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Abstract

Nonverbal behaviour is an important part of conversation and can reveal much about the nature

of an interaction. It includes phenomena ranging from large-scale posture shifts to small scale nods.

Capturing these often spontaneous phenomena requires unobtrusive sensing techniques that do not

interfere with the interaction. We propose an underexploited sensing modality for sensing nonverbal

behaviours: textiles. As a material in close contact with the body, they provide ubiquitous, large

surfaces that make them a suitable soft interface.

Although the literature on nonverbal communication focuses on upper body movements such as

gestures, observations of multi-party, seated conversations suggest that sitting postures, leg and foot

movements are also systematically related to patterns of social interaction. This thesis addressees

the following questions: Can the textiles surrounding us measure social engagement? Can they tell

who is speaking, and who, if anyone, is listening? Furthermore, how should wearable textile sensing

systems be designed and what behavioural signals could textiles reveal?

To address these questions, we have designed and manufactured bespoke chairs and trousers

with integrated textile pressure sensors, that are introduced here. The designs are evaluated in

three user studies that produce multi-modal datasets for the exploration of fine-grained interactional

signals. Two approaches to using these bespoke textile sensors are explored. First, hand crafted

sensor patches in chair covers serve to distinguish speakers and listeners. Second, a pressure sensitive

matrix in custom-made smart trousers is developed to detect static sitting postures, dynamic bodily

movement, as well as basic conversational states.

Statistical analyses, machine learning approaches, and ethnographic methods show that by moni-

toring patterns of pressure change alone it is possible to not only classify postures with high accuracy,

but also to identify a wide range of behaviours reliably in individuals and groups. These findings es-

tablish textiles as a novel, wearable sensing system for applications in social sciences, and contribute

towards a better understanding of nonverbal communication, especially the significance of posture

shifts when seated. If chairs know who is speaking, if our trousers can capture our social engagement,

what role can smart textiles have in the future of human interaction? How can we build new ways

to map social ecologies and tailor interactions?
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Chapter 1

Introduction

1.1 Personal Statement

A good designer is a good observer. This is what is taught in many fashion design courses - what I

was taught as a fashion design student for more than a decade. A skill that I have developed for the

purpose of identifying, translating and processing trends for the design of textile structures, pattern

constructions, and collections of menswear and womenswear, and a skill that I have come to apply for

conversation analysis, identifying patterns of human behaviour. Previously, I used tools and methods

of fashion design to bridge to other disciplines, too. In my design work, knitting structures resembled

prime number or Fibonacci rows, mathematical formula were applied to the geometric construction

of a garment pattern to create volume, or the concept of a mathematical proof was presented as a

performative concept of a garment collection.

My personal motivation to undertake this research journey comes from an interest in multiple

disciplines and the challenge to connect them where possible, exploring whether one field of study

or design practice can inform another. This interest has also guided me through my academic and

industry endeavours, working as a tailoring manager before starting this PhD, studying mathematics

prior to that, and studying and working in fashion prior to that. This motivation and appeal to

interdisciplinary approaches stems, amongst other influences, from the Renaissance and Baroque

era, when natural sciences, humanities and design was intertwined in fundamental ways, enabling a

golden era of technical and philosophical innovations that still shape our societies today.

Here, I am a fashion designer in a computer science department, part of a cognitive science

research lab, investigating social interaction. In the past, I had the role of a mathematician doing

fashion, and a knitwear technologist studying mathematics. Therefore, the hands and mind authoring

this thesis, that has been submitted as part of the Media & Arts Technology programme within a

School of Computer Science and Engineering, bring a variety of disciplines with them. I have pursued

this PhD to explore the potential of these disciplines informing, challenging and benefiting from each

other, and aiming to use the knowledge acquired from textile and garment construction and design

to eventually dissect the embodiment of social behaviour.

On the notion of dissection, the drawing below illustrates a metaphor that I have created during

the observations and analyses on the display of postural body movements during social interactions,

and the display of (wearable) technology and its components in designs for ubiquitous computing.

The drawing shows a simplified tailored suit jacket - one of the most complex items of clothing to

construct and make, but with a desire to appear effortlessly ever since its ‘invention’. The left side
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of the drawing shows how a suit jacket looks when completed and worn, while the right side shows

the pattern construction and inner lining (not including all parts actually needed), concealing what

is the fundamental part of the system for it to achieve its desired form. Translated to the study of

human behaviour: the left side, a glance at a conversation, a social encounter; and the right side, the

collaborating components of verbal and nonverbal, not always visible signals determining the nature

of the encounter, its form.

In that sense, another statement echoing from the lessons of my design and technology courses,

and that can be transformed into a metaphorical statement on dissecting social interaction: A good

designer is a good pattern cutter.

Figure 1.1: The visible (left) and concealed (right) parts of a tailored suit jacket.

1.2 Research Motivation

Textiles are an interface we have been familiar with for thousands of years, often in the form of, but not

bound to clothing. Seen as an extension of our skin, they are used to culturally and socially express

ourselves. The fabrics we wear on our body already function as tools of nonverbal communication.

Together with biomechanical cues like gestures, gaze and posture, nonverbal signals make up a large

part of human interaction and contain detailed information about the nature of a conversation. From

signals elicited through clothing, economical, political, cultural information can be retrieved, while

from nonverbal bodily signals, we can tell, whether an interaction is friendly or confrontational, what

the social relation between interactants is, whether people are interested or bored and often who or

what they are talking about.

We use spatial orientation, gestures and postural shifts to manage speaker turns, mark topic

shifts, and to signal attitude and affect (Kendon, 1990b; Schegloff, 1998; Bull, 2016; D’Mello et al.,

2007a), while head movement provide listener feedback (Bavelas et al., 1992). Many of these signals

derive from the upper body, which has been studied extensively in the last decades. However, the

lower body is potentially rich in social cues, too (Schegloff, 1998). Postures such as leg crossing or

stretching can be signals of perceived behaviours and emotions (Bull, 2016), and can contribute to
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affect detection (Cassell et al., 2001). In comparison to identified embodied social signals, the lower

body is rarely attended.

Sensing sometimes subtle nonverbal cues can be challenging. These signals are often analysed us-

ing computer vision based technologies (Kleinsmith and Bianchi-Berthouze, 2013; Karg et al., 2013).

The reliance on visual cues can be vulnerable to problems with occlusion and can provoke privacy

concerns, since sometimes, more dimensions of data are captured than needed. Most obviously, the

presence of a camera is always to some degree intrusive. Consent may be difficult to obtain and

even when it is obtained people’s awareness of being videoed can affect the naturalness of their be-

haviour. Optical motion capture markers in particular are cumbersome, visually intrusive, require

special clothing different to the clothing materials we naturally engage with, and reinforce the po-

tentially distorting effects of being in a laboratory. In recent years, more wearable solutions have

been introduced, such as deploying accelerometers (Hung et al., 2013), sEMG (Wang et al., 2019),

or pressure sensors (Gaus et al., 2015) on the body. These are sometimes designed as accessories or

are mounted on a person’s piece of clothing.

The first concepts of wearable technologies deployed on and integrated in clothing included the

use of cameras (Ryan, 2014). On-body sensing has the advantage of being more selective about

what data is collected. Ubiquitous approaches have been used to sense affective states with pressure

sensors (D’Mello et al., 2007a) and inertial measurement units (IMU) (Olugbade et al., 2019), group

dynamics with accelerometers (Varni et al., 2010; Hung et al., 2013), and actively promote interac-

tional behaviour using radio frequency tags (Khaorapapong and Purver, 2012). The limitations of

many of such sensors and recording systems are their conspicuous forms of industrial design e.g.,

encapsulated in plastic or integrated in other rigid gadget-like devices, such as wristbands, smart

watches or belts (Patel et al., 2012).

A material that has the ability to circumvent these issues are textiles. Fabrics provide promising

properties to capture bodily data and present advantages compared to other, often intrusive to wear

sensors: they are soft, flexible, and comfortable to wear on the body. They are materials we are

in close contact with: from book covers to car seats to our underpants, textiles are omnipresent

in our environment and can act as an interface to connect our analog and digital worlds. Textiles

as a sensing surface and a fundamental part of wearable computing have been explored for several

decades (Post and Orth, 1997), and has been used for a variety of applications including health care,

sports and performing arts. They enable body movement to be captured in continuous, unintrusive

ways, and are used to identify gestures (Strohmeier et al., 2018; Li et al., 2020), torso movement

(Mattmann et al., 2007), sitting postures (Meyer et al., 2010a), even micromovements like shoulder

lifts or breathing (Dunne et al., 2006a).

Amongst a variety of textile sensors, measuring piezo-resistive signals like pressure have proven

to be particularly useful when recording posture, gesture and other bodily movement. These ex-

plorations in ‘posture-aware’ smart clothing mostly focus on tracking movement of the upper body,

assuming that the torso, including the arms, is most relevant to identify these bodily signals. There is

relatively little work on placing textile sensors on the legs and feet. Examples of research utilising the

lower body for textile sensor measurements do so in a context of assessing sports performance or for

gait recognition. They furthermore involve deploying sensors on a finished garment with sometimes

improvised techniques, rather than embedding them in the fabric less intrusively. This distribution

of signals being measured on the upper versus the lower body parallels the literature on studying

behavioural cues. Only few have tested lower body garments, e.g. trousers as a measuring tool for

bodily cues (Dunne et al., 2011; Yu et al., 2021).
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Figure 1.2: A seated social encounter: ink sketch capturing seated conversation in a room surrounded
by fabric surfaces.

In general, smart textiles are broadly represented in Human-Computer-Interaction, but are less

investigated as a methodology for capturing interaction between humans. With clothes as an in-

tegral part of embodied social interaction, it is surprising they have not been exploited to a larger

extent to capture nonverbal behaviour. This thesis explores the potential of smart textiles embedded

as a sensing system for social interaction through two prototype technologies: chairs and trousers

(highlighted in Figure 1.2).

1.3 Aims and Objectives

The first aim of this thesis is to challenge the assumption that the upper body is the best or only

source of significant non-verbal social cues (e.g. Ekman and Friesen (1969a)). The working hypothesis

is that we should examine nonverbal behaviour elicited by salient postural movements involving all

of the body, before special attention is given to the signals the lower body conveys. Although legs

and feet have previously been described as “worst” when it comes to assessing the signalling capacity

of the human body, it has also been claimed that legs perform the most “honest” nonverbal signals

(Ekman and Friesen, 1969a). Observing legs as transmitters of social cues, we extend a small corpus

of work in which the lower body is at the centre of interest. Most studies on nonverbal behaviours

mention leg movements only in passing (Bull, 2016; Scheflen, 1964), while studies measuring leg or

feet movement usually have an individual or egocentric focus but do not address social interaction.

We investigate whether it is possible to deduce information about social interaction from tracking

bodily movements on the lower body in naturalistic conversation, and explore whether there is so far

overlooked potential in signals deriving from the lower body, too.

Second, I focus on unstaged social encounters, rather than single-user settings. Postural move-

ments in particular are often detected from acted procedures rather than in spontaneous interaction

(Kleinsmith and Bianchi-Berthouze, 2013). This naturally leads to a concern with methods of data

collection. While camera based techniques can capture changes in overall body configuration, they

do not sense the shifting weights and forces that movements induce. Even though depth-camera

systems like Kinect can detect some shifts in pressure as well, they are still limited by occlusion.

We critique the intrusiveness of such systems capturing nonverbal bodily cues, whether for upper or
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lower body, and propose sensing systems that make use of everyday materials and objects, to embed

sensing technology into elements of our everyday life. This aims at reducing the potential impact on

our actions and behaviours when interacting with others.

Third, I explore textile surfaces as a sensing technology for detecting embodied social behaviour.

The general awareness of the omnipresence of textile materials is often little, because they are so

interlocked with everyday experiences and tactile sensations. People often don’t think of textiles

beyond the purpose of clothing. In the field of wearable technology, textiles have not been broadly

established as an unintrusive, on-body sensing method, although their potential to replace more rigid,

hard electronics has been noted (Swallow and Thompson, 2001). Textiles have exciting potential to

“make technology invisible”, especially in the context of social computing and behavioural studies

where “invisibility”, or ambience in smart sensing networks is desired. One of the goals of this

research is to design and evaluate textiles that can capture movement and touch interaction in

social encounters. We explore whether we can reliably identify behavioural cues and social states

from textiles in different forms: for example, chairs that assess conversational engagement, and

trousers that detect fidgeting. Soft, wearable textile interfaces that are able to detect signals of

social behaviour could unlock new aspects of nonverbal communication.

1.4 Research Questions

Our research merges questions from two areas - social science and smart textile design. Both accu-

mulate a set of research questions this thesis addresses.

1.4.1 Conversational Investigations and Nonverbal Cues

1. What are the principal lower body posture shifts that can be observed in unscripted social

interaction? What information on conversational behaviour can we infer from these movements?

In particular, what social signals can we extract from sensing movement on legs and buttocks

alone? What do leg postures reveal about interpersonal and egocentric behaviour? What

possible interactional functions of the lower body movements might there be?

2. When sensing body movement and posture on the lower body, what other nonverbal behaviours

can be detected from this? What specific types of social signals can be detected from the lower

body? Are the movements we can detect with the lower body partially or wholy independent

of torso movements or do they derive from secondary upper body movements?

3. What computational methods are most appropriate for discriminating social behaviours? Are

sensors placed on the lower body sufficient to capture information about conversational be-

haviours? Is it possible to make statements about conversational engagement and interactional

dynamics overall from sensors on the lower body alone?

1.4.2 Designing Textile Sensing Systems

1. How can we design and engineer sensors for on-body computing integrated in textile structures?

Furthermore, can these designs be optimised to be able to capture social behaviour? How should

textile interfaces be constructed to function as social behaviour sensing systems? What are the

most suitable techniques as well as sensing capacities for integration into clothing? What
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Study 1
(Chairs)

Study 2
(Trousers)

Study 3
(Trousers)

Study 4
(Trousers)

Study Type multi-user single user multi-user single user
Setting spontaneous con-

versation
instructed tasks spontaneous con-

versation
instructed tasks

Participant
Number

27 (9 groups of 3) 10 42 (14 groups of 3) 10

Analysis
Software

SPSS WEKA Python n/a

Statistical
Method

Multivariate GLM Random Forest
Model

Random Forest
Model

n/a

Classes to
Distinguish

4 (conversational
cues)

19 (sitting pos-
tures)

2 - 5 (conversa-
tional cues)

n/a

Table 1.1: Overview and comparison on the studies that have been carried out during this PhD

approaches are suitable to process sensor data extracted from textiles that are to detect social

behaviour?

2. What is the potential of textile sensing systems as a new modality for capturing social be-

haviour? Are textiles suitable for detecting interactional signals? Is it possible to distinguish

basic conversational states with textile sensors, for example, identify listeners and speakers?

What are the limits of textile sensors capturing social interaction?

3. If our garments can understand, analyse and predict the nonverbal cues we emit, what are the

implications for garment designers? How might we exploit this possibility in fashion design?

What challenges does it comprise in the process of constructing such garment? What are the

practical use cases such garments might have?

1.5 Methodologies: an Overview

Many social interactions happen when seated, for example in meetings, coffee houses and even on

public transport. Consequently, chairs are objects on which much postural movement is performed,

that is also crucial to decoding conversations. They have the potential for collecting data without any

audio or visual recordings of the participant, securing their privacy and anonymity, and presenting an

unintrusive method to do so. Clothing presents similar possibilities. The same sensing systems can be

integrated in textile surfaces for both, ”on-body” (clothes) and ”off-body” (furniture) applications.

We explore the use of conductive pressure sensitive fabrics to measure posture changes as signals

of social interaction. To test our hypotheses , we have designed and evaluated ’smart’ chairs and

trousers, each incorporating different designs of embedded sensing systems.

Ethnographic Observations

Ethnographic studies provide the starting point for this research. They informed the choices of sensor

design, fabrication techniques, sensing objects, as well as hypotheses on key non-verbal behaviours,

e.g. identifying conversational states and their correlation with bodily movement or posture. With an

initial interest in the potential of objects and surfaces, in particular fabric surfaces, in our everyday

surroundings, a variety of indoor scenarios were identified as appropriate observation targets. The

primary approach to capturing features of posture in interaction is through the use of hand drawings.
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Chair Covers Trousers

Conductive Material silver coated nylon
Non-conductive Material cotton and elastane viscose and cotton
Textile Sensor Structure woven knitted
Sensor Shape round patches sensor matrix
Sensor Size ca 5x10cm 1x1cm
Sensor Number 8 (4+4) 200 (100+100)
Sensor Placement seat & back rest thighs & buttocks
Amount Produced 3 3

Table 1.2: Comparison of the sensor designs for both, chair covers and trousers

The process of drawing, like verbal transcriptions, forces the analysts attention on to the details of

body posture and posture shifts (Heath, 2014). They also preserve the anonymity of the observees

and facilitate exploratory approaches to design development. A report on how the observations

were conducted, and what hypotheses were extracted from their findings can be found in Chapter 3.

Expansions of those observations are documented in Chapters 4, 5 and 6.

Design Prototypes

The performance of textile sensing systems in social interaction is approached through designing

two different objects that are transformed into sensing surfaces: chairs and trousers. The chairs

we introduce in Chapter 3 present a sensing system that takes advantage of the static nature of

the object in regards to deployment of electronic components. The trousers are first introduced in

Chapter 4 refine the design engineering and data evaluation of the chairs and extend them to a

wearable on-body sensing system.

The choice of materials for the sensors is informed by the use cases. When designing for clothing

integrated systems, we aim for stretchable and yet robust fabrics, whereas for static objects it may

differ. These properties are achieved by the quality of the fibre itself (percentage of elastane), but

also by the way it is manufactured into a textile surface (knitted or woven). An overview of the

different sensor designs can bee seen in Table 1.2.

User Studies

A series of user studies are presented that test the hypotheses formed through the ethnographic stud-

ies, and to validate the design of the textile sensors and their integration in chairs and trousers. Two

different approaches are taken. First, single user studies in controlled environments are conducted

that evaluate the textile sensing systems, and to prepare for further in situ evaluation. Second,

multi-user studies in an unstaged, naturalistic interactional scenario are conducted. Here, the focus

is on three-way conversations around a table in order to detect spontaneous behavioural states and

social signals. These studies are described in detail in Chapter 3 and 5. A comparison and overview

of all studies and their parameters can be found in Table 1.1.

Quantitative Analysis

The data collected in the user studies was analysed with different analysis methods. In our ap-

proaches, we focus on exploring instantaneous data.
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• Statistical Analysis: We present a variety of statistical analysis in the scope of this research

that serve as first explorations, as well as later expansions of the machine learning approaches.

The different analyses occurring in this work are a MANOVA in Chapter 3, and a non parametric

Friedmanss two-way analysis of variance by ranks for analysing behaviour types is used in

Chapter 6.

• Machine Learning Approaches: Chapters 4 and 5 explore techniques for classifications of

different sitting postures and conversational behaviours. We explore machine learning methods

to analyse our sensor data. After testing Support Vector Machines, Nearest Neighbour and

Gaussian Naive Bayes algorithms, the results we present in detail stem from an analysis using

Random Forest models.

• Data Driven Approaches: Lastly, we use a peak detection analysis to explore further pat-

terns of sensor data. Here, local peaks are identified, representing major shifts in pressure

distribution

The different methods, as well as the softwares we used to implement these analyses are listed as

an overview in Table 1.1.

1.6 Contributions

This work contributes to an expanded understanding of small and large scale signals the body trans-

mits in social interaction, extending existing work on upper body cues. We draw attention to an

often underestimated set of postural movements in the lower body. This thesis demonstrates the rel-

evance of these movements for communication. Capturing bodily signals on the lower body, however,

also reveals information about other salient body movement deriving from the torso. We are able to

capture such conversational cues with sensors around the legs and buttocks alone, which pick up a

large range of postural shifts and touch interaction. This is achieved by developing a bespoke system

of fabric pressure sensors. Smart chairs and trousers present the first design using textiles to capture

social interaction.

