding system with all its embedded subsystems makes
the designers face many tough problems.

Embedded Systems Roadmap 2002

44 30 March 2002

Now, given the optimistic attitudes at both the demand and supply sides, it is
predictable that more and more ideas for more and new functionality in new and
existing systems or products will be proposed in the years to come.

An idea is the expression of a concept, often stated in non-technical terms e.g.,
‘We want to charge cars for the use of the public road infrastructure’ or ‘The
remote control of our TV receivers has to become more user friendly’. Such an
idea has to be translated into a set of requirements. Some of these requirements
have to do with functionality and others have to do with conditions and con-
straints. The requirements may very well be incomplete and even conflicting as
e.g., privacy and fraud resistance are in a smart road system. Requirements cap-
turing and requirements analysis will remain a major challenge in this phase of
the design of embedding and embedded systems alike.

Designing and constructing small scale prototypes may be useful but will in
general not be scalable as the large scale system may behave differently than an
upscaled prototype. Similarly, the large scale system may have to reuse compo-
nents that do not appear as such in the prototype. Therefore, a trend in the design
of an embedded system is to see the translation from requirements to specifica-
tions as part of the design process: from idea to specification, followed by from
specification to implementation.

The first part: from idea to specification has, of course, been always part of a
design trajectory; however, the intuitive and ad hoc approach that has been com-
monly taken so far will no longer do for several reasons. Firstly, increasing the
complexity of a system must not lead to an increase in design cost. This condition
cannot be satisfied when the design is based on repetitive prototyping because
prototyping is expensive. Secondly, if specifications are not the result of a well-
defined and systematic approach, then there is no guarantee that the resulting sys-
tems will obey the initial requirements because the specifications may already fail
to do so. Thirdly, even an expert who has been deriving specifications for many
years may fail to see all relations between requirements and specification, and
even more so between requirements and alternative specifications. At least tracea-
bility between requirements and specifications has to be provided to make rela-
tions explicit. But that is certainly not enough.

Thus, deriving specifications from requirements in a sound and methodologi-
cal way is sort of an emerging discipline that has to be given much attention in the
coming years.

3.1.3 Resulting technology requirements

Deriving specifications from requirements is a process that, like any other process
has inputs, outputs, and state. The process itself is specified in terms of relations
between outputs and current inputs and state, and between next state and current
inputs and state. The process at hand here is iterative and exploratory by nature.
The relations between input, output, and state quantities are extremely difficult to
qualify and quantify. It is, therefore, necessary to rely on models. One can even
conceive of two models: an unconstrained model and a constrained model. The
unconstrained model consists of a chain of abstract components and is a means to
express the requirements in such a way that one can reason about them, that is,

3.1 From idea to executable specification

© PROGRESS/STW: public version 1.0, 30 March 2002 45

that the decision making can be supported. This implies that dependency and sen-
sitivity analysis of the model must be possible, locally and globally, at component
level, at chain level and at the level of emerging system properties. The con-
strained model is less abstract in that it incorporates two kinds of requirements
that the abstract model doesn't: component (re)use requirements and require-
ments imposed by the second step in the design process, that is, the specification
to implementation step. A specification process that is based on these two models
will also have to have a method for the mapping of the unconstrained model into
the constrained one. For this approach to work, the specification process and tool-
box must have access to a component library. Moreover, components can only be
included in the library when they are specified and described in such a way that
their properties can be imported in the model with a high degree of (blind) confi-
dence. Hence, the formalising of component properties is something that has to
be done, if not already done. Once the library is available, components may be
easily imported. However, it is likely that more than one component in the library
is a candidate that can be imported. Therefore, a method must be provided to
search for a set of components that are jointly somehow a best choice with
respect to the fulfilment of (emerging) system properties.

Now, the specification-deriving process being an iterative exploration process,
means to quantify decisions must be provided. Formally as well as practically,
this means that metrics-based analysis and exploration is the preferred approach.
It is, however, not known what the structure is of the metric space of embedded
systems. As a consequence, no metrics are known and hence the usage of metrics
is not common practice. This is a major drawback that must be resolved in the
first place and with high priority.

Recalling that the translation of requirements to specifications is an iterative
exploration process, this process has to be implemented and it has to be made to
work. This implies that exploration tools have to be designed, that candidate
specifications in the specification space have to be identified, that search tech-
niques have to be developed and, of course, that all of this has to be made effec-
tive to support the specification task efficiently.

3.1.4 Recommendations

The idea-to-specification roadmap depicts the technologies required to imple-
ment the following recommendations that have been identified for future R&D
programs:
1. Propose research programs to resolve the specification problem of embedded

systems by
• relating emerging system properties to individual system components,
• quantitatively evaluating specification decisions based on specification space

metrics,
• obtaining specifications through iterative exploration of the specification

space.
2. Propose a validation program to evaluate the impact of the proposed methodol-

ogy.

©
 P

R
O

G
R

E
S

S
/S

T
W

: p
ub

lic
 v

er
si

on
 1

.0
, 3

0
M

ar
ch

 2
00

2

E
m

er
gi

ng
 s

ys
te

m
 p

ro
pe

rt
ie

s
st

ee
r

co
m

po
ne

nt
 s

el
ec

tio
n

E
m

er
gi

ng
 s

ys
te

m
 p

ro
pe

rt
ie

s
C

ha
in

 d
ep

en
de

nc
ie

s

E
M

B
E

D
D

E
D

 S
Y

ST
E

M
S

R
O

A
D

M
A

P
:

F
R

O
M

 I
D

E
A

 T
O

 E
X

E
C

U
T

A
B

L
E

 S
P

E
C

IF
IC

A
T

IO
N

M
od

el
lin

g

M
et

ri
cs

E
xp

lo
ra

ti
on

V
al

id
at

io
n

2
0

0
2

2
0

0
5

2
0

0
8

2
0

1
1

M
ak

e
it

w
or

k

D
es

ig
n

D
ec

is
io

ns

D
es

ig
n

by

co
m

po
si

tio
n

M
od

el
lin

g
w

ith
 c

om
po

ne
nt

s

St
ru

ct
ur

e
of

 d
es

ig
n

sp
ac

e

In
iti

al
 to

ol
 d

es
ig

n

ESSENTIAL
TRENDS

M
or

e
(s

of
t)

 c
on

st
ra

in
ts

 &
 h

ig
he

r
co

m
pl

ex
ity

 (
be

ha
vi

ou
r)

In
cr

ea
se

d
em

ph
as

is
 o

n
co

nc
ep

t m
od

el
lin

g

(u
se

 c
as

e;
 a

pp
ro

ve
d

ve
rs

io
n

co
nt

ro
l)

T
o

de
si

gn
th

e
ri

gh
t

pr
od

uc
t

10
10

0

0%
70

%

T
ow

ar
ds

 m
ul

ti
-d

is
ci

pl
in

ar
y

sp
ec

if
ic

at
io

n
m

et
ho

ds
 a

nd
to

ol
s

E
m

be
dd

ed
 s

ys
te

m
 a

rc
hi

te
ct

ur
e

de
sc

ri
pt

io
ns

 ig
no

re
 e

xi
st

in
g

hi
gh

-l
ev

el
 I

P
A

ut
om

at
ic

 w
ar

ni
ng

s
in

 c
as

e
of

 in
co

ns
is

te
nc

ie
s

In
te

gr
at

ed
 m

ul
tid

is
ci

pl
in

ar
y

re
qu

ir
em

en
t s

pe
ci

fi
ca

tio
n

m
et

ho
ds

 a
nd

 to
ol

s

M
ul

ti-
di

sc
ip

lin
ar

y
re

qu
ir

em
en

ts

sp
ec

if
ic

at
io

n
m

et
ho

ds

So
m

e
m

on
o-

di
sc

ip
lin

ar
y

st
an

d
al

on
e

to
ol

s,
 n

o
m

et
ho

ds
fo

r
m

ul
ti-

di
sc

ip
lin

ar
y

re
qu

ir
em

en
ts

 a
na

ly
si

s

E
m

be
dd

ed
 s

ys
te

m
 a

rc
hi

te
ct

ur
e

de
sc

ri
pt

io
ns

m
ax

im
iz

e
re

us
e

of
 h

ig
h-

le
ve

l I
P

W
ha

t a
re

 th
e

in
te

re
st

in
g

 r
eg

io
ns

 in
 th

e
de

si
gn

 s
pa

ce
?

D
ev

el
op

m
en

t o
f

 d
es

ig
n

m
et

ri
cs

U
se

 o
f

m
et

ri
cs

Se
ar

ch
 te

ch
ni

qu
es

D
es

ig
n

su
pp

or
t

0-
m

ea
su

re
m

en
t

R
es

ul
ts

?

D
ep

en
de

nc
ie

s
be

tw
ee

n
co

m
po

ne
nt

s

Fo
rm

al
is

at
io

n
of

co
m

po
ne

nt
 p

ro
pe

rt
ie

s

46

© PROGRESS/STW: public version 1.0, 30 March 2002 47

3.2 From executable specification to implementation

‘Mapping behaviour on hardware’

3.2.1 Introduction

The design flow from idea to final product design can be divided into two parts,
the first being the flow from idea to some form of an executable specification and
the second being the flow from executable specification to the final design. Using
the same term ‘executable specification’ in both parts of the design flow does not
mean that these executable specifications are based on the same model and are
described at the same level of abstraction or detail. The design flow from idea to
executable specification is elucidated in section 3.1; the design flow from execut-
able specification to implementation is the subject of this sub roadmap. A clear
border between these two parts of the design flow does not exist since pure top-
down design is not possible and there always exist a strong interaction between
these two parts of the design flow. In this sub roadmap, an ‘executable specifica-
tion’ is an executable specification of (a part) of the behaviour at some abstrac-
tion level. In practice it will be annotated with additional design constraints like
timing, power, throughput, etc. The level of abstraction and detail can vary over a
wide range. For example, it might be an executable Petri-net description, in
which only the communication between the different modules from which the
system is built, is described. On the other hand it might be a detailed VHDL
description that describes the behaviour in full detail while providing a strong
implementation suggestion. In practice the first executable specification in the
design process will never be complete. Hence, although the design flows
described in this section and the design flow described in section 3.1 are quite dif-
ferent, there always will be a strong interaction between these design flows.

In principle, an executable specification describes the desired behaviour and
therefore the design flow from executable specification to implementation can be
summarized as the challenge ‘mapping behaviour on hardware’.

3.2.2 General trends and user needs

Tools and representation

According to Moore’s law the complexity of ICs in terms of the number of tran-
sistors on a chip, will double every 18 months. The production cost of ICs per
mm2 will hardly change. So in order to keep the design cost reasonable with
respect to the production cost, the design cost per transistor will have to decrease
with a factor two every 18 months. For ICs that have a high degree of repetition,
like memories, this can be accomplished. But, for complex systems we will have
to count on improved tools that semi-automatically translate (compile) the
desired behaviour into the final design. This often will be on the account of less
efficient implementations. So tools for automatically mapping behaviour on hard-
ware will become extremely important. Moreover, from the preceding remarks
we may conclude that ever more systems will be implemented on programmable
and reconfigurable hardware.

Embedded Systems Roadmap 2002

48 30 March 2002

Furthermore, in future it will become impossible to guarantee the correctness
of a design by just simulation, hence verification and validation of the design in
the various stages of the design flow will become ever more important, cf. the sub
roadmap on verification and validation, section 3.5. Furthermore, much more
attention is to be given to the correctness of the design tools, formalizing the
design process and improving the simulation tools. All three themes need atten-
tion in order to keep up with the increasing size and complexity of future designs.

Correctness of the design tools

When we start from the assumption that the executable specification correctly
reflects the desired system behaviour, then the correctness of the final design only
depends on the correctness of the automated and manual design steps in the
design process and the consistency of the design flow.

Correct tools transform, optimise or refine an intermediate design description
such that the behaviour of the resulting design is implied in the behaviour of the
original design. Hence, the correctness of the result need not to be verified by
simulation and thus, correct tools lessens the simulation burden. How the correct-
ness of these tools is obtained, by formal verification or by exhaustive testing, is
not important. The only thing that counts is whether the tools can be trusted. For
example, an ordinary C-compiler is correct; it is trusted although it has not for-
mally been verified. Clearly, validation of tools could be more expensive than val-
idation a design or verifying a design step. However, tools have to be validated
only once and each design must be validated separately. So, eventually validating
tools is cheaper. Furthermore, tools are validated naturally during its extensive
usage, as is the case with the C-compiler mentioned before.

For the user it will be impossible to assess the tools that are on the market
beforehand. So these tools need to be certified. If an international organisation for
the certification of design tools is started in the next few years, it must be possible
to have 30% of the (basic) design tools certified within ten years from now.
Although we think that this is possible, we fear that it is unlikely to happen
because of the structure of the CAD market, the complexity of the tools and the
desire of the users to use the latest tools.

Correctness of the design flow and the design representations

Due to the ever-growing complexity of the designs more emphasis will be on the
correctness of the design flow, on the capabilities of the design representations
and on the correctness of the semantics of these representations and therefore on
the formalisation of the entire design process. This in particular holds for the
design flow from executable specification to the final design. The different steps
in the design flow should be fitted together in a more appropriate and less error
prone manner. Manual or ad-hoc translations of representations cannot be
accepted any more in the near future.

Specifications and design representations need to be augmented with means to
express properties that go beyond behaviour and structure. These languages must
make possible to express different time models and quantities such as real-time
constraints, throughput, power dissipation and required or available silicon area.

3.2 From executable specification to implementation

© PROGRESS/STW: public version 1.0, 30 March 2002 49

These developments will put more emphasis on the formal semantics and mod-
els on which the design flow and the design representations are founded.

Moreover, at the level of executable specification (system level) we need an
integral representation of physics, mechanics, etc. together with behaviour and
structure.

Simulation and emulation

Simulating or emulating the embedding system on the, or in the embedded sys-
tem will become a necessity. Examples are a virtual reality model of the embed-
ding system in which the executable specification of the embedded system is
included, or for example a simulation environment that simulates the specifica-
tion of a processor and emulates the operating system mounted on it.

Compilers

The complexity in terms of the number of gates available for a design will con-
tinue to grow with a factor two every 18 months. Moreover designs will become
more ‘difficult’ due to the increasing technological possibilities.

In order to keep design cost in proportion to the production cost, the design
cost per transistor must follow a negative exponential curve as has been explained
in the introduction to this sub roadmap. Moreover more designs will have to be
made with roughly the same amount of designers. High-volume production will
be needed and thus in future there will be fewer different ICs, which however,
will be more programmable and will become reconfigurable. This all will require
further automation of the high-level synthesis process, design re-use and stand-
ardisation of the target architectures. Therefore, we foresee an increased usage of
compilers in its widest meaning. Notice that when we talk about compilers in this
sub roadmap, we do not only refer to the classical compiler that translates some
language into object code, but also to any translator that translates one representa-
tion into another representation including synthesis and optimisation. But, a com-
piler always operates on languages that express some form of behaviour (function
or algorithm); this behaviour is preserved in the compilation process.

The classical compilers, which map on a fixed architecture, will become more
important. In particular compilers that optimise on the basis of different criteria
and compilers that map on new classes of architectures such as VLIW and recon-
figurable architectures will be needed. Retargetable compilers, which start from a
parametrisable architecture, i.e. a class of architectures, will become mature for
the classical architectures and compilers for reconfigurable architecture will leave
its research stage. The ultimate goal is a compiler that automatically maps the
behaviour expressed by an executable specification, on hardware such that the
compiler determines both hardware and software.

Ten years from now it will be possible to automatically derive an optimising
compiler from the architecture description.

Specifying behaviour by means of an imperative language or some functional
language does not suffice. Currently, all kinds of specification methods are devel-
oped based on a model of concurrent processes, for example a Kahn model in
which the processes are described in C. We foresee that compilers will be needed

Embedded Systems Roadmap 2002

50 30 March 2002

that operate on these higher levels of behavioural description. For instance, inter-
active compilers that support the composition and decomposition of these proc-
esses and are able to map these behavioural descriptions on heterogeneous,
possibly reconfigurable, architectures.

The requirements for a language in which an executable specification can be
expressed are often conflicting. User friendliness for the specifier often means
inefficient execution. Therefore many compilers are needed that translate well-
readable executable specification into a specification that executes efficiently.
Typical examples are:
• (Inefficient) SDL to efficient C.
• (Inefficient) MathLab to efficient C.
• UML-RT to efficient C++.

3.2.3 Technology requirements

Tool assessment and certification

Assessment and certification will be an essential part in solving the validation
(simulation) burden. Assessment of tools will be an expensive process. Therefore
it can only be done by an international organisation supported by the tool provid-
ers and tool users. The initiative should be taken by industry; universities can give
support by studying the assessment process. Raising such an international organ-
isation will take several years. In order to gather experience, the first assessments
should be tried out on existing well-know tools. Thereafter newly developed tools
can be taken up. Unfortunately, the structure of the CAD market, the complexity
of the tools and the desire of the users to use the latest tools make successfully
setting up such an assessment organisation rather unlikely.

Design flow representation and formalisation

The design flow will become increasingly automated and therefore increasingly
dependent on its correctness. This can be solved by formalisation of the design
process and the development of suitable design languages. Furthermore standard-
isation of tools and languages will contribute to the correctness requirements.

Further developments in the area of design representations (design languages)
will be needed. Currently, no design language or representation does exist that
can be used throughout a large part of the design process. Many tools use a differ-
ent representation, which requires a lot of ad-hoc or even manual translations.
Furthermore, the current design languages are not able to express design con-
straints such as real-time, required throughput and power dissipation. In the end,
such design languages should contain constructs that make it possible to extract
architecture parameters from a design description.

In the first place, design-languages need to be developed that are able to model
different aspects of time and are capable to express real-time constraints. At the
same time research can be started in which other design constraints can be
expressed such as throughput, power, etc. Prototypes can be expected after six
years from now.

3.2 From executable specification to implementation

© PROGRESS/STW: public version 1.0, 30 March 2002 51

Typically for embedded systems there is a need for design representations that
not only express behaviour, structure and geometry, but also are able to provide a
representation in which mechanical and physical behaviour are integrated.

Modelling the embedding system

Often, an embedded system is correct in relation to its specification. However,
embedded in its embedding systems it finally turns out to be incorrect. So the
specification of the embedded system was incorrect. It is therefore important to
have tools in which the specification of the embedded system can be simulated as
a part of the embedding system. This is already common practice in the automo-
tive industry. A simulation environment that supports simulation of both the
embedding system and the embedded system will be needed.

Moreover tools are needed to emulate efficiently complex software on a hard-
ware oriented design description.

Compilers

A highly automated design process will be needed in order to keep the design
cost in proportion to the production cost. For this reason, better compiler tech-
niques have to be developed.

We distinguish between classical compilers, retargetable compilers, compilers
of the second kind, compiler generators (common knowledge) and compiler gen-
erators of the second kind.

Notice that our emphasis is not on the front-end of the compiler but instead the
back-end.

Classical compilers map behaviour expressed in some language on a fixed
architecture. The complexity of these classical compilers depends on the kind of
target architecture, such as single-processor, VLIW and reconfigurable. Compil-
ers for VLIW need further improvement and compilers for reconfigurable archi-
tectures are still in its infancy. Moreover, these classes of compilers should be
able to optimise on the basis of different criteria, such as code size, throughput,
power consumption, real time constraints, etc.

'Locality' is a relatively new constraint for optimisation. In the current and
future IC technology, delay and power are no longer determined by the standard
cells but instead by the length of the interconnect. Moreover, in the near future it
will take many clock cycles for transmitting a signal from one side of the chip to
the other.

Retargetable compilers get as input a specification of the behaviour, expressed
in some language (the source code) together with a description of the architec-
ture. Current retargetable compilers can only manage a very small class of archi-
tectures. The distinction between the different architecture is given by only a
number of parameters. Based on the source code and the description of the archi-
tecture, object code is generated that is optimised according to some of the crite-
ria mentioned above. Future retargetable compilers should start from larger
classes of architectures and eventually from an arbitrary architecture.

Embedded Systems Roadmap 2002

52 30 March 2002

Compilers of the second kind start from a specification of the desired behav-
iour (expressed in some language) and one or more optimisation criteria. The
compiler delivers both the hardware design and the object code. In these compil-
ers the high-level synthesis is fully integrated in the compilation process.

Compiler generators of the first kind start from a syntax description of a lan-
guage and derive a compiler from it for a fixed architecture. These compiler gen-
erators might be considered as common knowledge. However in the area of
optimisation still a lot of work needs to be done.

Compiler generators of the second kind start from a description of the target
architecture in terms of hardware resources, interconnectivity, instruction set etc.
and derive a compiler from this data for a fixed language.

All the compiler types that are mentioned above will be needed.
The development of these compilers is mutually dependent and partly depends

on common techniques of which we will mention a few.
A suitable representation of the target architecture will be needed for retargeta-

ble compilers, but also for compilers for VLIW in which the number of resources
may be parameterised. Clearly, a suitable representation of the target architecture
will be needed for compilers of the second kind.

In most architectures, similar plural resources will be available, hence com-
bined resource allocation and scheduling will become a challenge.

Techniques to derive from the desired behaviour and the optimisation criteria
the architecture parameters, such as which and how many functions are needed,
the number of registers required, the required busses and even the choice of the
optimal architecture, need further research and development. These techniques
are needed for controlling the design process and will be part of compilers of the
second kind.

3.2.4 Recommendations

1. Start an international organisation for the assessment and certification of
design tools.
Incorrect tools require that the results of these design tools need to be verified
by means of simulation. Due to the ever-increasing complexity of the designs
this practice will soon become infeasible.
Correct functioning design tools make lengthy simulations superfluous and
increase the reliability of the final design. Correct functioning design tools
makes possible ‘Correct by construction’. The assessment of design tools
should be based on testing and on formalisation of the underlying models.

2. More attention is to be spend on research on languages for- and representations
of specification and design.
Currently many specification languages and methods are available for express-
ing behaviour, however, only few are able to express time in an appropriate
way and we are in general unable to express design constraints like real-time
requirements, power requirements, area, etc.
Different tools used in a design flow often have different representation for-
mats with unclear semantics. A common representation format (language)
based on clear semantics and a model that relates the language to the presumed

3.2 From executable specification to implementation

© PROGRESS/STW: public version 1.0, 30 March 2002 53

reality will considerably improve the quality and the efficiency of the design
flow.
It is important to get involved in international high-level language standards
working groups.

3. Research on compilers, translators and compiler generators must be intensi-
fied. Due to the new architectures, such as VLIW and reconfigurable architec-
tures, there exists an urgent need for better compilers, translators and compiler
generators
There is a need for two kinds of compilers. The first kind is retargetable
towards various hardware designs in order to deliver code efficiently executing
on the programmable blocks in the design.
The second kind of compilers derives the architecture from the behavioural
specification based on some criteria and simultaneously generates the executa-
ble.

©
 P

R
O

G
R

E
S

S
/S

T
W

: p
ub

lic
 v

er
si

on
 1

.0
, 3

0
M

ar
ch

 2
00

2

T
oo

ls
an

d
re

pr
es

en
t-

at
io

n

2
0

0
2

2
0

0
5

2
0

0
8

2
0

1
1

A
ss

es
sm

en
t

an
d

ce
rt

if
ic

at
io

n
of

to
ol

s

A
ss

es
sm

en
t o

f
ne

w
 to

ol
s

an
d

fe
ed

ba
ck

 f
ro

m
 th

e
fi

el
d

Fi
rs

t t
ri

al
s

on
 e

xi
st

in
g

(a
lr

ea
dy

 tr
us

te
d)

 to
ol

s
Se

t u
p

of
 o

rg
an

is
at

io
n

fo
r

as
se

ss
m

en
t a

nd
 c

er
tif

ic
at

io
n

D
es

ig
n:

-
fl

ow
-

re
pr

es
en

ta
tio

n
-

fo
rm

al
iz

at
io

n

D
ev

el
op

m
en

t o
f

to
ol

s
fo

r
em

ul
at

in
g

th
e

em
be

dd
ed

 a
nd

 e
m

be
dd

in
g

sy
st

em
“V

ir
tu

al
 f

as
t-

pr
ot

ot
yp

in
g

en
vi

ro
nm

en
t”

M
od

el
in

g
th

e
em

be
dd

in
g

sy
st

em

O
rg

an
is

at
io

n
fo

r
In

cr
ea

se
 o

f
th

e
fr

ac
tio

n
of

 to
ol

s
of

 w
hi

ch
 th

e
co

rr
ec

tn
es

s

 c

er
tif

yi
ng

 t
oo

ls
ca

n
be

 tr
us

te
d.

D
es

ig
n

-

fl
ow

H
ig

he
r

de
pe

nd
en

cy
 o

n
co

rr
ec

tn
es

s.

 -
 r

ep
re

se
nt

at
io

n
‘B

eh
av

io
ur

 a
nd

 s
tr

uc
tu

re
’

to
 ‘

B
eh

av
io

ur
, s

tr
uc

tu
re

 a
nd

 c
on

st
ra

in
ts

’.

 -
 f

or
m

al
is

at
io

n
H

ig
he

r
de

pe
nd

en
cy

 o
n

fo
rm

al
 s

em
an

tic
s

an
d

m
od

el
s.

E
m

be
dd

in
g

D
es

ig
n

w
ill

 r
el

y
m

or
e

on
 th

e
ab

ili
ty

 to
 e

m
ul

at
e

an
d

si
m

ul
at

e
th

e
em

be
dd

in
g

sy
st

em
.

10
%

30
%

ESSENTIAL
TRENDS

M
ap

pi
ng

 b
eh

av
io

ur
on

 h
ar

dw
ar

e

E
xt

ra
ct

in
g

ar
ch

ite
ct

ur
e

pa
ra

m
et

er
s

fr
om

 a
 d

es
ig

n
de

sc
ri

pt
io

n

D
ev

el
op

m
en

t o
f

su
ita

bl
e

de
si

gn
-l

an
gu

ag
es

an
d

fo
rm

al
is

at
io

n
of

 th
e

de
si

gn
 p

ro
ce

ss

D
es

ig
n

of
 la

ng
ua

ge
s

w
ith

 m
ea

ns

fo
r

ex
pr

es
si

ng
 d

es
ig

n
co

ns
tr

ai
nt

s
E

xp
re

ss
io

n
of

 r
ea

l-
tim

e
co

ns
tr

ai
nt

s

St
an

da
rd

is
at

io
n

of
 d

es
ig

n
la

ng
ua

ge
(s

)
/ b

ec
om

in
g

in
vo

lv
ed

 in
 s

ta
nd

ar
di

sa
tio

n
ac

tiv
iti

es

E
xp

re
ss

io
n

of
 t

im
e

E
M

B
E

D
D

E
D

 S
Y

ST
E

M
S

R
O

A
D

M
A

P
:

F
R

O
M

 E
X

E
C

U
T

A
B

L
E

 S
P

E
C

IF
IC

A
T

IO
N

 T
O

 I
M

P
L

E
M

E
N

T
A

T
IO

N
 1

54

©
 P

R
O

G
R

E
S

S
/S

T
W

: p
ub

lic
 v

er
si

on
 1

.0
, 3

0
M

ar
ch

 2
00

2

St
ar

tin
g

fr
om

 a
n

ar
bi

tr
ar

y
ar

ch
ite

ct
ur

e
de

sc
ri

pt
io

n

C
la

ss
ic

al
 c

om
pi

le
rs

 o
pt

im
is

in
g

fo
r

di
ff

er
en

t c
ri

te
ri

a

Compilers

C
om

pl
ex

ity
 to

 d
ea

l w
ith

E
xp

on
en

tia
l i

nc
re

as
e

co
nt

in
ue

s

C
om

pi
le

rs
 c

la
ss

ic
al

In
cr

ea
si

ng
 u

sa
ge

 o
f

co
m

pi
le

rs

C
om

pi
le

rs
 r

et
ar

ge
ta

bl
e

A
rc

hi
te

ct
ur

e
in

cr
ea

si
ng

ly
 d

et
er

m
in

ed
 b

y
co

m
pi

le
rs

C
om

pi
le

rs
 f

or
 r

ec
on

-
In

cr
ea

se
d

us
ag

e

fi

gu
ra

bl
e

ar
ch

ite
ct

ur
es

20
%

50
%

2%
10

%

ESSENTIAL
TRENDS

M
ap

pi
ng

 b
eh

av
io

ur
on

 h
ar

dw
ar

e
5%

20
%

2
0

0
2

2
0

0
5

2
0

0
8

2
0

1
1

Fa
ct

or
 2

 e
ac

h
18

 m
on

th
s

C
la

ss
ic

al
:

F
ix

ed
 a

rc
hi

te
ct

ur
e.

R
et

ar
ge

ta
bl

e:

Se
co

nd
 k

in
d:

B
ot

h
ha

rd
w

ar
e

an
d

so
ft

w
ar

e
ar

e
de

te
rm

in
ed

by
 t

he
 c

om
pi

le
r

G
en

er
at

or
s

of
 t

he
se

co
nd

 k
in

d

R
ep

re
se

nt
at

io
n

of
 a

rc
hi

te
ct

ur
es

Im
pr

ov
em

en
t o

f
cl

as
si

ca
l c

om
pi

le
rs

 f
or

 V
L

IW
 a

rc
hi

te
ct

ur
es

E
nl

ar
gi

ng
 th

e
ar

ch
ite

ct
ur

e
cl

as
se

s

D
er

iv
in

g
ar

ch
ite

ct
ur

al
 p

ar
am

et
er

s
fr

om
 th

e
be

ha
vi

ou
ra

l d
es

cr
ip

tio
n

C
om

pi
le

rs
 o

f
th

e
se

co
nd

 k
in

d

C
om

pi
le

r
ge

ne
ra

to
rs

 o
f

th
e

se
co

nd
 k

in
d

C
om

bi
ne

d
re

so
ur

ce
 a

llo
ca

tio
n

an
d

 s
ch

ed
ul

in
g

A
ux

ili
ar

y

C
la

ss
ic

al
 c

om
pi

le
rs

 f
or

 r
ec

on
fi

gu
ra

bl
e

ar
ch

ite
ct

ur
es

E
M

B
E

D
D

E
D

 S
Y

ST
E

M
S

R
O

A
D

M
A

P
:

F
R

O
M

 E
X

E
C

U
T

A
B

L
E

 S
P

E
C

IF
IC

A
T

IO
N

 T
O

 I
M

P
L

E
M

E
N

T
A

T
IO

N
 2

55

Embedded Systems Roadmap 2002

56 30 March 2002

© PROGRESS/STW: public version 1.0, 30 March 2002 57

3.3 Platform design

‘More from the same’

3.3.1 Introduction

First an introduction of definitions and explanations:
• A platform architecture is the maximal (and preferably optimal) superset of

functions and blocks that are part of the platform, designed with a certain
application domain in mind. The goal is to find the commonalities between
various designs, while still being able to create differentiating products.

• Platform design is the activity of defining a platform architecture plus design
environment to be able to create instances based on the same theme. Therefore,
it’s more from the same!

• A platform product is a product instantiated from a platform.
• A platform describes the material realisation (architecture) and the way to cre-

ate platform products, but also the support aspects: coding rules, test benches
and documentation standards. A platform is not equivalent to a system-on-a-
chip (SoC). In other words a platform is the combination of components, com-
munication architecture, rules, tools, test benches, and documentation. Hence,
platform includes board level realisations.

Note that IP blocks in the following text means both hardware and software IP
blocks.

3.3.2 General trends and user needs

The following trends and user needs relate to the necessity for the creation and
usage of platforms:
• The complexity of implementation and functionality shows an exponential

increase over time (a factor 2 every 18 months).
• Electronic products will behave like fashion; the lifetime of a specific product

will decrease to about one month. As this cycle is too short to design new prod-
ucts, these products need to be designed on a common basis: the platform.

