61 research outputs found

    Building Embodied Conversational Agents:Observations on human nonverbal behaviour as a resource for the development of artificial characters

    Get PDF
    "Wow this is so cool!" This is what I most probably yelled, back in the 90s, when my first computer program on our MSX computer turned out to do exactly what I wanted it to do. The program contained the following instruction: COLOR 10(1.1) After hitting enter, it would change the screen color from light blue to dark yellow. A few years after that experience, Microsoft Windows was introduced. Windows came with an intuitive graphical user interface that was designed to allow all people, so also those who would not consider themselves to be experienced computer addicts, to interact with the computer. This was a major step forward in human-computer interaction, as from that point forward no complex programming skills were required anymore to perform such actions as adapting the screen color. Changing the background was just a matter of pointing the mouse to the desired color on a color palette. "Wow this is so cool!". This is what I shouted, again, 20 years later. This time my new smartphone successfully skipped to the next song on Spotify because I literally told my smartphone, with my voice, to do so. Being able to operate your smartphone with natural language through voice-control can be extremely handy, for instance when listening to music while showering. Again, the option to handle a computer with voice instructions turned out to be a significant optimization in human-computer interaction. From now on, computers could be instructed without the use of a screen, mouse or keyboard, and instead could operate successfully simply by telling the machine what to do. In other words, I have personally witnessed how, within only a few decades, the way people interact with computers has changed drastically, starting as a rather technical and abstract enterprise to becoming something that was both natural and intuitive, and did not require any advanced computer background. Accordingly, while computers used to be machines that could only be operated by technically-oriented individuals, they had gradually changed into devices that are part of many people’s household, just as much as a television, a vacuum cleaner or a microwave oven. The introduction of voice control is a significant feature of the newer generation of interfaces in the sense that these have become more "antropomorphic" and try to mimic the way people interact in daily life, where indeed the voice is a universally used device that humans exploit in their exchanges with others. The question then arises whether it would be possible to go even one step further, where people, like in science-fiction movies, interact with avatars or humanoid robots, whereby users can have a proper conversation with a computer-simulated human that is indistinguishable from a real human. An interaction with a human-like representation of a computer that behaves, talks and reacts like a real person would imply that the computer is able to not only produce and understand messages transmitted auditorily through the voice, but also could rely on the perception and generation of different forms of body language, such as facial expressions, gestures or body posture. At the time of writing, developments of this next step in human-computer interaction are in full swing, but the type of such interactions is still rather constrained when compared to the way humans have their exchanges with other humans. It is interesting to reflect on how such future humanmachine interactions may look like. When we consider other products that have been created in history, it sometimes is striking to see that some of these have been inspired by things that can be observed in our environment, yet at the same do not have to be exact copies of those phenomena. For instance, an airplane has wings just as birds, yet the wings of an airplane do not make those typical movements a bird would produce to fly. Moreover, an airplane has wheels, whereas a bird has legs. At the same time, an airplane has made it possible for a humans to cover long distances in a fast and smooth manner in a way that was unthinkable before it was invented. The example of the airplane shows how new technologies can have "unnatural" properties, but can nonetheless be very beneficial and impactful for human beings. This dissertation centers on this practical question of how virtual humans can be programmed to act more human-like. The four studies presented in this dissertation all have the equivalent underlying question of how parts of human behavior can be captured, such that computers can use it to become more human-like. Each study differs in method, perspective and specific questions, but they are all aimed to gain insights and directions that would help further push the computer developments of human-like behavior and investigate (the simulation of) human conversational behavior. The rest of this introductory chapter gives a general overview of virtual humans (also known as embodied conversational agents), their potential uses and the engineering challenges, followed by an overview of the four studies

    Building Embodied Conversational Agents:Observations on human nonverbal behaviour as a resource for the development of artificial characters