Another contribution of this research is the exploration towards unintrusive sensing methods to

analyse social behaviour and conversation. With the approach taken and the studies presented in the

following chapters, we contribute findings to a wider research area on ubiquitous social computing

and multimodal approaches to such. Therefore, the sensing system we propose in this work can be

introduced as a way to collect data unintrusively and without augmenting people’s natural habitat,

which arguably benefits the data that is collected as less distorted or affected by the measuring

process.

Our design of textile pressure sensors adds to the potential use cases for wearable, smart textiles in

general, reimagining the role of textiles and garments in particular in the context of social interaction

and communication. Using sensors made entirely of fabric to detect nonverbal social signals is a

novel application area in the field that goes beyond the more traditional egocentric approaches.

This work thereby shows the potentials and limitations of textiles as a measuring tool for human

behaviour, evaluating different data processing and analysis methods. With the development of

the presented prototypes we furthermore contribute to the concept of bespoke textile and garment

making, discussing the benefits of this approach. The suggested design and its application area invite

to discuss optimisations and novel manufacturing and integration techniques for electronic textiles.
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Moreover, we challenge traditional forms of ubiquitous computing by adding this new modality to

the field.

In summary, the novelty presented here is the exploration, as well as the design of textiles as a

“socially aware” sensing system. I propose they have the capacity to detect behavioural cues in social

interaction, and can even find new, sometimes subtle body movements not yet part of the topology

of nonverbal cues.

1.7 Thesis structure

The thesis is structured around 8 chapters that are structured as follows:

Chapter 2 presents an in depth literature review of the core themes of the thesis and divided into

three sections: nonverbal behaviours, wearable technologies, textile sensing systems.

Chapter 3 presents the design and evaluation of a textile sensing system capturing social signals.

Smart chair covers are introduced, and the design process documented. The performance is

tested in a user study that seeks to distinguish speakers from listeners and to detect other

nonverbal signals using textile pressure sensors in chairs.

Chapter 4 introduces a wearable pressure sensing system embedded in custom-made trousers. A

benchmark study of posture classification validating the new design is presented and further

analysis methods are determined.

Chapter 5 Explores the wider potential of smart trousers for capturing nonverbal signals. A com-

prehensive data collection is reported in which participants’ lower body movements in unstaged

seated conversations are tracked. Basic conversational states are classified using a variety of

machine learning approaches.

Chapter 6 Explores an extended set of nonverbal cues and postural movements that are evaluated

based on the previous chapter’s user study data. The data driven analysis focuses on the

significance of large postural shifts in conversation.

Chapter 7 Considers the design engineering processes and issues for the sensing trousers that were

observed during the user studies. Improvements, challenges, and applications in relation to

manufacturing techniques, clothing and sensor design are discussed and a new prototype as an

iterative trouser design is introduced and evaluated.

Chapter 8 Highlights and summarises contributions, discusses findings of the conducted studies,

and gives prospects on future research directions.

1.8 Associated Publications

Portions of the work detailed in this thesis have been presented in national and international scholarly

publications, as follows:
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• Chapter 3:

Skach, S., Healey, P. G.T., & Stewart, R. (2017, July). Talking Through Your Arse: Sensing

Conversation with Seat Covers. In Proceedings of the 39th Annual Conference of the Cognitive

Science Society. London, UK. Cognitive Science Society. pages 3186-3190

• Chapter 4:

Skach, S., Stewart, R., & Healey, P. G.T. (2018, October). Smart Arse: Posture Classifica-

tion with Textile Sensors in Trousers. In Proceedings of the 20th ACM International Con-

ference on Multimodal Interaction (ICMI ’18). Boulder, Colorado. ACM. (pp. 116-124).

DOI:https://doi.org/10.1145/3242969.3242977

Skach, S., Stewart, R., & Healey, P. G.T. (2019). Smarty Pants: Exploring Textile Pressure

Sensors in Trousers for Posture and Behaviour Classification. In Multidisciplinary Digital Pub-

lishing Institute Proceedings (Vol. 32, No. 1, p.19).

• Chapter 5:

Skach, S., Stewart, R., & Healey, P. G.T. (2021). Sensing Social Behavior With Smart Trousers.
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• Chapter 6:

Skach, S., & Healey, P. G.T. (2019, September). Posture Shifts in Conversation: An Ex-

ploratory Study with Textile Sensors. In Proceedings of the 23rd Workshop on the Semantics

and Pragmatics of Dialogue. London, UK. SemDial (10 pages)

• Chapter 7:

Skach, S., & Stewart, R. (2019). One Leg at a Time: Towards Optimised Design Engineering
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ACM (pp.206209). DOI: 10.1145/3341162.3343775
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Chapter 2

Literature Review

Chapter Overview

The literature reviewed here centres around three themes that form the basis of this work’s research.

The first section focuses on assessing what embodied behaviour has been identified in previous work,

summarising what nonverbal signals we know of and when they are used. The questions of interest in

this chapter are what signals are transmitted by whom, in what situation and how they are addressed.

Special attention is paid to the distinction between speakers and listeners, posture shifts, as well as

lower body movements as a proposed underinvestigated body part for interactional signals.

Second, methods to capture such behaviours are examined. Measuring and analysing bodily

signals has traditionally relied on ethnography and vision based data, but new methods and tools

have been emerging. Ubiquitous and wearable technologies are increasingly used in the field of social

computing for a wide range of applications, including posture and behaviour recognition.

The third part looks at smart textile sensing systems and their potential to detect body movement

and followingly different embodied activities and social behaviours. Amongst a large variety of textile

sensors, piezo-resistive sensors and smart clothing developments are highlighted and put in relation

with social computing.

2.1 Non-Verbal Behaviour in Conversation: Touching, Twist-

ing and Twinkling Interactants

2.1.1 Introduction and Overview

Vinciarelli et al. (2008) discriminate between social signals and behaviours. A social signal is described

as a “set of temporal changes in neuromuscular and physiological activity that last for short intervals

of time in contrast to behaviours that last on average longer”. Muscular movement in the human

body may provide overt social cues, as well as causing physiological changes in temperature, pulse

or heart beat. Overtly visible nonverbal cues include gross body position and orientation. For

example, Schegloff (1998) coined the term body torque to describes the relation between the upper

and lower body as a signal of level of engagement and side activities within a social encounter. Also

Kendon highlighted overall physical arrangements, called F-Formation (Kendon, 1990b) in which the

direction of the lower body provides a cue for social groupings, or the main track of a conversation,

while the upper body can open and close side tracks. These orientations also give information about
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conversational “rights” for all participants of the encounter, and signal these also to outside observers.

The spaces in between participants can signal the interpersonal relationship, and the nature of the

interaction. Vinciarelli et al. (2008), for example, divide the space between conversation partners into

different categories, identifying the level of intimacy and other relational properties. Additionally,

the orientation of participants’ bodies can give indications about who is intending to enter or leave

such a conversational formation (Kendon, 1990b).

In addition to gross body position, smaller body movements provide cues including gaze, gestures,

and fidgeting (Witchel et al., 2016; Schegloff, 1998; Chalkley et al., 2017b; Healey et al., 2015). For

example, nodding and other nonverbal signals provide continuous feedback, often to indicate repair,

a change of turn, or to respond to a speaker. It is striking how subtle some of these cues are. It has

been shown, for example, that blinking functions as listener feedback (Hömke et al., 2017), or that

it doesn’t take more than a few seconds to identify the quality of a lecture (Ambady and Rosenthal,

1992), based on a variety of social signals. Minimal shifts in muscular movement can signal whether

a laughter is genuine or faked (Ekman et al., 1990; Scott et al., 2014; Griffin et al., 2013).

Posture alone is a good indicator for different levels of engagement in a conversation and in

interpersonal relationships, too, and has been studied as a monomodal feature for affect detec-

tion (Kleinsmith and Bianchi-Berthouze, 2013). It ranges from posture being associated with trust

(Shmueli et al., 2014), dominance, social hierarchy (Huang et al., 2011), or stress and attention level

(Arnrich et al., 2010; Chalkley et al., 2017b) to detecting fatigue in drivers (Furugori et al., 2003).

Also learning interest (Mota and Picard, 2003) and boredom (D’Mello et al., 2007a; Kroes, 2005)

have been measured through posture monitoring. Often, these postural signals are small movements

like fidgeting (Chalkley et al., 2017b; Witchel et al., 2016) and are evaluated in relation to other

nonverbal cues like gestures. It has been suggested, that with a multimodal approach like this, it is

possible to discriminate a large range of emotions (Scherer and Ellgring, 2007; Gunes and Piccardi,

2007; Kleinsmith et al., 2011; D’Mello and Graesser, 2010).

In this section, literature on these categories of social cues is reviewed, first identifying nonverbal

signals of communication transmitted by the mere spatial formation and choreographic collaboration

interactants perform, considering them as one cohesive group. Next, I look at interpersonal signals,

consciously or unconsciously sent behavioural cues by one interactant to their conversation partner,

revealing basic conversational states as well as more complex affective states and emotions. Lastly, I

pay attention to changes in body posture as one of the tools of communication used by all interactants.

The here reviewed works are summarised in Table 2.1 at the end of this section.

2.1.2 Interaction in Shared Space

Situating Ourselves

There are many factors that affect the quality of an interaction. The space we are surrounded by,

for example the walls that define a room, the objects that are placed near us, all constrain how we

use space for interaction. Ekman and Friesen (1969a) note that furniture occludes some body parts

and also determines the space between interactants. In general, the distance between people not only

reveals the social relationship, but also plays a role in the perception of social cues. For example,

when participants of a conversation are too close to each other, it becomes difficult to observe leg

movement, and when they are too far from each other, it is hard to see micromovements in the face.

The communicative signals our bodies send can vary depending on whether our encounter happens

seated or free standing. This determines the movement and positions the lower body can perform
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(Kendon, 1990b), and seating arrangements affect participation. It is claimed that, for example,

extrovert people tend to privilege seating arrangements that minimise interpersonal distances, while

introvert ones do the opposite (Burgoon and Jones, 1976). The behavioural cues that accompany

verbal communication can have a major impact on the perception of verbal communication. It has

been claimed that verbal messages account for only 7% of an overall social perception and that the

dominant source of information in a communication are non-verbal social signals (Mehrabian, 1968a).

The number of interactants influences each participant’s behaviour and the social setting allows or

restricts individual’s abilities of nonverbal signals. Conversational states in a dyad differ, in part, from

those in triads (Tannen et al., 2015). Before examining the fine-grained structure of conversation,

we consider the premises of it, including the spatial settings.

In addition to the physical space we need to consider the type of institutional setting in which

interaction takes place. One common setting of interest are clinician - patient scenarios (McCabe

and Healey, 2018; Tarn et al., 2006), often psychotherapy sessions, see e.g. Scheflen (1973b, 1964),

who examines interactions of a group of four people, as well as Ekman and Friesen (1969a), Hall

et al. (1995) and Ben-Sira (1980), looking at dialogues. More casual conversations between two or

more people have been studied by Schegloff (1998, 2004), Healey et al. (2015); Healey and Battersby

(2009), Goodwin (2000), who recorded a group of archeologists as well as children playing, Heath and

Healey (2011), who recorded seated conversations of a group of architects, or Luff et al. (2000) who

observed a series of workplace studies. Nonverbal behaviour has also been investigated for interaction

in large groups including audience during a performance (Theodorou et al., 2016; Theodorou and

Healey, 2017) or in classroom settings, e.g. in D’Mello et al. (2007b). The last, however, is also

an example of a more recent scenario in which nonverbal behaviour is studied: interaction between

humans and a device or a screen (Witchel et al., 2016; D’Mello and Graesser, 2009; Chalkley et al.,

2017b), which reduces the number of human interactants to one.

Spatial Formations

In conversations between two or more people, certain spatial formations are created and maintained,

can reveal the level of intimacy and relationship between them (Kendon, 1990a; Vinciarelli et al.,

2008). These arrangements are termed as F-Formations a term coined by Kendon (1990a), who was

one of the first to consider spacing in social behaviour from the viewpoint of groups and not just

individuals, acknowledging the collaborative signals that are produced within interactional spaces,

as well as for outsiders and bystanders. F-Formations are determined by the orientation of the

lower body. These F-Formations depend not only on the number of people participating in the

interaction, but also their ability to cooperate in order to maintain their formation. What Kendon

termed as formation, Scheflen (1973b) described as relation and has established his own taxonomy of

behavioural segments (Scheflen, 1973b). Others, however, have since stuck to Kendon’s convention

(Ekman et al., 1990; Marshall et al., 2011; Hung and Kröse, 2011) and so this work continues to use

of F-Formations, too.

F-formations are built from individual transactional segments: the space we look into when we

are speaking. When transaction segments overlap it creates three distinct spaces: the O-space (the

inner, overlapping circle), P-space (peripheral circle) and R-space (reference space) that make up the

F-Formation (Kendon, 1990a), see the diagram in Figure 2.1. Kendon argues that the orientation of

the lower body (more specifically: feet) defines the basic spatial and orientational relationship, while

the upper body allows for additional “layers within a conversation, such as side conversations or
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Figure 2.1: Diagram of the different transactional spaces as described by Kendon: the O-space, the
P-space and the R-space.

temporary lack of attention or other short distractions. This, however, results in losing equal access

to the O-space, the most inner zone of the joint transactional space (Healey and Battersby, 2009).

So while the feet are what initially implies our orientation, the head is still free to move - as is the

upper body in general. These findings from observations seem to mostly describe conversations in

which all participants are standing. The number of participants influences the postural behaviour and

spatial arrangement, too. There are certain arrangements that are only possible with two subjects,

and some that can only be formed with at least three subjects. While two participants can form

a vis-a-vis, L or side-by-side arrangements easily, this becomes more difficult or even unnatural for

three or more participants. Any group larger than two can be in a circular, semicircular, rectangular

or linear arrangement. The higher number of participants, the more spatially complex arrangements

emerge (Kendon, 1990b,a). Most commonly, these spatial arrangements are formed in an angle, and

not directly face to face (in Western society), as argued by Ekman and Friesen (1969a).

Joining or leaving such formations as well as adjusting them can signal things about the intentions

of participants and even something about the content of conversations. F-Formations also encourage

and discourage certain types of interaction (Marshall et al., 2011), and show that a group can be seen

as a complex system that conveys global properties not necessarily possible to retrieve from individual

properties (Varni et al., 2010). The organisation of basic spatial arrangements, for example whether

an interaction is seated or free standing, can also lead to different patterns and occurrences of social

behaviours (Ingham, 1974). In addition to the formations of participants, we need to consider how

bodies are configured and move within them.

Body Orientation

The interactional space participants share is defined by the orientation of the upper and lower body

parts. Scheflen (1972); Kendon (1970); Schegloff (1998) separate the body into torso and leg ori-

entations when describing twists, torques and other movements. Harrigan and Rosenthal (1983)

distinguish 3 trunk angles (forward, backward, straight), 2 arm positions (on lap, crossed), 2 leg po-

sitions (open, crossed) and nodding. Schegloff (1998) has coined the term “body torque” to describe

differences in a participants upper and lower body orientation, for example by leaning towards some

event or a person with the torso, but having the hip bones and feet rotated towards another event or

person and thereby creating a twist between the upper and lower body. In combination with head

and gesture orientation, three different basic spatial possibilities emerge: 1) the speaker orients to

the third-party with a gesture while continuing to orient to the addressee with their head; 2) the
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speaker orients to the addressee with a gesture and orients to the third party with their head or 3)

the speaker uses a combination of head and gesture orientation to the third party. This again allows

for multi-“layered conversations, also helping participants to manage turns and visually distinct such

sub-dialogues Healey and Battersby (2009).

It is suggested that the correlation of bodily orientation and social signals also works the other way

around, resulting in postural synchronies across participants (Bernieri, 1988; Bernieri and Rosenthal,

1991). Barsalou et al. (2003) argues that the perception of social signals also produces embodiment,

sometimes intentionally, leading to bodily mimicry, and conclude that “embodiment in others elicits

embodiment in the self”, which is also suggested by Chartrand and Bargh (1999). That accounts

for intentionally as well as unintentionally transmitted cues, as Ekman and Friesen (1969a) suggest

with their observation that when unconsciously performed cues are caught, it causes discomfort and

sometimes embarrassment not only to the one transmitting the cues, but to both, the observer and

observee.

2.1.3 Interpersonal Signals: of Speakers and Listeners

A natural consequence of collaboration is that nonverbal behaviour is heavily influenced by interaction

partners and their behaviour (Butzen et al., 2005). In multiparty conversation, whether in dyads or

large groups, we can easily distinguish between speakers and listeners. Often, these distinctions can

be made at an instant and from looking at visual, nonverbal cues alone (Schegloff, 1984). Bodily

signals reveal even more than such basic conversational states, too. They let us decode affective states

and other social behaviours that tone conversations and show details on interpersonal relationships

(Ambady and Rosenthal, 1992). Most research on fine-grained non-verbal cues has been directed

towards activities of the upper body, focusing on gestures and facial expressions. It is interesting

to look at lower body and leg movements as social cues too. A large part of what follows focuses

on identifying and distinguishing between speakers and listeners, presented in increasing levels of

granularity. The richness of nonverbal cues, however, reaches of course beyond characteristics of

basic conversational states.

Speakers and Speaker Gaps

The most distinct, and most obvious to spot characteristics that are associated with speakers are

hand gestures. Tracking and measuring hand and arm movement is often used as the main parameter

for identifying speakers (Schegloff, 1984; Healey et al., 2015), alongside verbal recording techniques

(Efron, 1941). But there are more subtle, as distinct cues that allow us to differentiate between

speakers and listeners. Overall, body posture is a good indicator for these conversational states.

Scheflen (1973a, 1972) describes held posture and changes as part of speech units, and Bull and Con-

nelly (1985) evaluated different body movements in relation to different types of speech. Scheflen was

one of the first to link these movements so directly to speech, including nonverbal signals transmitted

by the head. Gaze, for example can be used as a marker (or transfix, as Scheflen (1973b) calls it)

to accompany, emphasise and tone a syntactic sentence, and can contribute to a conversational and

behavioural hierarchy and structure (Scheflen, 1964). The most commonly studied of the varieties

of people’s movements are the gestures that speakers produce while talking. These include gestures

that contribute to the content of what is said, such as iconics, metaphorics and pantomimes (McNeill,

1992; de Ruiter, 2010), as well as gestures that help to orchestrate the interaction such as beat ges-

tures and gestures that can hold or hand over the turn to someone else (Bavelas et al., 1992; Healey
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and Battersby, 2009). Even micro-movements like facial expressions, e.g. raising an eyebrow, can be

in line with changes in tonality, e.g. lowering voice Condon and Ogston (1966); Bavelas et al. (2000).

The moments surroundings speech units are filled with nonverbal signals, too. This applies to

moments before and after a speaker’s turn, but also to gaps and short pauses of a speaker (Hepburn

and Bolden, 2014). Hadar et al. (1984) note that there is more body movement just before or at

the start of a speaking turn; and Scheflen (1973b) observed that indicating the wish to speak is

often done through sitting erect and forward leaning, moving more rapidly, and through head turns.

Such movements, whether small or large scale, help to maintain the communicative flow (Ekman and

Friesen, 1969a). Next speaker can be selected through hand gestures that can become as explicit as

a finger point (Scheflen, 1973a), or by touching other interactants. Routinised actions like lighting a

pipe and always performing a certain movement while doing so (Scheflen, 1973b), can also contribute

to these dynamics and are often important elements of successful conversations.