• In this respect, time-to-silicon needs to be reduced to one month. On the other
hand, suppliers in a competitive market want to differentiate their products
from those of the competitors.

• The number of application domains that result in products based on a platform
will increase from currently about 4 to 100.

• “Meet in the middle”: the kind of blocks that are used in platforms will get a
higher level of abstraction.

• The lifetime of a platform will double over the next decade.
The sub-roadmap falls apart in two parts:

• Platform family selection and creation, which coincides with the scenario
‘Platform Design Creator’ in the ESD domain paper. It consists of three sub-
domains: design space exploration, standardisation, and design languages.

• Platform unstantiation, which coincides with the scenario ‘Platform Design
Instantiator’ of the ESD domain paper. The keywords in this part of the road-
map are design space exploration and component integration

Embedded Systems Roadmap 2002

58 30 March 2002

Design space exploration

Design space exploration is important both for the platform creator and for the
platform instantiator. To put the scene, consider tools for design space explora-
tion. Currently it is possible (i.e. coming out of the research labs) to create IP
blocks in a platform fashion. It is described which blocks can be included in an IP
block, for example register files, functional units, and communication between
the two in a hardware DSP. Further, a compiler can be retargetable, to translate an
application written in a language like C to machine code (an executable) running
on an instance of this family of DSPs. A way to achieve this, is to let all tools be
steered by a machine description, which gives values for all parameters in the
platform. The following figure illustrates this:

Figure 6: Steering DSE tools by a machine description

Once this system is obtained, experimenting with different machine descrip-
tions can start design space exploration at the level of IP blocks. This is depicted
by the DSE tool (not available before 2005) in the above figure.

The next step to take is enable design space exploration in a structured and
(partly) automatic way. Which values of the parameters should be described in
the machine description to satisfy the constraints in the specification?

When such a method for structured design space exploration has been devel-
oped, structured DSE at the IP level becomes a reality. A platform consists of
many IP blocks put together to perform the embedded system’s functionality. A
way to execute DSE at platform level is to exploit the DSE methods for the vari-
ous IP blocks separately and combine them at the platform level. In other words,
the same trick applies one level of abstraction higher, as is shown schematically
in the following figure:

Machine
Description

HW synthesis
Retargetable

compiler

HW core Binary

DSE tool (2005)

2 parameters

Available 2003

3.3 Platform design

© PROGRESS/STW: public version 1.0, 30 March 2002 59

Figure 7: Steering DSE tools by machine descriptions on platform level

Component integration in SoC: Networks on Chip (NoC)

For Systems on Chip, a platform also comprises the communication protocols
and components. Currently, practical methods for designing the communication
infrastructure are bus-based and synchronous. Bus-based communication is not
considered very scalable however, whereas scalability is a prerequisite for the re-
usability of the platform. Synchronous communication at the system level is also
becoming a burden, given the many on-chip clock domains in future SoCs. Fur-
thermore, due to the increasing clock frequency it is expected that within ten
years it will take up to 30 clock periods to transfer data from one side of a chip to
the other. These problems with bus-based synchronous communication suggest
an approach where communication is Globally Asynchronous, Locally Synchro-
nous (GALS). An emerging communication paradigm in SoC that favours scala-
bility and GALS is the Network on Chip (NoC) approach. This approach is based
on the 7-layer OSI data communication protocol designed for general networks.
A distinguishing feature in SoC is the predictability of the task executions and the
arrival of data from the environment. SoC designers will exploit this feature to
make SoCs more cost-efficient.

Machine
Description

H W synthesis Retargetable
compiler

H W core Binary

Machine
Description

HW synthesis Retargetable
compiler

HW core Binary

Machine
Description

HW synthesis Retargetable
compiler

HW core Binary

= platform instance

DSE tool (2010+)

>10 parameters

Embedded Systems Roadmap 2002

60 30 March 2002

3.3.3 Technology sub domain: Platform family selection and creation

This sub roadmap of this sub domain is about the people who create the platforms
and define which blocks and communication structures should be included in a
platform. Design space exploration, standardisation, and design languages are
key ingredients.

Technology requirements

For design space exploration a trend from single-processor systems to multi-
processor systems is visible. More generally, design teams of embedded systems
will incorporate not only hardware and software people, but also people from
other disciplines. Compilers are key in doing design-space exploration. The
above text shows that retargetable compilers are needed, as are compiler genera-
tors and ultimately compiler generators for multi-processor systems.

Re-use of IP blocks is essential for the creation and usage of platforms. To
make IP blocks re-usable in embedded systems standardisation of interfaces and
functionality of blocks is required. In addition, models and other properties of IP
blocks (e.g. power dissipation, area) should be included into these standards. The
sub roadmap on hardware and software design also highlights these issues. Auto-
matic IP-wrappers are an essential pre-requisite for the usage of IP blocks in plat-
forms. Not only the blocks, but also the communication infrastructure to glue the
blocks together needs to get attention in the standardisation. Test and debug of
systems composed using platforms should be standardised in such a platform.

Models to express properties of IP blocks are not essentially all the same. Still
it is necessary to be able to reason at the system level about the composition of
these blocks. Therefore, methods and tools that collaborate in this sense are
needed. A vision is, to go from single language design systems (e.g. like SystemC
or UML based), to cooperation between them, where a small number of lan-
guages seamlessly operate. This is in view of the section on design space explora-
tion above. Integration of other blocks to result in heterogeneous embedded
system makes the relevance of this case even stronger.

A general gap in this sub-domain is that the possibility to provide for system-
atic generation of platforms given an application domain, is not yet available.
The issue here is how to express a platform in terms of the parameters that are rel-
evant in the application domain.

3.3.4 Technology sub domain: Platform Instantiation

The key concept in this sub domain is design-space exploration in deriving prod-
ucts from platforms.

Technology requirements

Proper methods and tools are the key parts to perform structured design space
exploration. Tools that can take ever more design parameters into account without
a sacrifice in user-friendliness and computational complexity should be devel-

3.3 Platform design

© PROGRESS/STW: public version 1.0, 30 March 2002 61

oped. Multi-disciplinary models are essential to do platform instantiation; these
models are dealt with in the sub roadmap ‘From Executable Specification to
Implementation’.

A platform management system and concurrent design methodology are aids
necessary for the platform instantiator, to systematically use the strengths of plat-
forms. Such a management system includes aspects like coding standards and
documentation standards that are to be used for platform-instantiated products.
Another essential ingredient is to be able to identify that an instance is indeed
compliant to the platform it was instantiated from. For Systems on Chip, a con-
siderable part of the design effort in platform instantiation is spent on making
HW-SW trade-offs (at component level) and the integration of components in a
communication infrastructure (at system level). Both are discussed in the section
on HW-SW design.

3.3.5 Recommendations

1 Start a large demonstrator project for a GNU-like ES platform. The purpose of
such a demonstrator project is to facilitate the implementation of the next rec-
ommendations:

2. To enable and promote the development of IP blocks and communication
architectures, a project should be started to establish guidelines and working
practices to be used as a starting point for a (concurrent) platform design
methodology. This demonstrator project should also include a standardisation
effort.

3. Establish the requirements of a platform management system and of a concur-
rent design methodology.

4. Start work on hard & soft co-simulation for on-time applications. Tools to
support heterogeneous/hardware and software co-simulation including timing
and communication signals should be developed.

5. Development of high-level models for IP interfacing. IP blocks at the moment
usually lack high-level descriptions. The availability would improve the insight
of the behaviour of the IP as well as improve simulation efficiency.

6. Facilitate multi-disciplinary teams to meet on a regular basis. These meetings
serve as the exchange of ideas and common practice different teams and facili-
tate a common understanding. The result of these meetings could be the defi-
nition of a ‘cooperating design languages’ design system.

7. For Systems-on-Chip, migrate from bus-based communication towards packet-
switched networks-on-chip, with HW routers.

©
 P

R
O

G
R

E
S

S
/S

T
W

: p
ub

lic
 v

er
si

on
 1

.0
, 3

0
M

ar
ch

 2
00

2

C
er

tif
ie

d
pl

at
fo

rm
s

C
om

pl
ex

ity
E

xp
on

en
tia

l i
nc

re
as

e
co

nt
in

ue
s

Fa
ct

or
 2

 e
ac

h
18

 m
on

th
s

fa
sh

io
n

lif
e

tim
e

of
 a

 p
ro

du
ct

 f
ro

m
 1

 y
ea

r
to

 le
ss

 th
an

 1
 m

on
th

D
if

fe
re

nt
ia

tio
n

la
rg

er
 n

um
be

r
of

 p
la

tf
or

m
s

in
st

an
tia

tio
ns

1
→

 1
0x

tim
e

to
 s

ili
co

n
in

st
an

t s
ili

co
n

(
<

 1
 m

on
th

)
nu

m
be

r
of

 p
la

tf
or

m
s

ap
pl

ic
at

io
n

do
m

ai
ns

 u
si

ng
 a

 p
la

tf
or

m
4

→
 1

00
m

ee
t i

n
th

e
m

id
dl

e
ba

nd
 m

ov
es

 u
pw

ar
ds

 a
nd

 th
in

ne
r

pl
at

fo
rm

 li
fe

 ti
m

e
1

→
 2

x

ESSENTIAL
TRENDS

M
or

e
fr

om
th

e
sa

m
e

2
0
0
2

2
0
0
5

2
0
0
8

2
0
1
1

M
on

o-
di

sc
ip

lin
ar

y
M

ul
ti-

di
sc

ip
lin

ar
y

Si
ng

le
 p

ro
ce

ss
or

M
ac

ro
 b

lo
ck

s;
 m

ul
ti-

pr
oc

es
so

r
Sy

st
em

-l
ev

el

C
om

pi
le

r
ge

ne
ra

to
r

M
ul

ti-
pr

oc
es

so
r

co
m

pi
le

r
ge

ne
ra

to
r

D
oc

um
en

ta
tio

n;
 I

nt
er

fa
ce

s,
 a

ut
om

at
ic

 I
P

w
ra

pp
er

s,
 c

om
m

un
ic

at
io

n
ar

ch
ite

ct
ur

e;
 T

es
t a

nd
 d

eb
ug

C
oo

pe
ra

tin
g

de
si

gn
 la

ng
ua

ge
s

Si
ng

le
 la

ng
ua

ge
 d

es
ig

n
sy

st
em

D
SE

 to
ol

s
w

ith
 s

up
po

rt
 f

or
 >

10
 p

ar
am

et
er

s
D

SE
 to

ol
s

us
in

g
2

im
pl

em
en

ta
tio

n
pa

ra
m

et
er

s

A
rc

hi
te

ct
ur

e:
 s

in
gl

e
pr

oc
es

so
r

M
ul

ti-
pr

oc
es

so
r

ar
ch

ite
ct

ur
es

M
ul

ti-
di

sc
ip

lin
ar

y
m

od
el

s:
 s

ee
 s

ub
-r

oa
dm

ap
 “

Fr
om

 E
xe

cu
ta

bl
e

Sp
ec

if
ic

at
io

n
to

 I
m

pl
em

en
ta

tio
n”

Pl
at

fo
rm

 m
an

ag
em

en
t s

ys
te

m
C

on
cu

rr
en

t d
es

ig
n

m
et

ho
do

lo
gy

H
ow

 to
 d

er
iv

e
a

pl
at

fo
rm

 s
ys

te
m

at
ic

al
ly

 f
ro

m
 a

n
ap

pl
ic

at
io

n
do

m
ai

n?

E
M

B
E

D
D

E
D

 S
Y

ST
E

M
S

R
O

A
D

M
A

P
:

P
L

A
T

F
O

R
M

 D
E

SI
G

N

P
la

tf
or

m

in
st

an
ti

at
io

n

D
SE

St
an

da
r-

di
sa

tio
n

P
la

tf
or

m
fa

m
ily

se
le

ct
io

n
an

d
cr

ea
ti

on

D
es

ig
n

la
ng

ua
ge

D
SE

62

© PROGRESS/STW: public version 1.0, 30 March 2002 63

3.4 Hardware/software design

‘Design effort versus cost-efficiency’

3.4.1 Introduction

HW/SW design in Systems-on-Chip (SoC) comprises the tasks of partitioning the
application and determining on what type of HW each part of the application will
execute. If the platform contains a homogeneous set of processors, distribution of
the algorithm over the processors is also considered part of this task. The HW/
SW designer is also responsible for integrating the implementations of the parts
to a working system. The HW/SW designer is driven by two main forces.

Firstly, silicon technology allows more and more integration, which makes
HW/SW design more complex, and cost of non-recurring engineering cost (NRE)
higher. For example, chip-mask costs have risen from $100K to $1M in 4 process
generations.

Secondly, the market demands a short design time and cost-efficiency. With
regard to the latter, energy consumption is becoming an increasingly more impor-
tant criterion in the context of both battery-operated devices and devices that gen-
erate a lot of heat. The issues of design effort and cost-efficiency are often
conflicting, and the trade-off between them is the main concern of the HW/SW
designer when exploring the design space of implementations for each part of the
application. For large systems in a small market (e.g. wafer stepper, medical sys-
tems) however, the emphasis is on the software engineering aspects together with
the real-time constraints typical of embedded systems

3.4.2 General trends and user needs

Three main design trends result from this trade-off: reuse (IP blocks), design
tools, and the availability of an increasingly wider spectrum of possible imple-
mentations. In fact, the distinction between ‘HW’ and ‘SW’ will blur into a grey
area, as will the distinction between their corresponding design flows. In order to
allow flexible reuse, it may even be advantageous to delay decisions regarding
implementation (details). In this implementation spectrum, (re-)configurable
components are a developing trend with potentially large industrial implications,
because they enable HW/SW design without fabricating silicon! This allows
smaller companies to process chips with state-of-the-art technology and make
their own HW/SW trade-offs. One distinguishes two levels of performing HW/
SW design: the system-level and the component level. We also distinguish large
complex systems with a relatively small market, because the typical HW/SW
trade-offs are not representative for the design of these large systems.

3.4.3 Technology requirements

System level HW/SW design in SoC

At the system level, the HW/SW designer partitions the application into tasks that
can be executed on components, and integrates the components to make a work-
ing system. In order to do this partitioning efficiently, the designer should have at
his disposal sufficiently accurate cost/performance models of available (IP) com-

Embedded Systems Roadmap 2002

64 30 March 2002

ponents (HW and SW!), both for computation and communication. Desired but
lacking is a method to quickly estimate the relevant design criteria corresponding
to the composition of the computation and communication blocks. In order to do
the integration efficiently, the interfaces on the components have to be well-
defined and standardised. The designer should also be familiar with the commu-
nication protocols implied by the platform, and have a simulation environment to
parameterise the communication and storage infrastructure and to validate the
integration of components. For this validation also behavioural models of the IP
blocks are required. Scalability of the communication infrastructure will be an
issue given the expected improvements in silicon technology. It is expected that
more attention will be paid to the development of communication infrastructure
due to the poor scaling of current bus-based communication, and to sub-micron
effects leading to unreliable communication, like signal cross talk, and timing
errors due to uncertain propagation delays. Therefore we expect communication
to be supported by packet switched networks similar to those found in computer
networks. The storage infrastructure will also gain in emphasis, because applica-
tions are becoming more data intensive, and more components will exhibit some
degree of programmability, requiring memory to store the program. Because of
the increasing dominance of memory in SOC cost, designers will feel the pres-
sure to try and reuse memories among the different tasks and/or processors.

Task-level parallelism (TLP)

Because the components can run in parallel, an important goal in HW/SW design
at the system level is the exploitation of this task-level parallelism. We consider
two situations: systems-on-chip (SOC), where task executions are relatively pre-
dictable, and systems (servers) in a dynamic network, characterized by unpredict-
able arrival of tasks.

In SOC design, the exploitation of TLP is largely statically determined and
dominated by the task of clustering towards or identifying tasks in the applica-
tion. Besides the goal of enhancing the opportunities for TLP execution, an
important criterion is to minimize the amount of communication between the
tasks. This communication overhead can be a major obstacle for the predictability
and scaling of the system performance (in the number of processors). With the
current design practice (mainly in C) and all the available legacy code it is con-
venient to automatically identify opportunities for task-level execution in arbi-
trary high-level (C) code, maybe just for quick estimation of implementation
cost. In the longer term this need can be expected to fade away given the current
development towards more modular, object-oriented system specification meth-
ods. Also the increasing use of IP blocks necessitates early specification of the
opportunities/constraints of using IP blocks in the design. Because of the increas-
ing complexity of SOC and the incorporation of more data-dependent and control
behaviour, there is a trend towards less predictable system behaviour. In a static
schedule, worst-case assumptions are made to guarantee valid system behaviour.
If the control of the system is performed run-time, the system can more effi-
ciently cope with statistical and unexpected events by dynamic task scheduling
and allocation of bandwidth-, memory-, and processor resources. The main draw-

3.4 Hardware/software design

© PROGRESS/STW: public version 1.0, 30 March 2002 65

back of these dynamic control mechanisms is that their functionality needs to be
validated and simulated together with the HW and SW. This is more complex
than validating a static schedule.

Component-level HW/SW design in SoC

At the component level, the HW/SW designer makes processors, either for use in
his project, or as an IP block that can be incorporated in many designs. IP blocks
are available now in the form of programmable microprocessors or DSPs. The
market for these flexible processors is sufficiently large to justify the design
effort. More specialised IP blocks are being generated by large companies for in-
house use. SW IP is still hardly visible. The component designer has an increas-
ingly wider spectrum of implementation choices to make trade-offs between cost
efficiency and design effort. In this implementation spectrum, (re-)configurable
logic is a clear trend. One expects that the concept of (re-)configurability will be
drawn to higher levels of abstraction, from gates via arithmetic components to
processor architectures (storage & communication, instruction set). This will
have an impact on the design effort, but also on the number of (instruction-)bits
required to configure and control the underlying HW. This will result in smaller
configuration times, less configuration/program memory area, and less power
consumption while fetching the configuration/instruction bits. The trend towards
configurability is not just true for HW, but can also be observed for the corre-
sponding mapping tools: retargetable and parameterisable compilers that also
allow convenient tool reusability and design-space exploration (DSE).

Tool support for partitioning and HW allocation will develop from profiling
tools to help the designer identify suitable targets for HW acceleration (current
situation) towards tools that automatically identify such targets and eventually,
tools that perform the partitioning and allocation process (semi-)automatically.
Current tools are somewhat limited in design flexibility (and therefore reuse),
because they typically have one language as a design entry, one implementation
as a result, and often optimise to a single design criterion.

Instruction-Level Parallelism (ILP).

Another important development is the tool support for the detailed mapping of
tasks to components once the implementation paradigm is chosen. The main
design objective at the component level is the exploitation of ILP. In the current
situation, compilers can efficiently exploit ILP for architectures (e.g. VLIW) that
are not very cost efficient (code size), whereas cost-efficient processors usually
require the designer to write assembly code to exploit ILP for the time critical
parts of the algorithm. In this situation, the processor architecture and the com-
piler are developed independently. One expects that in the future the processor
architecture and the compiler are developed coherently to make a practical trade-
off between code size and compilability (cost-efficiency and design effort).

Embedded Systems Roadmap 2002

66 30 March 2002

Large SW systems in small markets

These systems include the control of an air plane, a wafer stepper, a medical
imagery system, and a telephone exchange server. Issues like safety-criticality
often play a large role in the design of these systems. The dominant issue how-
ever, is the design effort. Advantages on both issues are offered by the re-use of
existing software. This software can be borrowed from previous projects or
bought from third parties. Some reasons for using existing embedded software in
future products are:
• Up to 50% of embedded software code is related to exception handling and

error recovery, while less than 10% of its architecture is related to these items.
• Very specific requirements on optimization of cpu cycles, memory, power etc.

in hardware related software is difficult to design top-down.
• Software for embedded systems contains very detailed knowledge of the hard-

ware it controls. This knowledge is delivered bottom-up. So it is hard to gener-
ate this code with a top down code generation tool.

• One of the prerequisites for re-use is that methods and tools for defining the
embedded software architecture support re-use. Else the architecture of the
product will go its own way without bothering about the past.

Some huge roadblocks prevent re-use.
• Embedded software architectures are not re-used. Every project starts with

inventing its own architecture. Therefore third party software will not be com-
patible with this architecture.

• Current software design tools don’t help with using old code. In the best case
these tools cross-compile code at the statement level.

• Embedded software development environments are very diverse. Think about
computer language, compiler, configuration management, test environment,
hardware, real time operating systems of target system, operating system of
host system, communication protocols.

• Universities only teach students how to build new systems from scratch, not
how to start with existing software.

• Current embedded software methods and tools do not support re-use. The
embedded software expert therefore has a need for an embedded software IP
market, where IP components, consultancy, maintenance and support can be
sold. And where consumers and producers meet to predict future needs.

3.4.4 Recommendations

1. Provide (certified) standardised models of IP blocks regarding (cycle/bit-true)
behaviour, cost, and performance at different levels of abstraction.

2. Develop HW architecture and mapping tools coherently to obtain more advan-
tageous trade-offs between design effort and cost-efficiency. Examples are
processor core and compiler, or network-on-chip topology and tools for deter-
mining the routing of the data.

3. Increase the level and grain of reconfigurability to accommodate high-level
design decisions. Examples are reconfigurable instruction sets, memory organ-
ization, and communication infrastructure.

3.4 Hardware/software design

© PROGRESS/STW: public version 1.0, 30 March 2002 67

4. Designers should be trained in the use of (higher-level) tools; the distance
between embedded system designers and tool designers should be bridged.

5. Embedded system designers need to be aware of the increasing spectrum of
implementation paradigms. This is especially true for companies targeting a
relatively small market, because they have no ‘tradition’ in HW design
required for the emerging paradigm of reconfigurability.

6. Standardize API, architecture and external behaviour of an IP component
a. Intra process, inter process and inter processor communication.
b. Exception handling
c. Debugging facilities
d. Intra component verification and validation
e. Inter component verification and validation (JTAG like)
f. Interfacing with Real Time Operating system
g. Hooks for hot-swappable software

©
 P

R
O

G
R

E
S

S
/S

T
W

: p
ub

lic
 v

er
si

on
 1

.0
, 3

0
M

ar
ch

 2
00

2

E
M

B
E

D
D

E
D

 S
Y

ST
E

M
S

R
O

A
D

M
A

P
:

H
W

/S
W

 D
E

SI
G

N

2
0

0
2

2
0

0
5

2
0

0
8

2
0

1
1

Sy
st

em
le

ve
l

C
om

po
ne

nt

le
ve

lESSENTIAL
TRENDS

D
es

ig
n

ef
fo

rt

vs
.

co
st

-e
ff

ic
ie

nc
y

M
or

e
an

d
m

or
e

in
te

gr
at

io
n,

 in
cr

ea
si

ng
 c

hi
p

m
as

k
co

st

R
eu

se

M
or

e
he

te
ro

ge
ne

ou
s

co
m

po
ne

nt
s

IP
 s

el
ec

tio
n

St
an

da
rd

 I
P

in
te

rf
ac

es
 &

 d
at

a
sh

ee
ts

R
ec

on
fi

gu
ra

bl
e

ga
te

s,
 f

lip
-f

lo
ps

ad
de

rs
A

L
U

s,
 I

ns
tr

uc
tio

n
se

ts

C
or

e-
co

m
pi

le
r

D
ev

el
op

ed
 s

ep
ar

at
el

y
D

ev
el

op
ed

 to
ge

th
er

A
ut

om
at

ic
al

ly
 g

en
er

at
ed

T
oo

ls
Pr

of
ili

ng
 f

or
 id

en
tif

yi
ng

A
ut

om
at

ic
 p

ar
tit

io
ni

ng
su

ita
bl

e
H

W
 ta

rg
et

s

A
ut

om
at

ic

id
en

tif
ic

at
io

n

C
os

t/p
er

fo
rm

an
ce

 m
od

el
s

IP
 s

ho
pp

in
g

(f
or

 D
SE

)
on

 in
te

rn
et

C
om

po
ne

nt

 i
nt

eg
ra

tio
n

B
us

-b
as

ed
 c

om
m

un
ic

at
io

n
N

et
w

or
ks

 o
n

C
hi

p
(N

O
C

)

D
es

ig
n

ef
fo

rt
C

om
m

un
ic

at
io

n,
 s

to
ra

ge
, &

 in
te

gr
at

io
n

(c
o-

)p
ro

ce
ss

or
(-

co
m

po
ne

nt
s)

B
eh

av
io

ur
al

 m
od

el
s

of
 I

P
bl

oc
ks

68

© PROGRESS/STW: public version 1.0, 30 March 2002 69

3.5 Verification/validation

‘To design on target’

3.5.1 Introduction

In each and every step in the design flow of embedded systems it is important to
check whether the design implements the intended functionality. To this end we
distinguish various techniques: formal techniques and non-formal techniques.
Formal techniques try to either prove the system correct or check the entire state
space a design can be in. Non-formal techniques check only a part of the com-
plete state space of the design with the benefit of speed of verification.

Both for formal and non-formal verification the designer of an embedded sys-
tem needs to consider where he or she wants to use it for. Formal verification has
been researched extensively for control-like applications, while it has not yet
been used for data processing on a large scale. Timing and performance are
important aspects of embedded systems, thus these aspects need to be considered
for verification. Classical compilers do not deal with these aspects. Further, for-
mal verification relies on a certain model of reality: the designer of embedded
systems needs to have confidence that this model truly describes the reality!

Designs of embedded systems that are currently created in industry have such
large state spaces that the current state-of-the-art formal verification tools are not
capable to verify them completely. Therefore embedded system designers rely for
a large part of their verification on techniques like simulation and emulation. As
designs are expected to grow in complexity the need for simulation shall be con-
tinuing its growth also.

On the other hand, as is also stated by the ITRS roadmap [ITRS, 2001] in its
section on Design, simulation does not scale as designs grow; one can only cover
a part of the design space. Therefore a breakthrough is necessary to cope with the
design verification issue. This breakthrough is expected from the shift from non-
formal to formal verification techniques.

According to the ITRS roadmap the main near-term challenge is to make for-
mal and semi-formal verification techniques more reliable and controllable.
Capacity (i.e. the sizes of designs that can be formally verified), robustness, and
verification metrics are points of attention for the next five years. After 2007 new
techniques are necessary according to the ITRS. Design for verifiability, coping
with higher levels of abstraction, human factors in specifications (which need lan-
guages and specifications), and broadening the scope of formal methods to ana-
log/digital and hybrid systems are mentioned in the ITRS.

The ITRS does not detail the formal verification methods necessary. In the
roadmap for embedded systems we focus more closely on formal verification as a
means to cope with the verification challenge for the next ten years.

3.5.2 General trends and user needs

The world of verification and validation, as well as the world of embedded sys-
tems are undergoing rapid changes. We see a few trends:
• Moore's Law states that the complexity of systems will increase continuously

with a factor 2 every 18 months;

Embedded Systems Roadmap 2002

70 30 March 2002

• Dunn's law states that we have to improve the analytical power of verification
and validation tools for embedded systems with a factor 4 every 18 months;

• Thus a factor 2 improvement every 18 months has to come from methods,
algorithms, data structures, and implementation techniques;

• The increasing complexity of embedded systems will necessitate the use of
formal methods during the design of embedded systems;

• Verification and validation will not only be needed at low-levels of abstraction
(e.g. hardware) but also at higher levels of abstraction (e.g. architecture;
(hybrid) systems);

• It is essential that the designer of an embedded system can use verification and
validation techniques in his design trajectory, without bothering about the
underlying mathematics. Further, the tools for verification and validation need
to become user-friendly.

Algorithms and data structures are the basic ingredients to do verification and
validation of embedded systems. They have been studied in this area for a long
time and many techniques are already available. There are also numerous tools
available to do modelling, simulation, model checking, equivalence checking,
consistency checking, real-time and stochastic analysis.

The main problem is that these algorithms, data structures, and tools are only
practically applicable to small toy-size examples nowadays. It is important to be
able to do verification and validation on ever-larger examples. However, for an
example of a certain size some techniques are applicable while others are not
(yet). In about ten years from now the goal is to be able to verify systems with an
algorithmic complexity corresponding to that of explicit state model checking of
state space of the order of 10 tera-states. Given the anticipated use of symbolic
state space representations this includes the verification of large classes of infinite
state systems.

We have divided the Embedded Systems Roadmap on verification and valida-
tion into three parts: formal verification, non-formal verification, and the integra-
tion of formal verification techniques with the design flow for embedded systems.

3.5.3 Technology sub domain: Formal verification

In order to comply with Dunn's law we have to develop fundamental algorithms,
efficient data structures, and implementation techniques to improve the perform-
ance of tools for verification and validation.

Technology requirements

In general, for formal verification we need proper formalisms (languages) to be
researched for two reasons:
1. What kinds of properties do we need to express in such a language;
2. How do we make the link with the (top-level) specification.
There are many formalisms which consider designing either bottom-up or top-
down. SystemC e.g., takes the bottom-up approach: it allows high-levels of detail
to be described in the design. UML is an example of a high-level formalism,
which misses the power to describe the semantics of low-level details. An embed-
ded systems designer wishes formalisms to bridge these two levels.

3.5 Verification/validation

© PROGRESS/STW: public version 1.0, 30 March 2002 71

A prerequisite for formal verification techniques are the algorithms they use.
One of the major problems is that we need algorithms for the efficient explora-

tion of state spaces a design can be in. Nowadays we can traverse discrete state
spaces; in the near future it will be necessary to traverse symbolic state spaces.

Optimal search algorithms need to be developed.
A way to deal with more complex designs is to introduce hierarchy in the com-

plexity of the design. For this we need proper abstraction algorithms.
We distinguish two main areas of techniques that are important to be

researched for formal verification: model checkers and theorem provers.
The usability of theorem provers relies partly on proper decomposition tech-

niques. Decomposition allows for hierarchy in the design; theory of composition
is necessary to prove properties of the composed system.

Model checkers are foreseen first for functional system models; after that we
need model checkers for soft/hard real-time systems. Also model construction,
model simulation, and test-case generation need to be considered for these two
stages. Static analysis techniques are important aids in doing model checking.

Ultimately it is desirable to integrate the theorem proving and the model
checking techniques.

3.5.4 Technology sub domain: Non-formal verification

Due to the growing complexity of designs, non-formal methods will remain
important to cope with the verification challenge. We focus on simulation and
emulation as non-formal verification techniques as they traverse only a part of the
design space.

Currently we can simulate single (IP) blocks. In the near future we will need
simulation techniques of compositions of blocks; platforms should provide
guidelines in these. Currently there are already activities in the area of system
simulation; they will become more important as designs grow in complexity.
When hybrid systems come into sight we will need simulation techniques to cope
with these systems and models.

Emulation has always been important when the hardware (and the software) is
already there, for example in prototype format. One of the purposes is to detect
bugs related to timing that cannot be detected in simulation due to the abstraction
of the (timing) models. As systems grow from single blocks to multiple blocks to
hybrid systems, emulation techniques need to keep up.

The links with the Platform Design sub roadmap are obvious when we will be
able to simulate or emulate systems at the block level or at the system level.

3.5.5 Technology sub domain: Integration

This sub domain focuses on the integration of formal verification and validation
techniques with the design flow of embedded systems. The ultimate goal is that
designers will think it a natural thing to verify their designs.

First we need to get the tools and techniques for formal verification out of the
academic world into the industrial design world. Interfaces are one thing; even
more important is to teach the embedded systems designer to use formal verifica-
tion in the design flow. The only way this can be done is bi-directional. Current

Embedded Systems Roadmap 2002

72 30 March 2002

experts on formal verification need to adapt their tools and (user) interfaces to the
industrial design flow, and need to take large designs from industry as cases. On
the other hand, embedded system designers need to learn how to use these tech-
niques in their design flow. Configuration management and application-oriented
tool interfacing also are important issues in this context.

