284 research outputs found

    A Golden Age of Hardware Description Languages: Applying Programming Language Techniques to Improve Design Productivity

    Get PDF
    Leading experts have declared that there is an impending golden age of computer architecture. During this age, the rate at which architects will be able to innovate will be directly tied to the design and implementation of the hardware description languages they use. Thus, the programming languages community stands on the critical path to this new golden age. This implies that we are also on the cusp of a golden age of hardware description languages. In this paper, we discuss the intellectual challenges facing researchers interested in hardware description language design, compilers, and formal methods. The major theme will be identifying opportunities to apply programming language techniques to address issues in hardware design productivity. Then, we present a vision for a multi-language system that provides a framework for developing solutions to these intellectual problems. This vision is based on a meta-programmed host language combined with a core embedded hardware description language that is used as the basis for the research and development of a sea of domain-specific languages. Central to the design of this system is the core language which is based on an abstraction that provides a general mechanism for the composition of hardware components described in any language

    Putting Operational Techniques to the Test: A Syntactic Theory for Behavioral Verilog

    Get PDF
    AbstractWe present a syntactic theory for the behavioral subset of the Verilog Hardware Description Language. Due to the complexity of the language, the construction of this theory represents a serious test of the suitability of syntactic operational techniques for reasoning about industrial languages. Overall, we have found that these techniques are rather robust but with a few caveats. Our theory formalizes the simulation cycle explicitly, exposes a number of ambiguities and inconsistencies in the language reference manual (LRM), and is the most accurate known description of this subset of Verilog, with respect to the LRM. The syntactic theory has been used to automatically derive a simulator for Verilog

    Proceedings of the 11th International Conference, TPHOLs’98 Canberra, Australia, September–October 1998. Supplementary Proceedings

    No full text
    Mechanical theorem provers for higher order logics have been successfully applied in many areas including hardware verification and synthesis; verification of security and communications protocols; software verification, transformation and refinement; compiler construction; and concurrency. The higher order logics used to reason about these problems and the underlying theorem prover technology that support them are also active areas of research. The International Conference on Theorem Proving in Higher Order Logics (TPHOLs) brings together people working in these and related areas for the discussion and dissemination of new ideas in the field. TPHOLs'98 continues the conference tradition of having both a completed work and work-in-progress stream. The Papers from the first stream were formally refereed, and published as volume 1479 of LNCS. This, supplementary, proceedings records work accepted under the work-in-progress category, and is intended to document emerging trends in higher-order logic research. Papers in the work-in-progress stream are vetted for relevance and contribution before acceptance. The work-in-progress stream is regarded as an important feature of the conference as it provides a venue for the presentation of ongoing research projects, where researchers invite discussion of preliminary results. Although the TPHOLs conferences have their genesis in meetings of the users of the HOL theorem proving system, each successive year has seen a higher rate of contribution from the other groups with similar goals, particularly the user communities of Coq, Isabelle, Lambda, Lego, NuPrl, and PVS. Since 1993 the proceedings have been published by Springer as volumes in Lecture Notes in Computer Science series. Bibliographic details of these publications can be found at the back of this book; more history of TPHOLs can be found with further information about the 1998 event at http://cs.anu.edu.au/TPHOLs98/.Conference Papers: Integrating TPS with Omega By Christoph Benzmuller and Volker Sorge Some Theorem Proving Aids By Paul E. Black and Phillip J. Windley Verification of the MDG Components Library in HOL By Paul Curzon, Sofiene Tahar, and Otmane Ait Mohamed Simulating Term-Rewriting in LPF and in Display Logic By Jeremy E. Dawson A Prototype Generic Tool Supporting the Embedding of Formal Notations By Andrew M. Gravell and Chris H. Pratten Embedding a Formal Notation: Experiences of Automating the Embedding of Z in the Higher Order Logics of PVS and HOL By Andrew M. Gravell and Chris H. Pratten Building HOL90 Everywhere Easily (Well Almost) By Elsa L. Gunter Program Composition in COQ-UNITY : By Francois Marques Formally Analysed Dynamic Synthesis of Hardware By Kong Woei Susanto and Tom Melham Requirements for a Simple Proof Checker By Geoffrey Watson Integrating HOL and RAISE: a practitioner's approach By Wai Wong and Karl R. P. H. Leung Effective Support for Mutually Recursive Types By Peter V. Homeie