Active and Passive Listeners

Listener’s body movements are also organised in characteristic ways and together with speakers’

nonverbal behaviour are observed to contribute to overall rapport (Harrigan et al., 1985; De Silva

and Bianchi-Berthouze, 2004). Most obviously through the production of concurrent feedback or

‘backchannels’ (Yngve, 1970). Although these are often produced as non-interruptive verbal ac-

knowledgements such as a brief “aha” or “mmhm” people also frequently backchannel by nodding in

response to an ongoing turn. Listeners are also distinguished from speakers by their relative lack of

hand movement although they move their hands more when a speaker requests clarification or makes

repairs to their turn (Healey et al., 2015).

In general, listeners are often observed to perform different movements than speakers. With

fewer gesturing activities, hands are sometimes used to perform other nonverbal cues. Face rubbing,

head scratches and other self touch interactions, for example, are learned responses and are often

performed unconsciously (Butzen et al., 2005). Actions like these are mostly performed unaware of

their communicative function, such that “one can be oblivious to the clues they provide to interact”

(Ekman and Friesen, 1969a). These behaviours are sometimes claimed to be most revealing because of

their “honest” nature (Mehrabian, 1969; Scheflen, 1973b). Signals are of course also sent intentionally,

communicating their established meaning which may include deception. It has been claimed that

specific body movements, mostly facial and gestural cues are associated with deception Ekman and

Friesen (1969a).

Active listeners may also display congruence in body movement (Bavelas et al., 2000), for example,

signalling “readiness for alliance” (Scheflen, 1973b), while backing or leaning away from interaction

partners can indicate dossociation from them, especially when paired with folding arms and crossing

legs, averting the body from the relation (Scheflen, 1973b). Movement can therefore not only be seen

as a listener response to an event during interaction, but also as something that triggers a response,

or as Barsalou et al. (2003) puts it “constitutes a stimulus”. Such stimulus, so the argument, can

also be of affective nature.

2.1.4 The Significance of Posture in Interaction

As early as in the late 19th Century the significance of posture as a nonverbal signal was pointed out

linked to emotions (Darwin, 1872; James, 1884). Vinciarelli et al. (2008); Kendon (1970); Scheflen

(1964) and others have all argued that posture as a gross bodily position is the most reliable social
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signal. We can extract conversational as well as affective states by examining the body language of

people.

Postures in Conversation

Body posture contributes to the order and structure of an interaction, forming its “program”, as

Scheflen (1964) calls it. Further, Scheflen (1964, 1972) describes the movement of different body

parts as syntactic units that can occur on their own or while other activities or behaviours are

performed. Both postural movement or static posture can indicate the duration of an utterance

(Scheflen, 1973b), or can tone up or tone down verbal messages (Wiemann and Knapp, 1975).

Posture also defines individual behaviour and the contribution of each participant to the conver-

sation. It can determine how individuals relate to one another and the way posture is maintained

or changed differs depending on the level of intimacy between interactants. It is suggested that

the more familiar we are with each other, the more subtle postural signals become (Wiemann and

Knapp, 1975). Riskind and Gotay (1982) suggest that posture not only communicates, but affects

emotional state as well as behaviour and performance of participants’ skills. For example, solving

puzzles upright or slumped makes a difference in the performance - people doing better when asked

to maintain an upright position than when slouched (Riskind and Gotay, 1982).

In a series of studies, Bull (2016) looked at postural signals of boredom and interest, agreement

and disagreement signals (Bull, 1978). Embodying boredom is typically done by dropping the head,

leaning backwards and supporting the head with hands, while interest is signalled with leaning

forward and drawing back legs. In a conversational context, signals of boredom are mostly seen

in listeners, while interest applies to both, listeners and speakers. Disagreement is associated with

a straightened head, folded arms and head supported by hands. Interest, on the other hand, is

associated with the obvious head nod, but also leaning sidewards and raising a foot or leg. In

conclusion, Bull (2016) argues that boredom and interest are better identifiable from posture than

agreement and disagreement. It is often noted that disagreement and other negative notations in

interaction are easier to identify than positive signals (de Gelder, 2006; Bernhardt and Robinson,

2007; Camurri et al., 2003). Even from head movement alone, positive and negative emotions can

be discriminated (Behnke et al., 2021). Nevertheless, posture has also been used to detect types

of laughter (Griffin et al., 2015a, 2013), as well as agreement, warmth and interest when the torso

leans sidewards or towards a congruent posture with its interactants (Bull, 2016; Haase and Tepper,

1972). Synchrony in postures during interactions has been found a signal for a deep social connection

(Vinciarelli et al., 2008; Delaherche et al., 2012)

There are others who have explored links between postural behaviours and verbal behvaviours

(Winters, 2005; Ekman and Friesen, 1969a), as well as with rapport (Lafrance and Broadbent, 1976;

De Silva and Bianchi-Berthouze, 2004; Müller et al., 2018), which can often be predicted more

accurately with nonverbal signals than with vocal messages (Ambady and Rosenthal, 1992). Posture

can be used to convey other messages in interaction, including dominance, social status, and can also

serve to regulate and coordinate conversation (Vinciarelli et al., 2014).

Embodiment and Affect

In addition to conversational behaviours, posture has been used as a measure to detect affective

states and emotions both in interactional and isolated scenarios. Many works have explored the

embodiment of a range of basic emotions (Vinciarelli et al., 2008; Kleinsmith and Bianchi-Berthouze,
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2013; Karg et al., 2013; Noroozi et al., 2021; Camurri et al., 2003). Similar to extracting conversational

behaviours, affect and emotion is often detected from upper body signals, face and hand gestures

presenting a dominant part of the literature. An overview with common associations is given in Table

2.1.

In general, however, it can be difficult to assign specific distinctive body movements to emotions

(Ekman, 1999). There is large variation amongst people’s behaviours and embodied conversational

states. This occurs in displaying them consciously, unintentionally, and also in deception Ekman and

Friesen (1969a). Eventually, everyone acts in “their own” way and also in response to other interac-

tants’ behaviour (Scheflen, 1973b; Vinciarelli et al., 2008). This is important to acknowledge when

collecting, processing and interpreting such data (Aigrain et al., 2015). Additionally, behavioural as

emotional states are not always bound to static body postures, but can be described with motion

features as well, such as speed and acceleration of a movement(Camurri et al., 2003), or spatial

direction and amount of movement (Behnke et al., 2021).

While the focus of this work is on signals elicited during human interaction, many of the studies

on affective and emotional cues often rely on human-computer interaction scenarios, or third party

judgements of participants watching videos of people (Harrigan and Rosenthal, 1983; Butzen et al.,

2005), there are few who consider non-acted settings (Kleinsmith et al., 2011).

In summary, although full body posture has been acknowledged as an important signifier for

affective and behavioural cues (Griffin et al., 2013; Niewiadomski et al., 2019; Camurri et al., 2003),

especially when signalling at a distance (Walk and Walters, 1988), it has been understudied compared

to research on facial and hand gestural expressions (Karg et al., 2013; Kleinsmith and Bianchi-

Berthouze, 2013; Noroozi et al., 2021; Poppe, 2007). Moreover, when studying posture in relation to

affect, the upper body is usually examined in more detail. The lower body receives less attention in

behavioural studies and conversation analysis, mostly being absent from analysis or only mentioned

marginally. There are also few specific and consistent descriptions about postural movement that

includes both, the upper and lower body in relation to each other. Nevertheless, there is some

evidence for the importance of lower body signals in interaction.

2.1.5 Lower Body Movements

In between the dominating literature on upper body cues, there are also indications that the lower

body may be rich in social cues (Kendon, 1990a; Burgoon et al., 1990; Duncan, 1972; Schegloff, 1998;

De Meijer, 1989). It is noted that the orientation of the lower body, especially the feet signals the

‘main track’ of a conversation, while the upper body can be used to manage side tracks. This applies

to both, seated and standing conversations. There are some leg movements that predominantly

occur in seated interactions - such as leg crossing, bouncing feet and also, for example, rubbing

hands on thighs. These movements are rarely discussed in studies of nonverbal communication and

embodied social interaction. We know very little about the meaning of, for example, leg crossing,

bouncing, fidgeting, feet tapping, rubbing thighs, other touch interaction on legs, nor of movement

around the hips and buttocks. Where leg movements are discussed it is primarily for gait recognition

(Niazmand et al., 2011; Dunne et al., 2011), or in relation to the upper body, mostly gestures and

trunk movements (Bull and Connelly, 1985; Mehrabian, 1968a; De Meijer, 1989). Similarly, when

buttocks are a mean of measure, it is mostly to detect sitting postures in single users rather than

behaviour in a conversational setting (Tan et al., 2001; D’Mello et al., 2007a; Meyer et al., 2007).

In comparison, isolated parts of the upper body, including facial expressions, are often described
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without correlating to other body parts. It is only occasionally acknowledged, e.g. in Cassell et al.

(2001), that the lower body may contribute to affect detection in its own right; or that leg movement

can indicate and mark turn taking (Duncan, 1972).

When dividing postural movement into the upper and the lower body, the torso usually gets more

attention in research as well as from other interactants, whether conversations are seated or standing.

It may be because the lower body is thought to convey social signals in a less subtle way (Mehrabian,

1968b; Knapp and Hall, 2009). This depends in part on the assumption that leg related social cues

are largely unconsious or unintentional (Wiemann and Knapp, 1975). For example, when speakers

draw legs back and lean forward, they indicate interest and attention, while stretched out legs are

observed more in boredom (Bull, 2016). These movements might happen without being consciously

directed at interaction partners.

Leg Positions

Conscious social cues can be transmitted with legs, too, such as revealing a thigh, or sitting with open

closed legs to indicate ”openness” for interaction Mehrabian (1968b). The terminology of open and

closed postures is applied to leg positions as well, describing the two states of crossed (closed) and

uncrossed (open) legs, which are generally perceived as more friendly (Harrigan and Rosenthal, 1983).

Additionally, legs are linked to play a role in detecting dominance (Shibata et al., 2013), and slightly

bent knees can contribute to discriminate contempt as well as fear and disgust (De Meijer, 1989). Leg

movement was further examined in studies about postural synchrony between interactants (Schmidt

et al., 1990). They are mostly described in combination with other cues, though, like orientation,

gaze, and leaning forward. In relation to rapport, for example, these leg postures are mentioned only

marginally and as not significant on their own (Harrigan et al., 1985).

When looking at leg crossings, Bull (2016) determines four categories: leg crossing above knee,

at knee, ankle over thigh, and at ankle, also dividing these into open and closed postures. When legs

are crossed above the knee, with the lower knee visible, they are in their most closed position. Leg

crossings are also thought to be associated with disagreement (Bull, 2016), most clearly where legs

crossed are most tightly - as “closed” as possible. The knees

Micromovement on the Lower Body

Small scale movement on the lower body is also interactionally relevant and provide cues to social

behaviours. There is evidence that fidgeting and thigh movement play a significant role in detecting

attention levels (Chalkley et al., 2017b; Witchel et al., 2016). Tracking feet movement alone has

also proven to be a good indicator for detecting overt postures as well as movements correlated with

gestures and nodding (Cheng et al., 2013), showing that even when performing relatively small scale

gestures, the entire body is in motion. Patterns of bodily movement therefore always affect both, the

upper and lower body, although in seated conversations, more commonly, only the upper body fully

visible to all interactants when seated, while the legs and feet are least monitored by both, performer

and observer (Ekman and Friesen, 1969a; Mehrabian, 1972). In free standing conversations, feet are

described to signal engagement and participation in F-Formations, too (Kendon, 1990a).

2.1.6 Summary: Dissecting Embodiment

In summary, the bodily signals we send and receive during conversation are multilayered and can be

of complex nature. Table 2.1 gives an overview of such signals, listing well established and known
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Body Part Body Movement Associated Behaviour Reference
Whole Body large movement ‘hilarious’ laughter Griffin et al. (2015b)

posture change stress Aigrain et al. (2015)
topic change Scheflen (1964)

synchronisation empathy, dominance Varni et al. (2009)
movement intensify emotions Kret et al. (2013)

shift disgust Gunes and Piccardi (2007)
Torso turning away disgust Ekman and Friesen (1969a)

leaning away dislike Mehrabian (1972)
leaned forwards warmth, empathy, attention Ekman (1999)

Mehrabian (1969)
attention, interest Bull (2016)

erect and forward wish to speak Scheflen (1973b)
sidewards movement nervousness Arnrich et al. (2010)
slumped, slouched lower performance Riskind and Gotay (1982)

congruence ‘deep psychological meaning’ Vinciarelli et al. (2008)
shoulder shrug uncertainty Gunes and Piccardi (2007)

contract, backing fear, disgust Gunes and Piccardi (2007)
spine bending laughter Griffin et al. (2013)
torso flexion chronic pain Olugbade et al. (2019)

Arms touch appoint addressee Scheflen (1973b)
& Hands index finger silence Scheflen (1973b)

arm folding dissociation from partner Scheflen (1973b)
arms crossing anger, fear Gunes and Piccardi (2007)

various hand gestures induce feedback Ekman and Friesen (1969a)
self touch comfort, internal conflict Butzen et al. (2005)

finger & palm movement anxiety, uncertainty Gunes and Piccardi (2007)
increased gesturing detect laughter Griffin et al. (2015a)
gesture movement emotions Bernhardt and Robinson (2007)

hand velocity discriminate emotions Glowinski et al. (2008)
self touch stress Aigrain et al. (2015)

Head head turn elicit addressee status Scheflen (1973a,b)
Healey and Battersby (2009)

head slump emotional distress Olugbade et al. (2019)
nodding agreement, knowledge Bourai et al. (2017)

backchannels, feedback
various facial expressions affect, emotion Ekman (1999)

interest Kapoor et al. (2004)
close to hands fear Foo et al. (2021)

disgust Gunes and Piccardi (2007)
Legs stretched boredom Bull and Connelly (1985)

tucked back interest Bull and Connelly (1985)
fidgeting, thighs move attention level Chalkley et al. (2017b)

slightly bent knees fear, disgust De Meijer (1989)
“open” legs open/ready for interaction Mehrabian (1969)
uncrossed friendly Harrigan and Rosenthal (1983)

while seated dominance Shibata et al. (2013)
Feet orientation conversational involvement Kendon (1990a)

Schegloff (1998)
movement speaker turn marker Duncan (1972)

Table 2.1: This table is only a selection of a wide range of nonverbal cues, but serves as an overview
of some of the important cues mentioned in the above section.
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bodily movements and their associated social behaviour, dividing them into different body parts that

were discussed in this section.

Gaps in Current Literature

While the upper body has received much attention in research on non-verbal communication, the

lower body has been largely ignored. Nonetheless there are good reasons to think that the lower

body may be a valuable source of information during interaction. The range of movements and their

relation both to other body movements and interactional states indicates that they are a promising

but underexploited target for social sensing. Independent of the body part being examined, taking

measurements from one part is commonly the focus of studies on nonverbal behaviour and assigning

affective states to body postures, although there are of course exceptions (Niewiadomski et al., 2016,

2018). The appeal to work towards a more multimodal and multi-part approach has been made

by Vinciarelli et al. (2008) and others. Another appeal deriving from examining the settings under

which data from body signals is analysed and collected, is that there is a need for data sets of

more naturalistic, non-acted body movements, as well as more “real life” context (Kleinsmith and

Bianchi-Berthouze, 2013; Karg et al., 2013; Vinciarelli et al., 2008).

2.2 Methods for Capturing Social Signals

2.2.1 Introduction: An Overview of Different Approaches

Vision Based Approaches

Much of the early research on nonverbal communication was driven by the increasing availability of

video cameras (Goffman, 1959; Edward and Hall, 1959), as well as ethnographic studies (including

hand drawings and sketches), often analysing detailed case studies of psychotherapy sessions (e.g.

Scheflen (1964); Condon and Ogston (1966); Kagan et al. (1969)). Camera based systems are still

the most commonly used to capture bodily behaviour and engagement in human interaction. Sophis-

ticated computer vision developments like face recognition and eye tracking are established methods

in the field and have been proven successful for many explorations in activity recognition (Khurana

et al., 2018), as well as identifying attention and anxiety (Kret et al., 2013). Camera and other vi-

sion based technologies can also detect dominance behaviour in group interactions (Hortensius et al.,

2014; Jayagopi et al., 2009; Hung et al., 2007), mimicry and laughter (Griffin et al., 2015a), interest

(Kapoor et al., 2004), as well as a variety of other emotions (Glowinski et al., 2008) and interactional

cues (Stergiou and Poppe, 2019), including the use of webcams (Griffin et al., 2015a; Gaffary et al.,

2015). Advanced techniques like OpenPose can recover whole skeletons from video images (Cao et al.,

2019), and in depth camera systems like Kinect have been a popular tool to capture body movement

for a wide range of applications, including engagement activities in stroke recovery (Galindo Esparza

et al., 2019), or capturing dance movement (Alexiadis et al., 2011), amongst various other human-

computer-interaction applications (Stergiou and Poppe, 2019). Another development that extracts

postural, gestural and affective features from video, amongst other inputs, is the EyesWeb platform

by Camurri et al. (2000). This allows for real-time analysis of body movement, for example demon-

strated in use cases capturing dance (Camurri et al., 2016) and sport performances (Niewiadomski

et al., 2019), or detecting emotions in music listening (Varni et al., 2009), as well as music performing

(Castellano et al., 2008) tasks.
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When other modalities are explored, vision based approaches are often used alongside them and

build the largest corpus in automatically processing nonverbal postural cues (e.g. Gunes and Piccardi

(2009); Giraud et al. (2013); Lavelle et al. (2013); Melzer et al. (2019)).

Motion Capture Techniques

Other than videos, motion capture systems have become a widely used technique for detecting non-

verbal behaviour (Noroozi et al., 2021). Markers are attached to a body suit to outline a skeletal

structure. The details that can be captures depend on the amount of markers used, e.g. for more

fine grained hand movement is recorded, or more coarse grained full body movement.

Optical motion capture systems have been used to analyse multiparty conversation, including

gestural cues and head movement (Healey et al., 2015), to extract affect from hand gestures (Bern-

hardt and Robinson, 2007; Kapur et al., 2005), and even to explore nonverbal behaviour in mental

disorders (Lavelle et al., 2013) or chronic pain and stress levels (Olugbade et al., 2019). There are

different systems of motion capture technologies that are used in research on nonverbal behaviour.

A system named Xsens, for example has been used to automatically detect laughter from full body

postures (Niewiadomski et al., 2016), and another one named Vicon has been shown successful in

identifying a set of basic emotions from postural cues (Kleinsmith et al., 2009).

Another motion capture system that deploys wearable sensors in addition to visual body markers,

Animazoo, has been used to capture instrument playing for educational purposes (Linden et al.,

2011). In the example of the EyesWeb platform, motion capture data is processed together with

accelereomter data, supporting the detection of synchrony, dominance, social interaction in music

performance, and other affective states, for example from dance movements (Camurri et al., 2000;

Varni et al., 2009; Niewiadomski et al., 2019; Varni et al., 2010; Kapur et al., 2005). Overall non-

optical techniques, for example magnetic motion capture systems (Shockley et al., 2003), are less

common and typically do not include whole body movements or leg postures, or are not used in an

interactional context to capture behavioural or emotional states (O’Brien et al., 2000).

There are, however, downsides to motion capture techniques. Most of them are costly and it is

not always feasible to deploy these systems (Jakubowski et al., 2017). This can be a disadvantage in

experimental settings due to issues such as the practicalities of setting up cameras, or participants

wearing tight, relatively intrusive velcro body suits. Optical motion capture systems further rely on

visual cues, face occlusion and privacy concerns, and are therefore limited in their application.

Multimodality

More recently, other multimodal systems have been introduced to develop classification models based

on nonverbal cues and affective states. A network of sensors relying both visual and physiological

measures and featuring off- and on-body sensing can gather rich information about bodily movement,

and has often been argued to achieve higher accuracy than monomodal approaches in automatic

recognition of social behaviour (Baltrušaitis et al., 2019). Complex sensor networks include sensors

in the environment, interior and exterior, sensors on the body, and, in between the two, sensors in

devices that can be either close to or on the body, but also be put aside, e.g. mobile phones (Wang

et al., 2014; Lazer et al., 2009).