A next step is to actually integrate verification and validation in the design
flow, with seamless integration as a goal. To verify systems that will be built in
ten years from now, verification techniques should be able to deal with multi-core
and even hybrid systems.

3.5.6 Recommendations

1. First a classification is needed when to do formal verification. In well-
described domains verification is possible, but simulation or prototyping can
be good alternatives. As verification comes at a cost (e.g. computational com-
plexity), designers of embedded systems have a serious trade-off to make.

2. Verification of heterogeneous systems is key to future development of embed-
ded systems and should be further investigated.

3. Representation formalisms (languages) on which formal verification operates
should be studied. The relation with the top-level specification is of utmost
importance to allow for integration of verification techniques in the embedded
systems design flow.

4. The problem of exploring very large state spaces in a manner that is computa-
tionally efficient is one of the first prerequisites to make verification feasible in
the design flow for embedded systems. Hierarchical design is a very important
research topic to be studied to be able to verify large designs. Vendors of
(trusted) components for embedded systems need to express their information
for verification on the right levels of abstraction, in a formalism that the
embedded systems designer can deal with.

5. Verification and validation should be made usable for every designer of
embedded systems, including tool support and courseware. In order to inte-
grate verification and validation in the design flow of embedded systems, it is
essential for computer scientists working in this area to study realistic cases.
These are needed to improve and adapt verification and validation techniques
for industrial relevance. These cases can serve as benchmark to monitor the
progress of methods and tools.

©
 P

R
O

G
R

E
S

S
/S

T
W

: p
ub

lic
 v

er
si

on
 1

.0
, 3

0
M

ar
ch

 2
00

2

M
od

el
 c

he
ck

er
s

fo
r

so
ft

/h
ar

d
re

al
-t

im
e

sy
st

em
s

E
M

B
E

D
D

E
D

 S
Y

ST
E

M
S

R
O

A
D

M
A

P
: V

E
R

IF
IC

A
T

IO
N

/V
A

L
ID

A
T

IO
N

 1

2
0

0
2

2
0

0
5

2
0

0
8

2
0

1
1

F
or

m
al

V

er
if

ic
at

io
n

N
on

-f
or

m
al

ve
ri

fi
ca

ti
on

ESSENTIAL
TRENDS

A
lg

or
ith

m
s

T
oo

ls
 a

nd
te

ch
ni

qu
es

Si
m

ul
at

io
n

E
m

ul
at

io
n

M
oo

re
’s

 L
aw

E
xp

on
en

tia
l i

nc
re

as
e

in
 c

om
pl

ex
ity

 c
on

tin
ue

s

D
un

n’
s

L
aw

Fo
rm

al
 m

et
ho

ds
 w

ill
 h

av
e

to
 b

e
us

ed

Sh
if

t
fr

om
 lo

w
-l

ev
el

 to
 a

rc
hi

te
ct

ur
al

 v
er

if
ic

at
io

n

T
o

de
si

gn
on

 t
ar

ge
t

10
%

70
%

Sy
m

bo
lic

 s
ta

te
 s

pa
ce

 a
lg

or
ith

m
s

Fa
ct

or
 2

 e
ve

ry
 1

8
m

on
th

s

D
is

cr
et

e
st

at
e

sp
ac

e
al

go
ri

th
m

s

A
bs

tr
ac

tio
n

al
go

ri
th

m
s

(O
pt

im
al

)
se

ar
ch

 a
lg

or
ith

m
s

D
ec

om
po

si
tio

n
te

ch
ni

qu
es

T
he

or
em

 p
ro

ve
rs

M
od

el
 c

he
ck

er
s

fo
r

fu
nc

tio
na

l s
ys

te
m

 m
od

el
s

St
at

ic
 a

na
ly

si
s

te
ch

ni
qu

es

In
te

gr
at

io
n

of
 th

eo
re

m
 p

ro
vi

ng

an
d

m
od

el
 c

he
ck

in
g

Si
m

ul
at

io
n

of
 c

om
po

si
tio

n
of

 (
IP

)
bl

oc
ks

S
im

ul
at

io
n

of
 s

in
gl

e
(I

P
)

bl
oc

ks
Si

m
ul

at
io

n
of

 h
yb

ri
d

sy
st

em
s

E
m

ul
at

io
n

of
 s

ys
te

m
s

E
m

ul
at

io
n

of
 s

in
gl

e
(I

P)
 b

lo
ck

s
E

m
ul

at
io

n
of

 h
yb

ri
d

sy
st

em
s

Se
e

Pl
at

fo
rm

 D
es

ig
n

S
ee

 P
la

tf
or

m
 D

es
ig

n
73

©
 P

R
O

G
R

E
S

S
/S

T
W

: p
ub

lic
 v

er
si

on
 1

.0
, 3

0
M

ar
ch

 2
00

2

E
M

B
E

D
D

E
D

 S
Y

ST
E

M
S

R
O

A
D

M
A

P
: V

E
R

IF
IC

A
T

IO
N

/V
A

L
ID

A
T

IO
N

 2

2
0

0
2

2
0

0
5

2
0

0
8

2
0

1
1

In
te

gr
at

io
n

of
 f

or
m

al
V

&
V

w
it

h
to

ol
s

fo
r

de
si

gn
 f

lo
w

ESSENTIAL
TRENDS

M
oo

re
’s

 L
aw

E
xp

on
en

tia
l i

nc
re

as
e

in
 c

om
pl

ex
ity

 c
on

tin
ue

s

D
un

n’
s

L
aw

Fo
rm

al
 m

et
ho

ds
 w

ill
 h

av
e

to
 b

e
us

ed

Sh
if

t
fr

om
 lo

w
-l

ev
el

 to
 a

rc
hi

te
ct

ur
al

 v
er

if
ic

at
io

n

T
o

de
si

gn
on

 t
ar

ge
t

10
%

70
%

Fa
ct

or
 2

 e
ve

ry
 1

8
m

on
th

s

V
er

if
ic

at
io

n
an

d
va

lid
at

io
n

in
te

rf
ac

es
 to

 d
es

ig
n

to
ol

s

E
du

ca
ti

on
 o

f
de

si
gn

er
s

C
on

st
ru

ct
io

n
of

 d
es

ig
ne

r-
fr

ie
nd

ly
 u

se
r-

in
te

rf
ac

es

V
er

if
ic

at
io

n
an

d
va

lid
at

io
n

to
ol

s
in

te
gr

at
io

n
w

ith
 d

es
ig

n
to

ol
s

Se
am

le
ss

 in
te

gr
at

io
n

an
d

us
e

of
 v

er
if

ic
at

io
n

an
d

va
lid

at
io

n

V
&

V
 o

f
sm

al
l-

si
ze

d
ex

am
pl

es
V

&
V

 o
f

m
ed

iu
m

-s
iz

ed
 e

xa
m

pl
es

V
&

V
 o

f
in

du
st

ri
al

-s
iz

ed
 e

xa
m

pl
es

74

© PROGRESS/STW: public version 1.0, 30 March 2002 75

3.6 Test, debug and integration

‘Quality control will stretch from factory to field’

3.6.1 Introduction

Many worlds come together in test, debug and integration.Testing means to estab-
lish the quality of the product. Most, if not all, of the design and fabrication steps
are followed by a separate test. If a part is found to be incorrect, the nature of the
defect may be discovered by debug. Test and debug are ingredients of a 1-tech-
nology quality control scheme. Unfortunately parts from different technological
domains (micro-electronics, mechatronics, biotronics etc.) are integrated in non-
trivial embedded systems, raising the problem of quality assurance (QA) and
fault diagnosis and isolation (FDI) to unknown high levels.

The world of embedded systems is computer dominated. Though the embed-
ding system features many different technologies, the attraction of the embedded
systems world is largely caused by the digitally programmable embedding core.
Hence we will assume an electronic embedded system with proper models of the
embedding and external world. This is not a major restriction, but the simple
admission that we will always test from an environment in which a software test
program can run and the unification of test views on hardware and software will
already keep us busy during the roadmap period.

3.6.2 General trends and user needs

Where originally an IC was fully tested, this is already not economically feasible
and will in the future even become impossible. This is caused not only by the
sheer impossibility to test a complex design in a short time, but also because the
‘System on the Chip’ will have additional characteristics that pose new testing
problems such as:
• increased heterogeneity (more parts in different test technologies);
• increased programming diversity (more ways to structurally change the part

function);
• more in-system support to the needs to test a system in/off/on line;
• raised polymorphy as caused by the additional reconfiguration potential.
Next to the improved (or autonomous) test of the part, the half-fabricate character
of the manufactured chip may lead to delayed testing: testing only when a func-
tion is programmed. And as programming can occur also at the moment of prod-
uct fabrication or even at the moment of instalment, testing may largely be off-
loaded to a later stage in the life cycle.

Web technology may even allow the ultimate test to be performed under sup-
plier control at the user’s site. The user can either be the product manufacturer (or
even the local shop), where the chip is assembled into a (consumer or profes-
sional) product or the end-user, where the product is applied in connection to
other products. If the business model assumes the local shop to be fully responsi-
ble for the service to the end-user, all debug and test will take place at the shop
floor. The end-user will only need a failure indication, while the shop needs full
support from the manufacturer.

Embedded Systems Roadmap 2002

76 30 March 2002

In the long-term business model, a growing part of the test will be applied in
use. A web-like support will be mandatory. This is partly true because one can not
burden the average house dweller with the need to test an electronified house part.
But having the product as part of a digital network, the added advantage is that
any supplier can constantly monitor the life of delivered goods. Moreover it
seems that this will become a necessity rather than just a business model. Still,
debug support at the shop remains necessary as a trusted third party.

3.6.3 Technology requirements

In the past one has seen an advance in multi-level, multi-mode simulation
because both analog and digital hardware must be handled at varying levels of
abstraction. With the rise of heterogeneity and polymorphy together with the
delayed commitment of functions to silicon the requirements will be raised. Fur-
ther developments will be urgently needed.

On the factory floor, the basic functionality of the ‘system on a chip’ is vali-
dated. The on-going development of process technologies will regularly change
the dominating fault model. Especially dynamic faults are posing problems, both
in communication protocols as in the IP core themselves. At higher abstraction
levels such problems will re-occur, for instance as a degree of non-functional
interaction between IP-cores.

Also software design will mature to the recognition of testability as a develop-
ment goal. Software engineering needs to have testability in mind, but so far
hardware and software have totally different views on the testability issue and use
a totally different terminology. More commonality seems required. An example is
the software built-in self test (BIST) to facilitate self-test on-chip or in-product.
Another issue is the sensitivity of software patterns on the production fault profile
of a specific platform. It seems also that the canyon between TDO and verifica-
tion & validation must still be closed.

At the shop floor, automated debug facilities are growing in importance
because of the shift in the moment when the specialising functions are finally
committed. On-chip test facilities will help to ease the debug effort, quantified in
operator skill and in test patterns communication needs. Fabrication errors will be
pushed away by reconfiguration and replacement.

The end-user expects total quality. This pushes the needs of self-test and self-
repair to the limits. To limit the additional on-chip test structures, a degree of
resource sharing will become mandatory. The test structures should not reduce
the testability and the quality of the overall system.

As a consequence, the life cycle phases of the system will become apparent in
a separate test view. This indicates a test process that permeates every aspect of
the overall endeavour. Such an outgrowth of the test impact from a design view
with some additional test measures over local pattern generators to an intertwined
process will require a number of innovations, as
• built-in test for hardware/software combinations;
• hierarchical propagation of compacted test results.

3.6 Test, debug and integration

© PROGRESS/STW: public version 1.0, 30 March 2002 77

3.6.4 Recommendations

From the sub domain roadmap, the following recommendations on future R&D
activities can be derived:
1. Improved control management of tests for fabrication, product and application.

As the test sequence is potential a set of time-dispersed activities of changing
target and complexity, this process must be carefully monitored.

2. Unification of hard- and software test. With the increase in flexibility in imple-
mentation and the number of abstraction levels, the allocation of the fault to
hard- or software becomes more difficult. In the current state-of-the-art, testing
has overlapping points of strength in hardware and software. Consequently a
more unified view is necessary to make function tests independent of the actual
morphology.

3. Development of an extensive set of on-chip test measures (drop-in, re-wiring,
program). Increasing system complexity and delayed function tests will
require more potential to test on the chip.

4. Integration of test for heterogeneous, polymorphic architectures. Each logic
technology as standard logic, reconfigurable logic, logic-enhanced memory or
pure memory needs different test algorithms. Mixing such different parts in the
same system and changing the actual implementation form of a function over
night requires additional attention to monitor the pluriformity in the larger sys-
tem

©
 P

R
O

G
R

E
S

S
/S

T
W

: p
ub

lic
 v

er
si

on
 1

.0
, 3

0
M

ar
ch

 2
00

2

 T

es
t V

ie
w

 T
es

t P
ro

gr
am

 P
ol

ym
or

ph
ou

s

H
et

er
og

en
eo

us

A
lg

or
it

hm
ic

U

ni
fi

ed
 P

ro
fi

lin
g

G
ra

nu
la

r

Su

pp
or

tiv
e

R

ea
ct

iv
e

2
0

0
2

2
0

0
5

2
0

0
8

2
0

1
1

M
ed

dl
in

g
A

bs
tr

ac
ti

on
/

H
ie

ra
rc

hy

D
eb

ug
&

T
es

t

In
te

gr
at

ed
T

es
t

M
ul

ti-
m

od
e

M
ul

ti-
co

re

S
W

/H
W

Fa
br

ic
at

io
n

 (

In
-L

in
e)

A
ss

em
bl

y

 (
O

ff
-L

in
e)

A
pp

lic
at

io
n

 (

Fi
el

d
T

es
t)

A
cc

es
s

&
 C

on
tr

ol

St
an

da
rd

iz
at

io
n

T
es

t P
ro

gr
am

 A

na
lo

gu
e/

di
gi

ta
l

In
-p

la
ce U

ni
fi

ed
 s

ee
di

ng

M
od

ul
ar

H
ie

ra
rc

hi
ca

l

R
ep

la
ce

m
en

t

 R

ed
un

da
nc

y
St

ab
ili

ty

 R
es

ou
rc

e
S

ha
ri

ng

 T
es

t-
bu

s
Q

A

 A

da
pt

iv
e

 r
ep

ai
r

 S
ch

ed
ul

in
g

Se
ns

iti
si

ng

C
or

e
te

st
Pr

ot
oc

ol

T
es

t r
ew

ir
in

g
T

es
t

D
ro

p-
in

s

Fa
ilu

re
 I

nt
er

ac
tio

n

D
om

in
an

ce
 s

hi
ft

•S
ee

 P
la

tf
or

m
 d

es
ig

n
•S

ee
 P

la
tf

or
m

 d
es

ig
n

ESSENTIAL
TRENDS

H
et

er
og

en
ei

ty
In

cr
ea

se
 in

 d
if

fe
re

nt
 I

P
te

ch
no

lo
gi

es

Pr
og

ra
m

m
in

g
di

ve
rs

ity
In

cr
ea

se
 in

 p
ro

gr
am

m
in

g
le

ve
ls

In
-S

ys
te

m
 T

es
t S

up
po

rt
In

cr
ea

se
 in

 te
st

 d
ro

p-
in

s

Po
ly

m
or

ph
y

In
cr

ea
se

 in
 r

ec
on

fi
gu

ra
tio

n
po

te
nt

ia
l

Q
ua

lit
y

co
nt

ro
l

fr
om

 f
ac

to
ry

 t
o

fi
el

d
2

5
2

10 50
%

1
3

5%

E
M

B
E

D
D

E
D

 S
Y

ST
E

M
S

R
O

A
D

M
A

P
: T

E
ST

, D
E

B
U

G
 &

 I
N

T
E

G
R

A
T

IO
N

78

© PROGRESS/STW: public version 1.0, 30 March 2002 79

Appendix 1. References
[Szyperski 1998] Clemens Szyperski (1998) Component Software, Beyond Object-oriented Pro-

gramming, Addisson-Wesley, ISBN 0-201-17888-5

[EDAA 1998] EDAA (1998) System Design Technology Roadmap,
http://www.iae.nl/users/ldje/edaa.html

[ITEA 2000] ITEA(2001) Technology Roadmap on Software Intensive Systems,
http://www.itea-office.org

[Edwards 1997] Stephen Edwards, Luciano Lavagno, Edward A. Lee & Alberto Sangiovanni-Vin-
centelli (1997) Design of Embedded Systems: Formal Models, Validation, and
Synthesis, Proceedings of the IEEE, Vol85, No. 3, March 1997, pp. 366-390

[De Micheli 1997] Giovanni De Micheli, Rajesh K. Gupta (1997) Hardware/Software Co-Design,
Proceedings of the IEEE, Vol85, No. 3, March 1997, pp. 349-365

[Paulin 1997] Pierre G. Paulin, Clifford Liem, Marco Cornero, François Naçabal & Gert Goos-
sens (1997) Embedded Software in Real-Time Signal Processing Systems:
Application and Architecture Trends, Proceedings of the IEEE, Vol85, No. 3,
March 1997, pp. 419-435

[Finkelstein] Anthony Finkelstein [ed.] (1998) Software Engineering: a Roadmap

[Goossens 1997] Gert Goossens, Johan van Praet, Dirk Lanneer, Werner Geurts, Augusli Kifli,
Clifford Liem & Pierre G. Paulin (1997) Embedded Software in Real-Time
Signal Processing Systems: Design Technologies, Proceedings of the IEEE,
Vol85, No. 3, March 1997, pp. 436-454

[Schlett] Dr. Manfred Schlett (1998) Trends in Embedded Microprocessor Design, Exten-
sion from paper for IEEE Computer, Vol. 31.,No 8, pp.44-49, August 1998

[MEDEA 2000] MEDEA (2000) EDA Roadmap

[ITRS 2001] International Technology Roadmap for Semiconductors

[Embedded Every-
where 2002]

http://books.nap.edu/html/embedded_everywhere

[Book of Visions
2001]

Wireless world research forum (2001) Book of Visions 2001

Embedded Systems Roadmap 2002

80 30 March 2002

© PROGRESS/STW: public version 1.0, 30 March 2002 81

Appendix 2. Terminology and abbreviations

Term Description

Abstraction level A design can be described at different abstraction levels
that are characterised by data types and timing concept.
Higher abstraction levels have compact descriptions that
hide the details typical to lower levels.

Analogue behaviour Behaviour of a system or component measured or
described in a continuous domain (time, amplitude, fre-
quency)

Analogue HDL Hardware Description Language for modelling amongst
others

API Application Programmer Interface -- a set of functions
that facilitate programmers in using today's complex
software programmes

Application domain see Domain

Architecture Overall design of a system. An architecture integrates
separate but interfering issues of a system, such as pro-
visions for independent evolution and openness com-
bined with overall reliability and performance
requirements. An architecture defines guidelines that
together help to achieve the overall targets without hav-
ing to invent ad hoc compromises during system compo-
sition. An architecture must be carefully evolved to avoid
deterioration as the system itself evolves and the
requirements change. [Clemens Szyperski, Component
Software]

Asynchronous Different activities in a system are not synchronised by a
common clock signal that generates the exact time
instances of computation.

ATM Asynchronous Transfer Mode

Behaviour Describes the relations between inputs and outputs of a
(part of) the design. The behavioural aspects concen-
trate on what must be designed, free of implementation
aspects

Behavioural compiler A behavioural compiler interprets the behaviour of a sys-
tem that is described in a formal language, generating
an implementation at a lower abstraction level.

Bit-error rate The non-negligible probability that an unwanted bit
reversal occurs during transmission and (de)coding of a
message in a digital communication system

Bus An element in the architecture, which allows communi-
cation between components that are sending data and
other components that receive data. Many components
may be sending on the same bus, but not simultane-
ously.

Capturing The process of collecting all information that is required.

Embedded Systems Roadmap 2002

82 30 March 2002

CASE Computer Aided Software Engineering

Co-simulation Simulation of a system by co-operating different simula-
tion kernels for the different semantic domains which are
part of the system model.

Complexity The number of independently interacting items or possi-
bilities in a given context, often the number of elements
in a set that can be described independently.

Component A component is a unit of composition with contractually
specified interfaces and explicit context dependencies
only. Context dependencies are specified by stating the
required interfaces and the acceptable execution plat-
form(s). A component can be deployed independently
and is subject to composition by third parties.[Szyperski]

Component-oriented pro-
gramming

Encapsulation+Polymorphism+Late binding+Safety

Computational model The type of mathematical relations or formulae used as
a basis to constitute models for describing (sub)system
behaviour.

Concurrent engineering The act of designing a system by several independent
parties acting simultaneously or quasi simultaneously
and whose contributions have to be co-ordinated.

Configuration management Keeping track of different implementation options, with
their mutual dependencies and partial results.

Content The data that is of direct value to the user

Contract Specification attached to an interface that mutually binds
the clients and providers (implementers) of that inter-
face. Contracts can cover functional and non-functional
aspects. Functional aspects include the syntax and
semantics of an interface. Non-functional aspects relate
to quality-of-service guarantees. [Szyperski]

Core An implementation in silicon, programmable, hardwired
or anything in between that allows it to be used as a
building block of a system.

Dataflow Computational model which can execute completely on
the basis of the availability of data to its operations.

Design environment The entire suite of software and hardware used by sys-
tem designers, ranging from workstation operation sys-
tems to dedicated design tools and libraries

Design flow Keeping track of and providing guidance for the execu-
tion of different management design steps in a suitable
order

DFL Data Flow Language. A language from Frontier Design
Company oriented towards data flow. The language
combines functional as well as procedural elements

Term Description

© PROGRESS/STW: public version 1.0, 30 March 2002 83

Discrete behaviour Behaviour of a system or component measured or
described in a discrete domain (clock cycle count, digital
word values, finite state graphs, etc.).

Discrete event A time-value pair describing a change in value of a sig-
nal of a system at that instance of time. In discrete event
systems value and time must be countable

Distributed processing The processing is handled by multiple resources, nor-
mally operating in parallel and of which the geographical
location is arbitrary

Domain (roadmap) An area of interest in which products/serv-
ices share certain characteristics

Domain papers (roadmap) The vision written down and worked out in
scenarios of rendezvous

Driving application A product/service that challenges technology capabili-
ties in a domain to the utmost, even to the extent that it
might imply the need for not-yet existing technologies

DSE Design space exploration

Dynamic data flow The production and consumption of data values (tokens)
and the execution of operations depends on the actual
data occurring at run time. Normally this originates from
"if-then-else" constructions in the behavioural specifica-
tion and complicates the scheduling problem

Embedded memory Memory implemented on the same chip as the process-
ing elements (as opposed to off-chip memory) and fabri-
cated in a process technology optimised for embedded
logic circuits

Embedded logic Logic which is fabricated in a process technology opti-
mised for memory circuits

Embedded software Software belonging as integral part to a system, which is
normally not configurable or even visible to an outside
user

Embedded system Embedded systems are highly specialisable, often reac-
tive, sub systems that provide, unnoticed by the user,
information processing and control tasks to their embed-
ding system

EMC Electro Magnetic Compatibility: the immunity or suscep-
tibility of the system for undesired electromagnetic field
interference either due to mutual internal effects or inter-
action with the environment

Emulation Replacing part of a real system by a simulation of its
model while maintaining the communication with the
real system

Term Description

Embedded Systems Roadmap 2002

84 30 March 2002

Encapsulation Enclosure of a part of the state space of a system such
that only operations enclosed together with that part can
effect state changes on that part. Typical units of encap-
sulation are objects, classes, modules and packages
[Szyperski]

EPROM Electrically Programmable Read Only Memory

Estimation of performance Getting data on the physical behaviour of a system or
device based on timing, power consumption, heat dissi-
pation, signal propagation, etc.

Event (roadmap) Something that happens in some point in
time

Expertise span The number of different disciplines required to be cov-
ered in the design process

Finite state machines Behaviour is described using states and transitions
between states and

Framework A particular architecture for a system.

Hardware Implementation of a system into a physical device

Heterogeneous A composition from parts with a different technological
origin, as for instance a different logic or physical struc-
ture.

HW acceleration Acceleration of system simulation by using dedicated
hardware support for a fast execution of the system
model

Intellectual Property The legal ownership of the knowledge incorporated into
a specification or (partial) design, which can represent
significant commercial value

Interface Abstraction of a service that only describes the opera-
tions supported by that service (publicly accessible vari-
ables, procedures, or methods), but not their
implementation. [Szyperski]

IP see Intellectual Property

JAVA An object-oriented programming language of which the
execution is possible on a variety of operating systems
due to the concept of virtual machine compilation

Latency The time delay between an input event and its corre-
sponding output reaction. In this context caused by com-
putational, by on-chip communication as well as by
storage delay

Library A collection of design descriptions, possibly at different
levels of abstraction, which are not specific to one par-
ticular design project, but often specific to the technol-
ogy of the supplier

Term Description

© PROGRESS/STW: public version 1.0, 30 March 2002 85

MATLAB A high-level software package in which applied mathe-
maticians, signal processing- and control engineers can
input and test their ideas

Module level A module is a system or circuit with a single, well-
defined and unified function

Multi-processing Distributing the workload over several processing ele-
ments which can operate concurrently

Multi-processor architecture A system in which there are several processors capable
of running software independently. Different architec-
tures are often distinguished in the interconnection
scheme to enable inter-processor communication

Multi-rate Different parts of a synchronous digital system operate
at different clock speeds and where the different clock
signals must have a fixed phase relationship with each
other

Multi-tasking Various tasks requested by a single user are executed
at the same time

Object oriented software An approach to computer programming that emphasises
data and attaches procedures as "methods" to the
classes of data for which they are relevant. In object ori-
ented software everything in sight is an object which
belongs to a class. Objects are classified in a hierarchy
where each object class may be a subclass of a higher
one. The class definition consists of a list of constituent
objects called "attributes" and a collection of procedures
that can be applied to these objects.
Encapsulation+Polymorphism+(implementation) Inherit-
ance

OMT Object Modelling Technique: a methodology for design-
ing and implementing a (software) system in an object-
oriented way. It may replace SDL

Operating system The software a computer runs to manage its resources:
display,

Polymorphism The ability to view different kinds of entities through a
common projection [Szyperski 1998]
A function shaped in one from many ways; e.g. either in
software or hardware

Platform The computer system and architecture used to design
software (sometimes used to specifically indicate the
operating software)

Platform architecture The maximal (and preferably optimal) superset of func-
tions and blocks that are part of the platform, designed
with a certain application domain in mind. The goal is to
find the commonalities between various designs, while
still being able to create differentiating products.

Term Description

Embedded Systems Roadmap 2002

86 30 March 2002

Platform design The activity of defining a platform architecture plus
design environment to be able to create instances
based on the same theme. Therefore, it's more from the
same!

Platform product A product instantiated from platform

Power modelling Devising mathematical formulae or algorithms to predict
the energy

PROGRESS Program for Research on Embedded Software and Sys-
tems

Protocol Describes the mechanism used for communication.
Many different levels of abstraction are possible

QoS (Quality of Service) The non-functional aspects guaranteed under a contract
[Szyperski]

Re-targetable compiler A compiler for software that transforms a program
expressed in a higher level programming language to
instructions of a given machine that is highly dependent
on the machine architecture

Re-use Modules (or cores) that are not designed for a particular
design project, but are obtained from a library or from
other designs

Real-time The ability of a system to guarantee that actual latencies
remain

Real-time kernel A part of the operating system that is responsible for
(run time) scheduling, resource management and for
synchronisation between tasks in such a way that real-
time deadlines are met

Rendezvous (roadmap) Event where technologies meet that are nec-
essary for the emergence of a new generation of a prod-
uct/service that fulfils a user need

Run time scheduling Scheduling is deciding the execution moment for sub-
tasks or operations as part of the containing task. The
decision freedom is normally constrained by a pre-
scribed partial ordering and by limited resources. In run
time scheduling this is decided during the execution of
the containing task

Scenario (roadmap) Sequence of events

SDL Specification and Description Language: a general pur-
pose description language for communication systems,
standardised by the ITU (International Telecommunica-
tion Union) and widely used in telecommunication

Simulation Creating behavioural traces of a system by interpreting
or executing its model

Simulator A software utility capable of performing simulations of
properly described systems

Term Description

© PROGRESS/STW: public version 1.0, 30 March 2002 87

Single processor system System in which all computation is performed sequen-
tially on a single processing element

Software Specification of behaviour or procedures in an appropri-
ate textual format (code) and which is to be interpreted,
compiled and executed by a computer-like system capa-
ble of interpreting the software code independently

Specification Each step in the design process starts by defining the
specification. A specification must present all the infor-
mation necessary to execute the relevant step and must
cover both behaviour as well as architecture (partial or
complete)

Spectral techniques Analysing system behaviour by representing the system
data as well as transformations on these in the fre-
quency domain

Static data flow The production and consumption of data values (tokens)
and the execution of operations does not depend on the
actual data values as encountered with run time sched-
uling, and thus can be completely analysed at compile
(design) time which results in a fixed (static) schedule

Sub-system A set of modules that are interacting in an independent
way and which form but one of the constituents of a
larger system

Synchronous All actions of and state changes in a system occur at
points in time indicated by a single (global) clock

Synchronous data flow At each firing of an operation a well-defined number of
tokens is produced or consumed (allows multi-rate dig-
ital signal processing)

Synthesis The act of transforming a specification into a more
detailed specification keeping the overall external
behaviour and meeting physical requirements

System characteristics Aspects of the implementation of a system, decided
upon during its specification or design phase and valua-
ble to reach the overall functional and/or performance
criteria

System technology span The set of design and implementation techniques used
to build a system, normally requiring knowledge from
different scientific disciplines

Throughput time The rate at which the system can process input data to
output data

UNIX Multi-user and multi-tasking operating system available
to a wide range of computer platforms of different ven-
dors. Originally developed and freely distributed as uni-
versity software, oriented towards such areas as
software development and network interconnection

Term Description

Embedded Systems Roadmap 2002

88 30 March 2002

Abbreviations

User needs The expression, in non-technical terms, of the wishes of
(target groups of) end-users that may motivate a search
for fulfilment of these needs by product/service solutions
in which technology may play an important role

User interface The part of a system that allows the user to input and
understand data, as generated by the system, in an
easy way. For the user the interface is the tool

Validation Checking whether system description satisfies specified
properties

Verification Determining whether two different system descriptions
of the same design (possibly at different levels of
abstraction) are conformant with respect to relevant
functionality

Vision (roadmap) The description of the common view on the
practical evolution of the major function characteristics
of product/service solutions that fulfil (some of) the user
needs

Web Documentation stored in central data base accessible
through the http internet protocol, allowing for cross-ref-
erences through links and using text, images, sound,
movies, programs, etc. to communicate information.

Windows NT Operating system developed by Microsoft allowing for a
multi-tasking environment

Yield The percentage of correctly functioning devices after
fabrication

2D two-dimensional

3D three-dimensional

A/V audio/video

ALU arithmetical and logical unit

ASIC application specific integrated circuit

ASIP application-specific instruction set processor

ASSP application specific standard product

BIST built-in self test

CAD computer aided design

CAN car automation network

COTSES Common Off The Shelf Embedded Software

Term Description

© PROGRESS/STW: public version 1.0, 30 March 2002 89

CPU central processing unit

DSE design space exploration

DSP digital signal processor

EDA electronic design automation

EDAA european design and automation association

EMC electro-magnetic compatability

EMI electro-magnetic interference and isolation

ESR embedded systems roadmap

FDI fault diagnosis

FPGA field programmable gate array

GALS globally asynchronous, locally synchronous

GNU GNU's not unix

GP general purpose

HW hardware

I/O input/output

IEEE institute of electrical and electronic engineers

ILP instruction-level parallelism

IP intellectual property

ITRS international technology roadmap for semiconductors

MCM multi-chip module

MEDEA micro-electronic developments for european applications

MEMS micro-electro-mechanical system

MoC model of computation

MPEG Motion Picture Experts Group

NoC network on chip

NRE non-recurring engineering

OSI open systems interconnection

pcb printed circuit board

PWA personal well-being assistant

QA quality assurance

RC reconfigurable computing

RT real-time

SDL system description language

SIA semiconductor industry association

Embedded Systems Roadmap 2002

90 30 March 2002

SW software

TDO timed digitiser option

TLP task-level parallelism

TTA time-triggered architecture

TTM time to market

UI user interface

V&V verification and validation

VCR video cassette recorder

VHDL VHSIC (very high speed integrated circuit) hardware description language

VLIW very large instruction set wordlength

VLSI very large scale integration

© PROGRESS/STW: public version 1.0, 30 March 2002 91

Appendix 3. Domain paper: Personal Well-being Assistant:
creating a society of well-being

3.1 Domain description

3.1.1 Introduction
‘PWA (Personal Well-being Assistant or Persoonlijke Welzijn Assistent) is the
name of the first domain to be exercised for its driving potential with regard to the
technological evolution of embedded systems. In future other domains may be
identified to fill in missing technology areas.