    Get PDF
    "Wow this is so cool!" This is what I most probably yelled, back in the 90s, when my first computer program on our MSX computer turned out to do exactly what I wanted it to do. The program contained the following instruction: COLOR 10(1.1) After hitting enter, it would change the screen color from light blue to dark yellow. A few years after that experience, Microsoft Windows was introduced. Windows came with an intuitive graphical user interface that was designed to allow all people, so also those who would not consider themselves to be experienced computer addicts, to interact with the computer. This was a major step forward in human-computer interaction, as from that point forward no complex programming skills were required anymore to perform such actions as adapting the screen color. Changing the background was just a matter of pointing the mouse to the desired color on a color palette. "Wow this is so cool!". This is what I shouted, again, 20 years later. This time my new smartphone successfully skipped to the next song on Spotify because I literally told my smartphone, with my voice, to do so. Being able to operate your smartphone with natural language through voice-control can be extremely handy, for instance when listening to music while showering. Again, the option to handle a computer with voice instructions turned out to be a significant optimization in human-computer interaction. From now on, computers could be instructed without the use of a screen, mouse or keyboard, and instead could operate successfully simply by telling the machine what to do. In other words, I have personally witnessed how, within only a few decades, the way people interact with computers has changed drastically, starting as a rather technical and abstract enterprise to becoming something that was both natural and intuitive, and did not require any advanced computer background. Accordingly, while computers used to be machines that could only be operated by technically-oriented individuals, they had gradually changed into devices that are part of many people’s household, just as much as a television, a vacuum cleaner or a microwave oven. The introduction of voice control is a significant feature of the newer generation of interfaces in the sense that these have become more "antropomorphic" and try to mimic the way people interact in daily life, where indeed the voice is a universally used device that humans exploit in their exchanges with others. The question then arises whether it would be possible to go even one step further, where people, like in science-fiction movies, interact with avatars or humanoid robots, whereby users can have a proper conversation with a computer-simulated human that is indistinguishable from a real human. An interaction with a human-like representation of a computer that behaves, talks and reacts like a real person would imply that the computer is able to not only produce and understand messages transmitted auditorily through the voice, but also could rely on the perception and generation of different forms of body language, such as facial expressions, gestures or body posture. At the time of writing, developments of this next step in human-computer interaction are in full swing, but the type of such interactions is still rather constrained when compared to the way humans have their exchanges with other humans. It is interesting to reflect on how such future humanmachine interactions may look like. When we consider other products that have been created in history, it sometimes is striking to see that some of these have been inspired by things that can be observed in our environment, yet at the same do not have to be exact copies of those phenomena. For instance, an airplane has wings just as birds, yet the wings of an airplane do not make those typical movements a bird would produce to fly. Moreover, an airplane has wheels, whereas a bird has legs. At the same time, an airplane has made it possible for a humans to cover long distances in a fast and smooth manner in a way that was unthinkable before it was invented. The example of the airplane shows how new technologies can have "unnatural" properties, but can nonetheless be very beneficial and impactful for human beings. This dissertation centers on this practical question of how virtual humans can be programmed to act more human-like. The four studies presented in this dissertation all have the equivalent underlying question of how parts of human behavior can be captured, such that computers can use it to become more human-like. Each study differs in method, perspective and specific questions, but they are all aimed to gain insights and directions that would help further push the computer developments of human-like behavior and investigate (the simulation of) human conversational behavior. The rest of this introductory chapter gives a general overview of virtual humans (also known as embodied conversational agents), their potential uses and the engineering challenges, followed by an overview of the four studies

    Modeling Speaker-Listener Interaction for Backchannel Prediction

    Full text link
    We present our latest findings on backchannel modeling novelly motivated by the canonical use of the minimal responses Yeah and Uh-huh in English and their correspondent tokens in German, and the effect of encoding the speaker-listener interaction. Backchanneling theories emphasize the active and continuous role of the listener in the course of the conversation, their effects on the speaker's subsequent talk, and the consequent dynamic speaker-listener interaction. Therefore, we propose a neural-based acoustic backchannel classifier on minimal responses by processing acoustic features from the speaker speech, capturing and imitating listeners' backchanneling behavior, and encoding speaker-listener interaction. Our experimental results on the Switchboard and GECO datasets reveal that in almost all tested scenarios the speaker or listener behavior embeddings help the model make more accurate backchannel predictions. More importantly, a proper interaction encoding strategy, i.e., combining the speaker and listener embeddings, leads to the best performance on both datasets in terms of F1-score.Comment: Published in IWSDS 202

    Automatic Prediction Of Small Group Performance In Information Sharing Tasks

    Get PDF
    In this paper, we describe a novel approach, based on Markov jump processes, to model small group conversational dynamics and to predict small group performance. More precisely, we estimate conversational events such as turn taking, backchannels, turn-transitions at the micro-level (1 minute windows) and then we bridge the micro-level behavior and the macro-level performance. We tested our approach with a cooperative task, the Information Sharing task, and we verified the relevance of micro- level interaction dynamics in determining a good group performance (e.g. higher speaking turns rate and more balanced participation among group members).Comment: Presented at Collective Intelligence conference, 2012 (arXiv:1204.2991