Amongst wearable sensors, in combination with motion capture systems, accelerometers, IMUs

and EMG sensors are common and can be integrated in accessories, body suits or digital devices

and objects we interact with. For example, accelerometers have helped to detect the quality of
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interactions in group scenarios (Hung and Kröse, 2011), but also feed back to such (Damian et al.,

2015) and to track hand movement in relation to anxiety (Cosma et al., 2017), or fidgeting in screen

based tasks (Chalkley et al., 2017a). IMUs and EMGs can help to discriminate stress levels and

pain (Wang et al., 2021; Olugbade et al., 2019), and are used in many other health and sport related

applications (Fernández-Caramés and Fraga-Lamas, 2018).

But there are also other sensors that have been proven to reliably detect embodied behaviour and

social cues. In particular when focusing on capturing sitting postures and body movement, pressure

sensors have the potential of replacing more complex data collection (Tan et al., 2001; Nathan-

Roberts et al., 2008; Arnrich et al., 2010; Cheng et al., 2013). Studies using piezoresistive sensors

have proven reliable for determining a large number of different body postures as well as behavioural

cues with high accuracy (Tan et al., 2001; Meyer et al., 2007; Shibata et al., 2013; Gaus et al., 2015;

Bibbo et al., 2019). It is also worth noticing that, when using more simple methods like pressure

measurements, the sensors are commonly deployed on the chair (Tan et al., 2001; Shibata et al., 2013;

D’Mello and Graesser, 2010; Karg et al., 2013; Bibbo et al., 2019). There are also opportunities for

integrating pressure sensors into clothing and for exploiting the potential of ubiquitous materials like

fabrics (Meyer et al., 2010a), or on other surfaces to measure ‘social touch’ (Gaus et al., 2015).

Nevertheless, when nonverbal signals are recorded in a multimodal setting, wearable sensors like

accelerometers and IMUs are still outnumbered by vision dependant channels (Karg et al., 2013).

Especially when looking at human interaction in natural settings, also audio data are dominant co-

measures of collected visual information (Nihei et al., 2016; Scherer and Ellgring, 2007; Hough et al.,

2016; Cummins et al., 2013; Stewart et al., 2018; Murray and Lai, 2018; Kapur et al., 2005). With

posture having been identified as an important signifier for social and affective behaviour, however,

biometric data collection has become popular, too (Vinciarelli et al., 2008). The developments of

multimodal sensor networks, including solutions for wearable technology, encourage the discussion

on a ubiquitous deployment of such (Poslad, 2011). In particular with a focus on exploring unstaged,

natural social interaction.

In this section, the examined literature focuses around modalities other than video and audio

recordings, looking at ubiquitous sensing environments, sensor networks worn on the body, and

different approaches to capture postural behaviour in particular.

2.2.2 Ubiquitous Social Computing

When capturing signals of social interaction, the technologies used aim ideally preserve a natural

environment for subjects, not interfering with their performed, spontaneous behaviour and move-

ments. Under this aspect, large and ‘boxy’ systems like cameras and audio recording devices can be

intrusive but have been successfully used to investigate social behavioural cues, such as for example

laughter (Griffin et al., 2013). But also motion tracking is a common sensing system that is used to

investigate human interaction (Healey et al., 2015). Sensing methods have been suggested that use

objects and attributes integrated in everyday situations, fulfilling the aim of an unobtrusive, pervasive

sensing. This can be ceiling light capturing physical presence and body movement (Venkatnarayan

and Shahzad, 2018), conductive surfaces like doorknobs to detect touch (Sato et al., 2012), floor mats

(Sundholm et al., 2014) or the surface of seats to track postural movement (Tan et al., 2001; Slivovsky

and Tan, 2000). Chairs have been established as successful ubiquitous sensing objects to not only

track postural, but also behavioural cues and cognitive states, and will be given more attention in

this thesis later on. In recent works, for example, it has been shown that sensors embedded in a chair
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cover could reliably detect stress levels (Arnrich et al., 2010; D’Mello et al., 2007a), fatigue in drivers

(Furugori et al., 2003), or cultural differences (Shibata et al., 2013), to name only a few examples.

More will be explored in Chapter 3.

In- and Outdoors

The surroundings of interior spaces, too, can be transformed into sensing surfaces. Wall papers can

be turned into touch sensitive surfaces that could be used to control light (Buechley et al., 2010), and

light itself functions as a sensing tool to track and identify postures and gestures (Venkatnarayan

and Shahzad, 2018; Li et al., 2015). Motion sensors on the ceiling, as well as indirect sensing from

tracking the use of household objects can indicate people’s behaviours and social dynamics (Singla

et al., 2010). The floor, too, can serve as a large sensing surface, for example through analog sensors

and circuits concealed in carpets (Kim et al., 2016). These recording technologies are all relatively

far away from the body - the target to collect data from, and can yet capture great details of bodily

action. However, more fine grained movement and refined social and affective cues can be detected

with objects in more direct touch with our body, such as furniture, interior objects, and accessories.

Especially with the upper body to serve as the major body part to extract these social signals from,

objects we engage with more directly have been utilised to capture nonverbal signals. Pillows (Vogl

et al., 2017; Park et al., 2003), table tops (Gaver et al., 2006), door knobs (Sato et al., 2012), cabinets

and wardrobes (Kang et al., 2010), for example, have been transformed into smart devices and sensing

surfaces. Together with sensor networks in walls and floors, this allows for entire interior facilities like

a kitchen (Olivier et al., 2009) to act as a smart room that can track their users’ actions, movements

and behaviours.

Ambient sensing is imagined outside the home, too. There can be outdoor augmentations for

smart environments, such as ambient woods to enhance learning experiences (Rogers et al., 2004).

Through shared surfaces in communal spaces, interaction between people can be encouraged and

facilitated, for example through the use of screen and audio elements (Brignull et al., 2004). Also

interactional configurations like F-Formations can be mediated through interactive surfaces embedded

in furniture (Marshall et al., 2011). Engaging with such designed artefacts arguably also affects the

embodied behaviour we exercise (Candy, 2007), so the aim for ubiquitous sensing when capturing

natural behaviour are often intertwined (Poslad, 2011; Pentland, 2000).

Sensing Networks

Both scenarios, indoor and outdoor, public and private are most effective with a network of different

modalities cross-validating their data and capturing detailed information about people from multiple

angles. A mix of active and passive sensors can contribute to an uninterrupted “Internet of Things”

for a large variety of applications (Wilson, 2004; Poslad, 2011). Also when focusing on one specific

signal that is aimed to be detected, measuring it with multimodal techniques improves the outcomes

(Morency et al., 2008, 2010). Especially when investigating rich and multilayered behavioural cues

in social interaction, or when trying to identify affective states and emotions (Kapoor and Picard,

2005; Kleinsmith and Bianchi-Berthouze, 2013; Karg et al., 2013; Noroozi et al., 2021), and ‘new’

modalities are being establish to widen the opportunities for applications and unobtrusiveness (for

example Di Lascio et al. (2018); Jin et al. (2018)). Nevertheless, it has been acknowledged that

extracting social interaction features is often challenging, also with a multimodal approach (Varni

et al., 2010).
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In conversation analysis, audio input is generally one of the main contributors of sensor data

because special attention is given to vocal and verbal cues, though linked with visual, nonverbal

behaviours. For this, facial expressions and hand gestures are typically examined in great detail,

sometimes even dividing upper and lower facial expressions (Kapoor and Picard, 2005). In compari-

son, body posture is analysed without as much detailed specification, despite gross movements being

acknowledged to be as relevant as micromovements in the face (D’Mello and Graesser, 2010). Some-

times, information on body posture is made from facial cues, too (Kapoor and Picard, 2005), while

screen based interaction tend to focus on gaze tracking and other computer vision technologies to

closely monitor head movements (Subburaj et al., 2020; D’Mello et al., 2007b; D’Mello and Graesser,

2009). Mutlimodal processing of audiovisual data has been shown to improve the automatic detection

of backchannels (Morency et al., 2010), as well as task performances of individuals (Murray and Lai,

2018). Exceptions to these conventions of course exist, but form a margin - an example is the work

by (Antonio Gómez Jáuregui et al., 2021), using force plates in addition to video recordings to track

postural shifting.

2.2.3 Capturing Interaction with Wearable Technologies

One part of multimodal and ubiquitous sensing systems are wearable technologies, with an ever

growing range to take measuresments directly from the body. Compared to the previously discussed

camera systems, often installed at a fixed location, wearable technologies come to the advantage that

they are independent of the location and environment of the people. Through wearable sensing, it

became possible to track someone’s actions wherever they go - far wider reaching than, for example,

CCTV. That applies for the individual as well as for group related behaviours and actions. While this

can sound like an dystopian, surveillance heavy vision, its proposed and promoted use cases are often

healthcare, rehabilitation and other medical uses, as well as for sports (Patel et al., 2012; Sharma

et al., 2017), and more recently also gaming industries (Fernández-Caramés and Fraga-Lamas, 2018).

Tracking body movement continuously and automatically process its signals can be done in dif-

ferent ways: through sensors integrated in our mobile phones, accessories of other form carried or

worn on the body, such as jewellery, and sensors directly deployed on the body as embedded systems,

for example in clothing (Gonçalves et al., 2018; Fernández-Caramés and Fraga-Lamas, 2018). While

mobile phones present a ‘wearable’ device that is carried rather than worn, not attached in some form

to the body, accessories and gadget like objects function as a state in between on-body sensing and

carried mobile devices, as they are being worn, but are in their early forms exterior, intrusive objects

(Choudhury and Pentland, 2003), different to more recent designs that resemble conventionally worn

accessories (Kettley, 2008). Lastly, sensors embedded or deployed onto the body directly, even on

the skin, are reviewed, and commonly used modalities are summarised.

Mobile Sensing

A mobile phone, or smart phone, is one of the sensing devices that are best adapted and woven into

our daily life (Lane et al., 2010). In relation to connected smart sensing networks, they often serve as

a base on which data streams can be connected and evaluated through apps (Patel et al., 2012). But

they also bear a variety of sensors themselves, including bluetooth, GPS, accelerometers (Katevas

et al., 2014), cameras and microphones, that have been explored for social sensing, human interaction

in small and large groups, and individual behavioural patterns (Lane et al., 2010; Shmueli et al., 2014).

For example, Hao et al. (2013) monitor sleep in individuals, Katevas et al. (2015) investigate gait
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synchronisation in groups, and Wang et al. (2014) investigate group members’ attitudes in meetings.

In some cases, mobile phones are used as feedback devices strapped onto the body, too (Singh et al.,

2014).

Nevertheless, smart phones are small computers that often gather far more data variables than are

needed (and wanted), so the concerns around maintaining personal privacy remain, although there

are attempts to improve this issue (Malekzadeh et al., 2018). Mobile phones’ sensing networks can

be intrusive, and phones can easily be put aside so that it is no longer possible to collect a continuous

data stream.

Accessories

Other wearable technology devices that present alternatives to mobile phones are smart accessories

that can be worn on the body, e.g. like jewellery (Kettley, 2008; Groeger and Steimle, 2018). So

while the mobile phone itself has become a substantial part of our basic equipment we take with us

everywhere, other designs of sensor networks are integrated more ubiquitously by resembling already

familiar products and objects, such as wristbands, watches, necklaces or belts (Fernández-Caramés

and Fraga-Lamas, 2018; Patel et al., 2012). These devices, too, can collect data on individual

nonverbal behaviour, for example tracking hand gestures and arm movements with capacitive touch

sensing in a wristband (Rekimoto, 2001), or utilising conductive objects in the environment (like

doorknobs and handles) with a sensing board designed as a wristband in order to sense gestures and

other activities and interactions with these objects (Sato et al., 2012; Vogl et al., 2017; Groeger and

Steimle, 2018).

Interpersonal relationships and group patterns can also be investigated with this wearable ap-

proach, as was shown with the ‘Sociometer’ by (Choudhury and Pentland, 2002, 2003), a device worn

around the neck and used to analyse conversations over a longer period of time, or detect when peo-

ple are in close proximity. This has made it possible to approach questions on social behaviour and

dynamics, such as who we interact with, what conversational details there are and how engaged we

are in different situations (Choudhury and Pentland, 2003) with wearable devices that was previously

only possible with traditional recording devices.

Common sensor that such accessory-like devices embed are accelerometers, pressure sensors,

IMUs, EEG or EMGs, as well as capacitive sensors. Acceleration has been used to interpret dif-

ferent kinds of body movement, for example to detect fall and other activities like walking, dancing,

jumping, or running (Wilson, 2004; Attal et al., 2015). Social interaction between humans has been

explored with the use of accelerometers, too (Hung et al., 2013). Often, joints are used as a measure

point, for example wrists equipped with accelerometers and IMU sensors to determine attention level

in screen based tasks (Witchel et al., 2016; Chalkley et al., 2017b), to assess audience behaviour dur-

ing performances (Theodorou and Healey, 2017), or to generally identify gestures (Rekimoto, 2001).

Here, too, sometimes multimodal approaches, such as a combination of armband and smart glasses

are used to support social interaction, e.g. in Damian et al. (2016). Capacitance and pressure have

demonstrated versatile in their use cases, too, recognising gestures in sleeves (Schneegass and Voit,

2016), or in wrist bands (Rekimoto, 2001). EMG and EEG sensors were successfully used for explor-

ing social and affective behaviours, too (Damian et al., 2016; Soleymani et al., 2016). A summary of

some commonly used wearable sensors can be found in Table 2.2.
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Reference Modality Placement Use Case
Damian et al. (2016) IMU, EMG, audio wrist, head phones,

glasses
assessing social inter-
action

Soleymani et al. (2016) EEG face emotion recognition
Theodorou and Healey
(2017)

IMU wrist band gesture movement,
audience engagement

Rekimoto (2001) capacitive sensor,
accelerometer

wrist band gesture recognition

Chalkley et al. (2017a) IMU, accelerometer wrist, ankles detect fidgeting in
screen based task

Groeger and Steimle (2018) capacitive touch jewellery various applications,
interaction design

Kettley (2008) distance sensing,
LEDs

jewellery social relationships

Choudhury and Pentland
(2003)

audio, accelerome-
ter, infrared sensor

around the neck social relationships

Hung et al. (2013) accelerometer around the neck social formations
Attal et al. (2015) accelerometer, IMU strapped on various

body parts
activity recognition

Schneegass and Voit (2016) pressure sensors under-arm sleeve interface for smart
watches

Table 2.2: An overview of a selection of wearable sensing systems, featuring commonly used sensors
worn as accessories or gadget-like devices.

On Body Sensing

The concept to use on-body sensors to determine affective states, social interaction and group dy-

namics, as well as simple presence sensing has been explored with a variety of recording devices

and sensor technologies. Sensors deployed directly on the body can replace other systems without

reducing the quality and quantity of data they collect. These wearable sensors are often used in com-

bination with body suits for motion tracking (Drapeaux and Carlson, 2020; Olugbade et al., 2019;

Camurri et al., 2003). And while such motion capture suits have the advantage to sense full body

movement with one modality alone, wearing the body suits with attached markers to be detected

by the installed camera systems is intrusive and does not foster spontaneous behaviour in natural

settings. Nevertheless, it has been used to explore unstaged conversation, for example investigating

listener behaviour in seated multiparty interaction (Healey et al., 2013), and also exploring nonverbal

communication in patients with schizophrenia (Lavelle et al., 2013).

Additional sensors contribute towards a multimodal network capturing a wide range of bodily

signals. Embedded in the surface of clothing (Gioberto et al., 2013; Dunne et al., 2006a), or even

directly on the skin (Weigel et al., 2015; Charry et al., 2011), commonly used modalities for on-

body sensing are, similarly to accessory designs, accelerometers (Varni et al., 2010; Camurri et al.,

2003; Niewiadomski et al., 2019), gyroscopes(Charry et al., 2011; Drapeaux and Carlson, 2020), IMU

(Chalkley et al., 2017b), RFID (Jin et al., 2018; Ukkonen et al., 2012; Khaorapapong and Purver,

2012), EEG (Rayatdoost and Soleymani, 2018; Soleymani et al., 2016), as well as EMG sensors

(Wang et al., 2019; Olugbade et al., 2019). Such sensors have been used to extract information on

emotional stress and pain levels of full body movement (Olugbade et al., 2019), as well as of parts of it

(Charry et al., 2011), including nonverbal behaviour of chronic pain (Wang et al., 2019). In general,

many works involving detecting affective states or recognising emotion use physiological on-body

sensor data (Soleymani et al., 2012; Rayatdoost and Soleymani, 2018), whether it is in performative
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contexts (Camurri et al., 2003, 2000; Mahmoud et al., 2013; Volpe et al., 2016), or in health care

related applications (Wang et al., 2015; Haladjian et al., 2018; Bisio et al., 2019), including sports

(Niewiadomski et al., 2019; Ribas Manero et al., 2016), all commonly investigated (Noroozi et al.,

2021).

When deploying sensors on the human body in motion, wearability comfort and ubiquitousness for

the wearer is generally desired, aiming not to compromise body movements as well as sensor designs.

Hereby, the importance of sensors’ flexibility is often emphasised (Patel et al., 2012) - they should

be soft, bendable and be incorporated without causing any disruption or augmentation of natural

human behaviour. These criteria can pose challenges when it comes to designing sensing systems for

the body (Sharma et al., 2017), however the increasing popularity of integrating wearable sensors in

garments has offered solutions to some of these challenges.

2.2.4 Detecting Postures

With all the different wearable sensor designs, placements and types mentioned above, many are used

to detect nonverbal cues such as gestures, gaze, body orientation and posture, and deduct affective

states and social engagement levels from it (Kleinsmith and Bianchi-Berthouze, 2013; Karg et al.,

2013), in addition to measuring such physiological signals for rehabilitation, performance, or sport

purposes (Helmer et al., 2008; Jakubowski et al., 2017; Patel et al., 2012; Niewiadomski et al., 2019).

Postures have been identified as a reliable indicator for a variety of social and affective behaviours in

screen based (Gunes and Piccardi, 2009, 2007) or face to face interaction (Bernhardt and Robinson,

2007; Griffin et al., 2015a), as well as in single user scenarios (Behnke et al., 2021; Varni et al.,

2010). Some postural movements, however, have been associated with social cues in either of those

scenarios. For example, a slumped posture may suggest boredom, while an upright posture can

indicate interest, and also arousal and valence can be indicated through postural cues (Kleinsmith

et al., 2011; Kapoor and Picard, 2005; Kapoor et al., 2007; Chalkley et al., 2017a; D’Mello et al.,

2007a; Kapur et al., 2005). Here, again, multimodal approaches have been praised for high accuracy

levels in classifying such bodily cues automatically (Kleinsmith et al., 2011; Kapoor and Picard, 2005;

D’Mello and Graesser, 2010). Mostly, postural cues are measured with a combination of camera based

systems like video recordings or motion capture suits, and one measure of physiological data, such

as acceleration or EMG sensors (Kleinsmith et al., 2011; Healey et al., 2015; Olugbade et al., 2019;

Jakubowski et al., 2017). Many of the social or affective postural behaviours have been identified

through methods using acted postures, though, not detected in natural settings (Kleinsmith and

Bianchi-Berthouze, 2013; Karg et al., 2013; Noroozi et al., 2021), and sometimes even from avatars

(Buisine et al., 2014). Other commonly posture associated behavioural cues have been extracted

from data sets of dance or music performances (Volpe et al., 2016; Camurri et al., 2003, 2000; Varni

et al., 2009).