It is a new domain that aims at supporting human beings in their strive for well
being. As such it provides interesting opportunities to link fundamental research
on human behaviour and motivation from psychology with advanced technologi-
cal research topics from a.o. physics, micro-mechanics and micro-electronics.

The PWA concept is developed here in the context of embedded systems, but
this is not an inherent limitation to the PWA concept. This context originates from
the current assignment to facilitate an Embedded Systems Roadmap.

The PWA itself is not an embedded system but an embedding system. From an
embedding system can be derived the functionality and the non-functional con-
straints of the embedded system(s) which are to be incorporated into it.

3.1.2 Purpose of this domain study
The purpose of this document is:

• To create input material for the process of construction of the technology road-
map for embedded systems;

• To investigate the domain in order to help find the most important needs for
technology evolution and to identify potential gaps in that evolution for
embedded systems;

• To identify important rendezvous of user needs and technology development.
Such a rendezvous implies the convergence of needs and technologies leading
to the possibility of a new generation or class of products and/or services.
Further purposes are:

• To stimulate development of and experience with relevant technologies for
embedded systems;

• To facilitate the discussion between experts on technology roadmaps for the
domain;

• To create a common understanding of the impact of embedded systems on the
domain.

3.1.3 Rationale for the PWA-concept
The main reason for developing the PWA-concept in the context of the assign-
ment to facilitate an Embedded Systems Roadmap is the following. A product (or
service) example in an application domain of embedded systems is needed with
sufficient potential for driving and challenging technology evolution and which
preferably also has some relevance for society. It is also necessary to develop a
product concept that is not forbidding at some point in time any of the partici-
pants in the roadmapping process to stop contributing because of fear of having
to show any company confidential future product plans.

Embedded Systems Roadmap 2002

92 30 March 2002

Looking into evolution of existing appliances proofed to be difficult without a
general concept to steer their further development. This now has been found by
taking as a starting point the fulfilment of a very basic human need: the desire for
well-being. Investigating what this might imply at the personal level for different
age groups in different situations has been shown to be a powerful mechanism for
discussing the needs in technology progress.

A further rationale for the PWA is the need to make a large leap forward in
time and be able to discuss user needs from the far future, 7 to 10 years ahead.
This requires a mental reframing that becomes easier by having a concept like a
PWA to start from.

The PWA-concept, further explained in the sequel, as a quite general concept,
implies that a nearly unlimited amount of functionality could be accumulated
within it. It is, however, more probable that a limited number of different versions
originate, each one focused on its own target group and its specific needs and
desires. It is also most probable that PWAs will not originate from scratch, but
will be based on currently existing appliances. These might then be re-focused to
serve a well-being purpose of a specific target group.

In the extensive exercises described below, the work context of target groups
has not been explored. This might be an interesting topic for a future follow up
study.

3.1.4 Relation to Embedded Systems
As indicated above, a large variety of PWA-appliances can be imagined, each of
them connected with the outside world and the person wearing it, and performing
a specific set of functions for its user. PWAs have to react to all kinds of sensor
signals and control all kinds of actuators. PWAs have to be able to communicate
speech, sound and pictures to other PWAs and to and from a local or global com-
munication infrastructure. Apart from this the PWAs have to perform all kind of
processing functions: from interpreting sensor signals, generating actuator sig-
nals, processing speech, audio and video to accessing large databases and
processing the therewith related transactions to perform the required PWA func-
tions. This implies a huge variety in architectural needs of PWAs. Some functions
need to be realised in hardware, some in software. A large variety of hardware,
software and reconfigurable modules can be envisaged to fulfil these needs. The
modules or compositions of modules in such PWAs are embedded systems. For
cost and efficiency reasons there will be a drive to define as many common mod-
ules for a range of PWAs.

3.2 PWA characteristics

3.2.1 The concept of personal
A major characteristic of the PWA is that it is oriented towards the individual. It
will be small enough to be wearable or portable and certainly lightweight. Also
there might exist a kind of base or docking station to interface with a local or glo-
bal communication infrastructure. When used in a car the docking station may be
an outgrowth of the current hands free phone infrastructure.

© PROGRESS/STW: public version 1.0, 30 March 2002 93

It is important that the individual himself/herself is in control. This means
switching in and out all the features of the PWA as it is a fundamental aspect of
well-being that oneself can control the degree of penetration into the personal pri-
vacy at any time. This implies that the individual determines the highest privacy
level on which external influence can be executed. And also what level of security
is desirable for the different kinds of transactions that can be performed from the
PWA. All of this applies not only for configuration at set-up time, but also later on
it must be easy to change all kinds of feature preferences.

Another characteristic is that the PWA will mostly be connected to an infra-
structure, be it a potential special PWA infrastructure at home, at work, in the car,
in hospital, or to a global “general purpose” infrastructure like the mobile phone
network or a localisation system like GPS.

3.2.2 The concept of well-being
Well-being is a quite broad concept. It is a term that basically combines in one
word a generally felt most elementary human need. It touches upon fundamental
existence issues of individuals and covers the range of needs from caring for ele-
mentary living needs for oneself and his beloved ones up to and including the
self-realisation of the successful professional.

It has therefore widely different implications for individuals, for families, for
associations, for society as a whole. This means that it is a good, socially relevant
topic to use as underlying principle for the development of appliances that make
sense. And this will be reflected in the origination of different types of PWAs.

There will also be a strong cultural element in the identification and priority
setting of needs to be supported by a PWA. This might lead to a strong geograph-
ically oriented development of different PWAs.

Through the wide scope of the subject it is guaranteed that also a sufficiently
wide coverage of technologies will be possible. It will depend upon us to exercise
our creativity to specify interesting and challenging problems for technology that
might help to increase the well being of individuals and groups in our society.

3.2.3 The concept of assistant
Providing assistance by a PWA will be constrained by some desired properties:
1. The user must be in control: a PWA must be customised to user wishes. It will

not be acceptable that there are features in a PWA that cannot be switched off
or on by the user himself. An exception to this may be made when special
functions are performed e.g. when a PWA is used as a measuring device to
establish costs involved in using scarce resources like roads or other common
infrastructure facilities.

2. Help or assistance must be available on request. This again implies that the
user is in control of telling if he/she wants to be disturbed by its PWA or not.

3. Assistance should not be patronising, but should provide help with respect for
the person concerned. This poses quite some social challenges in relation with
the elderly.

4. Assistance should be provided in a context-sensitive way. This creates major
technological challenges in defining and updating automatically the status rele-
vant for a person with a PWA.

Embedded Systems Roadmap 2002

94 30 March 2002

The type of help that can be provided by a PWA may have specific characteris-
tics:
1. Monitoring/measuring.

Objects can be monitored: gas burner on or off, is a certain person present. A
generalisation is monitoring the status of an environment e.g. for safety pur-
poses. Person monitoring may extend from observing absence or presence to
monitoring of behavioural aspects. Also health monitoring falls in this cate-
gory. This may take extremely widely different forms from external observa-
tions and measurements to intra-brain measurements with wireless
transmission to an infrastructure. And, of course, it would be quite valuable if
one could monitor the degree of well being of a person in his/her environment.
A further type of help in this category could originate if the PWA gets also an
environment measurement function e.g. related to access and payment for use
of facilities like roads and other infrastructure facilities.

2. Reminding.
This subject starts with a simple extension of the current generation of per-
sonal organisers to remind people about their appointments. The MediMinder
might be a PWA devoted to reminding and actively supporting taking medica-
tion in time and in the right dose.
This could be extended in various directions: reminding what day and time it is
now (especially relevant for very old people), reminder for the context: show
where somebody is on a map, or indicate by an arrow which direction to take
to get home.

3. Advising.
This will be an area where it is important to show respect for the person being
advised. This will be imperative when older people are advised to use a PWA
and they cannot fully oversee the consequences of accepting this. They must
then be reassured that their privacy is not invaded unsolicited.
One can think about an advice not to drive if the PWA senses a dangerous situ-
ation e.g. finding to high a level of alcohol in the air in the car. Or an advice to
no longer continue with a tennis match if the PWA measures a body overload
situation for too long a time. A further extension of the advising function might
be, in connection with coupling to a service provided over a network, notifica-
tion that roadblocks are coming up, and then suggesting an alternative route.

4. Intervening.
The most far-reaching type of assistance is having the PWA taking an interven-
ing action. In the future medication taking might be actively controlled from a
PWA. Much simpler functions are already now within practical reach: opening
and closing of doors e.g. for disabled, as soon as their PWA gives the appropri-
ate signal. Actuators can be controlled from a PWA, e.g. to switch of the gas if
it burns without a cooking device above it. It must be possible to set all kinds
of conditions by the user to ensure the user that no unwanted actions will take
place.
In the car the PWA can be used to take action when the driver loses attention
for the road e.g. by some unfavourable change in his medical condition. This
might be signalled by the PWA to the safety system of the car, which tries to

© PROGRESS/STW: public version 1.0, 30 March 2002 95

get the drivers attention before braking automatically. The signal may even be
communicated to the safety systems of neighbouring cars.

3.3 PWA classification

PWAs can be classified according to their target group characteristics
1. Age. A number of age ranges can be distinguished that allow a useful cluster-

ing of functions, and for which an existing personal appliance exist which
could evolve further with a focus on well-being as a PWA:
• Teenagers: game console
• Young parents: baby phone
• Sportsmen: hart rate measuring appliance
• Young urban professionals: personal organiser
• Vital 55+: mobile phone
• Supersenior (70+): wearable electronic alarm

Other categories of users with specific needs will undoubtedly be formulated
over time, certainly when one would also look into other cultures than our
Western European culture. But even within Europe cultural differences are so
large that different types of PWA may evolve in different countries, be it
already with different language support. A major technological challenge
will be to optimise (=minimise) implementation diversity.

2. Needs taken care of:
In relation to well-being a natural hierarchy of needs was presented by

Maslow:
• Elementary living needs: food, water, sleep, sex
• Safety: protection from violence and natural disasters, health
• Love: for and from others, belonging
• Esteem: respect for self, from and for others, influence
• Self-actualisation

3. Geographical working area
A distinction can be made with respect to the geographical area where a PWA

is supposed to work:
• Individual wearing a PWA with only personal functions without the need for

attachment to a communication infrastructure
• Home, hospitals, university, disco, company building, sports complex, senior

citizen service flat. Each of these may have its own infrastructure for commu-
nication with the PWAs of its inhabitants/visitors.

• Global working PWA, most probably this implies a wireless connection to
the global mobile phone networks and their successors.

Embedded Systems Roadmap 2002

96 30 March 2002

3.4 User Needs, Technologies and Rendezvous

3.4.1 Overview of PWA rendezvous
The following picture presents an overview of the different types of PWA to
which we have paid attention until now. The light blue ones have been worked
out in some detail. Many others can still be devised, and may be should be, to bet-
ter serve the goal for which we have developed them: to find drivers of significant
technological change.

A first analysis has been performed to see which technological problems
would originate from the realisation of the sequence of rendezvous. This has led
to the remarks below. They are not to be seen as an exhaustive enumeration of
technological problems. But as a limited list of problems signalled, mainly with
the purpose to trigger you, the reader of this domain paper, to read this carefully,
and give additions and further comments based on the viewpoints of your own
expertise. Our theory is, that by involving a representative group of experts, we
can create a reasonable accurate picture of what needs to be tackled in the future,
and more or less in what order this needs to be done as well.

As you will see the three PWAs are discussed in three different ways. This will
help to stimulate taking different viewpoints and approaches to finding the most
important technological problems and gaps related to the implementation of the
embedded systems of this variety of PWAs.

The horizontal axis represents the time line over which we want to make the
roadmaps. On the vertical axis are displayed for various user groups the starting
points of the evolution followed by a sequence of three rendezvous between user
needs and technological capabilities, covering the whole period until 2011, or
even extending beyond that in the last shown rendezvous. This extension relates
directly to the estimated time for developing the complex algorithms and other
technologies needed for implementation of the PWAs at that point in time.

From the PWAs shown three families are further worked out in the sequel: the
first one as generations of a Parent-PWA, the second one is the generation line for
the Yup-PWA and as the third one the Supersenior-PWA has been investigated.
Names have been given to some of the PWAs in a generation line to emphasise
the evolution in functionality within such a PWA-family.

© PROGRESS/STW: public version 1.0, 30 March 2002 97

Figure 8: Scenarios of rendezvous for PWA families

3.4.2 The Parent-PWA rendezvous

Introduction

The Parent-PWA describes the needs of the (young) parents that want to be sup-
ported in their care taking of a child(-ren). Parents want to be able to monitor
their children. There is a clear separation between the device the parent is using

User groups

Sportsman

Blind

Deaf

Supersenior

Parents

Smart white
stick

Talking and
reading white

stick

Smart voice to
text and text to

voice

real time voice to text
and text to voice for
daily communication

Yup

2002 2005 2008 2011

Scenarios of rendezvous for PWA-families

Wearable
Heart Beat

Monitor

Wearable
Incident
monitor

Wearable
distributed

incident monitor

Wearable
alarm

Local
MediMinder

Distributed
PWA Base

Station

Stationary PWA
Base Station

Box under
phone

Yup-PWA
SportsSafe

Yup-PWA
HealthSafe

Yup-PWA
SafeWare

Personal
organiser

Atmosphere
creator PWA

Virt. envir.
creator PWA

Me&You
PWA

Personal
organiser

Sensory
awareness

 PWA

Adv. sensory
awareness

communicator

Sensor-based
awareness
reasoner

Simple
separate
sensors

Parent-PWA
BabyCare

Parent-PWA
DistantCare

Parent-PWA
ToddlerCare

Babyphone

Parent
access

Child care
Community

careGSMTeenager

Embedded Systems Roadmap 2002

98 30 March 2002

and that of the child, making necessary some kind of communications method.
The personal aspect of who is in control shows a gradual shift from parent to
child as the child grows up. Though it is oriented towards the individual, it has a
number of neighbourhood aspects (baby-sitting), requiring an infrastructure. The
well being of the child shows a development of the needs over time that has to be
addressed.

Figure 9: Scenarios for Parent-PWA

Parent-PWA
BabyCare

Parent-PWA
DistantCare

Parent-PWA
ToddlerCare

Babyphone

2002 2005 2008 2011

Generations of appliances with increasing functionality
(from monitoring to measuring and interpreting)
and connectivity (from home to global)
driven by communication

User Needs/Functionalities

Young parents have the following needs:
- Monitor the safety of their babies and children while at sleep and playing in bed (vital functions check,
 food testing & advice, measure simple and useful things to keep their children well cared)
- Keep a (distant) eye on their first movements around the house and in the neighbourhood
- Influence the learning and development process, gradually transfering control of the process to the child,
 preventing unwanted influences, educational games, archive 'first steps'
- Communicate in a parent community about common problems and solutions
- Make it easier to raise children, combine career with care

Scenario of
rendezvous

Vision

Scenarios: Parent-PWA

Child

Parent
access

Child care
Community

careGSM

© PROGRESS/STW: public version 1.0, 30 March 2002 99

‘I do not support technology used to encourage fear of strangers or isolation of individuals or family units. Parents
and children should be given more opportunities to seek help from those around them. In isolation there are
increases in child abuse and under-development’ [PROGRESS workshop 2001, author unknown]

Short discussion of application aspects of the Parent-PWA rendezvous

Remarks about problems and technology challenges in some detailed applica-
tions in the Parent-PWA rendezvous:

Wetness detection • Integrate with the baby phone
• The sensor has to be very low cost and very low power.
• The market is extremely large.

2002 2005 2008 2011

Major functions

Increase communication between children, parents and members of the local commu-
nity. Make help and information more accessible to parents and children.
Vital functions check.
Tracking & tracing.

Technologies

Sensors/actuators Sound recording Humidity measure-
ment
Warning generated

Body measure-
ments (respiration
surveillance)

Emotion measure-
ment (stress,...)
In-body

Speech/sound Amplification
Warning = loud-
ness

Sound interpreted
Warning signals

Child recognition Play friends recog-
nition

Image/video No Movement detec-
tion
Movement interpre-
tation

Baby-sitting at a
distance
Child localisation

Child playgroup
supervision
Advanced video
processing

Info transport/stor-
age

At home
Wireless

At home
Wireless
Low data rate

At home and
neighbourhood
Wireless to global
network
Higher data rate

At shopping mall
Wireless to global
network

Video data rate

Software content Small
Configurable

Large
Adapting

Very large

Gaps Security

Reliability
Perceived radiation
effect

Endurance

Other Handicapped par-
ents & children?

Embedded Systems Roadmap 2002

100 30 March 2002

• Communication is most likely to be RF-based. The part of the system in the
diaper is most likely to be active. The amount of power (electro-magnetic
field) needed to allow the sensor to be passive is socially not acceptable.

• We don’t know how difficult the integration of the production with diaper
production is going to be

• There is also a professional market, aiming at diapers for persons in hospitals
and homes for the elderly, allowing higher cost and lower volume

• ‘Wetness’ is depending on the skin condition of the baby, the capacity of the
diaper and leaking. The diaper has to be adapted to these different aspects

• Electrical resistance gives a good indication, but a zero risk is needed before
parents will adopt it

• Infrared image is also usable. Very advanced processing is needed.

Location detection • Access to parts of the house based on the age of the child asks for an infrastruc-
ture which is unlikely to be widely available soon (electronic locks, ‘ambient
intelligence’)

• Location detection of people by camera pattern recognition is a long-term
issue, there is too much processing power needed for this moment (2020).
Integrate other information & sensors.

• Recognition without contact sensors or carrying an apparatus needs integra-
tion of multiple sensors and databases to reduce the needed processing power
(recognising one out of four people known to be in the building is much eas-
ier than having to select them from all Dutch citizens)

• Put a chip in the child’s bike (power and space available), integrate with
speedometer

• Recognition of who’s handling a phone, game boy through finger/voice print
is both needed to adapt the behaviour of the apparatus and to identify who’s
in a room. How to handle privacy? In your own house it is easy, but you don’t
want everyone’s identity broadcast.

• For this application the wireless range needed is limited. Integration of differ-
ent networks can handle the WAN aspects. The video bandwidth that is
needed can be limited by making the frame-rate dependent on movement.

• There’s a sub-division between built-in and stand-alone devices. Built-in
devices might have to be customised (child’s bike is used for a few years and
then sold to the neighbours). We need standards for this reconfiguration, both
to new users and to upgraded hard/software. (>2007)

• Identification of all devices makes for excellent theft prevention (and a pri-
vacy problem)

• Trend: processing moves from ‘base-station’ to near the sensor.
• All data has to be encrypted (not like the current wireless ether-net), other-

wise everyone can listen in on wireless communications. Mechanisms are
needed for selective, fine-grained disclosure. The neighbours can look when
they are baby-sitting.

• When the video system in the shopping mall is capable of tracking children it
is also capable of tracking customers. The number of camera’s needed sug-
gests to build them into a lamp.

© PROGRESS/STW: public version 1.0, 30 March 2002 101

• When all these devices need a power adapter the number of adapters needed
might start to be a barrier to adoption of further devices. A standard would be
welcome.

• Children are already carrying a handy (to call mom and 112). A much smaller
transponder would be needed for smaller children.

• The localisation problem basically consists of:
- The child is lost or
- Has to come home (for dinner) but is somewhere in the street or
- Is playing with a friend at home somewhere or
- Is not allowed to play in dangerous areas
• A transponder that has to be carried can be ruled out. It should be so small

that it can be put in all garments. Then we need ultra-low power and ultra low
data rate sensors, using movement as a power source, resilient against drop-
ping/breaking, and finally usable for all items.

• Transponder use is largely an infrastructure question; they can already be
built into shoes.

• Security has to be very tight, and adapt to emergency situations

Head lice detection • Very high resolution camera needed
• Build into each classroom?
• Other sensors possible?

Sudden Infant
Death Syndrome
(SIDS)

• The detection if a baby is still breathing is difficult. Lots of processing power
is needed to do it with (infrared) cameras. Recognising how the baby is lying
is critical.

• Parents want to know if a baby lies on its belly. Use +/- 5 camera’s to create a
3D image

• The temperature in the close neighbourhood of the baby shouldn’t be too
high.

• Characterisation of the baby’s behaviour is difficult. Individual differences
are large and time-dependent

• Recognition has to be very fast, response time < 1.5 minute.
• The life-saving aspects are too difficult for a home-situation. First application

in hospitals. Re-animation is an option in a hospital, but not at home. The
preventive aspects are worthwhile.

3.4.3 The Yup-PWA rendezvous

Introduction

The Yup-PWA rendezvous are intended to cover the evolving needs of the single,
young urban professional (Yup). It is the age range of the young grown-up who
has left the parental home, has finished his higher studies successfully and just
started a professional life with a bright career ahead. Needs relate to a large extent
to meeting the right person, to start building an own lasting social contact envi-
ronment, to have interesting leisure experiences in sports and entertainment, and
to build an interesting and profitable professional life. In terms of well being
there is a constant need for safety: feeling safe in contacts with other people, in
going out and in more personal appointments, in driving and in having sex.

Embedded Systems Roadmap 2002

102 30 March 2002

Even in the desire for excitement and challenges the need for safety will sur-
face in the form risk analysis. Being on the safe side helps building self-confi-
dence and trust in own capacities, and is therefore important for well being. The
picture of the rendezvous takes the existing personal organiser as the status quo,
and sketches a potential future development thereof with emphasis on providing
support for well being of the Yup in terms of providing help in improving safety
in all kinds of different situations.

2002 2005 2008 2011

Technologies

Sensors/actuators Touch screen UI
Mini-keyboard

Larger colour dis-
play, sound+
Stress detection to
prevent RSI
Sports load meas-
urements
Kitchen safety
(dustbin monitor)
Fertile period indi-
cation

Speech-based UI
Personal stress
measurement
Extended body
measurements
Safe food date
labelling
Health check of
potential parent

Disco emotion
measuring for
safety
Alcohol percent-
age processing
Food safety
processing advice
Gene check of
potential partner

Speech/sound Single-word recog-
nition

Short sentence
input
Single word trans-
lator output

Connected speech
input
Text-to-speech out-
put

Sentence transla-
tion
(1 language)

Music recognition

Image/video No Web-cam
Limited person rec-
ognition
Personal profile
matching when
entering disco

High-resolution
camera
Sport stroke
improvement
Advanced dating
services

High-resolution
video
Distant street
safety check
Picture and location
display of profile
matching person

Info transport/stor-
age

Global via GSM Global via GPRS

Info exchange with
local infrastructure

Global via UMTS
Info exchange with
other PWAs

Info exchange with
other types of PWA

Software content Large Large Very large Very large

© PROGRESS/STW: public version 1.0, 30 March 2002 103

Figure 10: Scenarios for the Yup-PWA

Yup-PWA
SportsSafe

Yup-PWA
HealthSafe

Yup-PWA
SafeWare

Personal
organiser

2002 2005 2008 2011

Generations of organiser appliances with increasing
number of safety supporting areas (from monitoring to
measuring and advising) at increasing levels of
connectivity (from PWA to local other PWA to global)

User Needs
Single, young urban professionals (Yups) have the following needs regarding:
1. Physiological functioning:

Advice on safety in foods, eating and drinking, especially when going out or during exotic travelling
Reassurance of safe home and environment upon entering neighbourhood

2. Safety:
Safety in car driving
Safety in scheduling and meeting interesting people
Safety in doing exciting things

 Sports performance without overload
Smart advice on safely dealing with financial situation
Support for clever shopping

3. Love and belonging:
Safety in having sex
Guidance for finding interesting partners
Obtaining emotion support from peers

4. Esteem:
Participate in any activity with trendy visibility
Obtain peer recognition by fashion
Assistance to improve social status

5. Self-actualisation:
Support of learning processes (Improving self-knowledge, self-trust, self-image and influence)
Assistance in self-improvement: communication skills

Scenario of
rendezvous

Vision

Scenarios: Yup-PWA

Video commu-
nication PWA

Mobile Video-
comm. +

interact PWA

3D confe-
rence PWA

Mobile
phone

Atmosphere
creator PWA

Virt. envir.
creator PWA

Me&You
PWA

Personal
organiser

Sensory
awareness

 PWA

Adv. sensory
awareness

communicator

Sensor-based
awareness
reasoner

Simple
separate
sensors

Embedded Systems Roadmap 2002

104 30 March 2002

Short discussion of several aspects of the Yup-PWA rendezvous

Remarks about problems and technology challenges in the Yup-PWA rendezvous:

User Needs Focus of this PWA is strongly on safety. An interesting combination might be
found in the not unusual desire for challenge and excitement in this age category
e.g. in the context of safety during travel in high-risk countries. This would put
mainly high demands on the infrastructure for diagnosis at a distance, access to
massive knowledge databases, etc.

A further explicit user need might be help in assessing risks of whatever nature
they may be.

Sensors Major technology problems stem from smallness, light weight and low power
needs:

• Sensors need to be on the body or in clothing: attachment problems
• Sensors which need to measure continuously pose a problem with how to

attach to what part of the body and with their power supply
• Sensors need to become wireless for connection to the PWA
• Will there be sensors that transmit to more than one PWA or to the PWA-

infrastructure?
• Sensors need a unique identification of themselves and of the PWA to trans-

mit to; this to avoid abuse of private information
• For security reasons sensor communication to its PWA needs to be protected

by encrypting the measured signals
• Sensors will develop in two directions:

1. Lower cost, very cheap stickers, one time programmable, major
 problem is sufficient power

2. Smarter: more processing within the sensor
• MEMS can be inserted into the veins for diagnostic purposes to reach optimal

performance in sports by measuring sugar content in blood, thickness, acidi-
fication, etc. Not yet available/feasible for consumers, but there is a profes-
sional market for people doing sports professionally.

• A major problem is that the development of sensors takes place at a rather
low pace. This may become a technology gap that hampers further evolution
of the PWA domain.

• Measuring stress is probably still a research topic: it is not clear what to
measure, and how to process the measurements to a useful feedback signal

• Lowering stress requires first recognition of stress from physical signals
(probably measured directly in the brain) and building up a database with
results. These can than be used to give advice to help prevent stress. Antici-
pation of stress in social contacts from measurements is still far away

• Emotion measurements can probably be derived from analysing voice behav-
iour, from gesture recognition and brain activity. All these are still major
unsolved problems

Speech/sound • Major problem is still to acquire a high quality sound without acoustical
interference from the environment and from which disturbing sounds (noise)
can be removed. Environment compensation is non-existent in its widest

© PROGRESS/STW: public version 1.0, 30 March 2002 105

scope; some noise cancelling processing is available for fixed acoustic envi-
ronments

• Major problems still exist in speaker recognition: recognition of the same
speaker under a wide range of conditions (normal voice, voice when having a
cold, voice when tired, voice when gasping for breath) is not yet existing, and
is essential for user friendliness.

• Idiom translation seems to be possible. It is however not clear if this can be
done for a sufficiently low price

• Many functions require advanced ways of pattern recognition
• Music recognition is seen as a problem of pattern recognition and fast access

to massive parallel databases. Strategies for making smart problem partition-
ing are not yet available

Image/video • Major problems are, apart from the necessary algorithm investigations, may
be mostly in supporting technologies like the optical creation of 3D images

• Person recognition is seen as a combination of pattern recognition and fast
massive parallel database access

• Stroke improvement is mainly a pattern recognition and interpretation prob-
lem, for which probably not yet algorithms exist

• Distant street safety warning signals is a subject that is in its automatic ver-
sion far out: it is a problem of pattern recognition over time and the corre-
sponding interpretation algorithms. There is currently not much known about
this area

• When developed street safety warnings might develop further as a service for
which a subscription fee can be bought for a certain region

• Many PWA functions might be offered as subscription services
• Safe driving may give rise to an interesting set of person-oriented measure-

ments: alcohol, degree of tiredness, sleep, in general decreasing attention to
what goes on at the road. But also more general interpretation of other
driver’s behaviour in traffic might generate useful (=well-being increasing)
signals: entering a road giving figures about degree of loading of the road,
percentage of drivers with anomalous (=dangerous) behaviour.

Information trans-
port

• All information transport needs to be wireless. Significant extensions of the
current capacities are needed to make PWA networks possible

• Sensor communication to the PWA also needs to be wireless, with a reasona-
ble range, speed, reliability and price. This poses major challenges for all
types of sensors

• Low power communication will be essential
• Many of the proposed functions require access to massive databases to search

through with a high speed. This poses enormous demands on the communi-
cation infrastructure

Software size • Will increase; reliability a major problem

3.4.4 The Supersenior-PWA rendezvous

Embedded Systems Roadmap 2002

106 30 March 2002

Figure 11: Scenarios for the Supersenior-PWA

Wearable
Heart Beat

Monitor

Wearable
Incident
monitor

Wearable
distributed

incident monitor

Wearable
alarm

2002 2005 2008 2011

Technologies

Sensors/actuators Knob Heart beat Movement detection Movement interpreted
Blood pressure Warning generated Smart warning
Diet monitoring Diabetes measurement Epilepsy detection

Speech/sound No Sound interpreted Simple conversation
Warning signals

Image/video No No Image in wearable Video plus image
recognition

Transport Wireless Wireless At home and neighbours
at home outside Wireless to local network Wireless to global

network
Low data rate Higher data rate

Software content Very small Large Huge Very huge

Trends: Increasing number of 70+ people ("Grey wave" in 2015)
Increasing wish to remain self-supportive

Vision: PWA evolves from novelty to fashion
Functionalities will become available as services

Evolution:Functionalities implemented in base station will 'move' to wearable
Single wearable will evolve to wireless distributed over the body

PWA wil evolve from medical (professional) to consumer good

User needs/Functions
Wearable Emergency alarm + heart beat monitoring + incident detection + low cost versions->

by pressing a knob Reassurance, advice Auto login for visitors disposable
No immediate Voice controlled in public environment Luxury
feedback Display & sound on TV? Localisation support decorative versions
Assistance comes Alarm to partner Limited memory assistance

 Automatic emergency alarm
 Remote monitoring heart-
 diagnosis for registered
 action e.g. sending doctor

Home base station
Simple box Medicine box reminds Stationary PWA Dynamic PWA
under telephone for medicine intake base station base station
automatic emergency Feedback to remote Speaks, flashes, hums auto relocates if
calling doctor Extended memory required

Local monitoring support
Unified signaling Back up of wearable
Reminds day and date in case of lost
Voice controlled Knows where to find things

 Answers questions: where is ...

