81 research outputs found

    Realistic deployment of hybrid wireless sensor networks based on ZigBee and LoRa for search and rescue applications

    Get PDF
    Search and Rescue operations in emergency response to natural or human catastrophes have the main objective of locating and rescuing potential victims as fast as possible, thus quick response and accurate actions are mandatory. While standard communications may be affected, a Wireless Sensor Network can be deployed to support the rescue team. This kind of network allows data acquisition close to events and enables persistence over time, among other advantages. However, enhancements must be made to improve the adaptation to this kind of scenario. This work presents two Hybrid Wireless Sensor Networks, based on ZigBee and LoRa, developed to address some of the challenges that Search and Rescue operations pose to the use of Wireless Sensor Networks, and tested in realistic scenarios in cooperation with first responders. Likewise, several software developments that increase the performance of the networks are described. Finally, the conclusions presented, and the lessons learnt are supported by a high amount of data, gathered in realistic exercises in cooperation with civilian and military first responders.Spanish Project RTI2018-093421-B-I0

    Investigation of Pre-evacuation and Wayfinding Behaviors Impacts using Agent-Based Simulation for Smart Evacuation Technology.

    Get PDF
    Despite significant safety improvements, the mining industry remains one of the most hazardous occupations globally and the evacuation of Miners, when an uncontrollable incident occurs in the mine, is the best bet to saving lives. However, Human factors/behaviors during an emergency are likely to influence the evacuation performance. Other industries have made a significant effort to determine these human factors that can impede evacuation performance, however, the current state-of-the-art in mine evacuation or self-rescue is that the evacuation route is predetermined, and a static sign is used to direct miners to the predetermined safe location. This method is limited in representing actual conditions that arise in a real emergency, neglecting the different behaviors displayed by humans. As optimization of the evacuation of a mine plays a fundamental role in emergencies and modelling evacuation behavior and movement of miners is a complex task, this research utilized Agent-Based simulations to simulate the evacuation behavior and performance. It was observed that people with the smart evacuation device made evacuated faster than the passive signage scenario and chaotic scenario. It is imperative to consider the impact of pre-evacuation and wayfinding behavior of people when designing the evacuation protocols

    Análisis urbano y comunidades inteligentes: “una aproximación al empleo de la tecnología en la movilidad cotidiana”

    Get PDF
    Concentration of population in urban centers is a global problem for which different strategies in order to organize different processes in cities and improve the quality of life are required. The creation of smart communities is shown as a sustainable solution since they deal with various key aspects, such as traffc management and mobility, through the use of information technologies (ITs). This work presents a review of recent studies using information technologies for urban analysis and mobility in cities. A descriptive analysis of automated methods for collecting and analyzing citizens’ mobility patterns is performed; it is centered in smart card use, geolocation and geotagging. It is concluded that a robust communication infrastructure, supported by an effcient computational platform allowing big data management and ubiquitous computing, is a crucial aspect for urban management in a smart community.La concentración de la población en los centros urbanos es una problemática mundial que requiere de estrategias que permitan organizar sus procesos y mejorar la calidad de vida. La creación de comunidades inteligentes se muestra como una solución sostenible, debido a que éstas trabajan aspectos claves para el desarrollo urbano, como la gestión de tráfco y la movilidad, apoyada en las tecnologías de la información (TICs). Este trabajo presenta una revisión del estado del arte en cuanto a la aplicación de las TICs al análisis urbano y movilidad ciudadana. Se analizan descriptivamente diversos métodos automáticos para la recolección y el análisis del patrón de movilidad de los ciudadanos, enfocándose en el uso de tarjetas inteligentes, geolocalización y geoetiquetado. Se encuentra que una infraestructura de comunicaciones robusta, apoyada en una plataforma computacional ágil con manejo de grandes datos y computación ubicua, es primordial para la gestión urbana en una comunidad inteligente

    CMOS Image Sensors in Surveillance System Applications

    Get PDF
    Recent technology advances in CMOS image sensors (CIS) enable their utilization in the most demanding of surveillance fields, especially visual surveillance and intrusion detection in intelligent surveillance systems, aerial surveillance in war zones, Earth environmental surveillance by satellites in space monitoring, agricultural monitoring using wireless sensor networks and internet of things and driver assistance in automotive fields. This paper presents an overview of CMOS image sensor-based surveillance applications over the last decade by tabulating the design characteristics related to image quality such as resolution, frame rate, dynamic range, signal-to-noise ratio, and also processing technology. Different models of CMOS image sensors used in all applications have been surveyed and tabulated for every year and application.https://doi.org/10.3390/s2102048

    Evolution of RFID applications in construction:A literature review

    Get PDF
    Radio frequency identification (RFID) technology has been widely used in the field of construction during the last two decades. Basically, RFID facilitates the control on a wide variety of processes in different stages of the lifecycle of a building, from its conception to its inhabitance. The main objective of this paper is to present a review of RFID applications in the construction industry, pointing out the existing developments, limitations and gaps. The paper presents the establishment of the RFID technology in four main stages of the lifecycle of a facility: planning and design, construction and commission and operation and maintenance. Concerning this last stage, an RFID application aiming to facilitate the identification of pieces of furniture in scanned inhabited environments is presented. Conclusions and future advances are presented at the end of the paper

    Development of cooperative behavioural model for autonomous multi-robots system deployed to underground mines