Sitting Postures

While in settings involving rehabilitation, performance or sport related tasks, the deployed on-body

sensors collect postural information from single users in motion, for example during running or other

physical exercising (Ribas Manero et al., 2016; Schneegass and Voit, 2016), interactional engagement

is frequently assessed in seated individuals (Kapoor et al., 2007; D’Mello et al., 2007b; D’Mello and

Graesser, 2009; Kleinsmith et al., 2011; Witchel et al., 2016). Afterall, “sitting is one of the natural

actions in our daily life” (Kamiya et al., 2008), whether that is in front of the screen for educational
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(D’Mello et al., 2007b), work related tasks (Chalkley et al., 2017a; Nathan-Roberts et al., 2008),

including interview settings (Antonio Gómez Jáuregui et al., 2021), social or cognitive engagements

(Stewart et al., 2018; Bibbo et al., 2019), or even when in a car (Furugori et al., 2003; Riener and

Ferscha, 2008). Seated postures have further been used to explore cultural differences (Shibata et al.,

2013; Kleinsmith et al., 2006), or to correct ergonomic (Kim et al., 2018).

Aiming to capture sitting postures also lends itself to using sensors on the seating surface, e.g.

the chair, or on the body itself, e.g. along the back (spine). Also the combination with recording

devices in a smart environment are effective to capture postural cues, creating a multimodal sensing

network. Sitting posture can be sensed in direct ways with sensors on the body parts in motion,

measuring acceleration (Chalkley et al., 2017b), EMGs (Olugbade et al., 2019), capacitive sensors

(Singh et al., 2015), or using motion capture body suits (Healey et al., 2013, 2015; Lavelle et al., 2013;

Kapur et al., 2005); but also in indirect ways, for example retrieving postural information through

EMG sensors measuring forehead tension (Strack and Neumann, 2000), or force plates integrated in

the floor (Giraud et al., 2013). Most commonly, sitting postures assessed for interactional, affective

and behavioural studies, are captured by instrumentalising chairs (Kapoor et al., 2004, 2007; Shibata

et al., 2013; D’Mello et al., 2007a), as will be elaborated further in Chapter 3, too. With the nature

of shifting weight across the surface of a seat, pressure sensors have emerged as one of the most

popular modalities to detect sitting postures (Meyer et al., 2010a; D’Mello et al., 2007a; Tan et al.,

2001; Kapoor et al., 2004; Shibata et al., 2013).

The Use of Pressure Sensors

A large number of sitting postures and behavioural cues can be identified with this approach (Klein-

smith and Bianchi-Berthouze, 2013; Karg et al., 2013). However, pressure sensors are also used

beyond sitting posture detection alone. D’Mello et al. (2007a), for example, found that frequent

changes in pressure refer to boredom and restlessness of learners, and Kapoor et al. (2007) associated

frustration with different postures captured with pressure sensors in a seat. Together with pressure,

other modalities have been explored and combined with information of postural shifts, such as facial

cues (D’Mello and Graesser, 2010; Strack and Neumann, 2000). Encapsulated as a grid in plastic

sheets1, or deployed manually as patches or self made sensing surfaces, pressure sensors achieve high

accuracies identifying small scale changes of postural movement (Tan et al., 2001; Cheng et al., 2013;

Riener and Ferscha, 2008). Additionally, when comparing different resolutions of pressure sensing

grids in these works, in other words the amount of sensors used to identify postures, the best results

were not always achieved with the highest number of sensors. A more detailed comparison of pressure

sensors in chairs can be found in a separate literature review section in Chapter 3.

2.2.5 Automatic Detection of Behavioural Cues

Sensor driven approaches to detecting human behaviour requires suitable processing and analysis

methods. In recent years, algorithms and classification models have been used to validate sensing

systems and to identify signals of bodily movement and social behaviour. Machine Learning and Deep

Learning methods have replaced traditional statistical methods (Noroozi et al., 2021), with some

models being more frequently used than others, as surveys show (Kleinsmith and Bianchi-Berthouze,

2013; Noroozi et al., 2021). Overall, many different approaches have been used to detect nonverbal,

embodied affective states from the whole body, as well as from individual body parts (sometimes

1as is commercially available e.g. via Tekscan
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the face alone), and using various modalities to measure these (Kleinsmith and Bianchi-Berthouze,

2013).

Processing Sensor Data

As mentioned above, many signals still stem from visual data, dominantly recorded video, which

also led to developments in computer vision have achieved high recognition accuracies with all vision

dependant data, such as cameras (Vinciarelli et al., 2008; Karg et al., 2013). Often in combination

with multimodal networks, it is possible to predict fine grained behaviours like listener backchannels

(Morency et al., 2010, 2008) as well as to recognise emotions (Kleinsmith and Bianchi-Berthouze,

2013), affect from gestures (Kapur et al., 2005), head movement (Behnke et al., 2021), as well as from

full body movement (Bernhardt and Robinson, 2007). To do so, different types of on-body sensors

have been used, gathering physiological data, such as IMUs, EMGs, EEGs, piezo-resistive sensors,

and others mentioned above and compared in Table 2.3.

In some studies, it is argued that machines and algorithms have performed better in detecting

such signals than humans (Morency et al., 2008; Bourai et al., 2017; Subburaj et al., 2020; Klein

et al., 2004). This applies even when it comes to measuring affective states, automatically detecting

arousal and valence through postural cues (Kleinsmith et al., 2011). This is not just a central topic

in social sciences but also in computer vision research (Pentland, 2000) and HCI in general.

Machine Learning for Social Interaction

Automatic detection of postures or postural activities and behaviours (Tan et al., 2001; Slivovsky

and Tan, 2000) have been developed with Hidden Markov Models (HMM) (Kapoor and Picard,

2005; Delaherche et al., 2012), LSTM (Wang et al., 2019; Bello et al., 2021), Naive Bayes (Meyer

et al., 2010a), Nearest Neighbour (NN) algorithms (Singh et al., 2015), Conditional Random Fields

(CRF) (Soleymani et al., 2016; Delaherche et al., 2012), or decision tree based approaches (Gunes

and Piccardi, 2009; Gaus et al., 2015; Griffin et al., 2015a), to name only a few. Table 2.3 shows

an overview of some of the works mentioned in this review chapter, representing commonly used

approaches to automatically detect postural cues.

Machine learning approaches can be applied to extract and detect patterns for behavioural dis-

crimination (Atallah and Yang, 2009), as well as for classifying and identifying social signals. Social

touch (Gaus et al., 2015) and laughter in interaction (Scherer et al., 2012; Griffin et al., 2013, 2015a)

can be measured, too, in addition to social engagement and head nods (Foster et al., 2013; Behnke

et al., 2021) is detected with these methods. HMM models have proven successful when detecting

backchannels (Morency et al., 2010) and recognising head nods in natural conversation (Fujie et al.,

2004). Also Gaussian models and Conditional Random Fields (CRF) have been explored in the de-

tection of signals of social interaction (Kapoor and Picard, 2005). HMM and CRF have specifically

been shown useful for extracting dynamic features and temporal structures of postural behaviour

(Delaherche et al., 2012). Finally, models based on decision trees, like Random Forests, present an

alternative to more complex neural networks and are an approach and have been used in many works

assessing on-body sensors (Olugbade et al., 2019; Gaus et al., 2015; Griffin et al., 2015b). Gunes and

Piccardi (2009) for example, found that this approach is suitable to analyse full body movement,

while models like SVMs have been more successful with classification accuracies for facial cues.

An overview of the different algorithms for the detection of social cues from body movement can

be found in Table 2.3, though there are more detailed surveys discussing the different approaches
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Reference Signal Input Analysis
Method

Use Case

Gunes and Piccardi (2009) visual cues of whole
body

RF (Random
Forest)

affect detection

face SVM affect detection
Gunes and Piccardi (2007) video, mocap of face

and body motion
Bayes Net affective behaviour

Bernhardt and Robinson
(2007)

visual cues of hand
gestures

SVM affect detection

Varni et al. (2010) multimodal (video,
mocap)

Recurrence
Analysis

leadership, dynamic

Delaherche et al. (2012) video HMM, CRF conversation dynamics,
interpersonal synchrony

Gaus et al. (2015) pressure sensor RF social touch
Kapoor and Picard (2005) pressure sensor, video HMM interest detection through

posture
Griffin et al. (2013) torso RF laughter type
Griffin et al. (2015a) vision based system

(Kinect)
RF laughter detection

Olugbade et al. (2019) multimodal (IMU,
EMG, Mocap)

RF, SVM stress, pain level, posture

Behnke et al. (2021) head movement im-
ages, video films

Bayesian
models

emotion detection in head
movement

Soleymani et al. (2016) EEG LSTM, CRF emotion recognition

Table 2.3: A comparison of different, commonly used algorithms used to automatically detect social
signals

in connection of affective states by Kleinsmith and Bianchi-Berthouze (2013), Karg et al. (2013), or

Noroozi et al. (2021).

2.2.6 Summary

With the richness of nonverbal cues, the tools to detect them are just as wide in range. Generally, an

unobtrusive approach is desired, distracting the natural actions as little as possible. A combination

of smart environments, devices and on-body sensors is used to monitor people’s actions and presence,

movements and behaviours in an increasingly connected world (Poslad, 2011).

On-body sensors that capture physiological data have been used alongside more ‘traditional’,

vision based methods (Karg et al., 2013), and contribute to a multimodal network of sensor input,

enabling additional insights to nonverbal signals. The methods to detect such actions and behaviours

vary depending on the signal input, or modality, as well as the data quantity and features to distin-

guish (Noroozi et al., 2021). As will be elaborated more in Chapter 5, Ensemble Trees like Random

Forest algorithms show to be an appropriate approach for the type of data this thesis will collect and

work with.

Gaps in Current Literature

The recommendations that can can be taken from the reviewed works in regards to analysis method,

choice of sensors when gathering bodily signals, and placement of sensors, are accompanied by draw-

backs, too.

One limitation are the settings in which embodied social behaviour is analysed. Most examples
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here of research analysing body movement and behavioural cues use postural information assessed

by observers that are not part of the scenario in which the postures are performed. While there is

a large corpus using acted postures, and sometimes even avatars to form a data base that is later

judged by observers, there is a smaller corpus deriving from data captured in natural settings and

group interaction (Kleinsmith and Bianchi-Berthouze, 2013).

Moreover, the objective to detect affective behaviour is widely addressed in the field of wearable

computing. What is less studied are, whether the postural movements and signals associated with

affect and an individual’s perception and transmission of a social signal can be validated in a conver-

sational setting, in multi-party interaction in unstaged scenarios and socially natural environments.

These limitations resonate with the ones identified in the previous section of this chapter, 2.1.

Furthermore, the wearability and comfort of some of the sensing systems deployed on the hu-

man body does not always comply with the idea of a truly ubiquitous, unintrusive approach. This

is, amongst other things, an issue of materiality, with many sensors consisting of rigid, in plastic

encapsulated components that are not in alignment with smooth, bodily movements. This factor

is something that is given more attention in the next section and in this thesis in general, working

towards establishing a solution for a soft interface that does not interfere with natural behaviours

and bodily actions when investigating social interaction.

2.3 Textile Sensing

2.3.1 A Soft Interface to Our World

A Historical Overview

Fabrics, or more generically, textiles are a material we have been familiar with for thousands of

years, mostly in the form of, but not bound to, clothing. Seen as an extension of our skin, it is

used to protect as well as to culturally and socially express ourselves (Ryan, 2014). Raw materials

to manufacture yarns and fabrics have been sourced from animals and plants of all sorts, allowing

for a wide range of properties when turned into a fabric surface and product. And it was not until

the early 20th Century that the very first artificially created textile was introduced. Nylon, the first

synthetic fibre was established as a commercially available material in the 1930s by DuPont (Koch-

Mertens, 2000b; Pailes-Friedman, 2016). It is still a popular material for both the clothing industry

and the field of smart textiles, where it often serves as a base fabric for conductive coatings or similar

(for a product sample, see companies such as Eeonyx, Statex, etc). When looking for textiles with

conductive properties that allow for sensor and soft circuit developments, we don’t have to focus on

modern day technologies and synthetic innovations, however, but can find such properties in early

clothing that dates back to Ancient Egypt, where metal threads were woven into fabrics and metal

accessories were used for closings and embellishments (Ryan, 2014). Metal threads were a widely

used material for embroidery, and even comparatively large scale metal plates along the front torso

as parts of corsets in clothing in 16th Century in Europe (Koch-Mertens, 2000a).

We can see that throughout costume history, intentionally and unintentionally, conductive ma-

terials have been integrated with different techniques and have been worn closely to and on the

human body2. Making use of these properties, turning textiles into a sensing surface and making

it a fundamental part of wearable computing has developed over the last 30 years (Post and Orth,

2even in the human body, when including piercings
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1997). It has since been used for a variety of applications including medicine (López et al., 2010),

sports (Helmer et al., 2008; Coyle et al., 2009), and the arts (Sicchio et al., 2016), as well as in the

lifestyle (Poupyrev et al., 2016) and gaming industries (Chu et al., 2012). Sensing and actuating

fabrics, as well as their nonconductive relatives technical fabrics, have travelled to space to serve as

a more flexible and unintrusive alternative to gadgets and other hard shell devices worn on the body,

and are also designed as smart skin for robots, in particular for humanoids (Vallett et al., 2016).

Textile innovations have always derived from needs or desires related to the human body, or, in other

words, have always been created in direct connection to the human body, serving as a layer between

our physical and cultural self, a layer between us and the world. Textiles can therefore also act as

an interface to connect this analog world and digital spaces through tactile experience. Under these

premises, electronic components and microcontrollers like the LilyPad (Buechley et al., 2008) have

been developed and have contributed to integrate textiles to digital design.

A Textile Material Overview

Combining textiles with electronics comes in various forms and techniques, creating different desired

sensing characteristics through a wide range of materials and structres. Soft textile systems can act

as three different components in a circuit: as sensors, actuators or batteries (Castano and Flatau,

2014). They can also form the circuit itself that connects these components, replacing wires. The

numerous fabrication techniques to create fabric sensors, or fabric based circuitry all show different

advantages and disadvantages. They are assessed by their flexibility level and are evaluated against

their possibilities for connection and bonding to other electronics (Castano and Flatau, 2014).

To equip textiles with electronic properties, conductive elements are integrated on a fibre, yarn

or fabric based level. Metal particles can be combined with wool fibres, e.g. in a steel wool (Satomi

and Perner-Wilson, 2007; Nonnis and Bryan-Kinns, 2019), or pure metal strings are treated as fila-

ments and twisted into yarns, either as the core of a twisted yarn (Huang et al., 2008), the coating

elements (Fernando et al., 2020), or alongside non-conductive mixed yarns (Poupyrev et al., 2016).

A more recently developed and more complex method is to integrate electronic components such as

temperature sensors or LEDs into the fibres of twisted yarn using nanotechnology, so that further

manufacturing processes can be conducted on industrial machines and the electronic parts become

invisible (Hardy et al., 2019, 2020; Dias, 2015; Lugoda and Morris, 2015). With this technique to

miniature electronics, the electronic yarn can still be used on common knitting machines or weaving

looms and has the potential to be manufactured on an industrial level.

The next step in the textile process is creating a fabric surface. To do so, conductive yarn or

yarn with integrated electronics is mostly knitted or woven into surface structures, as are many of

the textiles we come in touch with in everyday environments. This structural familiarity is also why

fabrics entail so many advantages as an ubiquitous interface (Swallow and Thompson, 2001). While

with commercially conductive yarn3, it is possible to create conductive fabrics on domestic machines

or by hand, there are also commercially available fabrics of different suppliers4, possible to acquire

in large quantities. Additionally, fabrics that are initially produced as non-conductive textiles can

later be coated with conductive films, often based on carbon (Jost et al., 2013; Fernando et al.,

2020) or silver. With these different ways of producing conductive textile surfaces, there is interest in

comparing their performance as reliable fabric based sensors (e.g. Liang et al. (2019a)). As such, they

can be used for a wide range of applications, including capturing movements by measuring stretch

3e.g. through companies like Statex, Karl Grimm, Barts & Francis, and others
4e.g. through distributers like Hitek, or companies like Eeonyx, Statex, Medtex, or Plug & Wear, to name a few.
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(Liang et al., 2019b), but also for generating and storing electricity themselves (Weng et al., 2016).

Similar to yarn based developments, the properties of the textile structure define the optimal use case

for a textile based sensor, as well as determine their behaviour in regards to resistive characteristics.

Together with conductive yarns and fabrics, other techniques are used to create circuits, actuators

or sensors. For example, printing a circuit has the advantage to enable a flexible, soft circuit board

that can be employed onto a finished garment (Catchpole, 2019; Jost et al., 2013). Here, noncon-

ductive fabrics operate as a substrate for conductive ink such as copper or silver. This technique

has been used to design antennas and temperature sensing fabrics for various on-body applications

(Ibanez Labiano and Alomainy, 2019).

Another technique is embroidery and sewing (Gioberto et al., 2013; Milo and Reiss, 2017). This

way, hard electronic components can be attached to fabrics in a robust, yet flexible way. An example

can be seen in Trindade et al. (2014), where EKG sensors are embroidered, or in the work of Ukkonen

et al. (2012), where RFID tags are sewn onto fabrics. Embroidery has also been used to manufacture

textile antennas (Dias, 2015), as well as entire textile computer systems (Posch and Kurbak, 2016).

Overall the field of textile sensing, including material innovation, is developing rapidly and the

examples mentioned here present a small selection of common designs, techniques and use cases.

More detailed reviews on the state of the art of electronic textiles in general can be found in Castano

and Flatau (2014); Weng et al. (2016), and Gonçalves et al. (2018).

2.3.2 Textiles for Social Computing

There are many application areas smart textiles have been introduced to, ranging from solutions for

the medical sector (Yang et al., 2019) including rehabilitation (Patel et al., 2012; Gioberto, 2014),

to performance art (Sicchio et al., 2016; Greinke et al., 2021a) to sports (Yu et al., 2021; Coyle

et al., 2009) to games (Chu et al., 2012) or other leisure activities (Poupyrev et al., 2016). For this

section, the focus of reviewed works lies on use cases of textile sensing in social contexts. While

this can be a similarly broad field to look into, I examine the role of textiles in scenarios including

unstaged, multiparty social interaction and scenarios where textiles support the communication of

social behaviours, or measure such.

Textiles, smart or not, have always played a significant part in human interaction. This close

relation between textiles and humans makes all products and surfaces made of and covered by textiles

a convenient, natural sensing material when it comes to capturing social signals. Unintrusively close

to our skin, following our bodily actions in the form of clothing, or designed as a soft interface with

familiar surface qualities in smart environments, textile sensing systems can be used to monitor and

log everyday activities when incorporated in e.g. table cloths (Gaver et al., 2006), or pillows (Vogl

et al., 2017). They can also function as materials encouraging interaction between people (Giles and

van der Linden, 2015; Kettley et al., 2016), as well as interaction with objects (Buechley et al., 2010;

Nonnis and Bryan-Kinns, 2019).

One advantage of using textiles lies in its unobtrusiveness and ubiquity in the context of collecting

data, as well as in its material properties as a soft, flexible, and easily modifiable surface that can

mould around the body effortlessly, and can even be treated like other, ‘everyday’ fabrics (Niazmand

et al., 2010; Ju and Lee, 2020). For use cases in social computing, especially in regards to wearable

smart textiles, these advancements ease the deployment in everyday scenarios as well as a more and

more accurate data processing and interpretation.
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Social Smart Textiles in Healthcare

Under these premises, social smart textiles have been explored for use cases in health care and in the

medical sector. Many have mentioned e-textiles as a possibility for rehabilitation applications (Patel

et al., 2012; Haladjian et al., 2018), describing them as ‘medical wearables’ (Griffin and Dunne, 2016)

or ‘wearable health technology’ (Møller and Kettley, 2017). Pressure sensing mats on seat covers

and beds detect pressure points in patients, e.g. in (Sundholm et al., 2014; Arnrich et al., 2010),

textile activity recognition systems monitor elderlies’ movements, and exoskeletal body suits even

actively support muscle activity (Béhar, 2017; Yang et al., 2019). But also for humans at the other

end of the age spectrum, smart textiles prove to be convenient. Textile sensors have been emdedded

in baby suits to track their movement (Jakubas et al., 2017) for unintrusive and comfortable health

monitoring.