Local
MediMinder

Distributed
PWA Base

Station

Stationary PWA
Base Station

Box under
phone

Scenarios: Supersenior-PWA

Vision

Scenarios of
rendezvous

© PROGRESS/STW: public version 1.0, 30 March 2002 107

Introduction

The general purpose of a Supersenior PWA can be summarised as follows:
• To aid elderly people to live longer on their own
• To support them in a non-patronising way
• This is especially important in the Netherlands because a kind of Delta Plan

is needed for the ‘Grey Wave’ coming around 2015

Description of the Supersenior-PWA rendezvous

2001
Present situation: Emergency alarm by pressing a knob on the device that hangs
on somebody’s neck. The device sends a radio signal to a box under the tele-
phone, which dials a predetermined number to a service. A human person at this
service recognises the phone number and calls one of the neighbours, who has a
key, with the requests to take a look. If this phone call fails, the service warns the
police or sends somebody to have a look at a certain cost.

Supervision on medicine intake is difficult in the Netherlands for people that
live on their own.

At present a significant part of super senior society refuses to actually wear an
alarm device. Some are of the opinion that they will be able to walk to it in case
of need, which is in many situations not the case.

2004

Wearable Heart Beat Monitor
This device is characterised by:

• Day and night wearable e.g. around the neck
• Water resistant
• Voice controlled (Dutch + dialects, later for other languages as well)
• Simple large emergency knob and voice control for help
• Connected via wireless body LAN to heart beat sensors (low weight)
• Possibility to set a level for automatic alarm
• The device speaks via small loudspeaker or the television which is automati-

cally switched on to dedicated channel
• Gives feedback in natural way, reassurance at predetermined intervals or on

verbal request: ‘Heart OK?’ answer: ‘Yes’.
• Asks in case of alarm, permission to call a dedicated service or the nurse or

physician. In case of no reaction, it will make the call
• Informs, in case of alarm, partner who may be disabled (deaf or in a wheel

chair).
• The power of the device will come from weak electromagnetic field e.g. dur-

ing sleep? (Battery exchange is out of the question)
• Could be extended with blood pressure measurement.
• Can be extended with diet monitoring (you say what you eat and it warns you

if it is not good for you or too much, or you should drink another glass of
water.

Embedded Systems Roadmap 2002

108 30 March 2002

Local MediMinder®
• Medicine box that provides, monitors and reminds medicine intake
• Voice controlled in mother language (Dutch + dialects, later for other lan-

guages as well)
• Connected to service to indicate irregularities, physician or chemist to indi-

cate low medicine levels
• Indicates day of the week date and time in mother language
• General signalling: provides audible and or visible signal (also on TV) that

something requires attention like:
� Fire alarm
� Medicine intake time
� Something burning on the kitchen cooker (again)
� Front door bell rings
� Email arrived
� Phone call

2007

Wearable incident monitor
Same functions plus:

• Incident detection: may be in combination with TV cameras that analyse
images and detect incidents. No storage of images.

• Auto login for visitors in LAN in elderly peoples home
• Auto login of GSM based PWAs of owners that want to be under surveillance

also in public areas.
• Localisation support to find direction to home. A compass like needle points

direction to go
• Limited memory assistance
• Extendable with unit for early epilepsy warning

Local Stationary Base Station
MediMinder has evolved into Local Base station. Same functions plus:

• Speaks. Simple conversations in real time. Can wake you up, or tells a joke,
reads the headlines of your favourite newspaper via Internet or a bible text.

• Back-up for wearable, if lost in toilet
• Extended memory assistance:
� ‘’Where are my keys’? You need to tell it were you put things before or vital

things like keys could be labelled and localised by the Base Station who gives
direction indication.

� ‘Who is having birthday today?’ or ‘What is the weather?’

2010

Wearable disposable incident monitor
Same functions plus

• Distributed over the body
• Low cost versions
• Some parts are disposable

© PROGRESS/STW: public version 1.0, 30 March 2002 109

• Luxury decorative functions (in 2001 you have ballpoints for 0,1 Euro and
500 Euros)

Distributed Stationary Base Station
• Extended with simple natural language conversations
• Helps to find things

Short discussion of several aspects of the Supersenior-PWA rendezvous

Remarks about problems and technology challenges in the Supersenior-PWA ren-
dezvous:

User Needs • Dynamically configurable functionality. Configurable to circumstances and
development of the needs of the user:
Requires special user interface and dialogues

Sensors • Battery powered in the beginning, Later with low-power ICs powered by
external EM fields

• Acceleration detector in wearable
• For unified signalling (all relevant messages come from one place):

front door bell, phone, fire alarm, cooking plate, email arrived

Speech/sound • Simple conversation requires knowledge and handling
• User friendly may require new technologies for sound interpretation
• User friendly may require new technologies for speech interpretation. To be

solved are: distinguishing words, recognising words taking into account sub-
ject and context, real time

• Missing today: Reliable voice control with natural feedback
• Recognition of emotions e.g. panic (from pitch?)

Image/video • Continuous design problem: what to realise in the wearable and what in the
Base Station?

• Video processing to analyse images and recognise patterns. Much to be done
on image pattern recognition

• Problem: how to offer visual information: required adaptability by the user
and use of standard television as display

NB: retina projection will come far after 2010
• Pattern recognition: distinguish between someone has fallen down on the

floor and someone who is cleaning the carpet

Information trans-
port

• Continuous design problem: what to realise in the wearable and what in the
Base Station?

Other • Auto test with feedback ‘Wearable is OK’
• Base station could become distributed as well
• Auto login (when in another elderly people home) challenges:
• No protocols exist to login in arbitrary network
• Important to choose for an existing network like GSM

Embedded Systems Roadmap 2002

110 30 March 2002

3.5 A day in the life of William in 2011: a letter to an old friend

John, you asked me to describe a day of my life, so here I am at 76.
Today is June 12th 2011. My PWA base station greeted me cheerfully this

morning with the voice of my wife. You know, when Dora was still with me she
programmed it for fun that way. But now I don’t know whether she was aware
that she might pass away before me ……

I took the hart pill that the PWA offered me and prepared to go for a walk.
These PWAs are so clever today. I don’t know how, but it knows - perhaps

because I moved my stick - that I wanted to go out. ‘Darling’, it said, ‘I advice
you to take my small assistant with you when you go out’. So I took the small
wearable PWA out of it and put it around my neck. ‘Are you fully loaded?’ I
asked and it said, ‘Yes’.

This assistant is very small and lightweight and it monitors my hart. It speaks
to me every ten minutes to assure that every thing is OK. In the past men refused
to wear these things, but it looks like a piece of jewellery. And when I call ‘Dora’,
I see her photograph in its display for 10 seconds, but that is enough. I get imme-
diately access when I call ‘Help’, ‘Doctor’ or ‘Misses Pride’ from the elderly
peoples home were I live. I feel very safe. Before I got it, I was quite afraid and
limited by the painful remembrance of a severe hart attack.

Another nice feature is, that when I call ‘Home’ an arrow appears in the dis-
play window to indicate the right direction. It is like a compass needle. Its indica-
tion is independent of how you direct the device. It is not very precise but good
enough to return into the neighbourhood to where I recognise the houses.

I went home to drink coffee in the lounge, after the nice walk. The PWA
watches my diet too. You say to it what you eat or drink and it responds. At lunch
I met Peter, an old acquaintance. We spoke about holidays and he wanted to see
some photographs. So we went to my apartment and I put the small PWA back
into the robot. I know, that the doctor said that I should remain under vigilance
but I feel sometimes a little childish with it. I asked the PWA base station: ‘Where
are the photographs from holidays in 2000?’ He answered: ‘In the electronic pho-
tograph display’. Just by asking some questions we found the photographs from
Kautenbach in Luxemburg.

After he left I took a nap. In the afternoon I awoke by the unified signaliser
function of the PWA: it signalled that there was something to pay attention to. It
was a phone call from one of my sons. Unified signaliser is an improved version
of the previous unified messaging. It calls my attention to gas that remains burn-
ing sometimes (!), TV programs I could want to see, who is at the front door, and
what medicines to take.

When I took my glass of sherry, the PWA reminded me of my diet, but I said
‘Shut up’ and took another glass. The nice thing of it is that it never loses its tem-
per, like the cleaning woman does, who accuses me of being dirty in the kitchen.

After dinner I watched the television program with the Elisabeth Concourse for
piano. I have recorded it in my home mass storage and the PWA can help me to
find it back.

© PROGRESS/STW: public version 1.0, 30 March 2002 111

Nothing can replace Dora, but I am a lucky man not to be too much dependent
on my family or others at present. By the way, it seems that Sony is preparing a
PWA in the shape of their well-known dog. It follows you everywhere in the
house. At night it will sleep at the side of your bed. It would be nice if it could
fetch my slippers.

3.6 Reference

1. A.H. Maslow, ‘A Theory of Human Motivation’, Psychological Review 50
(1943): 370-96.

Embedded Systems Roadmap 2002

112 30 March 2002

© PROGRESS/STW: public version 1.0, 30 March 2002 113

Appendix 4. Domain of the Embedded Systems Designer

4.1 Domain description

4.1.1 Introduction

We discuss in this paper the design of Embedded Systems. In terms of the needs
of this field three areas where needs originate, may be distinguished:
• Needs that originate from the nature of the Embedded Systems themselves
• Needs that stem from performance demands and non-functional constraints

placed upon Embedded Systems
• Needs that come from the wishes of designers of Embedded Systems and

which relate to methods and tools desirable and/or indispensable for the design
of Embedded Systems

In this domain paper we will focus on the last mentioned category of needs. The
PWA domain paper is intended to cover the second category of needs. The first
category of needs is not yet covered.

Apart from the needs that originate from within the field of design of Embed-
ded Systems, we will have to take into account needs that derive from:
• General trends in society related to individualisation, globalisation, mobility,

safety and security, fashion sensitivity, changing composition of households
and population

• General trends in business and business models: flat organisation, focus on
core-business, multi-site/multi-company co-operations, e-business, shift to
services

• General trends in embedding systems: more functionality, higher complexity,
more technologies involved

• General trends in technological areas necessary for the development and pro-
duction of Embedded Systems: Moore’s law (semiconductor technology:
CPUs, memories, ASSPs, FPGAs, etc.), communication capacity growth, data-
bases, display technology, sensor/actuator technology, MEMS technology.

Where and when these trends create dependencies for Embedded Systems tech-
nologies we will have to indicate that with linkages in the Embedded Systems
Roadmap.

4.1.2 Why Embedded Systems exist

Embedded Systems are a new term for and an outgrowth of the compositions of
individual components that still make up most of today’s (sub-)systems-on-a-
board. The components used are standardised in several aspects and are often
programmable. This makes them widely applicable and reliable for use in (sub-
)systems design. The term Embedded System has come up to distinguish the flex-
ible, reactive electronic data processing part of a total system solution (the
embedding system) from its other subsystems. Technology progress enables to
implement complete hardware/software subsystems on a single board or chip.
High-volume Embedded Systems applications are often implemented nowadays
as Systems-on-a-Chip (SoC).

Embedded Systems Roadmap 2002

114 30 March 2002

Making a Roadmap devoted solely to Embedded Systems implies that the
Embedded Systems area represents a special field of technical activity that
deserves a special treatment. Embedded Systems thank their existence to the
Embedding Systems that incorporate them. The importance of the Embedded
Systems field derives from:
• Economy of solution by using to a large extent standard hardware and/or soft-

ware components, even in high-volume consumer-electronics applications
• Economy of solution provided by platform sharing over many applications
• Flexibility of solution by programmability and/or (re)configurability
• They have shown in the past to be able to make profitably use of the increasing

economies of all needed technologies

4.1.3 Classification of Embedded Systems

Embedded Systems can be classified according to several criteria. For the pur-
pose of a Roadmap the following classification helps in reaching a useful struc-
ture for the Roadmap:
• Application domain: speech, audio, video, control
• Implementation technology: hardware, software, hardware/software
• Functional performance: real time throughput, etc.
• Non-functional constraints: latency, power, cost, etc.

4.1.4 Purpose of this domain study

This domain study serves as a trigger for discussions in the Core-Team meetings
and the Embedded Systems Roadmap Workshops about what are major stum-
bling blocks for increasing the design productivity of Embedded Systems design-
ers. This subject has, of course, to be broken down in much more detail to come
to practically useful statements about what needs to be done in R&D. For that
purpose we will discuss the design flow of Embedded Systems in general. Subse-
quently we will draw conclusions on the needs for specific tasks at specific levels
in the total design trajectory. This should be further analysed as to what that
means for linkages between Roadmap subjects.

4.2 Characteristics of Embedded Systems Design

4.2.1 Characteristics of Embedded Systems

Embedded Systems are characterised by the following properties:
• They are a subsystem of their embedding systems
• They provide information processing services to their embedding systems
• They are reactive, i.e. they interact with the physical environment of their

embedding systems
• They provide usually a complex functionality to their embedding system
• They are mostly not visible or directly accessible by the users of the embed-

ding system
The following sketch serves to make our choices clear with respect to what
belongs to the Embedded System and what not. As there is some arbitrariness in
these choices the purpose is also to avoid extensive discussions on the topic of
Embedded System definition in our Workshops on the Embedded Systems Road-
map.

© PROGRESS/STW: public version 1.0, 30 March 2002 115

There are many application domains for embedding systems, and embedding
systems may contain many embedded systems. Embedded systems themselves
may also contain other embedded systems.

Figure 12: What belongs to an embedded system?

The picture below shows visually some of the positioning and major characteris-
tics. It is not shown that an embedding system may contain more than one
Embedded System. The focus in the picture is on the interfaces between the
Embedded System and the embedding system and its environment. It gives a
clear indication of our choice that all communication to the external world takes
place via the embedding system. The direct interfacing between the processing
functions of the Embedded System and the embedding system e.g. via shared
memory access or message passing, is only suggested by an arrow and not further
detailed. Direct interfacing between several (hierarchical) Embedded Systems of
one embedding system is not shown. Not indicated is that an application domain
is usually covered by a large variety of embedding systems. Also other functions
and user interfaces that an embedding system itself might provide are not indi-
cated. Despite all these missing elements this picture has been quite helpful in
bringing clarity in some Core-Team discussions.

Three important themes play a major role in Embedded Systems:
1. Interaction (by hardware and software) with the external world of sensors,

actuators and communication networks.
2. Processing of data with the performance and under the constraints imposed by

the embedding system

Embedding System

Embedded
System y

Embedded
System x

Sensors

Communication
Interfaces

S

S

Embedded System z

A

A

CI

CI
Actuators

Embedded Systems Roadmap 2002

116 30 March 2002

3. The design of Embedded Systems. This last topic is the major subject of this
domain paper for the Embedded Systems Roadmap.

Figure 13: Embedded systems themes

4.2.2 What is special about the Design of Embedded Systems?

The design of Embedded Systems is special due to the following aspects:
• Many non-functional constraints

- Strong influence on design objectives and architecture
- Low cost (being invisible to user)
- Low power (mobile, wearable)
- EMI and EMC: electromagnetic interference and compatibility
- Hard timing constraints (real time response, A/V)
- Reliability, robustness and safety (restart impossible, autonomous)
- SoC, Size, weight, …

• Specialisation and customisation of target platforms
- Possible by detailed application know-how
- Challenge is how to maintain some degree of flexibility
- Related is the wish to increase the reuse of hw and sw components

• Distributed co-operating embedded systems
• Use of many disciplines and heterogeneity of applied technologies

4.2.3 A Design Flow for Embedded Systems Design

Design proceeds by top-down refinement, level by level, using bottom-up defined
models and components, alternated with bottom-up composition/integration and
verification. At each of the decomposition/refinement levels a mapping is made of
the required functionality onto the target platform architecture. Subsequent per-
formance analysis gives rise to potential modification of function or architecture
choices. The following figure depicts this symbolically in a so-called Y-chart:

Embedded System
Themes:- interfacing

- processing
-how to design

Embedding System

© PROGRESS/STW: public version 1.0, 30 March 2002 117

Figure 14: Y-chart

To discuss the progress of systems design with the purpose to derive target plat-
form architecture for a specific domain, the following picture shows the sequence
of design steps of the preferred method for such a case:

Figure 15: Sequence of design steps

A more detailed picture of an Embedded Systems design flow (the V-chart) is pre-
sented in the following figure. It covers, apart from the platform design for a spe-
cific application domain, also the design, test and system integration of an
instance of the platform architecture, finally leading to a physical prototype of the
intended Embedded System. As this concerns only the Embedded System, an
integration flow has to be realised for the integration with the embedding system.
It is to be understood that at each level a mapping process takes place from func-
tion onto architecture (or structure). The green feedback circles symbolise the
iterative verification that takes place at each level to check the consistency of
input and output specifications of each level. As any design starts by specifying
the desired result and specification is both the input and output of any design
activity, it is only indicated at the top level. but plays of course a major role in the
whole design flow.

Architecture
(MoA)

Functions
(MoC)

Mapping

Implementation

Performance
analysis

Instance architecture definition

Software
designImplementation

Application domain

VLSI
design

Rapid
prototype

Platform architecture definition

Domain analysis: domain functions
Generic domain
systems architecture

Platform
architecture

Platform
instance

Embedded Systems Roadmap 2002

118 30 March 2002

Figure 16: Embedded systems design flow

4.3 Trends relevant for Embedded Systems Design

4.3.1 General trends

For Embedded Systems design a number of general trends are relevant:
1. Increasing individualisation: this leads to more diversity in products and serv-

ices, and therefore to the need for more flexibility in design, which in turn
leads to an increasing software content

2. Increasing fashion sensitivity: this results in shorter product/service life cycle,
and therewith in a necessarily shorter time-to-market leading to shorter availa-
ble design time

3. Globalisation of products and services: multi-site design teams, need for stand-
ards

4. Increasing need for safety and security in transactions and communications
leads to functionality extensions that must be designed-in.

4.3.2 Trends related to the evolution of Embedded Systems

The design of Embedded Systems is strongly influenced by the following evolu-
tions:
1. Increasing product/service complexity: more functions, more intelligence,

higher data rates, more storage: need for reuse
2. Increasing multi-disciplinary solutions and heterogeneity: more digitisation,

more measurements, more sensors/actuators, more complex project manage-
ment

3. Increasing communication needs: more networked (also the designers!), wire-
less, internet

4. Shorter life cycles: shorter time-to-market: decreasing available design time

Platform
testability
strategy

Component
design

Platform instance design

Platform architecture design

Domain systems architecture

Interface
design

Specification Physical prototype

Components
(building blocks)

System
integration

and
test

System
integration

and
test

© PROGRESS/STW: public version 1.0, 30 March 2002 119

5. More mobile/wearable devices: strong need for power reduction.

4.4 Vision on Embedded Systems Design

We are currently experiencing what could be called the ‘embedded system design
crisis’ similar to what the software designers have experienced in the past few
decades. The software community has been working hard to overcome this crisis
by introducing concepts like components (and frameworks), component-based
software design and scripting languages. Key issues are re-use (domain engineer-
ing - commonality and variability), interfacing, portability and rejecting complex-
ity in favour of simplicity (for reliability), intentional programming.

A similar revolution is needed in embedded systems design. Apart from tech-
nological challenges (miniaturised sensors and actuators, low power,...), the inno-
vation must come from software that is made available to the designer to support
his design space exploration at higher levels of abstraction. This software should
comply with current software standards and provide mathematically sound mod-
els, fast retargetable simulators and interpretation and visualisation tools that
jointly allow for fast exploration, performance/cost evaluation and decision mak-
ing. Re-use of software and hardware components and explicit modelling of
generic interfaces must be advocated as much as possible. Mastering the com-
plexity of embedded systems design will have to come from enforcing simplicity
and imposing some design invariants to avoid state explosion in any possible
dimension (complexity, cost, design time, etc.). Abstract design does not prevent
the final system from being efficient: while the abstract designer approaches the
details from the top, the bottom-level designer makes his IP components upwards
available in terms of pre-defined models and parameters. Although ‘a correct by
construction’ design methodology is difficult to achieve, we should strive at cor-
rectness by construction as much as possible.

Re-use: Re-use is a must. Although components can be seen as black boxes,
they must have an explicit interface specification, and the interface must be
generic enough that the component can be integrated in many structures. Related
issues are portability and parameterisation of components.

4.4.1 Attractive design targets

1. Factor 30 design productivity increase
2. Bug free software design
3. Deadlock free system design.

4.5 Embedded Systems Designer Needs

A number of Embedded Systems Designer needs have been formulated to stimu-
late further discussion. The list is by no means exhaustive, but just serves to trig-
ger the creation of a proper framework of methods and tools for Embedded
Systems Design. The scenarios and rendezvous in the next chapters are a further
first attempt to classify and catch the most important and highest priority items
for Embedded Systems Designers. There it will be quite important to signal
dependencies between the needs in different areas, and the linkages between the
technologies that are going to be developed to satisfy the needs.

Embedded Systems Roadmap 2002

120 30 March 2002

1. Higher design productivity: easier reuse of heterogeneous hw/sw modules, bet-
ter formal techniques. Shorter time-to-market and differentiation (distinguish
from the competitor) demand a higher design productivity. This goes throughout
the entire design process. Reuse is part of this; we need formalisms to enable
reuse of hardware and software components. Formal techniques are necessary to
allow for verification: checking whether descriptions at various levels of abstrac-
tion conform to each other. The more extended use of IP will shift the emphasis
within ES design towards the ability to ‘knot things together’ (to integrate).
Again, communication is the starting point for this type of design.

2. Easier handling of flexibility: exponential growth of software: shift from hw to
sw, reconfigurable computing. This is a key point in the design of embedded sys-
tems for the coming decades. It is a major part of the design space exploration. In
the past (i.e. until now, 2001), the issue was to choose what to implement in hard-
ware and what to implement in software. The exponential growth to more flexi-
bility (software) will flatten, simply because of current and future power
limitations. However, increasing mask costs for chip fabrication necessitates the
possibility for ‘subtle’ changes in the functionality after fabrication. Reconfigura-
ble hardware offers a trade-off between design flexibility and power efficiency,
and will therefore comprise a major design paradigm in the future. With the
emerging reconfigurable architectures there is even a third dimension: what to
implement in hardware, software, and in reconfigurable parts of the architecture.
At the tools this creates a new gap: tools for mapping parts to reconfigurable
architectures as well as tools to do design space exploration in the above men-
tioned three dimensions.

3. Specification methodology that allows reuse of hw/sw modules at embedded
system level. This point is related to point 1 above, but it is restricted to the high-
est levels: the levels of specification.

4. Design capturing at high system level with specification debugging facilities.
This takes place at the higher levels of abstraction. Methods and tools are needed
to play around at the level of specification, also before doing a hardware/soft-
ware/reconfigurable partitioning where the same issues of specification recur. At
higher levels of abstractions we also need to take the non-functional requirements
into account as discussed at point 6 below.

5. Co-ordination environment for different computational models in embedded
multi-processor systems. Once point 9 and 10 below (e.g. the concepts) have
been found out, it is the next step to build tools that combine the various compu-
tational models and allow the designer to reason about the complete system with-
out bothering about the specifics of the separate formalisms. This comes after
points 9 and 10. 5. This is also related to the increasing emphasis on integration
(point 1).

6. Design space exploration, also at high system level, taking non-functional con-
straints into account. In order to do that efficiently, with less pressure on the
designers’ intuition and experience, power and cost models are required for the
various potential implementations. This is key for embedded systems, as they
have the extra constraints (e.g. size, power dissipation) that are characteristic for

© PROGRESS/STW: public version 1.0, 30 March 2002 121

them. These constraints are known at the highest levels of the design, even before
actual specification. We need a way to model these constraints in some way or
another in the earliest specification phase so that we can deal with them right
from the beginning. The embedded system designer's nightmare is to have the
complete system implemented then finding out that it doesn't fit in the box it is
supposed to fit in.

7. System level partitioning and allocation optimised for distributed multi-tasking
embedded systems. This relates to tackling multiple embedded systems in a com-
plete system. We will need the same set of tools we will have for designing
embedded systems, but then a level up, where we combine multiple embedded
systems into a new ‘super’ system (e.g. the embedding system).

8. Compiler techniques for minimum power. There are various ways to interpret
this. If we look at compiling a high-level language (e.g. C) to machine operations
running on an architecture, one could think of generating instructions that result
in minimal power dissipation when running on an architecture. This is a relatively
new area, and could be an interesting research topic. If we look at compiling a
description of hardware to actual silicon, techniques like clock gating can be done
to save power. Quite a lot of research on how to do this is already taking place,
and not particular to embedded systems. If we look at compiler techniques for
reconfigurable architectures there is a wide not-yet explored field of research,
also related to design space exploration on the HW/SW/reconfigurable level.
Example: a reconfigurable unit to do application-specific computation in a low-
power fashion. The most significant power savings expected from future compiler
technology is in reordering memory accesses thereby tuning the application to a
given cache size. Extrapolating, one might expect future caches to yield more
deterministic behaviour, probably controlled by the application software itself
rather than the processor hardware.

9. Verification and debugging of embedded systems with heterogeneous compu-
tational models. At different levels of abstraction we have different formalisms
with different semantics today. It will be important in the future to have a means
of doing verification between the various levels of abstraction. To do this in a
structured way, it is essential that the various (heterogeneous) models can ‘talk to
each other’ by means of clearly defined interfaces etc. Research in necessary to
highlight the differences in expressive power of the various formalisms, as well
as the transfer of relevant information from one formalism to another.

10. Extended formal verification methodologies to include higher level embedded
system properties relating to e.g. protocol analysis, bus arbitration and schedul-
ing. This is a specialisation of point 9 to the higher levels of abstraction. It also
takes into account the interfaces between the embedded system and the embed-
ding system.

11. Accessibility and flexibility of tools. Apart from what we believe that a
designer needs in the future, there is one thing that designers have always
demanded: the possibility to interfere with what the tool is doing. The designer
often has a pretty good idea what he wants, and the design effort is dominated by
the ability to ‘tell’ the tool what the designer wants.

Embedded Systems Roadmap 2002

122 30 March 2002

12. The ability to exploit application specific characteristics in silicon (or recon-
figurable logic). Because of the huge power and cost savings associated with
hardware acceleration together with the low profit margins in high-volume elec-
tronics and the increasing need for power minimisation, designers will continue
to exploit application knowledge in silicon. This will be a show stopper for
design productivity, unless tool support is offered. Libraries with highly opti-
mised IP designs are only partly a solution to the problem. Although many DSP
cores are available as IP, these DSPs only provide basic functionality. In the
future we can expect these DSPs to be provided with reconfigurable logic to
allow the customer to tune the DSP to his application. Because of the huge power
and cost savings associated with application tuning, the customers’ knowledge of
the application and his ability to exploit that knowledge in silicon will probably
comprise the most important competitive distinguishing feature (at the processor
level).

4.6 Overview of Embedded System Design scenarios

The choice of areas for the scenarios is based on the Embedded Systems Design
Flow, the V-chart. Each of the scenarios exists of three rendezvous. This number
is more or less arbitrary, and may be changed in the course of the roadmapping
process. It is also possible that several scenarios in parallel can or must be fore-
seen e.g. in the test and integration scenario where this will be a must to cover
both areas properly. In other areas natural dichotomies may exist, or there may be
different opinions on what the most probable scenario is. Besides, in several areas
there will exist quite different needs that call for different scenarios of rendezvous
of different technologies.

In the sequel all scenarios and the rendezvous of which they consist, need to be
further detailed as to:
1. What is the current status with respect to methods and tools?
2. What is the rationale for the chosen scenario of evolution: What are the needs,

what nature do they have (feature, productivity improver, show stopper)?
3. What technologies, both methods and tools, need to be developed for meeting

the needs? How big a job is it? How probable is it that others will solve the
problem?

4. What dependencies do exist between the scenarios and rendezvous?
The next page shows an overview of the scenarios generated in the different
areas:

© PROGRESS/STW: public version 1.0, 30 March 2002 123

Figure 17: Overview of scenarios

2002 2005 2008 2011

Platform Design

Specification

Hardware/Software
Design

Verification/Validation

Embedded Software
Design

Test, Debug and
Integration

Platform
methodologies

Platform
patterns

Application driven
platform design

Current
Status

Specification of
relevant attributes

of design decisions

INSTANT reuse
of own design

decisions

Reuse of design
decisions of

others

 Implicit use of
known design

decisions

Vocabulary for
fuzzy needs &

constraints

Common
vocabulary of
customer &
 designer

Implicit
+ explicit
checklists

Consistent set of
mono-

disciplinary tools

Consistent set of
interacting mono-
disciplinary tools

Integrated set for
ES architecture

design

Mono-
disciplinary tools

only

Master/pupil
relation after
identification

of born
architects

Structured
architecture

masterclasses

Systematic
architecture

development
courses

Master/pupil
relation after
X years of
experience

Building
systems right

Building right
systems

Communication
with normal

people is possible

Ad hoc system
design

Implicit
checklists

Platform
usage

Platform
instance

reasoning

Semi-automatic
platform instantiation

Current
Status

Emphasis on
HW and SW

design

HW/SW
partitioning

supported by
estimation

HW/SW
partitioning

supported by
partitioning tools

Higher
abstraction

levels of HW/SW
partitioning

COTSES
architecture

defined

Intra-company
COTSES reuse

Inter-company
COTSES reuse by

domain experts

Programmers
type LoC

Limited reuse

HW/SW function
verifier

Synthesis
checker

?!?Current
status

High speed test High level test
Mixed

technology test
Current
Status

Embedded Systems Roadmap 2002

124 30 March 2002

4.7 The Idea to Executable Specification scenarios

4.7.1 Introduction

From idea to implementation.

What do we mean when we say that we want to turn an idea into an implementa-
tion? An idea is a conception of a certain application. An implementation gives
concrete architectural form to the application. Turning an idea into an implemen-
tation comes to a translation of an application specification into an (software/
hardware/reconfigurable) architecture description.

There is no unique implementation for a given idea or application, and there is
no unique way to go from a given idea to any one of these possible implementa-
tions. This observation cannot but enforce some compelling design constraints in
order to keep the design complexity manageable and the design cost affordable.
To begin with, an application always belongs to some application domain, and it
is wise and beneficial to focus on the domain rather than on each and every appli-
cation in isolation. Thus the architecture will have to be an instance of a domain
platform and the idea-to-implementation translation procedure will have to be
applicable for all applications in the domain, if not for a set of related domains.
Thus, the architecture description will have to be derived from the specification
of the platform and, moreover, application and platform specifications must
match in order to allow the translation procedure to be cost-effective, both in
terms of time and reliability. The conclusion, then, must be that both specifica-
tions must be given in terms of models and that the translation from application to
architecture must be in terms of mapping the application model into the architec-
ture model.

The introduction of a platform that should serve as a common implementation
basis for applications in a domain requires that this platform, and hence the appli-
cations, must be introduced at a high level of abstraction, which in turn implies
that there are still many possible implementations for any given application in the
domain. However, the total amount of possible implementations of a given appli-
cation has now been greatly reduced, simply because no applications outside the
domain can be considered and no architectures that are not instances of the plat-
form can be taken into consideration. Thus, the models in terms of which the
application and architecture specifications are given, as well as the translation or
mapping of the former into the latter are all domain specific and start at a high
level of abstraction. Of course, none of the possible implementations is abstract
and, therefore, we can conceive of an abstraction pyramid, at the top of which
resides the idea and whose basis is the space of all possible implementations. The
set of feasible implementations, i.e., those that satisfy all constraints that are part
of not only the application specification, but also the platform specification and
the translation method, must then be reachable from the level at witch the specifi-
cations are given, by means of a sound design methodology that takes these spec-
ifications down the pyramid.

The above reasoning leads to the conclusion that the path from idea to imple-
mentation consists of two major parts. The first one is to take the idea to a specifi-
cation, the second one is to take the specification to an implementation. The idea-

© PROGRESS/STW: public version 1.0, 30 March 2002 125

to-specification part goes from the top of the abstraction pyramid the level where
specifications have got the form of models. The specification-to-implementation
part is a stepwise refinement part in which decisions based on explorations turn
the abstract into the concrete. Each and every transition from one level of the
abstraction pyramid to the next one narrows down the design space to a region
that is a tighter envelop of the feasible implementations. Models get refined and
the mapping of application models into architecture models may change nature
whenever the models do. We return now to the specification issue in the next sec-
tion.

