5 research outputs found

    A trust evaluation scheme of service providers in mobile edge computing

    Get PDF
    Mobile edge computing (MEC) is a new computing paradigm that brings cloud services to the network edge. Despite its great need in terms of computational services in daily life, service users may have several concerns while selecting a suitable service provider to fulfil their computational requirements. Such concerns are: with whom they are dealing with, where will their private data migrate to, service provider processing performance quality. Therefore, this paper presents a trust evaluation scheme that evaluates the processing performance of a service provider in the MEC environment. Processing performance of service providers is evaluated in terms of average processing success rate and processing throughput, thus allocating a service provider in a relevant trust status. Service provider processing incompliance and user termination ratio are also computed during provider’s interactions with users. This is in an attempt to help future service users to be acknowledged of service provider’s past interactions prior dealing with it. Thus, eliminating the probability of existing compromised service providers and raising the security and success of future interactions between service providers and users. Simulations results show service providers processing performance degree, processing incompliance and user termination ratio. A service provider is allocated to a trust status according to the evaluated processing performance trust degree

    LDAKM-EIoT: Lightweight Device Authentication and Key Management Mechanism for Edge-Based IoT Deployment

    Get PDF
    In recent years, edge computing has emerged as a new concept in the computing paradigm that empowers several future technologies, such as 5G, vehicle-to-vehicle communications, and the Internet of Things (IoT), by providing cloud computing facilities, as well as services to the end users. However, open communication among the entities in an edge based IoT environment makes it vulnerable to various potential attacks that are executed by an adversary. Device authentication is one of the prominent techniques in security that permits an IoT device to authenticate mutually with a cloud server with the help of an edge node. If authentication is successful, they establish a session key between them for secure communication. To achieve this goal, a novel device authentication and key management mechanism for the edge based IoT environment, called the lightweight authentication and key management scheme for the edge based IoT environment (LDAKM-EIoT), was designed. The detailed security analysis and formal security verification conducted by the widely used Automated Validation of Internet Security Protocols and Applications (AVISPA) tool prove that the proposed LDAKM-EIoT is secure against several attack vectors that exist in the infrastructure of the edge based IoT environment. The elaborated comparative analysis of the proposed LDAKM-EIoT and different closely related schemes provides evidence that LDAKM-EIoT is more secure with less communication and computation costs. Finally, the network performance parameters are calculated and analyzed using the NS2 simulation to demonstrate the practical facets of the proposed LDAKM-EIoT

    A Reliable and Lightweight Trust Computing Mechanism for IoT Edge Devices Based on Multi-Source Feedback Information Fusion

    No full text
    corecore