    Get PDF
    The number of disasters that occur in underground mine environments monthly all over the world cannot be ignored. Some of these disasters for instance are roof-falls; explosions, toxic gas inhalation, in-mine vehicle accidents, etc. can cause fatalities and/or disabilities. However, when such accidents happen during mining operations, rescuers find it difficult to respond to it immediately. This creates the necessity to bridge the gap between the lives of miners and the product acquired from the underground mines by using multi-robot systems. This thesis proposes an autonomous multi-robot cooperative behavioural model that can help to guide multi-robots in pre-entry safety inspection of underground mines. A hybrid swarm intelligent model termed, QLACS, that is based on Q-Learning (QL) and the Ant Colony System (ACS) is proposed to achieve cooperative behaviour in a MRS. The intelligent model was developed by harnessing the strengths of both QL and ACS algorithms. The ACS is used to optimize the routes used for each robot while the QL algorithm is used to enhance cooperation among the autonomous robots. The communication within the QLACS model for cooperative behavioural purposes is varied. The performance of the algorithms in terms of communication was evaluated by using a simulation approach. An investigation is conducted on the evaluation/scalability of the model using the different numbers of robots. Simulation results show that the methods proposed in this thesis achieved cooperative behaviour among the robots better than state-of-the-art or other common approaches. Using time and memory consumption as performance metrics, the results reveal that the proposed model can guide two, three and up to four robots to achieve efficient cooperative inspection behaviour in underground terrains

    Sensors and Technologies in Spain: State-of-the-Art

    Get PDF
    The aim of this special issue was to provide a comprehensive view on the state-of-the-art sensor technology in Spain. Different problems cause the appearance and development of new sensor technologies and vice versa, the emergence of new sensors facilitates the solution of existing real problems. [...

    Sensor Networks and Their Applications: Investigating the Role of Sensor Web Enablement

    Get PDF
    The Engineering Doctorate (EngD) was conducted in conjunction with BT Research on state-of-the-art Wireless Sensor Network (WSN) projects. The first area of work is a literature review of WSN project applications, some of which the author worked on as a BT Researcher based at the world renowned Adastral Park Research Labs in Suffolk (2004-09). WSN applications are examined within the context of Machine-to-Machine (M2M); Information Networking (IN); Internet/Web of Things (IoT/WoT); smart home and smart devices; BT’s 21st Century Network (21CN); Cloud Computing; and future trends. In addition, this thesis provides an insight into the capabilities of similar external WSN project applications. Under BT’s Sensor Virtualization project, the second area of work focuses on building a Generic Architecture for WSNs with reusable infrastructure and ‘infostructure’ by identifying and trialling suitable components, in order to realise actual business benefits for BT. The third area of work focuses on the Open Geospatial Consortium (OGC) standards and their Sensor Web Enablement (SWE) initiative. The SWE framework was investigated to ascertain its potential as a component of the Generic Architecture. BT’s SAPHE project served as a use case. BT Research’s experiences of taking this traditional (vertical) stove-piped application and creating SWE compliant services are described. The author’s findings were originally presented in a series of publications and have been incorporated into this thesis along with supplementary WSN material from BT Research projects. SWE 2.0 specifications are outlined to highlight key improvements, since work began at BT with SWE 1.0. The fourth area of work focuses on Complex Event Processing (CEP) which was evaluated to ascertain its potential for aggregating and correlating the shared project sensor data (‘infostructure’) harvested and for enabling data fusion for WSNs in diverse domains. Finally, the conclusions and suggestions for further work are provided

    Dense and long-term monitoring of Earth surface processes with passive RFID -- a review

    Full text link
    Billions of Radio-Frequency Identification (RFID) passive tags are produced yearly to identify goods remotely. New research and business applications are continuously arising, including recently localization and sensing to monitor earth surface processes. Indeed, passive tags can cost 10 to 100 times less than wireless sensors networks and require little maintenance, facilitating years-long monitoring with ten's to thousands of tags. This study reviews the existing and potential applications of RFID in geosciences. The most mature application today is the study of coarse sediment transport in rivers or coastal environments, using tags placed into pebbles. More recently, tag localization was used to monitor landslide displacement, with a centimetric accuracy. Sensing tags were used to detect a displacement threshold on unstable rocks, to monitor the soil moisture or temperature, and to monitor the snowpack temperature and snow water equivalent. RFID sensors, available today, could monitor other parameters, such as the vibration of structures, the tilt of unstable boulders, the strain of a material, or the salinity of water. Key challenges for using RFID monitoring more broadly in geosciences include the use of ground and aerial vehicles to collect data or localize tags, the increase in reading range and duration, the ability to use tags placed under ground, snow, water or vegetation, and the optimization of economical and environmental cost. As a pattern, passive RFID could fill a gap between wireless sensor networks and manual measurements, to collect data efficiently over large areas, during several years, at high spatial density and moderate cost.Comment: Invited paper for Earth Science Reviews. 50 pages without references. 31 figures. 8 table

    Applications of Satellite Earth Observations section - NEODAAS: Providing satellite data for efficient research

    Get PDF
    The NERC Earth Observation Data Acquisition and Analysis Service (NEODAAS) provides a central point of Earth Observation (EO) satellite data access and expertise for UK researchers. The service is tailored to individual users’ requirements to ensure that researchers can focus effort on their science, rather than struggling with correct use of unfamiliar satellite data
    corecore