From idea to specification.

An idea is a conception of an application in a particular application domain. An
idea may initially be vague, and the fist step to be taken before delving into the
specification problem is to get the idea as sharp as possible. This will most proba-
bly include a few brainstorm sessions among experts, as well as the construction
of some alternative scenario’s on the back of an envelope. Once the experts
believe that the application is feasible (implementable), they will decide on the
choice of scenario to be taken further. Details are too far away to be visible
though. We are, of course, not dealing with trivial applications. Trivial applica-
tions have trivial implementations. We are also not dealing with very specialised
applications. Special applications have special implementations. The applications
that are of interest are those that comes in versions, families and generations.
They range from wafer steppers, to distributed pay road systems, to xth generation
radio telescopes and mobile communications systems, to personal well-being
assistants, to intelligent micro, nano and pico robots, to autonomous MEMS co-
operating through ad hoc networks, to down-to-earth automotive and multimedia
type applications. Taking such applications to reality requires that we be more
specific as to what exactly is to be that reality. That is, the idea must be worked
out, and a system specification must be conceived and presented.

First, the application domain to which an application belongs must be identi-
fied. If no system platform for that domain is available, then such a platform must
be defined/designed. This task is crucial and far from simple to accomplish. The
platform determines the design space and must be capable to meet the design
constraints. These constraints, however, come partly from the specification of the
application and partly from the design methodology. It thus follows that specify-
ing an application and defining a platform are part of the design methodology
itself that should support these tasks.

Now, what is a specification? A specification of an application deals with the
what of the application (the so-called behaviour) and not with the how (which is
part of the architecture specification). It also gives certain constraints that must be
met by any possible implementation. An application should never be under-spec-
ified nor over-specified, whether it is in executable form or not. Let me illustrate
this point by means of two examples. The fist one illustrates what could be
referred to as the idea is the specification archetype The second example is the
counterpart of the first one illustrating the specification is the idea archetype.

Embedded Systems Roadmap 2002

126 30 March 2002

Example 1. The idea is the specification.

It is well known that (mobile) wireless channels are unreliable. Moreover, they
are the more so, the higher is the bit rate that is riding on the channels carrier
wave. How to disentangle those two conflicting requirements or, devise an idea
that is word an application. The idea is simple: split up the information data into
low-bit rate streams and transmit these steams over multiple channels (using mul-
tiple carrier frequencies) so as to maximize the product of combined-channel reli-
ability and information density. The idea is, in fact, so simple that simple
calculations suffice to prove the feasibility, and a quick prototyping can pave the
way to global markets. No more of a specification is needed, except for the con-
straint that carrier frequencies should be far enough apart that no cross talk can
hamper the success of the idea.

Example 2. The specification is the idea.

Speech, when interpreted as an almost harmonic signal, is in many respect
astounding. It is one of the rare physical signals that can be compressed to an
extent that matches almost all mathematical artefacts. In less than two decades,
compression factors of up to 30 have been achieved, and the end is most likely
not in sight. Moreover, leading experts in the field have demonstrated that the
complexity of the compression algorithms need not be excessively high, provided
they are built on a deep understanding of fundamental, if subtle, properties of the
speech signal. As a result, the development of algorithms that squeeze speech sig-
nals to the bone requires great care, and these algorithms will, then, serve as a
specification for almost all applications that originate from almost all ideas that
are versions of one main idea: have voice communication over networks, such as
the internet, that are hostile to natural, uncompressed speech.

The ‘the-idea-is-the-specification’ example illustrates how systems can be eas-
ily under-specified. An idea is not and can never serve as a system specification,
simply because ideas, by their very nature, need to be worked out before they can
be implemented as applications. When taking an idea as a system specification,
there will most likely be too much freedom left to the designer which may get lost
because of lack of precision in the specification. The resulting system may turn
out to perform poorly, and this result could probably have been foreseen if the
idea would have been taken more carefully to a specification, i.e., if sufficiently
many what-if questions would have been considered in the first place. Multi-tone
systems (as specified in example 1) have been built and after that, the what-if
questions that should have been addressed before, have let to better specifications
and beautiful implementations of these (referring to the so-called orthogonal fre-
quency division multiplexing alternative to the multi-tone multiplexing and to the
corresponding efficient and robust fast Fourier transform based implementation).

The ‘the-specification-is-the-idea’ example illustrates how a system can be
possibly over-specified; ‘possibly’ because – in contrast to the first example, in
which the under-specification is unquestionable – in this example, only a poten-
tial over-specification is built-in. Whether this executable specification is an over-
specification or not depends on which one of the many possible applications –
which, as you may remember, came sort of after this particular specification – is

© PROGRESS/STW: public version 1.0, 30 March 2002 127

considered. Each one of these applications may come with additional constraints
that the designer cannot fulfil because he may get stuck because of lack of free-
dom in the specification. He cannot pilfer that freedom from the behavioural
specification, simply because that part of the specification is not familiar to him
and seems to him to be untouchable. Even the developer of the algorithm may not
have a clue as to whether more freedom can be given to the designer, because her
algorithm is the result of a series of modifications to earlier compression algo-
rithms, developed by her and her colleagues, with the sole objective of incorpo-
rating into it the sophistication which was found necessary to reach the ever more
compelling compression ratio. It is likely, however, that this algorithm can indeed
be turned into a specification that gives the designer more freedom for, if not, one
may then have doubts about the suitability of the algorithm in the first place.

So, an application specification must provide all information that is necessary
as well as sufficient for a designer to be able to get by.

Application specification together with platform specification may together be
called system specification. Recall that both are part of the design methodology
that, itself, is depending on the application domain. The implication is that both
specifications will have to be given in terms of models. These models will most
likely be structured in the sense that they are composed of computations and
communications. That is naturally so for the system platform and must, then, also
be the case for the application because both must match for the mapping step to
be void of hidden artefacts. Thus, the original idea will have to be expressed in
terms of such models by decomposing the highest level specification into compu-
tations and communications. Such a decomposition must not lead to an increase
in complexity. This condition is more stringent than imposing a separation of
concerns, it is requiring an orthogonalisation of concerns. There is a behaviour
(application) and an organization (architecture), and there are computations
(processes, processors) and communications (interactions of autonomous enti-
ties). Moreover, all specifications, whether original or derived, must be accompa-
nied by validation metrics and assessments which have to be taken down the
design pyramid, that is, which will be refined together with the models and the
mappings. On any particular level of abstraction, including the highest one, no
decisions should be taken if not necessary, and no complexity should be added if
not necessary. And similarly for the constraints. In addition to that, the design
methodology must not tolerate any intrusion on its own rules. Heuristics can only
be accepted when based on sound arguments and when they do neither compli-
cate nor obstruct the transparency of the next steps in the design procedure.

A design methodology as proposed above is still to be taken to maturity. There
are still many issues to be addressed before we are that far. A methodology is a
composition of methods and relations between methods. Implementation of mod-
els, methods and their relations requires good software practice. It is said that, in
the past, the hardware design community has been more successful than the soft-
ware design community. The time when hardware designers captured gates in
logic diagrams is far behind us whilst software developers are still writing state-
ment after statement. However, the fact that embedded systems design is heading
towards crises is for a great deal due to the fact that designing embedded systems

Embedded Systems Roadmap 2002

128 30 March 2002

has entered a phase in which software design (for tooling the design methods, for
example) has become the dominant challenge. Good software practice is where
the roadmap should take the embedded systems designers.

In many cases, an application is given in the form of an executable specifica-
tion. This is almost always in terms of an imperative model of computation. This
model matches the shared memory model of architecture, which is rapidly fading
away in embedded systems land. Embedded systems are exploiting parallelism
beyond instruction level parallelism and, therefore, specifications have to be
given in terms of communicating tasks. Turning imperative models into network
models is a very difficult task. The from-idea-to-specification part of the design
methodology that is described above must be extended with a specification explo-
ration part similar to the implementation exploration part. Defining an architec-
ture platform for an application domain is a major breakthrough in embedded
systems design, yet this is focusing too much on the architecture part of the sys-
tem: It will be necessary to introduce, in addition, a specification platform and an
accompanying methodology for the exploration of the application space defined
by that platform. This is the only way in which the wide gap between application
developers and system designers can be bridged.

There is a final aspect that has to be addressed. All parts that constitute the
methodology described must be such that reusability, retargetability and reconfig-
urability are possible and common practice. This is not only true for the system
platform, it is equally valid for the application specification and the methods used
to explore, validate and design applications and architectures. Embedded circuit
design and embedded software development should not be the task of the embed-
ded system designer at the architectural level. An embedded system designer at
this level typically does not know how to design circuits and does not know how
to develop embedded software. This is the task of those who design circuit IP and
develop software IP. However, for this to work, it is necessary that such IP blocks
(software, hardware, tools) be designed in a way that the architectural level
embedded system designer can integrate them into his design methodology and
system, without having to go to extremely steep and long learning curves. He
must get all specifications and validation methods that are relevant to his needs, at
all levels of abstraction he needs. This concept is crucial and will only work if
designers are willing to accept that it will take time before a policy of maximum
reuse will be common usage. Universities should take the lead here by putting
their toolboxes and building blocks in the public domain and encourage the
embedded systems communities all over the world to make use of the offered
objects as much as possible. No assessment can be more effective than an assess-
ment published in the open, public domain. This is the only way in which one can
guarantee that re-use is really beneficial. There is still a long way to go before
embedded systems designers will have access to a global database containing
tools, application and architecture components that can be integrated in design
methodologies and designs. Only then will embedded system designers have
come to terms with complexity management, time-to-market problems and cost

© PROGRESS/STW: public version 1.0, 30 March 2002 129

issues. An embedded system need not be optimal: It must meet the constraints,
must have spare capacity to be capable of capturing future application evolutions,
and must be reliable, safe and robust.

4.7.2 Scenario: From Idea to Executable Specification

Introduction

There you are, walking back to your office and thinking about the new products
your company decided to develop. Only very vague requirements are known, and
you, the just appointed Embedded Systems Architect, are filled with lots of ques-
tions and very few answers. Two years from now the factory will crank out the
first version of the new product line like mad. And you have to figure out how to
translate these vague requirements into a real commercial product.

The top specifications are clear: create a Gizmo, performing a number of func-
tions. Of course it also must be networked, low cost and it is not allowed to pro-
duce any heat. And a lot of other ‘common sense’ requirements of course. You
know what I mean. And by the way, please present next week a budget proposal
for the development of the Gizmo.

Its functions require integrated mechanics, optics, electronics and software.
But one level deeper you see hundreds of inputs and hundreds of outputs, which
must be connected somehow. Too big to get a grip on.

How does top level design start?

Today, 2001 AD, you don’t have much help. How do you become an Excellent
Embedded Systems Architect in the first place? The answer is both simple and
embarrassing: by learning it from another Excellent Architect. In the Netherlands
we call it a ‘master-journeyman’ relation: you learn it by looking carefully at
your master. She can’t tell you what makes her a good Architect. She only can
show you how to behave like one. It’s called ‘creativity’, ‘gut feeling’, ‘experi-
ence’ or another immeasurable qualification. Neither words nor metrics exist to
measure the quality of a decision of an Embedded Systems Architect. You even
don’t know if your problems have become smaller or bigger after the decision.

No tools are available to help you in the creative process. You can only com-
pare your decisions with decisions taken which you remember from previous
projects.

You need to talk to customers, people of factory, finance, service and people of
the project itself with a mechanics, electronics, physics or computer science
background. What is the common language all these people understand? It does
not exist.

Today’s Universities and Technical High schools don’t deliver Excellent
Embedded System Architects. No, you became an electrical engineer, or a phys-
ics engineer, or … when you have worked for a few years in a company, maybe
you are spotted by an Architect as a person who has the right background to
become an architect. When you are not spotted: bad luck. When you are spotted
by a not-so-good architect, bad luck again. So today people, born as Excellent
Embedded Systems Architects don’t become one because of bad luck.

Embedded Systems Roadmap 2002

130 30 March 2002

Specification environment

Some useful ideas from the software engineering community can be adopted
here. Broadly speaking, embedded system specification can be either imprecise/
incomplete (in plain English) or in terms of an executable behaviour (commonly
in an imperative language) augmented with a set of constraints. In the latter case,
the imperative model of computation is most likely (at least partially) not the cor-
rect model to be used. Parsing from the imperative model of computation to the
more appropriate model is something that is to be done. In case the specification
is given in plain English, method and tools must be conceived and developed to
iteratively derive a precise (if incomplete) specification. Any specification should
automatically provide input to a verification/validation tool for the verification/
validation of all behaviour-equivalent models derived from it.

© PROGRESS/STW: public version 1.0, 30 March 2002 131

Figure 18: Scenario from idea to executable specification

Specification of
relevant attributes
of design decisions

INSTANT
reuse
of own

Reuse of
design

decisions of

 Implicit use of
known design

decisions

2002 2005 2008 2011

Designer Needs
1. Keeping the overview: abstraction levels in specification: "When to leave out what"
2. Specifying all kinds of constraints (time. power, safety, fault tolerance, security
3. View of design options
4. Measure of quality of design decisions
5. Handling of complexity
6. Documenting decisions with their rationale
7. Rough estimate of development costs
8. Interaction with non-technological people and interaction between all involved disciplines

1. Common underlying models
2. Tools to express features and constraints
3. Verification and validation used at all stages

Vision:

Scenarios of rendezvous:
Reuse of decisions

Exploration of needs

Handling of complexity

Education/training

Idea to system

Scenario: from idea to executable specification

Vocabulary for
fuzzy needs &

constraints

Common
vocabulary of
customer &
 designer

Implicit
+ explicit
checklists

Consistent set of
mono-

disciplinary tools

Consistent set of
interacting mono-
disciplinary tools

Integrated set for
ES architecture

design

Mono-
disciplinary tools

only

Master/pupil
relation after
identification

of born
architects

Structured
architecture

masterclasses

Systematic
architecture

development
courses

Master/pupil
relation after

X years of
experience

Building
systems right

Building right
systems

Communication
with normal

people is possible

Ad hoc system
design

Implicit
checklists

Embedded Systems Roadmap 2002

132 30 March 2002

4.7.3 Remarks on scenarios of rendezvous for From Idea to Executable Specification

Scenario: Reuse of decisions

Research is needed to figure out which items of design decisions are needed for
later reference by an Embedded Systems Architect.

Interview the top 10 architect/designers of today and find out how they work
A repository must be made where an Embedded Systems Architect can docu-

ment his formal and informal design decisions to improve the creative process.
Later these documented decisions can be used for exploiting analogies.

Also tooling is needed to compute the effects of a design decision. Is a design
decision a step in the right direction or not? How to prove? One of the questions
is what can be learned from other artists? How do they work?

A repository must be made where an Embedded Systems Architect also can
access decisions taken by other Embedded Systems Architects in the same com-
pany, or even worldwide.

Scenario: Exploration of Needs (implicit/explicit)

Vocabulary, common for customer and designers, for description of fuzzy needs
and constraints. Also words are needed to describe the quality of design deci-
sions.

When we know the words, they can be used in the repository.

Scenario: Handling of Complexity

The goal is to find all relevant boundary conditions and make a design, which
adheres to it.

Major functions

Verification and validation
of specification
Methods that deal with
incomplete specs
Compositional specifica-
tion

Analysis of performance
characteristics

Visualisation
Presentation
Interface to implementa-
tion tools

Technologies Formal verification
Models of computation
Reuse
Requirements engineer-
ing

Formal methods
Performance metrics
Bottleneck identification
and description

Documentation tools!!!

Methods Simulators
Graphical programming
tools
Model checkers

Simulators
Database of design
options

Graphical input/output

Precise interface descrip-
tion (2020)

Tools

Gaps

Other

© PROGRESS/STW: public version 1.0, 30 March 2002 133

A generic set of tools is available per discipline to help the Embedded Systems
Architect with the top-level decisions. Tools do not use each other’s data.

The toolbox contains all necessary tools, but without interaction.
An integrated toolbox is available for Embedded Systems Engineers, which

supports them in taking the right design decisions at a number of levels of
abstraction.

Scenario: Training

Means and methods are needed to spot natural-born Excellent Embedded Sys-
tems Architects as soon as possible. Tests must be developed. Masters must be
appointed.

As soon as somebody qualifies to become an Embedded Systems Architect, he
or she should be exposed to structured master classes, which are given by the best
available Masters.

In this stage we expect that Architecture training is still a post experience train-
ing.

The art of System Design now becomes knowledge of System Design and
knowledge transfer can be incorporated in the curriculum of Universities and
Technical High Schools.

4.8 Scenarios for From Executable Specification to Implementation

4.8.1 Introduction

The design flow from idea to final product design can be divided into to parts, the
first being the flow from idea to an executable specification and the second being
the flow from executable specification to the final design. These two parts of the
design flow have quite different characteristics.

The significance of these two parts of the design flow heavily depends on the
application. For example, in case of a wide-area traffic control system, the
moment at which the executable specification is obtained, only little improve-
ments and optimisations are left. However in case of a signal processing algo-
rithm that is to be implemented in an ASIC, emphasis is on the optimality of the
implementation in terms of speed, throughput and cost, while the executable
specification is easily derived from the mathematical description of the algorithm.
Another example is the area of high-throughput applications with real-time con-
straints. Mapping of an algorithm on a fixed architecture then is far from simple
and often requires much more effort than the definition of the algorithm.

Clearly, there exist no clear border between both parts of the design flow. In
practice the executable specification might be on different levels of abstraction,
more or less refined and in general in the beginning incomplete. Hence, during
the second phase in the design flow there will be a strong interaction with the first
phase.

An executable specification is supposed to be written in some executable spec-
ification language or programming language. A model that depends on the lan-
guage used, links the executable specification to the desired reality. In general
such an executable specification only specifies the behaviour, i.e. given an initial-

Embedded Systems Roadmap 2002

134 30 March 2002

isation, the relation between the stream of input events and the stream of resulting
output events. Hence, the specification must be annotated with a number of prop-
erties about timing, real-time constraints, chip area, power dissipation, etc.

In this scenario, we will focus on the design flow from executable specification
to final design, the implementation, in which we assume that the design starts

from an executable specification that reflects the desired (bit true) external1

behaviour of the system to be designed, together with a number of properties
about timing, real-time constraints, chip area, power dissipation, etc.

The flow from executable specification to the description of the final design
again can be divided into two parts, viz. high-level synthesis and low-level syn-
thesis. The first includes composition, decomposition, refinement, scheduling and
resource allocation. Low-level synthesis includes, logic optimisation, retiming,
placement and routing.

The technological possibilities are ever increasing; ever more complex embed-
ded systems become feasible. But, design productivity it not keeping up with
these developments. This so-called ‘embedded systems design crises’ can only be
solved by more efficient design flows supported by more efficient tools. This will
be on the account of less efficient implementations.

An interesting metaphor stems from the early days of computer programming.
The first computers were programmed in assembly language. With the growing
computing power ever more complex programs became feasible which resulted
in high level programming languages, subroutine libraries for generally used
functions and compilers. Even these languages turned out not to be sufficient.
New programming paradigms, such as object orientation, were developed
together with middleware concepts like com-objects. These new programming
paradigms increased the software productivity considerably, but on the account of
less efficient software designs in terms of computational overhead and storage
overhead. Nonetheless, if efficiency is really crucial, all kinds of optimisation
tools are available and some parts are still written in assembler.

A similar development is foreseen for embedded system design methodology.
However, in contrast with software development, that maps behaviour onto just
one architecture, embedded system behaviour can be mapped on a variety of
architectures.

Clearly, different tools and design flows are needed for an implementation as
ASIC, ASIP, DSP, VLIW or some reconfigurable architecture.

In order to improve design productivity and to cope with the technologies that
will be offered in the near future, improvements are needed in the following
areas:
• Design tools including compilers
• Languages and design representations

1.We differentiate between the internal and external behaviour of a system. The exter-
nal behaviour reflects the desired behaviour on the ports of the system, i.e. the relation
between the streams of events at the input port and the output ports. The internal behav-
iour describes the relation between all variables in the system description. An imple-
mentation is correct if its external behaviour equals the external behaviour of the
specification.

© PROGRESS/STW: public version 1.0, 30 March 2002 135

• Design styles
This is clarified with the following statements:

Statements:

For each product group a design platform will be needed. Such a platform sup-
ports a particular design flow towards a particular architecture. It will be built
from design tools and design languages that are also used in other platforms.

Design tools need to be concise and generally applicable. Dedicated or too spe-
cialized design tools tend to be hardly used and therefore will never become bug-
free.

Design productivity is greatly improved when the simulation burden is
reduced. Tools that are correct, i.e. preserve external behaviour, can obtain the lat-
ter.

Design languages or design representations with clear and unambiguous
semantics must be standardized. Design tools should operate on these languages
instead of on formats that are dedicated to these tools. A design language is char-
acterized by the fact that it represents the design during many stages in the design
flow.

Design productivity can be increased considerably by using IP blocks, but only
if these IP blocks are correctly specified at the appropriate levels of abstraction.
For example a VHDL description at gate level for a processor is not sufficient. A
high level description at which the processor together with a program can be sim-
ulated must be provided too.

IP blocks must be standardized in a similar way as class libraries are now
being standardized for object oriented programming languages.
Design tools that provide correctness-by-construction are more important than
similar tools that provide more efficient implementations but are not bug-free.

System on a chip will become reality in the sense that:
• A chip will never be implemented on the bases of single design paradigm.

(Area and complexity are becoming too large)
• Communication between the subsystems on the chip will be (quasi) asynchro-

nous and based on protocols implemented by hardware. (Data transfer from
one side of the chip to the other will take more than 10 clock cycles)

• Operating systems will become a part of the chip design and will partly be
implemented in hardware. (Dynamic process scheduling)

Tools for design space exploration:

Tools that provide estimated information about the area, delay throughput, power
dissipation in an early stage of the design flow are highly desirable. This requires
fully automated and integrated design tools that automatically generate a design
at an appropriate abstraction level in such a detail that these properties can be
estimated with sufficient accuracy.

Embedded Systems Roadmap 2002

136 30 March 2002

Executable specifications:

The main purpose of an executable specification is to validate the design in an
early stage of the design process. This validation will be done by means simula-
tion and possibly by the formal verification of particular properties. Simulation
requires a simulation platform that is fast. Hence, it must be based on an efficient
language such as C or a derivative of it.

For reasons of flexibility, such a simulation model must be based on a set of
communicating processes. The model should be inherently free from deadlock,
starvation and flooding, or it must be possible to automatically proof these prop-
erties.

Design description languages:

A suitable design description language is needed that
• unambiguously expresses behaviour,
• unambiguously expresses structure,
• is applicable at all stages of the design flow from executable specification to a

description in terms of registers adder and gates
• is generally accepted and standardized.

All design tools should operate on such a design description language.

Compilers:

Compilers for embedded systems will be used on a per-block basis. A system (on
a chip) will be built from several blocks each having its own particular architec-
ture and therefore requiring its own compiler.

In the embedded systems design flow, compilers can be divided into two
classes:
• Compilers that are used for translating between different design representation

formats. Such compilers or translators will always be needed, as a single
design representation language that can be applied from an executable specifi-
cation to the final design description, is utopian.

• Compilers that map a behavioural description onto a particular architecture.
These compilers should be able to optimise on the basis of different criteria,
such as area, speed, throughput and power dissipation.

Compilers that map the behaviour expressed in a design description language
onto a particular architecture will become very important. The only way to
improve the design productivity is design reuse and automation of the design
process. Compilers used in the software world are translating a high-level pro-
gramming language into an intermediate language, which thereafter is translated
to the object code belonging to a particular architecture. In both parts some opti-
misation is performed. The latter, however, is limited because both the language
and the architecture are of a general-purpose nature.

Compilers for embedded systems should be able to map on different architec-
tures. So they should operate on a program and a description of a parameterised
architecture and produce the object code and possibly also produce the parame-
ters of the architecture.

© PROGRESS/STW: public version 1.0, 30 March 2002 137

Another approach is to design compiler generators, which start from an archi-
tecture and a language and automatically generate a compiler for that architec-
ture, possible with some user intervention.

VLIW, (including Transport Triggered Architectures) and reconfigurable archi-
tectures are very promising for embedded system applications. Compilers for
these architectures hardly exist or are still in its infancy.

The following remark might be considered as belonging to the scenario ‘Idea-
to-executable specification’ as well.

Multi-paradigm design tools and multi-paradigm design representations:
In many cases sensors and mechanical subsystems are part of the embedded

system. The behaviour and properties of these sensors and mechanical subsys-
tems need to be described together with the digital part of the embedded system.

4.8.2 Designer needs and Vision

From the preceding we may extract the following designer needs:
1. Mapping directly behaviour on complex architectures with reasonable effi-

ciency.
2. Less dependency on simulation for verifying the automated design steps.
3. Better design representations.
4. Improved specification languages.
5. Improved reusability of parts of designs.
Summarizing our vision leads to four main points, viz.:
1. Designs will become more complex.
2. Design cost per transistor will decrease on the account of less efficient designs

(implementations).
3. Compilers will play an increasingly important role.
4. Compilation will include high-level synthesis.
These items can be linked up with many other; some of are to be considered as
recommendations.
1. Design tools become concise and generally applicable at different platforms.

They will allow correctness-by-construction. They will operate on standard
design representation languages. Less attention is paid to optimising the last
20%.

2. Currently developed languages and styles for writing executable specification
will become mature and standardized. Standardization and research is needed.

3. Next to languages for specification and hardware description, a standard
design representation that can be used in a large part of the design process, will
be needed.

4. Design reuse will become mature, standardized and the IP-blocks will be pro-
vided with standard interfaces, specification at different abstraction levels and
a test sequences. Further development is needed.

5. Compilers for parameterisable architectures will become available.
6. Compiler generators that generate a compiler from the architecture and the lan-

guage will become available.
7. Compilers that optimise toward different criteria will become available. Low-

power will be more important than area.

Embedded Systems Roadmap 2002

138 30 March 2002

8. Communication between the subsystems on the chip will be (quasi) asynchro-
nous and based on (standardized) protocols implemented by hardware.
Research is needed.

9. Operating systems will become a part of the chip design and will partly be
implemented in hardware. (Dynamic process scheduling) How?

10.Tools for design space exploration will become available (Tools that deliver
information about the area, delay throughput, power dissipation in an early
stage of the design flow)

11.The designer community will more and more become aware of the need to
formalize the design flow and to prove the correctness of the tools.

From the preceding remark the following research areas that need attention can
be derived:
• Design tools
• Languages for executable specifications
• Design languages
• Design reuse
• Compilers for parameterised architectures
• Generators that derive compilers from architecture and language
• Compilers that optimise on different criteria
• Protocols on a chip
• Operating systems on a chip partly hardware implemented
• Tools for design space exploration
• Formalization of the design flow

4.8.3 Conclusions

In order to diminish the embedded systems design crises, all eleven areas men-
tioned above require research and development.

The development of tools for embedded system design depends on a few large
tool providers and a large number of small ones. The cost of tool development is
that high that it is impossible, even for large design companies, to develop a pro-
prietary tool suite. So new tools will have to cooperate with the existing ones.
This will strongly influence the developments in the field of embedded system
design in an unpredictable way. This particularly holds for the design flow and
the way of design representation. Nonetheless, research in these areas is of
utmost importance.

In order to improve design productivity, all kind of compilers and compiler
generators as described above are needed. However, currently only compilers for
small application areas are available. Fortunately, developments in this area are
less dependent on existing tools and design representations, although it must be
possible to incorporate them in existing design flows. A particular compiler will
only be used for a small part of the system.

© PROGRESS/STW: public version 1.0, 30 March 2002 139

Major functions

Technologies

 Languages for exe-
cutable specifica-
tions

Different proprie-
tary models availa-
ble and tested

Start of standardi-
zation

Standard(s)
accepted

Design languages Including different
models of time

Real-time con-
straints

Including area and
power constraints

Means for extract-
ing architectural
parameters

Expressing
real-time

constraints

Expressing
power, area,

etc.

Extracting
architecture
parameters

Current status
of design

representation

2002 2005 2008 2011

Designer Needs
1. Mapping directly behaviour on complex architectures with reasonable efficiency
2. Less dependency on simulation for verifying the automated design steps
3. Better design representations
4. Improved specification languages
5. Improved reusability of parts of designs

1. Designs will become more complex
2. Design cost per transistor will decrease in exchange
 for faster, less efficient designs (implementations)
3. Compilers will play an increasingly important role
4. Compilation will include high-level synthesis

Vision:

Scenarios of
rendezvous:

Scenario: From executable specification to
implementation

Efficient
retargetable
compilers for

VLIW

Efficient
compilers for

reconfigurable
architectures

Both HW and
SW efficiently
generated by

compiler

Currentstatus
of compilers

Combined
scheduling and

resource
allocation

Scheduling and
resource

allocation steering
the HW design

Separated
scheduling and

resource
allocation

Embedded Systems Roadmap 2002

140 30 March 2002

Retargetable com-
pilers (for parame-
terised
architectures)

Small class of
architectures.
Few parameters.
Simple architec-
tures.

Parameterised
multi-data path
multiprocessor.

Reconfigarable
architectures

Generators that
derive compilers
from architecture
and language

Start research.
Some knowledge
available

First research ver-
sions available to
show the feasibility

First field trials

Compilers that opti-
mise on different
criteria

Only number of
executions

Real time.
Instruction count

Area.
Power.

Formalization of the
design flow

Ongoing research, which should get more
attention

Formalization of
substantial parts of
tools is feasible

Methods On-going research
on formalisation of
design flow

Formalisation of
substantial part of
tools is feasible

Executable
specification
languages

Different proprie-
tary models availa-
ble and tested

Standards for mod-
els accepted

Standards in use

Design
languages

Design
reuse

Protocols on a chip

OS on chip partly in
HW implemented

Tools Results of only a
few tools can be
trusted

In the design flow
only a few tools can
not be trusted

Tools are becom-
ing certified

Compilers for
parameterised
architectures

Compiler genera-
tors from architec-
ture and language

Compilers that opti-
mise on different
criteria

Tools for design
space exploration

© PROGRESS/STW: public version 1.0, 30 March 2002 141

Figure 19: Scenarios for Executable specification to implementation

4.9 The Platform Design scenarios

4.9.1 Introduction

Definition

Platform design is: based on a common architecture in which blocks can be easily
adapted, such that in a limited time a ‘certified’ new platform instantiation can de
developed, which will differentiate it self from other implementations. Platform
design allows for the development of ‘a family of products’.

A platform instantiation contains various hardware and software as well as
reconfigurable IP blocks, interconnect between these blocks as well as to the
environment (i.e. the embedding system).

Note: what is the difference / relation between digital/analog and ‘platform
design???

Why a platform?

Electronic products in the market will behave like fashion (Vision). Products have
small derivations in taste, colour, etc. and functionality, but are designed on struc-
turally the same basis.

Designs become more complex (vision); a single designer cannot have the
complete overview at the detailed level anymore. Therefore (s)he wants to raise
the level of abstraction of building blocks to be still able to create complex design
in a shorter design-time. The ultimate goal is to do product creation by push-but-
ton platform instantiation (rendezvous in 2010+).

Shorter time-to-market, while still having the opportunity to create products
that differentiate in the market place (company need).

4.9.2 Needs and Trends

Trends:

1. Electronics in the market will behave like fashion;
2. Time-to-market becomes shorter;
3. Sub-micron technologies allow for evermore-complex designs.