There are numerous examples of textile sensors, presented in different structural techniques, being

used as wearable health monitoring systems, e.g. in Paradiso et al. (2005), to measure physiological

and biomechanical elements (Pacelli et al., 2006), monitoring a patient’s activities, movements, or

also measures like heart rate, pulse, blood pressure, etc (Weng et al., 2016; Fernández-Caramés and

Fraga-Lamas, 2018; Yang et al., 2019; Hughes-Riley et al., 2018). Many of these are proposed for

rehabilitation purposes (Wang et al., 2015), as well as for wheelchair users (Ma et al., 2017)

Also when in interactional scenarios in a healthcare context, most fabric sensors are designed to

be embedded in an interaction between humans and computers, or to be centred around the body

for health applications. Very few address social interactions, e.g. Dunne et al. (2006a,b). There is,

however a need to integrate textiles in social scenarios, too, for example to reduce barriers in assistive

technology (Yang et al., 2019; Blumenkranz et al., 2018).

Improving digital technology through textiles, is a pledge that not only suits the application in

healthcare, but in general the field of wearables (Kettley et al., 2011, 2017).

Social Smart Textiles for Collaboration

Another social computing application area in which textiles find use is in education. Here, tangible

interfaces are used to engage in collaborative play (Nonnis and Bryan-Kinns, 2019). Textile interfaces

have found particular popular use in educational settings for autistic children, providing a soft,

and therefore safe material property (Nonnis and Bryan-Kinns, 2019; Zhiglova, 2018). In general,

using smart textiles fosters collaborative and participatory design practices, as shown in a variety

of workshops, also in marginalised communities (Giles and van der Linden, 2015; Meissner et al.,

2018, 2017; Kettley et al., 2016). Giles and van der Linden (2015), for example, has used e-textile

design practices to enhance tactile experiences for visually impaired people through workshops and

co-design approaches.

In other social contexts, textile interfaces are used in education to facilitate workshops and group

activities for visually impaired people (Giles and van der Linden, 2015), people with disabilities

(Meissner et al., 2018; Blumenkranz et al., 2018), with mental health conditions (Kettley et al., 2016;

Cosma et al., 2017), and children with autism (Nonnis and Bryan-Kinns, 2019; Zhiglova, 2018). In

the context of participatory and collaborative design, textiles are often mentioned as an interface

through which accessibility to technology can be secured (Giles and van der Linden, 2015; Meissner

et al., 2018; Kettley et al., 2016), presenting a tangible experience in comparison to screen based

activities. The idea of tangible representation of digital interfaces is something that has received a

wide research community’s interest, and plays an important role in social computing as well (Foo
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Reference Textile Design Sensor Type Suggested Use Case
Cosma et al. (2017) portable small objects accelerometers anxiety reduction
Gaver et al. (2006) table cloth pressure track social movement,

object placements
Khaorapapong and
Purver (2012)

jacket RFID meetings between
strangers / anxiety
reduction

Nonnis and Bryan-
Kinns (2019)

soft floor sculpture capacitive collaborative for autis-
tic children

Blumenkranz et al.
(2018)

various textile inter-
faces

various (capacitive,
piezo-resistive)

people with disabilities

Table 2.4: Examples of smart textile use for applications for social interaction

et al., 2021; Petreca et al., 2013).

Textiles have also been shown to be a suitable sensing surface when tracking social dynamics

of group interactions, for example tracking activities around a table (Gaver et al., 2006), or when

mingling and meeting with others (Khaorapapong and Purver, 2012), but also to comfort people

with anxieties in such scenarios (Cosma et al., 2017).

A brief summary of some examples of textiles used for social computing applications involving

human interaction is presented in Table 2.4, also listing the textile sensor types being used for different

designs. Although I recognise there are more examples of smart textiles being designed for a social

context, the proportion of such in comparison to smart textiles designed for an ego-centric application,

including human-computer-interaction and healthcare, is small. This is also acknowledged in recent

surveys, projecting significant developments of smart textiles in this area (Ju and Lee, 2020), forming

a growing part of an ambient sensor environment (Cosma et al., 2017).

2.3.3 Smart Clothing

The term ‘smart wear’ was something circulated as early as 1995 by Pentland (Ryan, 2014), describing

business clothes with integrated wearable technology. Soft sensors with material properties that are a

familiar sensation on our skin have many advantages when it comes to measuring bodily signals, and

have been used for a large variety of other applications. In performing arts like dance (Sicchio et al.,

2016), as musical interfaces or for optical, aesthetic purposes in fashion (Seymour, 2008, 2019), smart

clothing has become a well integrated part of tangible interfaces for wearable technologies. Depending

on the application, different electronic components and textile sensors are integrated through different

methods in the garments. Accelerometers and physiological sensors like IMUs, EMG, EEG sensors

are amongst common sensors to deploy on pieces in smart clothing (Acar et al., 2019).

Replacing rigid sensing materials with softer, more flexible textile materials has allowed research

to focus on positioning these new fabric interfaces on the body. ‘Smart Clothing’ now sits alongside

mobile phones and other wearable gadgets in the field of ubiquitous computing and offers a novel

modality to conventional sensing techniques. It serves as interfaces in human-computer interaction

(HCI), e.g. (Poupyrev et al., 2016; Schneegass et al., 2014), but also in communication between

humans, e.g. (Khaorapapong and Purver, 2012).

In parallel to health care applications, the same body measurement systems can be used to inform

fitness performance for sports applications. Textile techniques are used to measure muscle activities

of runners (Ribas Manero et al., 2016), and to provide practical solutions for cycling gear, for example

by LEDs integrated in electronic yarn woven into joint areas of a jacket, or LEDs in gloves that light
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up when forming a fist (Posch, 2011).

Textile sensing design has also been adapted for non-humans. Robots have been equipped with

textile ‘skin’ to react to outer stimuli like touch (Vallett et al., 2016), and studies on the interaction

between robots and humans has shown that dressed robots appeared more approachable for people

than ‘naked’ robots revealing their metal shell (Trovato et al., 2016). And even in outer space,

e-textiles are used to replace more rigid wearables, offering an on-body sensing system to monitor

astronauts’ health status with fully integrated textile circuits, e.g. in Lee et al. (2018).

Application areas that are often proposed and explored with textile sensing techniques are health

care, sports, community engagement, education and interaction design, including games and other

screen based activities (Fernández-Caramés and Fraga-Lamas, 2018; ?). More recently, also robotics

and space design engineering have adapted techniques and benefits of textiles as soft sensing systems.

Social Smart Clothing?

Although textiles have been praised for their beneficial material properties in relation to social sce-

narios and interaction, the designs presented for different applications are mostly based on objects or

accessories rather than integrated in clothing. Given the communicative nature of the textile we wear

on our body (Schmelzer-Ziringer, 2015; Barthes, 2006; Berzowska, 2005), however, comparatively few

items of clothing are instrumented to contribute to social interaction in a non-egocentric manner.

There are, however, numerous examples of smart clothing that react to outer stimuli, including those

initiated by interaction partners or other humans, see e.g. Seymour (2008); Pailes-Friedman (2016);

Kettley (2016).

Examples show, that mostly upper body garments are used when measuring postural and gestural

movement through textile sensing on the body. Even capturing sitting postures has been explored

with stretch sensors in T-shirts (Mattmann et al., 2007), focusing on the changes in posture of the

torso only. Recognising gestural movement enables clothing to act as a remote control for digital

devices, for example smart watches (Schneegass and Voit, 2016), whose interface can be replaced

by a smart sleeve, or mobile phones that can be controlled with small hand gestures on a jacket

(Poupyrev et al., 2016). There are also designs of wearable textile sensing intended to be worn as a

separate layer underneath clothes (Rekimoto, 2001), whereby the electronics are detachable from any

fabric that requires washing. Integrated in smart clothes, textiles have been suggested to be capable

of measuring aspects beyond posture detection, too, assessing social compatibility (Khaorapapong

and Purver, 2012). Sensing systems in clothing are also suggested to act as technologies encouraging

group activities like going running together (Mauriello et al., 2014).

Smart Trousers

While the upper body is typically the focus of design investigations on smart clothing, also the lower

body provides useful cues to capture in certain application areas. In use cases where the legs are in

more movement than the torso, for example in running, or cycling, sensors in trousers can be used

to measure muscle activity to assess the athlete’s performance. This can be achieved by deploying

EMG and EKG sensors on the garment (Ribas Manero et al., 2016). Pressure sensors play a role in

monitoring leg activity for various gym exercises, too (Zhou et al., 2016). The advantage of sport

outfits is that they are mostly cut very tightly to the body for a slim fit, so that the electrical bio

signal sensors are in direct contact with the skin without further manipulation. There are examples

of cycling trousers, however, where sensors are attached to the body in a conventional way via straps,
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and trousers are used to conceal and protect the sensing area (Liu et al., 2019). ‘Smart’ trousers are

also used for gait recognition and other movement detection, for example with accelerometers placed

above the knee (Van Laerhoven and Cakmakci, 2000), or reflective markers attached on trousers,

captured by camera systems (Dunne et al., 2011).

Reference Sensors Used Sensor Placement Suggested Use Case
Ribas Manero et al.
(2016)

EMG, EKG on top thighs Measure muscle activity
for runners

Niazmand et al. (2011) accelerometers along side seam gait recognition for
Parkinsons Disease

Van Laerhoven and
Cakmakci (2000)

accelerometers above knee gait recognition

Zhou et al. (2016) pressure sensors leg activity monitoring
for exercise

Singh et al. (2015) capacitive sensors on thighs gesture recognition
Cha et al. (2018) piezo-electric sensors knees and hips gait recognition
Honnet et al. (2020) piezo-resistive sensors all over leggings leg movement recogni-

tion
Yu et al. (2021) pressure sensors around knee measure knee move-

ment, prevent injuries
Gioberto et al. (2014) goniometer knee and hip measure joint flexion
Bisio et al. (2019) IMU, pressure knee, thigh, foot home rehabilitation

Table 2.5: A comparison of smart trousers.

An interesting observation when comparing upper and lower body smart textile designs is, that

for trousers, the sensor integration appears impoverished. For example, in (Cha et al., 2018), sensors

are simply attached with copper tape, and Bisio et al. (2019) uses relatively rigid wires to connect

the circuit. Singh et al. (2015) straps a sensor array on trousers, and while Ribas Manero et al.

(2016) and Yu et al. (2021) use a more refined approach for textile integration, the design features

commercially available trousers that requires the sensor design to be adapted. In comparison, many

upper body garments are designed and fabricated “from scratch” to incorporate textile sensors.

Moreover, trousers are never used to capture movement from body parts other than legs. For example,

we find T-shirts measuring whole body movements including the legs (Mattmann et al., 2007), but

no trousers or other legwear measuring movements of the torso.

2.3.4 Tailoring Electronic Integration

Embedding sensors in clothing has to fulfil slightly different requirements than when embedding

sensors in other textile surfaces. Clothing as a wearable dynamic, flexible surface bears challenges

that static objects don’t, but they also provide solutions that are unique to clothes. There are

examples of sensing clothes that present all of these techniques: areas of conductive yarn woven into

a garment and transformed into a capacitive touch area (Poupyrev et al., 2016) or nano-electonics in

yarns as light signals in cycling jackets (Hardy et al., 2019); sewn in areas of conductive and resistive

fabric bonded onto base fabric as part of a suit jacket (Stewart, 2016) or dance costume (Liang et al.,

2019b); embroidered speakers and circuits on dresses and other upper body garments (Satomi and

Perner-Wilson, 2007).
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Garment Engineering

The pattern construction and tailoring techniques of garments also afford an unintrusive, concealing

way of integrating rigid, less flexible sensors and hard electronic components such as RFID tags

in sleeves (Khaorapapong and Purver, 2012), interactive touch pads interwoven in denim jackets

(Poupyrev et al., 2016), or batteries and microcontrollers in buttons (Stewart, 2016), where all

electronic components were integrated with techniques borrowed from traditional tailoring. The

notion of tailored suits has been used in relation to the development and design of textile sensing in

clothing, too (Catrysse et al., 2003; Wicaksono et al., 2020), and the handcraft of bespoke garment

making, which offers technical solutions beneficial for a precise and ubiquitous integration of electronic

components.

Nevertheless, there are examples in which on-body sensing is conducted in ways that do not

account for these factors of design engineering that garment manufacturing crafts offer. In many

projects, ready made garments are acquired and later equipped with electronic components (Liu

et al., 2019; Khaorapapong and Purver, 2012; Chalkley et al., 2017b; Ribas Manero et al., 2016),

etc., rather than designing a garment accounting for textile sensing parameters.

Hard-Soft Connections

Connecting circuit boards, wires and sensors that are textile based with hard electronic components

can be done by soldering, though these connections present the risk of breaking. Instead, snap

buttons, safety pins and other conductive supplies used in clothing and textile related products can be

used. Satomi and Perner-Wilson (2007) document an ever growing design archive of solutions related

to these design and engineering challenges. These developments contribute to the improvement of the

compatibility between electronic components and textiles. Designers and researchers have worked

on more robust connections between them and have designed microcontrollers and boards that allow

for a textile friendly handling (Buechley and Perner-Wilson, 2012). Examples of outcomes of such

developments are toolkits (Posch and Fitzpatrick, 2018) that contribute towards appropriate handling

of smart textiles.

There are, of course, combinations of the above mentioned techniques, too, for example in the

Integrated Circuit Button Jacket by Stewart (2016) that embeds a fabric designed circuit, uses

embroidery to connect hard and soft electronic components, and is powered by a battery housed in

a 3D printed button to close the jacket (and circuit).

Textile and Non-Textile Sensors

Although a wide range of sensors can be designed and crafted from textile materials, in many works

on smart textiles, commercial sensors made of more rigid materials are acquired and attached to

base fabrics where the textile properties are not taken into account. Accelerometers, identification

tags, EEG and EMG sensors and other hard, non-textile materials are deployed on fabrics or finished

products for on-body applications (Liu et al., 2019; Witchel et al., 2016; Catrysse et al., 2003; Colyer

and McGuigan, 2018). In some of these cases, fabrics, whether in the form of clothing or interior

object surfaces fulfil the purpose of concealing the operating technology, still contributing to the idea

of ubiquitous, ‘invisible’ computing.

Some of them in use can be replaced by fabrics, too, others however are without ‘soft’, textile

alternative. This poses one of the main challenges in wearable technology and is often discussed

(Catrysse et al., 2003; Buechley et al., 2008; Stewart, 2019). Solutions to this challenge haven been
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approached from different angles. Some, e.g. Rekimoto (2001) suggest modular designs in which

problematic, not washable components can be removed from the garment (or other textile interface)

as a separate layer. Others, e.g. Molla et al. (2018), suggest various insulation designs to conceal

the components so they are under less risk of being damaged. Insulation, as well as the concealing

and revealing of the technology and electronic components linked with a textile is another ongoing

design engineering challenge in the field that is discussed (Berglund et al., 2014). Part of the rigid

components that disrupt softness and flexibility are batteries. Powering smart clothes or other

textile products usually includes detachable, rechargable batteries. A method to overcome this is by

integrating solar cells in yarn or to use flexible solar panels that can be embedded in textile surfaces

(Smelik et al., 2016; Satharasinghe et al., 2020).

2.3.5 Textile Pressure Sensors

Looking at the different sensors that can be made from textile materials, piezo-resistive (e.g. pressure

and stretch) and capacitive sensors are amongst the most commonly used. With different coatings and

through other methods that induce conductive properties varying in resistance, some raw materials

themselves can be utilised as piezoresistive sensors. For example, yarn with a small percentage of

stainless steel twisted with synthetic fibres can be sensitive to pressure and strain due to its high

resistance, while yarn with a high density of conductive areas, e.g. silver coated yarn, better works

as a textile wire due to its low resistance (Castano and Flatau, 2014; Chen et al., 2020). To build

a pressure sensor consisting of textile elements only, both characteristics are needed to integrate a

resistive layer to a circuit with two conductive elements - one connecting to Ground, one to Power and

a corresponding pin on the microcontroller for reading sensor measurements, see Satomi and Perner-

Wilson (2007). When turning a textile, piezo-resistive surface into a pressure sensor, the deformation

of the textile is measured, the applied pressure input changes the touch point and affects the electrical

resistance, which then varies (decreases when pressed, increases when released). This is measured and

translated into an analog sensor signal (Satomi and Perner-Wilson, 2007; Castano and Flatau, 2014).

Layering different types of fabric - conductive fabrics and a spacer fabric in between (Meyer et al.,

2010a) - enables an entirely textile based design of the sensors and is relatively easy to accomplish,

as well as cost effective.

The application areas of textile pressure sensors can be compared with the wide range of appli-

cations for more conventional pressure sensors. Integrated in chairs and garments, they are used

to capture body postures in various contexts (Romano, 2019; Strohmeier et al., 2018; Meyer et al.,

2010a), but also act as soft, interactive interfaces (Donneaud and Strohmeier, 2017a). A selection of

textile pressure sensors in different designs and for different applications is shown in Table 2.6.

Measuring Body Movement and Posture

As already mentioned in section 2.2, pressure is a common modality to monitor bodily movement

and capture postural behaviour, and can therefore be used to explore other nonverbal behaviour

and affective states. Also from Table 2.6, it can be seen that many examples of textile pressure

sensors are used to capture body posture. Textile pressure sensors have been used on chairs for

posture classification (Romano, 2019; Ishac and Suzuki, 2018; Meyer et al., 2010a; Xu et al., 2013)

or for other postural activity recognition (Zhou et al., 2014), as well as on garments to evaluate

different body movement tasks, such as on arms (Dunne et al., 2006b), as well as micromovements

like breathing.
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Reference Sensor Design Placement Application
Meyer et al. (2010a) matrix seat surface sitting posture classifica-

tion
Pizarro et al. (2018) square patch glove gesture recognition
Donneaud and
Strohmeier (2017b)

matrix flat surface interface
/ table top

musical interface

Romano (2019) matrix seat surface sitting postures / person-
alised seat design

Nachtigall (2016) small sensor patches shoe foot ergonomics
Sundholm et al.
(2014)

matrix floor mat activity recognition (gym
exercises)

Parzer et al. (2018) woven surfaces various interface for remote control
Li et al. (2019) woven square patch various movement detection
Xu et al. (2013) in cushion in seat sitting posture detection
Ishac and Suzuki
(2018)

in cushion in chair posture detection

Kim et al. (2018) large woven squares on chair (seat and
back)

posture detection for cor-
rection

Romano (2019) woven into seat sur-
face

chair surface posture detection for per-
sonalised design

Zhou et al. (2014) matrix various (table cloth,
chair)

various

Blumenkranz et al.
(2018)

patches of various
shapes

various soft interface design / com-
munication tool

Dunne et al. (2006b) foam sensor patches upper body garment arm movement, breathing
Bisio et al. (2019) small sensor patches foot sole exercise recognition /

home rehabilitation
Yu et al. (2021) sensor patches around knee knee movement detection

Table 2.6: A comparison of different textile pressure sensors designs and their use cases.

While most posture classification systems measure pressure using in plastic encapsulated, indus-

trially produced force sensing resistors (FSRs) (Tan et al., 2001; Slivovsky and Tan, 2000; Riener and

Ferscha, 2008; D’Mello et al., 2007a), it has been shown that textile pressure sensors can compete

with them (Meyer et al., 2010a). Moreover, they are easier to integrate in products where plastic

and less flexible materials reduce movement, for example when measuring gestures in gloves (Pizarro

et al., 2018), or small scale movement in the torso (Dunne et al., 2006b).

The example of Dunne et al. (2006b) also illustrates that ‘posture-aware’ smart clothing often

tracks the movements of the upper body, being integrated in a T-shirt, shirt or also jacket (Enokibori

et al., 2013; Mattmann et al., 2007; Greinke et al., 2021a), reflecting the common findings in social

sciences in relation to nonverbal, postural behaviour.