    A Linear Logic Programming Language for Concurrent Programming over Graph Structures

    Full text link
    We have designed a new logic programming language called LM (Linear Meld) for programming graph-based algorithms in a declarative fashion. Our language is based on linear logic, an expressive logical system where logical facts can be consumed. Because LM integrates both classical and linear logic, LM tends to be more expressive than other logic programming languages. LM programs are naturally concurrent because facts are partitioned by nodes of a graph data structure. Computation is performed at the node level while communication happens between connected nodes. In this paper, we present the syntax and operational semantics of our language and illustrate its use through a number of examples.Comment: ICLP 2014, TPLP 201

    Towards composition of verified hardware devices

    Get PDF
    Computers are being used where no affordable level of testing is adequate. Safety and life critical systems must find a replacement for exhaustive testing to guarantee their correctness. Through a mathematical proof, hardware verification research has focused on device verification and has largely ignored system composition verification. To address these deficiencies, we examine how the current hardware verification methodology can be extended to verify complete systems

    HDL-based Synthesis of Reversible Circuits : A Scalable Design Approach

    Get PDF
    Reversible computing is a promising research field due to its applications in several emerging technologies. Accordingly, several approaches for the design of reversible circuits have been introduced. Hardware Description Languages approach scales better than other methodologies, however, its main drawback is substantial amounts of additional circuit lines. This dissertation is an important step towards an elaborated scalable design flow of reversible circuits. In which, HDL-based design of reversible circuit is optimised, with line-awareness considered as the main objective. A line-aware programming style for a dedicated reversible hardware description language SyReC is proposed. Another contribution is a line-aware computation of HDL expressions. Reversible circuits' synthesis from a conventional hardware description language (VHDL) is examined. Finally, syntactical extensions to the dedicated hardware description language SyReC are suggested

    An Enhanced Hardware Description Language Implementation for Improved Design-Space Exploration in High-Energy Physics Hardware Design

    Get PDF
    Detectors in High-Energy Physics (HEP) have increased tremendously in accuracy, speed and integration. Consequently HEP experiments are confronted with an immense amount of data to be read out, processed and stored. Originally low-level processing has been accomplished in hardware, while more elaborate algorithms have been executed on large computing farms. Field-Programmable Gate Arrays (FPGAs) meet HEP's need for ever higher real-time processing performance by providing programmable yet fast digital logic resources. With the fast move from HEP Digital Signal Processing (DSPing) applications into the domain of FPGAs, related design tools are crucial to realise the potential performance gains. This work reviews Hardware Description Languages (HDLs) in respect to the special needs present in the HEP digital hardware design process. It is especially concerned with the question, how features outside the scope of mainstream digital hardware design can be implemented efficiently into HDLs. It will argue that functional languages are especially suitable for implementation of domain-specific languages, including HDLs. Casestudies examining the implementation complexity of HEP-specific language extensions to the functional HDCaml HDL will prove the viability of the suggested approach

    Twenty years of rewriting logic

    Get PDF
    AbstractRewriting logic is a simple computational logic that can naturally express both concurrent computation and logical deduction with great generality. This paper provides a gentle, intuitive introduction to its main ideas, as well as a survey of the work that many researchers have carried out over the last twenty years in advancing: (i) its foundations; (ii) its semantic framework and logical framework uses; (iii) its language implementations and its formal tools; and (iv) its many applications to automated deduction, software and hardware specification and verification, security, real-time and cyber-physical systems, probabilistic systems, bioinformatics and chemical systems
    • …
    corecore