Needs:

1. Create differentiating products in their market fast:

Gaps Correctness-by-construction
Standard design representation languages
Standardization of writing styles for executable specification
Standard design representation
Further development of IP-blocks
Compilers for parameterisable architectures
Compiler generators
Compilers that optimise toward different criteria
Research on on-chip communication mechanisms
Critical OS components implemented in hardware
Tools for design space exploration

Embedded Systems Roadmap 2002

142 30 March 2002

- Performance (speed, power, etc.) better than product of competitor;
- Features: more functionality than product of competitor;

2. Platform designer need: which basic architecture to select for the application
domain of the platform. Which blocks and interconnect to allow in a platform:

3. Platform instantiator need: which blocks to include in a specific instance.
Which parameters to select for each block. Also: plug-n-play instantiation.

4.9.3 Scenarios for Platform Design

We make the distinction between two groups involved in platform design: the
people who create a platform and the people who instantiate a platform. There-
fore we have two scenarios: one for the ‘Platform Design Creator’ and one for the
‘Platform Design Instantiator’.

Platform
methodologies

Platform
patterns

Application
driven platform

design

Current
Status

2002 2005 2008 2011

Designer Needs
1. Cope with flexibility in design (reduce flexibility in a sensible way)
2. Create differentiating products in their market
3. Which blocks and interconnect structure to include in the platform

1. Electronics behave like fashion
2. Ever more complex designs
3. Shorter time-to-market

Vision:

Scenarios of
rendezvous:

Scenario: Platform Design Creator

© PROGRESS/STW: public version 1.0, 30 March 2002 143

Figure 20: Scenario for platform design creator

Major functions

Getting to know
platforms

Standardising
blocks in platforms

Standardising plat-
forms

Semi-automatic
platform creation

Technologies

Methods Choosing the right
level of abstraction
Guidelines on the
use of interfaces
Coding rules
Documentation
standards
Models of blocks
and interfaces that
are based on the
same language
Raise the level of
abstraction of com-
munication
between the blocks

Standards on:
- Components and
interfaces
- Coding rules
- Documentation
Project manage-
ment keeps the
instance(s) consist-
ent with the plat-
form

Automatic assist-
ance in choosing
parameters of plat-
form

Database of certi-
fied components

Database of certi-
fied platforms

Tools Tools produce a
proposal of choices
in the database of
certified platforms

Embedded Systems Roadmap 2002

144 30 March 2002

Figure 21: Scenario for Platform design instantiator

Major functions

Getting to
know plat-
forms

Design trade-offs: man-
ual design space explo-
ration

Structured design space
exploration

Automatic design
space exploration

Technologies

Methods Uniform models of
(non)-functional con-
straints
Models for new styles of
communication
between blocks in the
platform
Error correction in com-
munication
Security issues in plat-
form

Standards on communi-
cation interfaces between
blocks

Tools Tools that reason about
properties in an instance,
at the instance level of
abstraction
Tools to check the con-
sistency of an instance
with the platform
Tools for code rule
checks
Tools for (automatic) gen-
eration of documents

Tools doing part of
the design space
exploration auto-
matically

Platform
usage

Platform
instance
reasoning

Semi-automatic
platform

instantiation

Current
Status

2002 2005 2008 2011

Designer Needs
1. Cope with flexibility in design (reduce flexibility in a sensible way)
2. Create differentiating products in their market
3. Plug-n-Play platform instantiation

1. Electronics behave like fashion
2. Ever more complex designs
3. Shorter time-to-market

Vision:

Scenarios of
rendezvous:

Scenario: Platform Design Instantiator

© PROGRESS/STW: public version 1.0, 30 March 2002 145

4.9.4 Remarks on scenarios of rendezvous for Platform Design

The following text discusses for the two separate scenarios, the technology
requirements.

Distinction between technology requirements for the platform designer creator
and for the platform designer instantiator (user).

Platform Design Creator

Current status (2002): ‘Initial discoveries’

Currently there are platforms available, for example the DVP (digital video plat-
form) (Philips). This is an example of a product family. Also, on the processing
core level, families of architectures are defined. These developments help us to
discover the right levels of abstraction to define a platform on. Furthermore, they
teach us that it's not only a matter of defining and using a platform, it is also
important to keep instances consistent with the platform (i.e. project manage-
ment).

Standard interfaces have to be designed by learning from experiments with the
starting reuse of hardware IP blocks, software IP macro-blocks.

‘Platform methodologies’ (2005)

The initial developments give rise to in sights in the right levels of abstraction and
detail that should be supported in a platform. This phase should result in propos-
als of sets of guidelines for the design of interfaces of blocks in a platform, cod-
ing rules, documentation standards, components etc. Standardization is needed
for some of these aspects!

Design space exploration methods and tools are important to give the platform
designer a means of reasoning: which blocks to include in the platform?

Models are needed for the boundaries of the various (hardware, software,
reconfigurable) blocks in the platform such that their interfaces talk the same lan-
guage!

For the interconnect (the communication structure between the blocks and to/
from the embedding system), we need to raise the level of abstraction. We should
not only talk about the communication implemented by buses, but by the commu-
nication protocol that runs on top of it (cf. moving one level up in the communi-
cation stack).

Further, standard hardware IP and software IP blocks should be placed in a
database site of certified components. This database contains reference specifica-
tions for the IP blocks.

‘Platform patterns’ (2008)

Tools should be provided to automate the aspects that our now in standards due to
the previous phase. The standardization on documentation, coding rules, compo-
nents and their interfaces, etc. is now complete. Project management tools should
be available to keep an eye on the consistency between the platform on the one
hand and instances derived from the platform on the other hand. In terms of the
certified database for IP components, we need a platform-layered database (i.e.
certified platforms).

Embedded Systems Roadmap 2002

146 30 March 2002

‘Application domain driven platform design’ (>2011)

Once we have established the previous phase, we can think of one level higher up
in abstraction, by starting to think about methods that, given an application
domain and a set of possibilities for platforms, assist in determining the bounda-
ries and parameters needed for a specific platform. The application domains drive
the choice of (IP) blocks in the platform and the decomposition with its inter-
faces. Given a set of constraints, tools search the database of certified platforms
to come up with a proposal for the choice of possible platform usage.

Platform Design Instantiator

The key term in this scenario is design space exploration. An ideal design explo-
ration tool is a tool that accepts as its input a desired performance/cost ratio, and
returns the values of all the free parameters in the design platform plus some per-
turbation/sensitivity analysis. Although this ‘inverse problem’ approach may be
possible in some cases, it is not in most cases. Therefore, the current approach is
to view the problem as a ‘direct problem’: choose parameter values and measure
the corresponding performance/cost ratio through simulation. Of course, there is
a relation between simulation speed/cost and the level of abstraction (detail). To
bridge the gap between the ‘direct’ and the ‘inverse’ exploration approaches,
tools should be made available to interpret the performance numbers output by
the simulator, to visualise them and help the designer by suggesting the changes
he wants to make in his parameter space (of both the architecture and the behav-
ioural specification). Parameters should be as orthogonal as possible (and design
methodology constraints should be non-conflicting). Learning curves should alto-
gether disappear.

Current status (2002): ‘Initial instantiation’

Designers have their first experience with designing instances from existing
(often ‘ad-hoc’) platforms. Reuse of hardware and software IP blocks including
their interfaces are done. These experiences are vital to communicate to the plat-
form designers to find the right level of abstraction, as well as to think about
keeping instances consistent with the platform, project management tools, etc.
The basic idea of platforms is that they speed up the design. When this turns out
not to be the case then the platform instance designers are the people who can
pinpoint at issues that hamper to reach this goal.

‘Methods for platform usage’ (2005)

A big issue is the absence of models to model the non-functional constraints of
embedded systems. They need to be modelled and quantified in a uniform model,
which enables the platform user to reason about the consequences of choosing
specific blocks to obtain an instance of the platform for a specific application.

In general, implementing a function in hardware offers a low-power solution,
while implementing the same function in software offers flexibility in design.
Therefore, the platform instantiator has a task in making a trade-off between
hardware, software, and reconfigurable blocks when instantiating a platform
towards an embedded system. Other trade-offs are for example making the design

© PROGRESS/STW: public version 1.0, 30 March 2002 147

memory-centric (in which the computational blocks use a single shared memory),
or computation-centric (in which all computational blocks have their own mem-
ory). The former might be the better choice for control-oriented applications, the
latter in data-intense applications like in video-streaming (MPEG).

We need models how to deal with new styles of communication (e.g. asynchro-
nous buses, asynchronous communication between ‘islands’ of synchronous
blocks), and their effect on global system performance and characteristics. For
this, we need models that represent hardware and software (and reconfigurable)
blocks that have the same communication on the interfaces, such that they under-
stand each other. Also, we need models of the characteristics of communication,
like error correction (low-level) and security issues (high-level, especially rele-
vant for communication of data from and to the environment of the embedded
system).

‘Platform instance reasoning’ (2008)

Using models to quantify functional as well as non-functional constraints the
designer can do a structured design space exploration. Further, interfaces between
blocks should be standardized such that the designer can manually put blocks
together to obtain an instance, and then reason about the performance, power dis-
sipation, etc. The knowledge gained by these ‘manual’ design space explorations
(supported by tools) creates the necessary ingredients for the next phase.

Also, there should be tool support for aspects of platforms like documentation
(generation), coding rules checks (and automatic semantics-preserving rewrit-
ing), consistency of interfaces between blocks etc. Also, automatic checks are
needed which keep an eye on the consistency between the platform instance and
the rules of the platform itself.

‘(Semi-) Automatic platform instantiation’ (>2011)

The goal is to have tools that perform (a part of) the design space exploration
when instantiating a platform for a specific application automatically, taking the
functional and non-functional constraints as well as platform data (which blocks
may be used, which interfacing structures etc.) into account. Fully automatic plat-
form instantiation is far in the future. Therefore only first steps to automatic
design space exploration are feasible in the time frame of the embedded systems
roadmap.

4.9.5 Recommendations

1. Standardization on communication (protocols) architectures and on the inter-
faces between blocks in the platform;

2. Common model of communication between the hardware, software, and
reconfigurable blocks;

3. Database of certified components;
4. Models and tools to do structured design space exploration.

Embedded Systems Roadmap 2002

148 30 March 2002

4.10 The Hardware/Software Design scenarios

4.10.1 Introduction

Definition

HW/SW design is: the process of partitioning the specification and deciding for
each part, the type of implementation from a spectrum ranging from hardwired
(dedicated HW) to General Purpose (Software) computing blocks. Note that this
spectrum includes (re-)configurable computing (RC) hardware. Software com-
prises all programs running on programmable blocks.

This partitioning process is present at two levels: At the system level, the parti-
tioning is in terms of tasks that are allocated to processors. These processors may
range from Application-Specific ICs (ASICs) to GP processors. The type of proc-
essors and the communication protocols will for a large part be determined by the
platform architecture. The other level of the partitioning process concerns ‘flexi-
ble’ processor cores in the sense that a default data path and/or instruction set can
be augmented with functional units (ALU, etc.) or instructions tuned to the appli-
cation (-domain). ‘Partitioning’ at this level should be interpreted as identifying
frequently occurring patterns of computations (within the allocated task) that are
suitable for hardware acceleration.

Hardware acceleration can be performed using either dedicated silicon or (re-
)configurable logic. The trade-offs made during the partitioning process are
affected by
• The constraints implied by previous design steps, e.g. choice of platform, com-

munication protocols, size of FPGA HW, etc.
• Projected market share vs. cost of NRE, non-recurring expenses. This is the

one-time cost (vs. e.g. silicon cost) independent of the production volume, and
comprises mainly chip mask costs and design effort. The latter will increase
with the detail of HW/SW design.

• The availability of design tools and designers with the required expertise.

HW-SW design, for the happy few?

Traditionally, HW design implies silicon fabrication, which is the domain of
(large) companies. HW design takes a considerable effort and is justified from
either the perspective of:
• Market: a sufficiently large market (High Volumes Electronics, HVE) to justify

the cost of NRE
• Design Constraints: performance (e.g. video or network processing) or power

consumption (e.g. mobile computing).
A potential evolution from this monopoly is marked by the development of (re-
)configurable technology, e.g. a RISC processor core with a limited amount of
FPGA for the ‘computational kernels’ of the code. In the current situation, there
are already commercially available stand alone processors augmented with
FPGA, and the corresponding tools to do modest HW-SW design at the processor
level. This development allows small companies and universities to benefit from

© PROGRESS/STW: public version 1.0, 30 March 2002 149

HW-SW design. An interesting question in this respect is how these companies,
without expertise or culture in HW design, will grow familiar with HW/SW
design in the context of (re-) configurability.

4.10.2 Needs and Trends

Trends:

1. Time-to-market becomes shorter;
2. Reconfigurability allows more design trade-offs
3. Reconfigurability allows small companies to perform HW/SW design
4. Sub-micron technologies allow for evermore-complex designs.
5. In silicon fabrication technology, wire delay is growing dominant over compu-

tational delay

Needs:

1. Quick quantitative feedback w.r.t. the cost criteria on high-level decisions
involved in the partitioning process.

2. IP reuse, abstraction, DSE at high level
3. Separation of concerns: HW-SW, independent levels of design, modular design
4. Express/extract/exploit parallelism to restrict cost.

4.10.3 Scenario: HW/SW Design

Terminology:
• IP blocks: processors, ASICs, memories
• Library components: ALUs, register files
• Cost criteria: all relevant criteria to be minimized, like power consumption and

silicon area.
• Performance: Required performance translated from real-time constraints
• Parallelism: Tasks (task-level parallelism) or instructions (instruction-level

parallelism) can/will/should execute simultaneously
• Embedded SW: software that can be embedded without additional effort. For

DSPs this is machine code. For GP processors, it can be C-code provided it
takes virtually no effort to generate machine code for that processor using a
compiler

Embedded Systems Roadmap 2002

150 30 March 2002

Major functions

Ad hoc HW/SW/RC
design

Quick quantitative
feedback on high-level
decisions

Less expertise
required for HW/
SW/RC design
Less user interac-
tion

‘Automatic’ parti-
tioning

Technologies

Methods
re-use

IP block available,
commercially and in-
house

Interfaces between IP
block standardised
Small companies
learn HW/SW/RC
design

Reuse of IP blocks
fully accepted and
common practice

‘Lego’ methodol-
ogy for composing
embedded systems

Tools Library components
available
HW synthesis tech-
niques used for map-
ping on RC HW
Companies invest in
training designers to
exploit tool support

Cost models of library
components and IP
blocks
DSPs are designed for
easy compilation

Tool support for
HW/SW/RC parti-
tioning and integra-
tion

Tools for modelling
and executable
specifications
(Prototyping)

Tool
development

Tools do not solve all
the needs of the
designer

More interaction
between designers &
tool builder Vendors
offer design service

SW compilers & sili-
con compilers from
different vendors

SW compilers & sili-
con compilers with a
common design entry
(language?) that
expresses parallelism

SW compilers & sil-
icon compilers in
common framework

Emphasis on
HW and SW

design

HW/SW/
partitioning

supported by
estimation

HW/SW
partitioning

supported by
partitioning tools

Higher
abstraction

levels of HW/SW
partitioning

1. Productivity improvement
2. Co-verification/validation
3. Acceptable level of NRE

2002 2005 2008 2011

Scenario: hardware/software design

Designer Needs
1. Quick quantitative feedback w.r.t. the performance and cost criteria on high level decisions
 involved in the partitioning process
2. IP reuse, abstraction, DSE (design space exploration) at high level
3. Separation of concerns: HW-SW_RC, independent levels of design, modular design
4. Express/extract/exploit parallelism to restrict cost

Vision:

Scenario of
rendezvous:

© PROGRESS/STW: public version 1.0, 30 March 2002 151

Figure 22: Scenario for HW/SW design

4.10.4 Remarks on scenario of rendezvous for Hardware/Software Design

A number of themes are present in this scenario. Most notably, HW-SW design is
a task where tool support and a reuse methodology are expected to play a domi-
nant role. As a result, in this scenario there is an emphasis on the problems related
to the development of these tools, and problems related to reusing HW/SW com-
ponents.

Current status: ‘Ad Hoc HW/SW design’ (2002)

Low-level models (suitable for synthesis to silicon) and high-level models (suita-
ble for e.g. simulation) are commercially available for IP blocks and library com-
ponents. There is however a lack of cost-models of these (and RC!) components,
which makes design space exploration a tedious job because cost figures are
obtained by (detailed) implementation of the partitioning decisions. Another
problem is the lack of standardization on the communication principles and on
the IP interfaces. Therefore, designers have to build their own interfaces to the
communication infrastructure for integrating and connecting the IP blocks, which
often takes place in an Ad Hoc manner.

No tool support is yet commercially available for HW/SW partitioning, so
designers rely on their experience to identify suitable targets for HW acceleration
(directly in silicon or in RC hardware). After partitioning, HW and SW compila-
tion are performed. The tools available for HW compilation require training and
experience to use properly. High expectations w.r.t. ease of use, and underesti-
mating the effort to master the tool, will lead to frustration and resistance to use
the tool in the future. Also the physical distance between the HW designer and
the tool designer is responsible for the limited interaction between them. This
hampers both tool development and a smooth learning experience. SW compila-
tion for general-purpose processors is very well supported with robust, reliable,
push-the-button tools. For digital signal processors (DSPs), tools for SW compi-
lation are not very robust and require a lot of user interaction to arrive at a satisfy-
ing solution. One reason for this is the fact that these processors have implicitly
been developed for high performance/cost ratio for optimised assembly, and not
for ease of SW compilation.

Gaps Standardised inter-
faces between IP
blocks
Cost/performance
models for IP and
library components
Interdisciplinary com-
munication
Architecture and
mapping tools are
developed independ-
ently

Confidentiality of
designs
Portability of (high- &
low level) code for
DSPs

Embedded Systems Roadmap 2002

152 30 March 2002

‘HW/SW design with limited tool support’ (2005)

IP vendors deliver performance and cost models with their IP blocks that enable
ES designers to do design space exploration (using e.g. Excel as a database for
the cost models) without the need for detailed implementation in order to get
quantitative feedback. IP interfaces are standardized, which allows designers to
integrate and connect the IP blocks in a systematic manner. HW, SW, RC compi-
lation have a common design entry, so that the result of HW/SW partitioning can
be easily transferred to the HW, SW, and RC compilation tools without extensive
rewriting. Partly (re-) configurable processors and architectures allow small com-
panies to learn and perform HW/SW design.

The physical distance between HW designer and tool vendor will probably
remain because of the issue of confidentiality of the design. Instead, tool develop-
ment and a smooth learning experience are enhanced either by design companies
doing in-house tool development, or by tool vendors offering design services.
DSPs will be designed that allow efficient or easy-to-use compilation.

‘HW/SW design with tool support’ (2008)

Tools are available to help partitioning the application. Because HW, SW, and RC
compilation tools are embedded in a common framework, the tool is able to ana-
lyse (using performance/cost models) for each part of the application, the suita-
bility of implementing that part with the available paradigms (ASIC, RC, DSP,
GP) without too much user-interaction. The tool can suggest a partitioning and a
suitable implementation paradigm for each part. As a result, designers without
much experience and expertise can still perform HW/SW design. Reuse of IP
blocks is common practice and well supported with standard communication
infrastructures and tools that allow plug-n-play of IP blocks in the design.

4.10.5 Recommendations

1. Standardization on interfaces between IP blocks;
2. Develop performance and cost models of IP blocks and library components;
3. Train designers in the use of (higher level) tools, and create a tool-oriented cul-

ture in the design community; Decrease the distance between ES designer and
tool designer;

4. Design architectures (processor, multiprocessor) from the perspective of map-
ping applications to the architecture.

4.11 The Embedded Software Design scenarios

4.11.1 Introduction

The specific user needs

The users of embedded software design are the domain experts, who have to
build embedded systems. Domain experts are control engineers, physicists, optics
engineers, electronics engineers, user interface designers, systems architects,
etcetera

© PROGRESS/STW: public version 1.0, 30 March 2002 153

The users want to be able to build and modify the embedded software of the
system themselves. In this way they expect to be faster to deliver the system on
specs and in time. Also they want to be able to improve the system specifications
in an evolutionary way of working.

The embedded software not only supports the end user requirements. To sup-
port the designers, the production engineers and the service engineers it also
includes performance software, calibration software and diagnostics software.

Programmers producing embedded software are seen as overheads, causing
undesired delays of the project. So programmers must do the work off the critical
path of a project.

Users are building systems, where embedded software is only a part of the
problem.

The generic design trends

Developing embedded software is growing to an unmanageable size. Something
must be done to keep embedded software development teams small (team size <
100 designers).

New fashions in software engineering come and go in a few years, where fam-
ilies of embedded systems have economical lifetimes of ten to twenty years.
(Re)Use of existing software (build in the previous millennium) is a must in
embedded systems.

Component based development is a trend, but not at all common in the world
of embedded systems. Too much environment is missing to make it work.

Formal methods and their tools are very difficult to implement, because they
do talk the language of the software engineer, and not the language of the user.

The term ‘software architect’ is devaluating rapidly, while the importance of
excellent software architecture is increasing. How to spot the real good architects
in their younger years and how to put them on the fast lane to become a CSA
(Chief Software Architect). No academic training is currently available.

Today programmers want to build new software in new products. In embedded
systems most work is done in modifying and extending existing software. A
change of mind is needed where re-using existing software is considered to be
Cool. And building everything from scratch is considered as un-cool.

The architecture of the embedded software development environment is miss-
ing. As a result research on methods and tools is very scattered, because the
framework where all these methods and tools are seamless integrated is missing.

Vision: Within 10 years embedded software is produced by domain experts.

Large chunks of software will be incorporated in the embedded system using the
web by domain experts. By drag and drop the embedded system is put together.

Producers of embedded systems components are offering their solutions tot
systems integrators. There is a business model where producers of reusable soft-
ware are rewarded for their efforts. Building and supporting Common Off The
Shelf Embedded Software (COTSES) components is not for free of course, but
cheaper and faster than re-inventing the wheel.

Embedded Systems Roadmap 2002

154 30 March 2002

A COTSES Architecture Team has defined and is maintaining the Architecture
of COTSES. Standardization of development, interfacing, error recovery, mes-
sage passing, documentation, testing, delivery and change control of COTSES is
controlled.

A COTSES Quality Assurance Team is responsible for overall stability of the
COTSES. One of the biggest dangers is unreliable and unstable COTSES compo-
nents.

Methods and tools must be made where Users can select COTSES based on
vague requirements, put them together and generate the glue software between
the COTSES. Maybe something can be learned from ECAD tooling.

Scenario: Embedded Software Design

See below.

4.11.2 Remarks on scenarios of rendezvous for Embedded Software Design

Introducing Common Off The Shelf Embedded Software (COTSES) on a world-
wide basis within a few years used by all companies for all domain areas is a few
bridges too far. Therefore some intermediate steps are needed to be able to reach
the goal.
1. The architecture of COTSES modules and their framework must be defined.

Universities must use their international network and work together to define a
working structure. The Linux development way of working may be a good
starting point. The architecture must be finalized and change controlled in
2004.

2. The COTSES development environment needs research and must be developed
and rolled out. This includes standardized configuration management, auto-
matic test case generation, regression test tools, compilers, design tools, repos-
itory tools of COTSES, tools to find the best suited COTSES, etc.

When this is defined, COTSES can be developed within companies, with reuse
within the same company (intra company reuse of COTSES). Problems with IP
and payment of fees are not a problem in this case. Quality Assurance is an in-
company problem: You are punished with your own bugs when you don’t do it
right. But it is possible to purchase and include third party software, using the
same architecture. Companies can convert existing software to new architecture.
Companies can decide which COTSES is company confidential and which may
be used by third parties (when the fee is received).

© PROGRESS/STW: public version 1.0, 30 March 2002 155

Major functions

Reusing embed-
ded software in a
controlled way
Less program-
ming, more assem-
bling

Technologies

Methods Executable models
of software and tim-
ing

Executable models
including computer
hardware

Multi disciplinary
executable models

Programmers want
to write their own
new code

Existing software is
reused in a control-
led way

Users build their
own systems from
large blocks

COTSES
architecture

defined

Intra-company
COTSES

reuse

Inter-company
COTSES reuse

by domain
experts

Programmers
type LoC

Limited reuse

2002 2005 2008 2011

Designer Needs
1. Tool from Scratch to Modelling
2. Software Impact Analysis methods and tools for extensions of existing systems
3. Requirements & Tracability tools
4. How to incorporate large existing components in design
5. Accessable World Wide Library of usable components and quality assurance
6. Design Verification method and Tools
7. Graphical Tool Support è executable models
8. Early validation of design decisions, executable models
9. Generation of software based on models
10. Automatic Testgeneration from Design
11. Tools for automating testgeneration from design?

1. Application Domain experts build their own Embedded
 Software
2. Existing Software will be reused in a controlled way
3. Less time spent in software- and system-integration

Vision:

Scenario of
rendezvous:

Scenario: embedded software design

Embedded Systems Roadmap 2002

156 30 March 2002

Figure 23: Scenario for embedded software design

Software Engineers are still building the embedded software, but reuse of stand-
ardized COTSES is the normal way of working. COTSES components fit
together more or less. A reasonable amount of glue software is still needed to
build systems.

This milestone should be reached in 2007.
To be able to use COTSES in inter-company and international environments

some items need to be solved. When domain experts integrate COTSES modules,
also extensive tooling is needed.
1. Quality control and change control of published COTSES must be solved.
2. The pricing, business model and IP security must be solved.
3. Methods and supporting tools must be available where COTSES producers can

define, build, test, verify and validate their products.
4. Methods and supporting Tooling must be available where domain experts can

select the COTSES they want to use, both intra- and inter- company, based on
vague requirements. With help of software architects the Embedded Software
architecture must be designed, which uses the defined COTSES. The remain-
ing glue software must be generated from the requirements. The test scripts
must be generated. The embedded software must be generated. Test of the
embedded system can start.
This milestone should be reached in 2010.

4.11.3 Recommendations:

1. Teach students in this way of thinking

Tools Integrated design
tools

Partly multi discipli-
nary tools

Multi disciplinary
tools (software plus
appliance)
SW/HW co-design
Courseware

Design tools where
you can import soft-
ware blocks you
want to reuse
including a test
environment

Common architec-
ture (or ‘bus’) where
components fit in
(agreed framework
for embedded soft-
ware components)

Reverse engineer-
ing tools
Bad-weather
behaviour model-
ling tools

Gaps Standardization on re-usability and interfacing
Lack of standardization on error recovery,
Lack of experience/learning
Lack of continuity on gaps: new languages, modelling, tools, views
IP to Dollars (IP2$$) business model for users and providers of components

Other

© PROGRESS/STW: public version 1.0, 30 March 2002 157

4.12 The Verification/Validation scenarios

4.12.1 Introduction

Verification and validation include a wide range of techniques in the spectrum of
formal verification to simulation and emulation. Formal verification attempts to
check the complete state space a design can be in. Non-formal verification tech-
niques check only a part of the design space. Though it is less accurate, the gain is
speed in verification. Simulation and emulation are examples of non-formal veri-
fication.

In the future designs will become more complex. Formal verification tech-
niques will become necessary to deal with the verification problem because simu-
lation and emulation do not scale with the complexity of the design. Therefore
this text will emphasize formal verification techniques.

4.12.2 General trends and user needs for validation & verification (V&V)

Introduction

It is very difficult to estimate the state-of –the-art of embedded system validation
and verification 10 years from now. Both the world of embedded systems tech-
nology and that of validation and verification methods and tools are very dynamic
and undergoing rapid changes that will have substantial influence on their future
relationship.

In line with the philosophy of a roadmap we will work from the angle of what
will be required to accommodate the necessary changes, instead of trying to fore-
tell the actual future.

Moore’s law and V&V

Moore’s law affects V&V in two ways. On the one hand, the increasing power
and memory of embedded systems leads to increased complexity of the embed-
ded software in those systems. This leads to a substantial increase of the effort
that is needed to assure the correctness and reliability of such systems. Moreover,
traditional V&V techniques, mostly based on simulation and testing do not scale
up well as they cannot handle the doubly exponential growth: the number of
potential simulation/test scenarios grows exponentially in the state space of a sys-
tem, which in turn increases exponentially over time as a consequence of Moore’s
law. This leads to excessively growing costs in terms of resources for system val-
idation (currently 30-50% of the total development cost)

On the other hand, Moore’s law influences the performance of V&V tools pos-
itively. The exponential growth in terms of processing power and available mem-
ory translates directly into a proportional growth of the analytical capability of
such tools. In reality, the situation is even better: formal methods research into the
algorithms and data structures used for the implementation of V&V tool func-
tionalities has more than doubled the positive effect of Moore’s law over the past
decade.

Current industrial ES designers are by-and-large unaware of the latter develop-
ments.

Embedded Systems Roadmap 2002

158 30 March 2002

V&V and ES designers

An important reason why ES designers are not following V&V developments
very closely has to do with the fact that V&V methods and tools currently require
substantial skills and knowledge that is unrelated to their domain expertise. Typi-
cally, working with such tools requires mathematical modelling skills, knowledge
of algebraic and/or logical techniques, and familiarity with the idiosyncrasies of
the tool implementations.

Current V&V methods and tools are inadequate for normal industrial usage.

Complexity and variety of ES

The complexity of ES can be enormous. In spite of the positive contribution of
Moore’s law to V&V tools (see 1.2), the analytical capacity of tools will always
be significantly smaller than the complexity of ES at any given point in time. Typ-
ically, tools must therefore be applied to ES models that abstract away from as
much irrelevant detail as possible, whilst still providing a basis for the analysis of
interesting properties.

In addition, there is a tremendous variety of ES system, ranging from deter-
ministic, sequential systems of limited complexity on smart cards to full-blown
distributed, multiprocessor, networked systems involving complicated quality-of-
service requirements.

Currently, there is no well-understood set of abstraction principles that can be
used to efficiently produce such models for the various types of ES in combina-
tion with the kind of analysis that is required.

Mission and Vision

Mission

The main mission of the ES V&V community (both universities and companies)
is keeping up with Moore’s law and its consequences (e.g. Dunn’s law):

How to improve the analytic power of V&V methods for ES systems by a
factor four every 18 months, for the next 10 years.

Interpreting this mission one should take into account that Moore’s law itself
does already contribute a factor 2 every 18 months. The mission therefore implies
that additional improvements in methods, algorithms, data structures and imple-
mentation techniques also contribute a factor 2.

Vision:

On the user side of things we can suggest another milestone:

In 2010 SE designers are capable to carry out effective V&V of their
designs using a wide array of (semi-)automated tools.

This formulation carefully avoids the mentioning of “push-button” technology, as
user interaction will always be required to produce convenient analytical models.
The intended reading is that the SE designer will have a tool box consisting of
many different tools whose correct use does not require expert knowledge of the

© PROGRESS/STW: public version 1.0, 30 March 2002 159

underlying theory and/or implementation. Still, working with such tools will and
should affect the way in which ES are analysed and designed, and will require
new skills on the part of their users (cf. business process redesign).

V&V technology needs:

V&V technical development:
1. Development of fundamental algorithms, data structures and implementation

techniques to improve the performance of V&V tools
- state space exploration algorithms
- special purpose inference engines
- efficient data structures
- composition principles
- abstraction principles
- optimisation techniques
- static analysis techniques
- decomposition techniques

2. Development of tool functionalities that support ES design.
- requirement specification
- model construction & transformation
- model simulation
- model checking
- consistency checkers
- model driven test generators/executors
- real-time, stochastic, performance analysis
- theorem proving

3. Development of user-friendly V&V methodology.
• V&V configuration management
• application-oriented tool interfacing
• V&V scenario library
• V&V user guidelines

Measuring progress:

The space/time improvements that are achieved are best measured by adopting a
number of benchmark applications for various application domains. Many such
benchmarks have already been established by the scientific community, but these
typically address only progress with respect to the fundamental techniques (i.e.
issues mentioned under point 1). Efforts must be made to find good industrial
benchmarks for the various application domains.

Goals

Both formal and non-formal verification techniques will have to be able to cope
with ever-larger designs. Soft and hard real-time systems will become available
and need to be verified. Also hybrid systems are foreseen in the future. Simula-
tion, emulation, and formal techniques need to keep up with these developments.