Textile Pressure Matrices

Another observation when examining different works of textile pressure sensors, in particular in

relation to posture sensing as well, is, that many sensors are configurated as a matrix. Again, this

is also a common design in non-textile pressure sensors in similar contexts, using pressure sensitive

matrices in sheets with a fine grid for a high resolution, mounted on chairs (Tan et al., 2001). A

prominent textile sensor matrix is the design adaption by Donneaud and Strohmeier (2017a), which

will be mentioned in more detail in Chapter 4, too. This design has initially not been used to capture

sitting postures, but to act as a musical interface (Donneaud and Strohmeier, 2017b). Since these
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and other early developments of pressure sensor matrices, many different designs have been explored

for on-body interfaces like gestural controls, e.g. touch pads (Perner-Wilson and Satomi, 2019b),

table surfaces (Zhou et al., 2014), or parts of furniture surfaces (Parzer et al., 2018; Li et al., 2019).

Embedded in seat surfaces, pressure sensors have also contributed to customised, ergonomic chair

design, accounting for customers’ pressure points on the seat (Romano, 2019) and contributing to

improving sitting postures (Kim et al., 2018).

With a textile based engineering solution, it has also become possible to transfer these measuring

systems on the human body for a wearable pressure and posture sensing network, i.e. the clothing

presented in this thesis.

2.3.6 Summary: Gaps and Limitations

The growing field of textile sensing has already seen many design explorations and suggested use

cases. In some areas, smart textile sensors have the ability to replace their rigid equivalents, enabling

an overall softer circuitry and system design.

Despite the many advantages textiles promise, textile sensing designs are still a niche and not

established as alternatives to rigid components. This may be linked to pending solutions to challenges

around the integration, scalability and contextualisation of textile sensors.

While some avenues are frequently explored, mostly in relation to single user focused tasks for

rehabilitation, sports, or health monitoring, applications where textiles enrich social encounters be-

tween people, or fostering collaboration, is explored only marginally. The way in which other wearable

sensors are exploited to capture human conversation and behavioural cues, textiles are yet to catch

up with other systems.

Additionally, when examining smart clothing, the previously mentioned focus on upper body

movement and social signals is reflected here as well. The design engineering of upper body garments

seems to be more advanced than works involving trousers, both in garment design as well as in sensor

design.

In summary, there is a wide range of use cases for textile sensing systems, and not all of them

are mentioned here. The way in which smart textiles are embedded in our everyday life is growing

as well, reaching different sectors and disciplines. However, there is little work on the utilisation of

textile sensing systems in behavioural studies and interaction analysis.While individualistic sensing

approaches are explored for a variety of applications in HCI, applications to human-human interaction

are rare.

In this research, I investigate this gap and will introduce different approaches of using textile

sensing systems in the context of conversation analysis, starting with exploiting chairs as tools to

measure conversational engagement in group interactions. This research seeks to further explore

the potential of clothes for measuring cues of social (multiparty) interaction through the nature of

postural behaviour.

2.4 Conclusion

The three sections and themes reviewed above have helped to identify gaps and limitations in the

research fields this thesis aims to contribute to. In summary, the key observations deriving from this

chapter that determine the research presented further, are as follows.
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• The review of studies on nonverbal behaviour in section 2.1 have shown the dominance of the

upper body and the lack of attention on the lower body as an active part of a transmitter

of social signals. While there are mentions of it in some works, the potential relevance in

an extended understanding of embodied behaviour in social encounters is rarely discussed.

Furthermore, despite much work on full body movement in recent years, the role of postural

shifts and overt bodily movement is underinvestigated when compared to the large corpus of

studies on hand gestures or facial expressions.

• After examining technologies capturing social signals, in section 2.2, it was found that the

neglect of the lower body is recurring. Most technologies are centred around the upper body,

including face and hands. Additionally, the methods of investigating body movement and

postural behaviour are mostly dependant on vision based technologies, although multimodal

approaches adding physiological sensor input gain popularity, after some works showed that

accuracies in automatic detection can be increased.

• Lastly, the use of textiles and smart garments is explored in section 2.3, summarising the

advantages and potential use cases of this fast growing domain. Examples show that conductive

textiles have the capability to replace rigid materials with comparable sensor performance.

There, I also note the gaps of smart textile deployments in social, interactional, face-to-face

contexts, not only exploring single user events and actions, but taking social dynamics into

account when gathering data with textiles and wearables.

In all reviewed areas, the lower body and legs receive less interest than the upper body. Fur-

thermore, all three areas showed how the use of acted, or staged data of embodied behaviour like

postural movement, is outweighing the processed and analysed data from more natural, unstaged

settings and face-to-face interactions. These aspects are found both in textile sensing literature, as

well as in conversation analysis works and wearable computing. In the chapters to follow, I address

the here identified gaps in relation to my research goals and objectives.
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Chapter 3

On The Edge of Our Seat:

Sensing Conversation with Textile

Chair Covers

Chapter Overview

The benefits and potentials of textile sensors for an application in behavioural studies have been laid

out in the previous chapter. Here, this modality is exploited in the context of social interaction,

exploring questions about nonverbal conversational behaviours. I ask whether it is possible to sense

participatory movements in conversation in a natural environment with a comparatively simplistic

approach: pressure sensors in chair seat covers. Using custom built fabric sensors I test whether it

is possible to detect people’s involvement in a conversation using only pressure changes on the seats

they are sitting in.

This chapter is structured as follows. First, I review existing sensing chair covers that have been

developed for different use cases, from static sitting posture classification to measuring affect. Based

on existing literature and ethnographic observations that are reported here, a sensing chair cover, and

a study evaluating it, is designed. The development of sensing chair covers is introduced, explaining

the fabrication process and the methods used to evaluate these textile sensors. I present the data

collection of this textile sensing system, and conduct a statistical analysis to test the performance of

the system. The results from Multivariate Tests show that even from this ‘minimal’ data particles of

talking, backchanneling and laughter can be distinguished. Each state is associated with distinctive

patterns of pressure change across the surface of the chair, in particular drawing attention to the role

of the buttocks - the sensors on the seat surface of the chair cover introduced here. The chapter closes

with discussing these findings and speculating on the possible applications of this new, unintrusive

form of social sensing.

A compressed form of the design, evaluation and key results reported in this chapter has been

published as: Skach, S., Healey, P. G.T., & Stewart, R. (2017, July). Talking Through Your Arse:

Sensing Conversation with Seat Covers. In Proceedings of the 39th Annual Conference of the Cogni-

tive Science Society. London, UK. Cognitive Science Society. pages 3186-3190.
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3.1 Introduction

The significance of nonverbal cues during a conversation alongside verbal and vocal cues has been

emphasised since early studies of conversation, and is illustrated by how much we can infer about

an interaction from the observation of body movements alone. These bodily signals correlate with

people’s levels of participation. We can often tell just by looking at who is talking to whom, who

-if anyone- is listening, who is likely to speak next, whether the interaction is hostile or friendly

and so on (Kendon, 1990b). These inferences from non-verbal performances can be striking; people

appear to be able to make reliable estimates of the quality of someone’s teaching over a whole

semester from a single 5 second video of body movements alone (Ambady and Rosenthal, 1992).

Research on non-verbal communication has tended to focus on relatively large scale overt body

movements, they are the easiest signals for participants to perceive and respond to and the most

tractable for analysis. For example, speakers normally gesture significantly more than listeners,

and listeners frequently produce concurrent feedback or backchannels, by nodding in response to an

ongoing turn. Furthermore, overt movements like body torques explained by Schegloff can signal

multi-layered participation in conversation. Typically, research in this field takes advantage of video

and, more recently, motion capture equipment to capture and analyse these movements, e.g. (Healey

and Battersby, 2009; Gunes and Piccardi, 2009; Varni et al., 2010). The rapid development of new

sensor technologies and their application to social signal processing has opened an intriguing new

space of possibilities for detecting patterns of interaction (Vinciarelli et al., 2009). For example, it is

possible to detect people’s levels of interest, stress and intoxication in conversation using the speech

signal alone i.e. without knowing anything about the content of what is said (Schuller and Rigoll,

2009; Schuller et al., 2013). Most of these technologies, however, require the augmentation of our

natural (interior) environment, installing intrusive sensing systems or even deploying parts of sensor

networks on people themselves. Moreover, and as elaborated in the previous chapter, many of these

technologies, such as video or automatic speech recognition, often collect more data than arguably

necessary for the purpose. Challenging these relatively intrusive technologies, this chapter introduces

an approach that makes it possible to create anonymised ‘minimal’ forms of social sensing by using

electronic textiles.

In this work, I explore the potential of this modality for one of the most commonly used parts

of the physical environment for seated social interaction: chairs. Even the shape and position of

unoccupied, uninstrumented chairs can indicate a great deal about interaction; chairs around a

small table suggest something very different from chairs in rows (see also Anderson (1996)). These

arrangements, just like Kendon’s F-Formations, can apply constraints and affordances to interaction

and predetermine conversational hierarchies. Moreover, chair covers are often made of stretch and

soft fabric, that as such is unintrusively embedded in interior environments. This alone makes textiles

a promising sensing material. Conductive properties in fabrics therefore allow for chair covers to be

turned into sensing surfaces without changing their appearance or textile properties.

Different possibilities of using seat covers as sensing surfaces have been explored in recent years, for

example to determine sitting postures of computer users Tan et al. (2001); Slivovsky and Tan (2000).

The most common type of sensing in chair covers therefore is pressure sensing, which I follow to use

in this design, too. In most works, however, the postural behaviours and states that are measured

come from single users and human-device interaction rather than human-human communication. The

design of a sensing fabric chair cover I introduce here is built with the objective to pick up social

behaviours and conversational states, going beyond an egocentric sensing approach and proposing
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textiles as a modality for social sensing. For this purpose, and based on observational findings,

I decided on a configuration of eight sensors distributed across the chair cover, taking continuous

pressure readings.

With a chair as the starting point and instrument of measurement, the studies of nonverbal

behaviour focuses on the parts of the body that come in touch with the chair, but overall raises the

research questions as to what elements of a conversation a simple sensing system in a chair can pick

up. Even more generally, I ask, whether it is possible to make any statements about the quality

and levels of engagement of a conversation by taking information from the chair people sit on alone.

Could a chair tell who is speaking, who is listening, who is most or least active during a seated

conversation?

3.2 Background

In this chapter, I draw attention to review sensing devices that are not necessarily wearable, but that

fulfil the premise of being part of our natural surroundings, objects commonly present during social

interaction. A summary of existing research in this domain is given, and a focus on social sensing

networks in domestic spaces is created, elaborating on the social performance of objects, in particular

furniture in our environment, before focusing on chairs as sensing devices for the purpose of posture

detection. With a chair being used as a sensing device, the situations in which data can be collected

focus on environments involving people sitting down. In examples of related literature, sensors on

seat surfaces are deployed in domestic environments (Vogl et al., 2017), work and education related

(D’Mello et al., 2007a), and public spaces, as well as vehicles (Riener and Ferscha, 2008). Also

in screen based scenarios (Griffiths et al., 2014) and Human-Computer-Interaction (Witchel et al.,

2016). Sometimes, these seat surfaces are part of a larger network of sensors in smart environments

in multimodal sensing approaches, or function as individual, stand-alone sensing systems for specific

use cases. This section gives a brief summary on other works in which chairs have been utilised

as a sensing system, and identifies them as a commonly used object for social sensing in smart

environments.

3.2.1 Social Sensing in Ambient Environments

Connected homes and IoT devices have become a familiar idea in our society and are used to track

our activities, to monitor our movements for the suggested purpose of safety, comfort and often

health. This happens outdoors and indoors, in public as well as in domestic spaces. Monitoring and

assessing social dynamics of spaces that are built for interactional gatherings can furthermore inform

future design, since it reveals how space is used, and by whom.

This ‘social performance’ of environments is traditionally captured with camera systems, espe-

cially in public spaces like gyms (Khurana et al., 2018) or market places (Gardair et al., 2011).

Advanced computer vision methods and wireless communication technologies like bluetooth (Clark

et al., 2018) have improved the performance of this approach, but other modalities have been pop-

ularised, too. Especially interior spaces offer a versatile use of different pervasive sensing methods,

both in domestic and public settings like theatres (Theodorou and Healey, 2017) or office environ-

ments (Milenkovic and Amft, 2013). In domestic environments, including care homes, ubiquitous

computing is used for activity recognition to track individual’s movements (Wilson et al., 2015), but

also to track interaction between residents (Singla et al., 2010). Many ubiquitous sensing systems are
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suggested for applications surround elderly care and health monitoring, but also communal spaces

for students, equipped with different media have been explored (Brignull et al., 2004).

Soft Sensing Objects

Deploying sensing systems in these environments ubiquitously to not distract from and affect the

subject’s actions and intentions is key to this idea. Therefore, objects that are already in this

environment have been utilised as sensing areas by either equipping existing objects with new sensors

(Poslad, 2011), utilising existing properties of objects as sensing surfaces (Sato et al., 2012; Vogl et al.,

2017), or replicating objects with embedded sensors (Gaver et al., 2006). Here, the materiality of the

sensing object is key for ubiquitous integration into the environment. Especially in domestic homes,

many interior objects we interact with or come in contact with consist of a soft surface - ranging

from carpets (Kim et al., 2016) to table cloths (Gaver et al., 2006) to pillows (Schelle et al., 2015).

What most of them have in common is the material they are made of: textiles. The sensor types used

in these objects vary. Pressure sensors are common and easy to deploy, for example to detect the

weight of objects (Gaver et al., 2006). But also accelerometers and vibrotactile feedback were used

for posture detection in carpets (Kim et al., 2016) and seat cushions (Ishac and Suzuki, 2018), and

temperature as well as humidity sensors are deployed in pillows (Li and Chiu, 2018). While some of

these sensors are possible to be produced of textile materials, the latter examples include deploying

of more rigid components into soft, textile objects.

The Social Performance of Furniture

In domestic smart environments, in addition to soft surfaces, furniture plays an important role when

utilising everyday objects as sensing surfaces (Park et al., 2003). They present the objects people

are most commonly in contact with and are therefore appropriate surfaces to capture activities,

movements or postures. They also allow for a relatively easy integration even of bulky sensing

equipment and can house larger sensing systems than wearable or on-body designs. Early prototypes

like the ambient kitchen by Olivier et al. (2009) demonstrates how multimodal sensing approaches,

including cameras, RFID sensing and accelerometers mounted on furniture, allows for continuous

and accurate monitoring of people’s activities and movements.

3.2.2 Smart Chairs and Pressure Sensors

With chairs being one of the most used objects when measuring people’s sitting postures, are chairs.

This has a good reason, and has been proven successfully in multiple studies, as well as commercial

products1. People frequently change the position of the torso, lower body, and feet during seated

conversations. These movements necessarily cause pressure changes on the surface of the chair and

are detectable by measuring changes in resistance. Previous work has investigated the use of chairs

to not only classify postures through pressure sensors, but to detect affective states as well, creating

pressure maps of both, static and dynamic postures - posture identification versus continuous tracking

(Tan et al., 2001; Slivovsky and Tan, 2000; Arnrich et al., 2010). The number of pressure sensors

and postures, their arrangement, and study context in these works varies.

An overview of the work discussed here can be seen in Table 3.1, showing number, position, and

type of sensing systems.

1see Tekscan BPMS https://www.tekscan.com/, and BodiTrak https://www.boditrak.com/
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Number and Position of Pressure Sensors

Commercially available pressure measurement systems, such as BPMS (Body Pressure Measurement

System) by Tekscan2 have been used in many of these works (see for example D’Mello et al. (2007a)

and Arnrich et al. (2010)), which consists of a plastic mat with up to 2000 integrated pressure

sensors that allow for the creation of detailed pressure maps. But also lower resolutions as presented

in (Meyer et al., 2007) are able to detect movement and classify postures. The number of sensors

on the chair has decreased over time, earlier works using over 4000 pressure units (Tan et al., 2001),

and more recent works deploying only 4-12 sensors on a chair (Griffiths et al., 2014; Kim et al., 2018;

Shibata et al., 2013; Bibbo et al., 2019), as is listed in Table 3.1. The amount of sensors additionally

affects the arrangement of the sensors, being configures as a matrix, or as sensor patches.

These varying number of sensors is distributed across the entire chair surface, and occasionally

on the floor, too (Shibata et al., 2013). Almost all works place sensors on the seat surface as well

as back rest of the chair, only Griffiths et al. (2014) places pressure sensors on the back alone. In

comparison, using only the seat and not the back is a more popular solution, as demonstrated by

Meyer et al. (2010a) and Kamiya et al. (2008).

Contexts of Posture Measurement

Applications for these sensing systems have been in the analysis of posture to improve seating comfort

(e.g. Milivojevich et al. (2000)), designs for objects involved in rehabilitation (e.g. for wheelchairs)

and Human-Computer-Interaction. For example, presenting chairs as novel haptic interfaces for

computer games (Tan et al., 2001; Soave et al., 2020), or as a system to measure people’s cognitive

states in various situations (Arnrich et al., 2010; Bibbo et al., 2019). This includes measuring a

car driver’s fatigue (Furugori et al., 2003) or identifying individuals (Riener and Ferscha, 2008).

Affective states are measured with pressure sensors in chairs, too. Shibata et al. (2013) detects states

of arousal, while (D’Mello et al., 2007a) measures boredom, and Arnrich et al. (2010) stress levels.

These studies showed the large range of information a chair can reveal about its occupier, although

the study settings of these works are often similar. The data is mostly collected in single users, being

confronted with a screen based task. While results of single participants engaging with a screen can

say a lot about their behaviour and engagement in a different setting, too, our bodily movements

when in the same physical space with our interactants may be different.

Additional Modalities

In some works mentioned in Table 3.1 use other modalities in addition to pressure sensors on the

chair. Capacitive sensing is used for detection of seat occupancy (George et al., 2009), or EMG

sensors,also deployed on the chair’s back, help to combine sitting posture detection with heart rate

measures (Griffiths et al., 2014). Shibata et al. (2013) adds accelerometers to detect states of arousal,

and Mota and Picard (2003) uses five different modalities for their data collection. In few studies

focusing on sitting posture detection, no chairs are used at all, but approaches to wearable sensing

are explored, for example optical markers (Nathan-Roberts et al., 2008) or accelerometers (Chalkley

et al., 2017b; Witchel et al., 2016).

Chairs can be equipped with feedback technologies, too. For example, a chair detecting sitting

postures can actively support posture correction (Ishac and Suzuki, 2018) through tactile feedback.

2see https://www.tekscan.com/
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Author no. of sensors sensor system placement study context no. of postures
Tan et al.
(2001)

42x48(x2) =
4032

Tekscan
BPMS

seat & back sitting postures
in office envi-
ronment

14 (static &
dynamic)

Mota and Pi-
card (2003)

42x48 Tekscan
BPMS

seat & back screen based
game / learning

9

D’Mello
et al. (2007a)

38x41 Tekscan
BPMS

seat & back screen based,
detect bore-
dom, engage-
ment

n/a (postural
features)

Kamiya
et al. (2008)

64 “Flexiforce”
sensor sheets

seat single user sit-
ting postures

9

Meyer et al.
(2010a)

240 textile based
sensor matrix

seat single user
sitting posture
classification

16

Arnrich et al.
(2010)

1024 Tekscan seat & back measuring
stress level
(single user)

n/a

Shibata et al.
(2013)

12 Nintendo bal-
ance wii board

floor(4),
seat(4),
back(4)

measure
arousal from
sitting postures

n/a

Griffiths
et al. (2014)

4 square force
sensors

back rest screen based,
single user

7

Kim et al.
(2018)

10 textile based
sensor array

4 in back, 6
on seat

screen based
single user

7

Bibbo et al.
(2019)

8 pressure sen-
sors on office
chair

4 on seat, 4
on back

measure cog-
nitive engage-
ment

8

Table 3.1: An overview and comparison of selected works using pressure sensing chairs for capturing
postural movement.

