15,197 research outputs found

    Q-Strategy: A Bidding Strategy for Market-Based Allocation of Grid Services

    Get PDF
    The application of autonomous agents by the provisioning and usage of computational services is an attractive research field. Various methods and technologies in the area of artificial intelligence, statistics and economics are playing together to achieve i) autonomic service provisioning and usage of Grid services, to invent ii) competitive bidding strategies for widely used market mechanisms and to iii) incentivize consumers and providers to use such market-based systems. The contributions of the paper are threefold. First, we present a bidding agent framework for implementing artificial bidding agents, supporting consumers and providers in technical and economic preference elicitation as well as automated bid generation by the requesting and provisioning of Grid services. Secondly, we introduce a novel consumer-side bidding strategy, which enables a goal-oriented and strategic behavior by the generation and submission of consumer service requests and selection of provider offers. Thirdly, we evaluate and compare the Q-strategy, implemented within the presented framework, against the Truth-Telling bidding strategy in three mechanisms – a centralized CDA, a decentralized on-line machine scheduling and a FIFO-scheduling mechanisms

    Rational bidding using reinforcement learning: an application in automated resource allocation

    Get PDF
    The application of autonomous agents by the provisioning and usage of computational resources is an attractive research field. Various methods and technologies in the area of artificial intelligence, statistics and economics are playing together to achieve i) autonomic resource provisioning and usage of computational resources, to invent ii) competitive bidding strategies for widely used market mechanisms and to iii) incentivize consumers and providers to use such market-based systems. The contributions of the paper are threefold. First, we present a framework for supporting consumers and providers in technical and economic preference elicitation and the generation of bids. Secondly, we introduce a consumer-side reinforcement learning bidding strategy which enables rational behavior by the generation and selection of bids. Thirdly, we evaluate and compare this bidding strategy against a truth-telling bidding strategy for two kinds of market mechanisms – one centralized and one decentralized

    SLA-Oriented Resource Provisioning for Cloud Computing: Challenges, Architecture, and Solutions

    Full text link
    Cloud computing systems promise to offer subscription-oriented, enterprise-quality computing services to users worldwide. With the increased demand for delivering services to a large number of users, they need to offer differentiated services to users and meet their quality expectations. Existing resource management systems in data centers are yet to support Service Level Agreement (SLA)-oriented resource allocation, and thus need to be enhanced to realize cloud computing and utility computing. In addition, no work has been done to collectively incorporate customer-driven service management, computational risk management, and autonomic resource management into a market-based resource management system to target the rapidly changing enterprise requirements of Cloud computing. This paper presents vision, challenges, and architectural elements of SLA-oriented resource management. The proposed architecture supports integration of marketbased provisioning policies and virtualisation technologies for flexible allocation of resources to applications. The performance results obtained from our working prototype system shows the feasibility and effectiveness of SLA-based resource provisioning in Clouds.Comment: 10 pages, 7 figures, Conference Keynote Paper: 2011 IEEE International Conference on Cloud and Service Computing (CSC 2011, IEEE Press, USA), Hong Kong, China, December 12-14, 201

    A theoretical and computational basis for CATNETS

    Get PDF
    The main content of this report is the identification and definition of market mechanisms for Application Layer Networks (ALNs). On basis of the structured Market Engineering process, the work comprises the identification of requirements which adequate market mechanisms for ALNs have to fulfill. Subsequently, two mechanisms for each, the centralized and the decentralized case are described in this document. These build the theoretical foundation for the work within the following two years of the CATNETS project. --Grid Computing

    InterCloud: Utility-Oriented Federation of Cloud Computing Environments for Scaling of Application Services

    Full text link
    Cloud computing providers have setup several data centers at different geographical locations over the Internet in order to optimally serve needs of their customers around the world. However, existing systems do not support mechanisms and policies for dynamically coordinating load distribution among different Cloud-based data centers in order to determine optimal location for hosting application services to achieve reasonable QoS levels. Further, the Cloud computing providers are unable to predict geographic distribution of users consuming their services, hence the load coordination must happen automatically, and distribution of services must change in response to changes in the load. To counter this problem, we advocate creation of federated Cloud computing environment (InterCloud) that facilitates just-in-time, opportunistic, and scalable provisioning of application services, consistently achieving QoS targets under variable workload, resource and network conditions. The overall goal is to create a computing environment that supports dynamic expansion or contraction of capabilities (VMs, services, storage, and database) for handling sudden variations in service demands. This paper presents vision, challenges, and architectural elements of InterCloud for utility-oriented federation of Cloud computing environments. The proposed InterCloud environment supports scaling of applications across multiple vendor clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that federated Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 20 pages, 4 figures, 3 tables, conference pape
    • …
    corecore