But there is more to be done: formal verification needs to be integrated with
the embedded system design flow. The embedded system designer should be able
to perform formal verification without bothering about the underlying mathemat-
ics and techniques. Researchers from academia and industry need to sit together

Embedded Systems Roadmap 2002

160 30 March 2002

to get this job done. Case studies of industry-size need to be considered for for-
mal verification; tools need to interface to each other and eventually need to be
integrated to form one seamless design flow.

4.12.3 Recommendations

1. Research on V&V methods and tools for ES can only be successful if there is a
long term and stable commitment from both academia and industry to make
the necessary investments.

2. It should be established what kind of embedded systems are most relevant in
the context of these proposals, as different systems require different R&R
approaches with different resulting time frames. Such knowledge can be used
to further profile the V&V roadmap.

3. Based on 2 a list of industrial relevant benchmarks for ES V&V technology
should be compiled. This list will be essential to monitor the progress of the
V&V methods and tools.;

4. To develop V&V tools beyond the stage of academic prototypes requires
implementation capacity that lies beyond the capabilities of academic institu-
tions. Scenarios for tool technology transfer between academia and industry
should therefore be anticipated and elaborated.

5. If industrial V&V technology is to cope with the exponentially increasing
growth of the complexity of ES systems new V&V methods must be intro-
duced. This entails extensive programs for technology transfer, education and
the development of new design and implementation processes that will require
substantial resources (time, money). Scenarios for such changes should be
anticipated and elaborated.

© PROGRESS/STW: public version 1.0, 30 March 2002 161

Figure 24: Scenario for verification/validation

4.13 The Test, Debug and Integration scenarios

4.13.1 Introduction

Testing concerns the quality assurance for the entire design, fabrication and appli-
cation cycle. Every effort in pushing the limits of the micro-electronics technol-
ogy has to create a coherent view on testing. The quality of the test of an
embedding system is the expression of the expectation that the part will work in
the specified manner in a partly specified environment and that malfunctions will
have only a limited impact. We will largely focus on the System on Chip. This
will be the lead theme in formulating the trends that can be expected in testing.

Current status Block verifier System verifier Design Verifier

1. The designs to verify will become more complex
2. Higher coverage of V&V techniques has to come from formal techniques
3. Push-button verification is essential in the design flow

Symbolic state space
algorithms
Optimal search algorithms

Theorem provers for
medium-sized examples
Model checkers for soft/hard
real-time systems
Simulators for composition of
IP blocks
Emulators for composition of
IP blocks

Formal verification of hybrid
systems

Integration of theorem
proving and model checking

Formal verifier
Simulators for hybrid
systems
Emulators for hybrid
systems
Verification tools integrated
with design flow for
embedded systems

2002 2005 2008 2011

Scenario: Verification & Validation (V&V)

Designer Needs
1. Verification and validation of ever more complex designs
2. Verification and validation of hybrid designs
3. Higher coverage (i.e. better quality) of verification and validation
4. Faster verification and validation
5. Seamless incorporation of V&V techniques in the embedded systems design flow

Vision:

Scenario of
rendezvous:

Major functions

Technologies
Methods

Tools

Gaps

Other

(Formal) Verification
of IP blocks

(Formal) verification of
systems

(Formal) verification
is integral part of he
design flow

Discrete state space algorithms
Abstract algorithms
Search algorithms
Static analysis techniques

Theorem provers for small
examples
Model checkers for discrete state
space exploration
Simulators for IP blocks
Emulators for IP blocks

Formal verification of systems

Embedded Systems Roadmap 2002

162 30 March 2002

Such systems will be service oriented in the sense that the design only creates the
potential for the product line, that the design will be augmented for a specific
product from the line while lastly the product needs to be adaptable to the situa-
tion in which it is to be applied.

Testing will therefore not be a mere quality assurance at one point in time, but
rather a part of the product design that will have influence over the entire lifetime.
Integrated test is meant to reduce factory cost while raising product quality. This
is mandatory as the embedding system can not be assumed to remain stable.

4.13.2 Needs and Trends

Testing used to be a single platform, single technology business. This restricted
problem space allowed for in-depth modeling and analysis. There was board test,
memory test, digital chip test and so on: each with their algorithm set-up and each
prospering in splendid isolation. In the meantime the microelectronic scene has
changed considerably. With decreasing lithographical dimension, more and more
functionality is integrated on a single carrier, at the expense of more complicated
timing physics. Today’s board is to-morrow’s chip. Small fabrication dimensions
and high volume have a strong economic relation. But there is a limited amount
of products that can be produced in high-volume in a single application. This
observation has stimulated an increasing use of ways of obtaining flexibility,
leading to e.g. programming facilities like hard-wired instruction ROM, flashable
parameter EPROM and reconfigurable FPGA.

Where the plain vanilla ISA (Instruction Set Architecture) creates functional
richness on a limited amount of control/data signals, the introduction of configu-
ration registers and ultimately of configurable interconnect explodes the amount
of logic paths to be tested. This added to the increased system complexity neces-
sitates on-chip support. And as the chip becomes a system, this test support will
follow the same development route as the system itself, ultimately leading to a
configurable part that in turn must be tested.

In the end, the system will support both functional and test programming from
a number of communicating blocks. As communication is the core of the offered
functionality, separate attention is required to validate the internal timing from
the electrical glitches to the abstract protocol.

© PROGRESS/STW: public version 1.0, 30 March 2002 163

Figure 25: Scenario for test, debug and integration

Methods Moving interface
and communica-
tion standards onto
the chip

Cut-and-Fold nota-
tions
Unified test tech-
niques for HW/SW
mixes

Extension of BILBO
to Built-In functional
Block Observa-
tions (BIFBO)
Test pattern gener-
ation by generalisa-
tion

Tools Support for charac-
terisation of new
fault models

Open development
framework for test
design & verifica-
tion

Compaction of
functional Profila-
tion
Verification of hier-
archical, modular
test view

Gaps Hierarchical man-
upilation of existing
test pattern sets

Mixed HW & SW
test
Support for hetego-
neous system
designs

Merging validation
and testing
Control of on-chip
modular test & con-
figure

Hierarchical
test

Transparent
combi test Self-testCurrent

Status

2002 2005 2008 2011

Designer Needs
1. The chip designer needs more support for fault characterisation of flexi-custom architectures
 (test & debug)
2. The product designer needs better tooling for test-view development (debug & integration)
3. The application designer needs more support for diagnosis and reconfiguration (debug)

1. Formal core validation is essential for polymorphous
 testing
2. Adaptivity takes the pressure from the final test by
 facilitating a distribution of concerns

Vision:

Scenarios of
rendezvous:

Scenario: Test, debug and integration

Embedded Systems Roadmap 2002

164 30 March 2002

4.13.3 Remarks on scenario of rendezvous for Test, debug & integration

Meddling complexity

Complexity of embedded parts has many aspects. Next to the bare number of
transistors on a chip, it has also to do with the many technologies that interact
through the part, the diversity of microelectronic concepts applied within the part
and the judicious mixture of hardware and software programming, potentially all
this in a networked service composition.

Today the influx of switching technology has melted the digital and analog
domain into devices where both can be personalized from the same software pro-
gram. Ass the system moves onto the chip, it becomes more reactive and the test-
ing has to take the embedding system into account. Eventually the testing scope
has to widen even further as the system is an integral part of a micro-system.

IP cores have originally taken the role of a half fabricate. Such parts come with
test patterns that validate the part as a whole. This has sufficed for systems that
merely added some functionality to the existing core. However, in a multi-core
environment such parts will also be required to aid in supporting the test of other
parts. Clearly such methods place demands on the granularity of the design,
where the overhead is too large for small parts while larger parts are too tightly
integrated to provide the required level of test support.

Where we see the levels of programming increase and a range of hardware/
software interactions come into play, the test methodology needs to provide a
more integral view. Today software and hardware test are overlapping in method-
ology and growing towards one another; for embedded systems this trend needs
to be continued. The mutual test support of IP core need to become generic in this
sense that a sound algorithmic basis is required.

Mixing various core in various technologies with a large amount of non-com-
mitted functionality will lead to heterogeneous architectures, which should
become reflected in the test strategy. To a large degree this will become facilitated
by on-chip circuitry such that the test program itself addresses such problems on
a more abstract level.

Debug & test

The various levels of programming reflect a shift in the moment of final personal-
ization from fabrication to application. As a consequence we will see a changing
emphasis from in-line to on-line test. This is necessitated by the fact that an
indepth test becomes even more impossible than it is to-day; it is facilitated by
the fact that modifications remain possible till a later moment in the life of the
system.

There will remain a constant desire for appropriate fault models. With each
next step in process development, the dominant fault model may be different and
should be adequately accommodated. From such fault models grow a wide range
of fault instances that bring failure interaction between the wires but also between
design parts.

© PROGRESS/STW: public version 1.0, 30 March 2002 165

The premise of off-line test when the part becomes a product is stability. The
requirements can be loosened by allowing for redundancy and eventually replace-
ment through the use of non-committed parts. The judicious application of such
measures needs to be based on principles of modularity, as changes have to
assume the prior success of fabrication test and have only a local effect.

At the application level, the user can hardly be bothered with applying and
interpreting tests. A proper system of quality assurance remains indispensable,
though the functionality is still open for adaptations. This can only be guaranteed
when the embedding system takes a role and in turn this embedding system needs
to have access over a well-defined mechanism such as a test bus. To limit this
interdependence the test resources on the chip must be sharable and therefore part
of an hierarchical ordering.

Modularity and hierarchy can be applied in an arbitrary mix. The result may
have many forms and a careful standardization in terms of system architecture is
required to handle such a polymorphic arrangement.

Integrated test

Where complexity meddling focuses on the test technology to facilitate the actual
test and Debug & Test focuses on the test technique to use the potential of the
Design & Test, a middle layer is required to glue such concepts together. This
Integrated Test aims to provide a clear view on the overall product test that can be
used over the lifetime of the product.

Access & Control lifts the issue of observability and controllability to the sys-
tem level. Where the system becomes more and more integrated, the sequencing
of parts to take care of the product as well as of the test behavior becomes a
scheduling problem. The polymorphic architecture of heterogeneous parts
together with the need sharing test resources in a supportive manner can not be
pre-determined.

To keep the test problem manageable will then induce a need to bring stand-
ards on communication protocols and core tests on the chip. Reducing the com-
plexity by using strict standards is supported from the presence of non-committed
functionality to the degree that adaptive repair will play an important role.

Test drop-ins are a basic means to bring test facilities on the chip. In a sense,
they are the IP cores of the test domain. With the increasing amount of non-com-
mitted functionality, the momentary field programming for test will also creep
onto the chip. Mixtures of tests for the already installed functionality and for the
still open functionality have to be part of a single test program.

The test program will not merely reflect the current situation but will also indi-
cate how failures can be repaired by introducing new programs. This is especially
mandatory for application tests as the end user can not be expected to come with
the required level of Test & Diagnosis. Hence, the overall test program may be
influenced interactively by the embedding system. In other words, the embedded
system will have not only a Design view but also a Test view towards its environ-
ment.

Embedded Systems Roadmap 2002

166 30 March 2002

4.13.4 Recommendations

The large diversity of hardware and software, that comes together in an embed-
ded system in various shapes and quantities, needs to be addressed from a single
unified view on testing. The testing problem will further be aggravated by the
increasing role of redundant and reconfigurable parts. Increasingly we will need
on-chip measures and dedicated test functions to allow for an acceptable fault
diagnosis, isolation and repair over the life-time of the product. Introduction

© PROGRESS/STW: public version 1.0, 30 March 2002 167

Appendix 5. Important Embedded Systems aspects of a not only
technological nature

5.1 On objectives

If one defines a roadmap for 10 years, and one wants also to look at the condi-
tions that need to be fulfilled for its successful implementation, one has to
broaden one’s view considerably outside the pure technological arena. The objec-
tives of the roadmap have to be put into a larger perspective. From a variety of
viewpoints a number of observations can be made about conditions for success,
but also about what aspects have to be brought into line with one another to come
to a successful realisation of the roadmap.

E.g. from an economic perspective it may be observed that embedded systems
represent a fragmented market, but at the same time they represent a market
likely close to 100 x larger than the desk-top market and this market still leaves a
lot of headroom for technology skills to prevail over marketing. The objective of
the ESR could therefore be to use the embedded market as a technology vector to
give Europe the leading world-wide position just like Europe took the lead in
wireless telecommunications. This places the ESR in an environment which
imposes that many more consequences are worked on than just technological
ones.

E.g. to gain a European leadership also requires that the international depend-
encies are analysed and dealt with. Standards need to be international to be effec-
tive, although there are examples where the local scale is sufficient to allow local
(and hence protected) standards. The problem of basic components and technol-
ogy however is more severe. In normal (peaceful) conditions they should not be
perceived as being problematic, but as many of the basic technologies are US
owned (or patented), there is a certain dependency risk. Hence, while it is not effi-
cient to seek complete independence and supremacy, Europe should at least have
leadership in a sufficiently large domain to have a strong bargaining and negotiat-
ing position. This also implies that there is an economic dependency factor. If the
economic and social environment does not provide the right incentives to develop
and compete in this technology race, with also new players in Asia becoming
powerful factors, the ESR will not give Europe the leading position, but a fol-
lower’s position.

It will be useful to collect observations like the above and to investigate what
initiatives need to be taken to create success in a long-term effort from several
points of view. The following is a start of such an investigation and consists
mainly of contributions from reviewers of he first internal version of the ESR.

The following points of views or aspects are considered below:
1. Concepts: how to best meet the challenges posed in the ESR?
2. Education: how to build the engineering work force that can execute the ESR?
3. Economics: how to create the infrastructure (in its social definition) that sup-

ports and musters such a goal?
4. Process: how to develop and/or acquire the necessary technology?

Embedded Systems Roadmap 2002

168 30 March 2002

5.2 Conceptual approaches

This is the area where the ESR document focuses on in its approach to handle
complexity and heterogeneity. The underlying theme is one of the needs to bring
multiple domains (now only loosely linked or even separate because of underly-
ing historical reasons) in a unifying ‘systems’ domain. The challenge here is that
this means that conceptual bridges must be made from very high levels abstrac-
tion to very detailed implementation details, across multiple vertical domains
while achieving the ambitious goal that embedded systems are developed very
fast (live times shrink), more reliable (greater dependency), cheaper (widespread
use) and less resource hungry (sustainable use). At the same time, the embedded
devices must operate correctly in an autonomous as well as in an interconnected
way as they become part of a bigger ‘meta-embedded world’.

The ESR roadmap is biased towards the SoC market and its way of approach-
ing design problems. While this is an important technology vector on its own, this
seems to forget that board level design and packaging it into a application prod-
uct, will not go away but will also have their challenges.

A favourite paradigm for tackling complexity stems from CSP (Communicat-
ing Sequential Processes). CSP comes from the parallel processing domain as a
formal, rather arcane mathematical language, but in the ESR context it serves as a
framework to reason about systems that are composed of multiple sub system
modules with well-defined interfaces. Once the ‘interface’ is well defined (which
also means that the internal state-machine operates correctly and the interface
definition is complete), it is no longer needed to know the inner workings to use
the sub system module to build larger systems. This is the basis for a black-box
approach to system design.

Let’s take an example. For the design engineer an embedded system might be a
‘box’ of which he knows how it works, but for the end-user, it often will be a
‘black box’ with input and output ‘connectors’. E.g. it can have sensors to meas-
ure certain entities, it can have knobs and handles, it can have a screen, mikes
and/or speakers and it can operate on other devices. The inside can be anything
(mechanical, hydraulic, electronic) as long as it does the job. These interfaces
with the outside world define what the embedded system is supposed to be doing
and also defines (or rather restricts) its operational envelop in terms of boundary
conditions (e.g. temperature, weight, cost, energy consumption, timely behav-
iour,…). Good system engineering comes down to opening the black box and fill-
ing it up with well-defined sub system modules taken into account the boundary
conditions. Hence, the job is reduced to define new black boxes until a level is
reached where implementation issues make further reduction impractical or
undesired. In practice, the main issues are:
1. -To select the sub system modules so that they satisfy the requirements and so

that they can be us as ‘trusted components’
2. -To clearly and unambiguously define the interfaces.

Of course, this leads to a recursive process as this is the way to design trusted
sub systems from trusted ‘basic’ components. At each stage, the designer must
make trade-off decisions between what is supposed to be optimal and what is fea-
sible. This can ultimately result in a very costly (time- and resource-wise) process

© PROGRESS/STW: public version 1.0, 30 March 2002 169

if the wrong trade-offs have been made. Hence the need for simulation. As simu-
lation is done on ‘computers’ (another type of black boxes mainly designed to
execute crude simulations of a real- world entity), the CSP concepts come to res-
cue. It is sufficient to have a set of programming ‘tools/languages’ that can accu-
rately execute such a simulation of (concurrent) modules. Hence with a proper
selection of ‘programming/simulation’ tools, one can have ‘executable’ specifica-
tions and simulations that can even be used for the final implementation (if the
final implementation level of a given sub system component happens to be a com-
puting device).

While this black-box decomposition methodology provides for a ‘correct-by-
design’ approach, it also allows constructing systems in a bottom-up approach
with built-in testability. Of course, designing the basic component can be a much
more error-prone process, but once that achieved, it should be clear that the key to
this methodology is to separate the functional content from the interface content/
protocol. This is exactly what CSP is all about. Just like the ESR outlines, this
comes down to starting to work with well-defined (and standardised) interface
protocols. This is a bit in contrast with the current practice in e.g. SoC design
where the interfaces are even silicon technology dependent or defined in terms of
the electrical signals. If extrapolated, this will come down to defining a standard
electrical interface with a standardised ‘communication’ protocol. Note that e.g.
the telecommunication sector has already adopted such an approach (e.g. TCP/
IP), but that at some point this approach will need to be made universal. The
result should be a ‘plug-and-play’ connectivity with for most user level devices
the capability to ‘hot reconnect’. This in itself requires a higher- level protocol
and state monitoring of the ‘interface’ device. Such approaches already exist. E.g.
IEEE 1355 (pioneered from the INMOS transputer, itself a computing device
architected to mimic the CSP model). ESA has adopted this as ‘SpaceWire’ (add-
ing LVDS signalling) and is using it as the basis for on-board system architec-
tures (OHMA: Open Heterogeneous Module Architecture). SpaceWire is used to
connect computing processors between each other, with sensors, between boards
and even to mass memory devices. Also the industry, driven by the needs of the
telecommunications sector, has begun to adopt such architectures. The last one in
the row is StarFabric (PCIMG 2.17) that resembles IEEE 1355. The CompactPCI
industry is by the way a nice example of how things could evolve. This industry
has adopted a wide range of standards specifications at various levels and has
adopted a solid technology base to foster the re-use and integration of modules
developed by third parties. PCIMG3.X illustrates also the move away from the
bus and the adoption of a ‘switched fabric’ interconnect technology. Often what
is found at the board level, is introduced some time later at the SoC level when
the economics of the technology permit it.

Note that my view is not so optimistic as to the complementary need expressed
in the ESR report. This is the view that methodologies need to be developed to
enable re-use and integration of existing tools and components. While this is the-
oretically possible (like defined above, by developing interface adaptors or trans-
lators), this is often behest with problems and serious obstacles often at the
semantic level. Often current tools and components have rather restricted or ill-

Embedded Systems Roadmap 2002

170 30 March 2002

defined semantics (the embedded software industry is full of them, even if they
are so-called standards like POSIX or ADA). As these were not developed with
interfacing in mind, the inner semantics are often visible in their interfaces, hence
making that often impossible to match with semantics defined for another tool or
component. Developing a reliable and satisfactory system in such a way is often a
bad compromise in the best case and not necessarily faster than a development
from ‘scratch’.

5.3 Educational

The biggest challenge however for the ESR lies in the educational domain. As
such the ESR defines in fact an industrial process, not so much a technology.
While various tools can be developed to support this industrial process, it is first
of all to be executed by humans (who have skills and intelligence but also severe
limitations in adopting new «paradigms»). The key to this might be to radically
change the way «engineers» (but it applies equally well to many other classes of
the workforce) are educated. Part of the problem stems from the history where
«ex-cathedra» is seen as the most-efficient way to educate. The challenge is two-
fold: one the one hand one must work to develop the diverse engineering disci-
plines into a set of «predictable» methodologies (read: industrial processes),
while on the other hand experimentation and heuristics must allow the engineer
to make the right trade-off decision. To put it into perspective: a construction
engineer has tools to build bridges in a predictable way (the computer even does
the calculations for him).

On the other hand we are still not at a point where we have a clear qualification
for «software engineering», and certainly not for «system engineering». Think
here what also Prof. Hugo De Man often puts forward. The reason is that soft-
ware and system engineering are not fully understood disciplines. If one takes
into account that the ESR puts emphasis on these domains, we are in trouble. Our
view is that the engineering education can be greatly improved by re-introducing
two main areas of attention.

The first one is that engineering is first of all a domain that is full of experi-
mentation. First developing the crafts and skills (by experimentation) is more nat-
ural (see e.g. children learning to use a computer or speak their own language)
than learning a skill by having explained the theoretical model. However this
does not mean that the theoretical model is to be put aside. On the contrary, good
engineering (and this applies to many other domains as well) is based on what
one calls the «KISS» principle: Keep It Simple and Smart». This is for all those
who engineer things (e.g. such as our law makers). There is an alternative «Keep
It Simple and Stupid» that applies for the users. Designing a «thing» or «system»
means that when well done the resulting solution should be elegant and simple,
but this also means that the problem should be well understood. If the solution is
complex, often the problem domain was not well understood. (again this applies
to many other domains as well).

In order to develop these skills, engineers must go through a process whereby
they must acquire a solid and broad background know-how (to discover analo-
gies), the skills to analyse problems and to formulate requirements in an unam-

© PROGRESS/STW: public version 1.0, 30 March 2002 171

biguous way, to acquire craftsmanship and heuristic know-how to strengthen
their intuition. Therefore heuristic know-how and «background» know-how must
be complemented by an acquisition of the theoretical models that explain the
why’s and how’s. Therefore formal methods of reasoning must be developed to
acquire the skills to reduce a problem domain to its essential core. Such formali-
sation also helps to design-in reliability because it forces to think about the oper-
ating boundaries of the system. Given that we propose a CSP type approach, it
should be clear that formal reasoning is also important because the CSP approach
depends a lot on a formal and well defined interface behaviour between the sub
system components. The reliance on simulation also necessitates this, as a simu-
lation model is only as good as its specification. System engineering is the
culmination of all these skills. It brings together different domain skills at the
interface level. It requires background know-how on all the sub system modules
in order to make the right trade-off decisions (including economical ones).

This is well illustrated by the design of a PWA. It covers many aspects: first of
all, does it really serve a purpose (or is this just another experimental gadget?),
How is the man-machine interface? How can we design it to let it do what it is
supposed to do? How doe we keep it below a certain price cost? Is this even feasi-
ble? How do we solve the battery problem? How de we put it in an attractive
shape? How do we make it reliable? etc. At this level, a good system engineer
must be capable of traversing not only multiple domains (mechanical, electronic,
software, chemical, economical) that cover the specification level down to the
practical implementation details, he must also develop the skills to know what the
impact of many of his trade-off decisions will be.

A quite nice example of multi-disciplinary education is the seminar for first
year electronics students at KU Leuven entitled ‘Ontwerpseminarie H838:
Design of a People Mover’. Contact Hugo De Man for more information:
deman@imec.be.

We would like to illustrate the inadequateness of the current university educa-
tion, although there are of course many places (often ‘polytechnic’) where the
courses remedy this to some extend. E.g. a computer scientist, educated in a
mathematical mindset will often not even know how an ‘int’ looks like in the
hardware, or certainly not know that this depends on the executing processing
machine. On the other hand an electronics engineer, of which the majority ends
up writing software, will never have been trained in the formal reasoning methods
that computer scientists have been taught in. The result is that neither of them is
prepared to tackle the challenge of the ESR. The reason for this ‘chasm’ is partly
historical, partly the lack of flexibility in the government controlled education
systems (with professors being nominated for live, having barely a budget to
equip the labs and other things).

This brings me to the second important change that is needed: education and
training must become a lifetime occupation. The exponential advance of science
and technology poses severe dilemmas that impose on the one hand further spe-
cialisation, on the other hand information gathering from different domains to be
able to understand the ‘system’. This might lead to two classes of engineering:
(system) design on the one hand and system implementation on the other hand.

Embedded Systems Roadmap 2002

172 30 March 2002

Both require continuous re-training and re-education to be able to meet the needs
of the ESR.

5.4 Economic

To achieve the ESR, which is a medium to long-term objective, one must put in
place a complete supporting environment. The educational part of this is one of
the domains with the longest-term impact. But the speed of change (lifetimes of
one month) and the production volumes involved (widespread use) also indicate
that this industrial process will be or is very capital and know-how intensive. The
speed of change also entails rapid decisions and higher risk taking. Even if we
have an engineering force that is prepared to tackle the system-engineering task,
this must be tightly integrated in a business and social environment that is sup-
portive and capable of following. The challenges are manifold:
1. -Economic: does the environment provide capital and infrastructure in an ade-

quate way?
2. Social: does the (local) society accept this «rapid» change model?
3. -Human resources: does the (local) society provide the management skill sets

(e.g. marketing, financial management, …). Is there a pool to draw from?
It should be clear that the ESR challenges are not just technological. It can

only achieve leadership if the community supports it. Counter examples are e.g.
Japan, who clearly has the technology skills, but where management and power
positions are kept by an older generation that is risk and change averse. Another
example is China who developed the engineering skills and is open for rapid
changes, but where the society still has to develop the financial and business
backbone and the processes to put these skills at work. In this context, the aging
population in Europe could be a serious structural obstacle to change.

Using IP creates many economic challenges:
1. A sound business model, which challenges IP component builders to market,

sell, deliver and support the right components where domain experts are wait-
ing for.

2. An embedded software IP market, where IP components, consultancy, mainte-
nance and support can be sold. And where consumers and producers meet to
predict future needs.

3. Standardisation of API, architecture and external behaviour of a IP component
a. Intra process, inter process and inter processor communication.
b. Exception handling
c. Debugging facilities
d. Intra component verification and validation
e. Inter component verification and validation (JTAG like)
f. Interfacing with Real Time Operating system
g. Hooks for hot-swappable software

4. Standardised IP component data sheet
5. Standardised IP component test data sheet
6. Standardised IP component publishing mechanism (like a webring with tools)

© PROGRESS/STW: public version 1.0, 30 March 2002 173

5.5 Process

The above outlined methodology can be applied even today, but an efficient
implementation requires the availability and hence eventual development and
refinement of tools, standards and basic technologies and their working together
in well-structured processes.

Embedded Systems Roadmap 2002

174 30 March 2002

© PROGRESS/STW: public version 1.0, 30 March 2002 175

Appendix 6. Roadmapping: objectives, process and concepts

6.1 Introduction

The kind of technology roadmap that is presented in this document is a needs-
driven inventory of technological possibilities of the embedded systems domain
over time. This in contrast to classical product-technology and technology-push
roadmaps.

As instrument for technology planning and co-ordination a technology road-
map for a domain has the objective to deliver:
1. A common vision on future needs and developments of a domain
2. Guidance for directing R&D of technologies in a domain
3. A rationale for collaboration activities
4. A strategy for long-term investments
A roadmap may also contribute to creating a common terminology to ease com-
munication in a domain, and it may provide better ways to classify related work.

The process for obtaining a technology roadmap for a specific domain can
therefore be positioned between vision development for such a domain and strat-
egy definition for reaching defined goals in the domain by a research agenda or a
programme of projects. A technology roadmap helps both in setting goals for
technology development of a domain and in balancing off technology push argu-
ments in priority setting against user or market needs.

It is by now well known that roadmaps do not originate easily, but require a
carefully managed and facilitated process to come about, even now the methodol-
ogy is reasonably well established. See e.g. the EDAA and ITEA roadmaps.

In the sequel the major concepts of roadmaps and the required roadmapping
process are succinctly described.

Strategy and Program
• Program policy
• Program of projects
• Time span 1 - 3 years

• Consensus-based relations
between roadmap elements
“What, Why, When”

• Scenarios of rendezvous
• Time span: 5 to 10 years

Vision on domain

Strategy and
technology
planning

Connects needs and
possibilities
over time

User needs and
technology

expectations

 Vision on needs and goals

Roadmap

 Inventory of technologies and gaps

Embedded Systems Roadmap 2002

176 30 March 2002

6.2 The roadmapping process

The success of a roadmapping process depends to a large extent on a team of
project leader and facilitator or a facilitating project leader who can guide the
process and preferably has a general understanding of the domain. He will start
by interviewing the major stockholders to establish the purpose of the roadmap.
Thereafter he will outline the whole process, get an agreement with the stock-
holders on content and funding. Subsequently a Core-Team is formed, under
responsibility of the principal stockholder, to perform the iterative search and
learning process that making a roadmap is. Then execution follows with a
sequence of CT meetings and workshops. Intermediate workshops are organised
to add to the results and improve them where possible. It gives also an opportu-
nity to obtain consensus with a larger group of interested persons and to have the
results evaluated by independent experts.

6.3 Major concepts of roadmapping

A technology roadmap of the kind presented here looks quite far ahead: about 10
years. This poses the problem that not yet a market exists that can specify what is
needed. It is just too far out for that. This necessitates special methods and corre-
sponding processes to get sufficiently reliable information to base strategies on.
Scenario writing is used in combination with reframing techniques to assure this.

Scenarios are written about driving applications in a specific domain. A
domain is an area of interest in which products/services share certain characteris-
tics. A driving application is a product/service that challenges technology capa-
bilities in a domain to the utmost, even to the extent that it might imply the need
for not-yet existing technologies.

Orientation
meeting

“Why, how to
Roadmap?”

Core-Team
meetings

Meeting Notes
Draft Roadmap

Core-Team
meeting

Roadmapping process

Preparation
phase Construction phase

Workshop

Core-Team working environment

Core-Team
meetings

International
Verification
Workshop

Meeting Notes
Domain papers

Process
Plan

Roadmap
Version 1.0

Improvement
phase

© PROGRESS/STW: public version 1.0, 30 March 2002 177

The writing of scenarios is based on an exploration of user needs in that
domain for the driving application. User needs are the expression, in non-techni-
cal terms, of the wishes of (target groups of) end-users that may motivate a search
for fulfilment of these needs by product/service solutions in which technology
may play an important role. To come to a solution of interest to the user a vision
needs to be developed of how the fulfilment of user needs will evolve over time.
A vision is here a description of the common view on the practical evolution of
the major function characteristics of product/service solutions that fulfil (some
of) the user needs.

The result of all this is written down in domain papers. Domain papers embody
the vision in scenarios of rendezvous, in which a scenario is a sequence of events
and a rendezvous is an event where technologies meet that are necessary for the
emergence of a new generation of a product/service that fulfils a user need.

Characteristics of rendezvous:
1. At least two technologies are involved that need to converge in time
2. They can meet or miss
3. The outcome is uncertain: they can match or not
4. External events can influence outcome and success
Rendezvous are in a sense the equivalent of the milestones and deliverables of
projects. The uncertainty involved made it however necessary to introduce this
new concept.

The information in the domain papers is subsequently used in the roadmap.
This requires that first agreement is obtained about the structure of the roadmap.
Once agreed upon the domain paper information can be mapped into it. Next the
correct ordering of technologies and the identification of technology gaps is per-
formed. A series of interviews with experts is necessary to get a sufficiently
detailed view on what technology gaps really mean and what should be done
about them. Also an evaluation and checking with a group of international experts
is necessary to complete a first version of the ESR. This leads to a final session of
the Core-Team to conclude on its series of recommendations.

Embedded Systems Roadmap 2002

178 30 March 2002