    Quantifying the interplay of conversational devices in building mutual understanding

    Get PDF
    Humans readily engage in idle chat and heated discussions and negotiate tough joint decisions without ever having to think twice about how to keep the conversation grounded in mutual understanding. However, current attempts at identifying and assessing the conversational devices that make this possible are fragmented across disciplines and investigate single devices within single contexts. We present a comprehensive conceptual framework to investigate conversational devices, their relations, and how they adjust to contextual demands. In two corpus studies, we systematically test the role of three conversational devices: backchannels, repair, and linguistic entrainment. Contrasting affiliative and task-oriented conversations within participants, we find that conversational devices adaptively adjust to the increased need for precision in the latter: We show that low-precision devices such as backchannels are more frequent in affiliative conversations, whereas more costly but higher-precision mechanisms, such as specific repairs, are more frequent in task-oriented conversations. Further, task-oriented conversations involve higher complementarity of contributions in terms of the content and perspective: lower semantic entrainment and less frequent (but richer) lexical and syntactic entrainment. Finally, we show that the observed variations in the use of conversational devices are potentially adaptive: pairs of interlocutors that show stronger linguistic complementarity perform better across the two tasks. By combining motivated comparisons of several conversational contexts and theoretically informed computational analyses of empirical data the present work lays the foundations for a comprehensive conceptual framework for understanding the use of conversational devices in dialogue

    Tailoring Interaction. Sensing Social Signals with Textiles.

    Get PDF
    Nonverbal behaviour is an important part of conversation and can reveal much about the nature of an interaction. It includes phenomena ranging from large-scale posture shifts to small scale nods. Capturing these often spontaneous phenomena requires unobtrusive sensing techniques that do not interfere with the interaction. We propose an underexploited sensing modality for sensing nonverbal behaviours: textiles. As a material in close contact with the body, they provide ubiquitous, large surfaces that make them a suitable soft interface. Although the literature on nonverbal communication focuses on upper body movements such as gestures, observations of multi-party, seated conversations suggest that sitting postures, leg and foot movements are also systematically related to patterns of social interaction. This thesis addressees the following questions: Can the textiles surrounding us measure social engagement? Can they tell who is speaking, and who, if anyone, is listening? Furthermore, how should wearable textile sensing systems be designed and what behavioural signals could textiles reveal? To address these questions, we have designed and manufactured bespoke chairs and trousers with integrated textile pressure sensors, that are introduced here. The designs are evaluated in three user studies that produce multi-modal datasets for the exploration of fine-grained interactional signals. Two approaches to using these bespoke textile sensors are explored. First, hand crafted sensor patches in chair covers serve to distinguish speakers and listeners. Second, a pressure sensitive matrix in custom-made smart trousers is developed to detect static sitting postures, dynamic bodily movement, as well as basic conversational states. Statistical analyses, machine learning approaches, and ethnographic methods show that by moni- toring patterns of pressure change alone it is possible to not only classify postures with high accuracy, but also to identify a wide range of behaviours reliably in individuals and groups. These findings es- tablish textiles as a novel, wearable sensing system for applications in social sciences, and contribute towards a better understanding of nonverbal communication, especially the significance of posture shifts when seated. If chairs know who is speaking, if our trousers can capture our social engagement, what role can smart textiles have in the future of human interaction? How can we build new ways to map social ecologies and tailor interactions

    The significance of silence. Long gaps attenuate the preference for ‘yes’ responses in conversation.

    Get PDF
    In conversation, negative responses to invitations, requests, offers and the like more often occur with a delay – conversation analysts talk of them as dispreferred. Here we examine the contrastive cognitive load ‘yes’ and ‘no’ responses make, either when given relatively fast (300 ms) or delayed (1000 ms). Participants heard minidialogues, with turns extracted from a spoken corpus, while having their EEG recorded. We find that a fast ‘no’ evokes an N400-effect relative to a fast ‘yes’, however this contrast is not present for delayed responses. This shows that an immediate response is expected to be positive – but this expectation disappears as the response time lengthens because now in ordinary conversation the probability of a ‘no’ has increased. Additionally, however, 'No' responses elicit a late frontal positivity both when they are fast and when they are delayed. Thus, regardless of the latency of response, a ‘no’ response is associated with a late positivity, since a negative response is always dispreferred and may require an account. Together these results show that negative responses to social actions exact a higher cognitive load, but especially when least expected, as an immediate response
    • …
    corecore