In the domain of virtual reality and gaming, haptic feedback in chairs is used to enhance users’

experience (Soave et al., 2020).

Conclusion

In the works reviewed here, several use the same commercial pressure sensing system, while others

deploy individually commercially available sensors, see Table 3.1. Despite it has been shown that

fabric based pressure sensors can detect sitting postures with high accuracies, too (Meyer et al.,

2010a), only few others use textile solutions that can be integrated in the chair’s surface. In this

thesis, one aim is to establish textile based pressure sensors further as a reliable sensing system

in detecting postures and social signals, which is why in this chapter, textile pressure sensors are

designed and tested.

Additionally, the settings of many works include single users and are missing a comparison with

multi-user scenarios, though testing features that occur in social contexts. In this thesis, I try

to counterbalance this and look at the use of smart chair covers in multi-user settings of social

encounters, not isolating individuals but examining postures of conversation partners.
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3.3 Ethnographic Observations

The objectives laid out in this chapter are (1) to design and test a sensing chair cover, for which

the appropriate parameters like size, amount, shape and type of sensor, as well as materiality need

to be determined, and (2) to investigate nonverbal patterns of conversational behaviours that the

proposed chair covers look to discriminate. The starting point for both are a series of ethnographic

observations that formed the base of hypotheses on body movements and postures that co-occur

with conversational states, as well as to establish a ground truth to build design and experimental

settings on. The findings of these observations inform the settings for future user studies extending

this chapter, and also supported the further specification of this research overall.

3.3.1 Methods

The observations focused around seated conversations in non-domestic, interior environments: an

educational environment and an office and work space. The focus of the observations were multi-party

informal face-to-face meetings between two and four interactants. Within these informal meetings

and casual conversations, the observations focused on capturing postural states that correlate with

conversational behaviours. Special attention was paid to patterns of movement between speakers

and listeners (determine eventual “typical” speaker and listener postures), forming hypotheses about

these patterns I could later compare the data with that is collected, and presented in the next sections

of this chapter.

Observation Spaces

The interior spaces in which the observations were carried out were a common room at the School

of Electronig Engineering at Queen Mary University of London, and the Digital Catapult Centre3

at Kings Cross in central London. Both spaces have multiple tables deployed and are used for

casual social interactions, as well as informal meetings and discussions. Permission to conduct my

ethnographic observations was given by administrative and managing staff of both places4.

Observer & Observation Tools

The ethnographic studies were conducted by one single observer, the author of this thesis. The tool to

capture them were analog sketching tools - a paper notebook and an ink pen. Capturing observations

with drawings was done to retain anonymity of the subjects. No cameras, audio or other sensing

technologies were used to record the observed scenarios. All drawings (throughout this and the next

chapters) were produced by the observer. The amount of detail captured in these scenarios varied,

and was subject to available visibility, as well as available time to produce the drawings. Figures 3.2

and 3.3 present a selection of these figurative sketches. Facial details or other elements revealing the

observee’s identity were not captured. Instead, chairs and tables were included, as also seen in the

Figures.

3.3.2 Observation Subjects

The before mentioned environments these observations were conducted in determined what types of

relationships, and to a degree, what demographics of people would be present. At the university,

3https://www.digicatapult.org.uk/
4in verbal form only.
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research students were studied, while at the Digital Catapult Centre, people from different back-

grounds, academics and other staff members were subject of observations. The observees interacted

in dyads, groups of three, and groups of four. Larger settings were excluded from this ethnographic

analysis because it exceeded the focus of this research.

The relationship between subjects was amicable, but within a work environment. The observed

groups were colleagues that appeared to have different levels of knowledge of each other, but were no

strangers. That also determined the atmosphere of the conversations as well, which was casual and

relaxed. The age or identity was not revealed, as the observer did not interact with observees. The

compositions of the observed groups were mixed-gendered, as well as single-gendered.

The duration of the captured interactions were in a range between brief encounters over a coffee

break that lasted a few minutes and group meetings that could last for 2 hours. All observations

were conducted from a distance of a few metres from the conversation, and the content of what was

discussed in these encounters was not captured in any form. With the interactions being observed

in common areas, often other people passed by or were present in the rooms, but only observations

were documented that were not interrupted by external individuals, since this would have affected

postural behaviour and would have changed spatial formations.

3.3.3 The Role of Furniture in Seated Conversations

Pieces of furniture like a table can change the dynamics of an interaction, restrict or enable certain

social hierarchies, formations, as well as numbers of possible interactants. But they can also affect

individual’s movement as such and afford the range of possible postures within the conversation.5

This is suggested in existing literature, for example in the works of Kendon (1970), Bull and Connelly

(1985), Schegloff (1998) and Scheflen (1964), and is supported by my observations reported here. The

findings here describe the effect on conversational movement and maintained sitting postures when

a table was present.

Table Shapes and Social Hierarchies

Different roles within a conversation are often embodied through spatial formations, or F-Formations

(Kendon, 1990b) between participants. For this, the my observations looked at potential differences

in social as well as postural dynamics of a conversation around a rectangular and a circular table,

like the ones sketched in Figure 3.1. These shapes and designs of pieces of furniture in our everyday

environment predetermine such F-Formations. Observations of meetings around a rectangular table

had the interesting effect of putting the person at the head or end of the table in a position that

facilitated more marked and frequent postural movement in addition to associated rights to speak

reported in literature. Interactants at the head position had different postural patterns overall,

appearing more vivid and posturally more in motion, also having longer and more frequent periods

of talking. On the other hand, round tables distributed those rights both for speech and postural

movement more equally across all conversation partners. This finding backs suggestions of existing

work, e.g. (Kendon, 1990b)

Followingly, using a round table in further research I would conduct was a decision not only

suggested by literature, but reinforced and confirmed by the ethnographic findings.

5This, by the way, is also what our clothing allows, in a far more direct way than furniture. But this is elaborated
on and discussed in Chapter 7 of this thesis.
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Figure 3.1: Sketches of round and rectangular table shapes affecting seating arrangements and social
hierarchies.

Upper and Lower Body Movements

The presence or absence of a table makes an overall significant difference to the dynamics of postural

movement of participants. These differences were notable both in upper and lower body postures, but

eventually have drawn the attention to movements in the latter. In particular, a table can support

a variety of postures in relation to leaning forward, resting arms, elbows and hands on the table’s

surface, which sometimes supports exaggeration or emphasising of postures, which furthermore help

to demonstrate behavioural cues (e.g. it is often suggested attentive listeners lean forward, see (Bull,

2016)). When observing seated conversations without a table present, these postures were naturally

less overt. In this sense, a table can be seen as an actively used artefact to perform postures and

support conversational cues. This applied to gestural movement itself, too. While speakers knowingly

move their hands significantly more than listeners, I observed that the presence of a table allowed

listeners to move their hands more frequently, too - though not as rapidly and vivid as speakers do.

While in “un-tabled” scenarios, hands tended to rest more quietly on the lap, or are being crossed in

front of the chest, a table allowed for gestural fidgeting, moving objects on the table around, resting

the hands on the table instead of on the lap, or even performing more discreet hand-lap interactions

that are concealed from other conversation partners (e.g. tucking hands between thighs, or rubbing

their thighs and tapping their knee with one or more fingers).

Regarding lower body postures, observational findings suggest that whenever a table was present,

there was also more frequent movement of the feet that exceeded the action of crossing legs. Although

not necessarily visible to other interactants, orientation of lower legs and feet sometimes followed and

emphasised torso orientation, or contradicted it to form a body torque (Schegloff, 1998). This is

particularly interesting when considering again that the legs are not directly visible and therefore

not an obvious interactional signal. Actions like leg bouncing, tip-toeing, fidgeting or leg-hand touch

interactions are more frequently performed than initially anticipated and seem to be a potential

channel of compensation of the more consciously performed torso and gestural movements. On the

other hand, marked leg crossing postures appeared to occur less frequently with a table present

than without. No table resulted in more “closed” (Mehrabian, 1968a) and seemingly interlocked leg

crossing postures, while a table appeared to allow for more relaxed and comfortable leg postures.

Other leg related sitting postures, however, were performed more overtly when not on display. One

explanation of this could be that participants felt more secure to perform postures hidden from

others, as if a table provided a layer of protection to some, enabling more improvised, non-directed

movement. I observed that a table can therefore act as an important instrument dividing the more

incidental and the more intended postural cues of individuals.

In summary, these observations suggest, that, while the torso is the most visible body part in a

seated conversation, the legs and lower body in general can reveal a great deal about subconscious
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social behaviours, too and appear to be an under-examined parameter in the studies of nonverbal

communication.

3.3.4 Speaker and Listener Postures

The most distinct conversational states are those of speakers and listeners. As mentioned before,

gestures and facial expressions have been studied in great detail to distinguish speakers and listeners,

establishing patterns of movement and postures that are associated with either states. Here, my

observations focus on overt bodily movement of both, the lower and the upper body, as well as changes

of maintained postures as well as between conversational states. In particular, I draw attention to

leg crossing and leaning forwards or backwards. A brief overview of the key postural characteristics

for each of these conversational states described here can be seen in Table 3.2.

Table 3.2: Observational Hypotheses of Speaker and Listener Postures as well as the transitional
state between the two.

Conversational State Observed Postural Behaviour
Speaker sitting straight, no leg crossing or very marked torso movement
Listener more overt movement in torso and legs
Transition common changes in overall posture

Speakers

Generally, speakers were sitting mostly straight up and moved their torso only in subtle ways and did

not perform any marked movements during a turn (gesturing excluded). However, when the torso

was moved, it was found that forward moving postures were more common than backward leaning

postures. The lower body seemed to move even less in any marked way, and it was also observed

that crossing legs was not commonly performed by speakers either. It was only towards the end of a

turn or a speaker pause that small shifts and postural adjustments occurred, including leg crossing

postures.

Figure 3.2: Sketches of speaking postures.
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Listeners

In contrary, listeners appeared to be far more active. They were more likely to execute more obviously

noticeable and marked movements in both their upper and lower body. This includes overt leg

crossing, moving the torso back or forwards, and performing an overall change in the so far held

sitting posture. One possible explanation for this could be that these changes in posture are believed

to be less disruptive to the conversation when carried out while listening, rather than during a

speaker’s turn. The observations also suggested that there was also a postural difference between

first and second addressees. In the case studies here, it appeared as if second addressees leaned

towards the speaker more often than the directly addressed interactants.

Figure 3.3: Sketches of listener postures.

Transition Between States

When changing from speaking to listening mode, or vice versa, I observed that participants often

signalled their intention to do so through postural adjustments. For example, a listener and second

addressee who was leaning back, leaned forward and straightened their back just before taking a

turn. Additionally, when they had their legs crossed, they were likely to “uncross” their legs at

the start of a speaking turn. Vice versa, when ending their turn, speakers sometimes leaned back

and /or crossed their legs. Both of these postural changes often seemed to act as signifiers of

the participants’ intention or as visual emphasis of this conversational state. This phenomenon of

observed preparatory movements is something that will be elaborated on in Chapter 6, while for now,

I focus on the movements within a speaking turn and listening mode.

3.3.5 Conclusion and Further Implications

In the beginning of this section, it was mentioned that these observational findings would help to

inform further procedures in regards to the design engineering and the methods of evaluation for a

textile based sensing system measuring nonverbal behaviour.

Summary

In general, the observations back up findings of literature in regards to how the shape of objects,

such as a table, affects the social structure of an interaction (Kendon, 1990b, 2010). Also the

findings with regard to postural movements and postural states correlating to conversational events

and behaviours, also confirm previous findings of Scheflen (1964, 1972) and Schegloff (1998). In

some regards, however, my findings expand already established and well known embodied social
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behaviours, especially in regards to lower body movement, that was noticed and observed with more

attention than most past works have.

Based on these observations and the review of related studies, it was decided to place sensors on

a chair’s seat surface and backrest, as this arrangement would be able to cover both, lower and upper

body movement.

Implications for Further Steps

Firstly, the observations of different behavioural states in correspondence to postures supports an

approach for investigating postural differences between gross conversational states further, like dis-

tinguishing between speakers and listeners before exploring more fine grained nonverbal behaviours

and micro-movements. These more overt states will be the centre of the following exploratory study

because at this stage, it is not known yet how successful the self-made textile sensing system will be.

Secondly, after observing the shifts of postural movement in listeners and speakers, and noticing

marked differences between these behaviours, the type of sensors suitable to capture such postural

behaviours are pressure sensing systems, which have also been proven a successful modality in pre-

vious related work (D’Mello et al., 2007a; Tan et al., 2001). This allows to collect the changes of

pressure applied on the seat and back of the chair to identify different postural states. The number

of sensors I will use is drawn from the symmetric arrangement of the human body in combination

with the different body parts that are moved at the same time during a postural change, for example,

in leg crossings. Indications of the areas in which sensors should be placed was also drawn from the

observations. These conclusions are in line with existing literature, where either a large amount of

sensors has been places all over the surface of a chair (Arnrich et al., 2010; Tan et al., 2001; D’Mello

et al., 2007a) or a minimal amount positioned across the seat and backrest of a chair (Shibata et al.,

2013; Griffiths et al., 2014).

Another decision based on the observational findings of different arrangements of interactants

were the settings and groupings for the user studies. Here, I examine groups of three people to be

able to collect data about speakers and two types of listeners: first and second addressees, and will

use a setting with a round table to conduct the studies.

3.4 Chair Cover Design

Here, I introduce the design of a custom made sensing chair cover. Simple textile pressure sensors

that are embedded in a fabric chair cover are developed to capture postures of chair occupiers during

conversation, and to explore nonverbal behavioural patterns of speakers and listeners. This is achieved

with sensor patches of conductive fabric and resistive foam, sewn onto the back of the chair cover,

marking significant areas where the upper and lower body come in touch with a seat. The sensing

system consists of eight such sensor patches per cover, each assembled by hand, and connected to a

circuit board to collect the data from pressure changes.

First, I present the design process and prototyping of the textile sensors, centering around the

material properties of electronic textiles. For the development of the textile sensors, a variety of

conductive materials was experimented with to select the best performing textile for the intended

use. Secondly, the process of integrating these sensors into a custom made chair cover is described,

determining placement and number of sensors, as well as other factors relevant to the engineering of

the final sensing system, including the choice of chair type that would be used for future studies. In
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Figure 3.4: A variety of conductive materials: a) first design of sensors and chair cover: sensor patches
are too big and chair has rolling legs - both was adapted for final design. b) testing of different sizes
and shapes of sensors. c) and d) testing of different conductive materials. d) two different resistive
materials: foam and velostat.

this section, the iterative design process to approximate the final prototype is summarised, illustrated

in Figures 3.4, 3.6 and 3.7, showing different materials, sensor shapes, chair cover designs and the

circuit board.

3.4.1 Textile Pressure Sensors: Design and Development

The pressure sensors were made from two types of material: conductive woven fabric and resistive

foam, hand cut and sewn into soft sensor patches that were then manually attached to the fabric

chair cover; and hard electronic components. The sensor patches consist of three layers: the bottom

and top layer of conductive fabric, and the middle layer of the resistive foam. The choice of materials

and the manufacturing techniques had to meet the requirements of the use case. The sensors had to

be soft, unintrusive, comfortable to sit on, yet robust, stable and reliable. These soft textile materials

were linked to rigid electronic components and connect to the circuit board that held the battery

and microcontroller to collect data from the sensors.

Conductive Textile Materials

An important aspect of the design was the choice of material, since this affected the behaviour of

the sensor, its deployment possibilities and measurement sensitivity. Two different materials are

needed to build a piezo-resistive textile pressure sensor: a highly conductive fabric and a resistive

material. While the chair cover as such required to be a flexible, stretchable sensing system, the

pressure sensors themselves did not need to be stretchable. In fact, the more robust they would be,

the more stable would the sensor readings be. Therefore, I experimented with woven fabrics, since

this textile structure, in comparison with knitted fabrics, is less elastic and while still soft, provides

more support in maintaining its shape over time.

The conductive materials experimented with are displayed in Figure 3.4a-c. For this stage of
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Figure 3.5: Close-ups of sensor design: Left: the schematics of the piezo-resistive sensor with 2
conductive layers on the outside, and a resistive layer in between. Right: two hand stitched textile
pressure sensors in three layers. The non conductive cotton layer of the silver fabric faces up, the
conductive side faces the resistive foam. The layers are stitched together with a non elastic synthetic
sewing thread in lose stitches.

prototyping, small sensor samples were produced that were examined for their conductivity (and

resistance), touch, and robustness. For robustness, different densities of weaves, e.g. a tightly woven

copper taffeta, as well as more a more losely woven twill were sampled. Conductivity was tested of

different silver coated, copper, and carbon fabrics The touch and feel of the fabrics was determined

by the softness of the material and textile structure. All fabrics examined, and shown in Figure 3.4

are commercially available.

After testing various woven conductive fabrics with similar properties in regards to their perfor-

mance and behaviour as a pressure sensor (Fig. 3.4), the fabric chosen for the layers connecting

the resistive material was SaniSilver, a 164g/m2 weave, purchased from LessEMF6. It is woven as a

double-face, a reversible fabric with silver yarn showing on one side of the fabric, creating a highly

conductive surface (<1 Ohm per square), and a (non-conductive) cotton yarn visible on the other,

so that the fabric as a whole is conductive on only one side. This allows for additional shielding from

direct touch with human skin and other conductive surfaces (for example metal parts in chairs), that

could affect the conductivity of the sensor materials and affect the circuitry. The washability of the

fabric is limited due to the properties of the silver yarn. It is possible, however, to hand wash the

fabric and use distilled water to not damage or affect its conductivity. A close-up of this fabric is

seen in Figure 3.5.

The resistive material I used was an antistatic, ESD foam, see Figure 3.4d). It is made of

polyurethane impregnated with carbon and is commonly used as packaging material for electronic

parts. Its consistency is soft with a height of ca. 5mm and it is easily compressible due to its relatively

low density, which makes it appropriate for pressure sensing and comfortable to sit on.7

The piezo-resistive pressure sensors are then constructed so that two swatches of the conductive

fabric, using the layer showing the silver yarn, are facing the resistive foam on both sides, as is shown

in Figure 3.5. When pressure is applied to the sensor patch on either side, the foam compresses and

reduces the resistance between the two fabric swatches. This change in resistance is measured by a

microcontroller.

Preliminary Testing

All materials sampled were examined for their reliability as a sensor. By this, I mean the behaviour

of the sensor over time. The range of values, the deformation of the material when pressed, and

its recovery into original state are measured and visualised, see Figure 3.6d. The fabrics used for

6https://www.lessemf.com/
7Such ESD foams come in different densities and foam heights, see e.g. https://uk.farnell.com/w/c/static-control-

site-safety-clean-room-products/esd-protection-products/esd-anti-static-foam/prl/results?st=foam
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Figure 3.6: Early prototyping stages: a) first design of sensors and chair cover: sensor patches are
too big and chair has rolling legs - both was adapted for final design. b) testing of different sizes and
shapes of sensors. c) microcontrollers (Teensy 3.2, HuzzahFeather). d) simple data visualisation of
pressure sensor patches.

the final chair cover had to measure a large range of pressure, that would vary widely from one

measurement to the next, and over a period of up to 30 minutes.

The sensors were connected with detachable wires (using corcodile clips, as can be seen in Fig.3.6a-

b) to an Arduino, plugged into the computer with a wire. Analog readings were taken and displayed in

real time. Observing the sensors’ behaviour when different pressure was applied informed the choice

of material, as well as the final design of a circuit board. Each sensor was individually observed and

tested to identify the range of reading values it would provide and to find a suitable resistor that was

integrated in the circuit board.

Electronic Components

Although sensors can be made out of soft and flexible materials, there are still some components

made of rigid, hard and inflexible materials, that are a necessary part of the circuitry and hardware

setup. These components are: the power supply, the microcontroller, and connectors between hard

and soft elements. I used a Teensy 3.2. microcontroller, taking advantage of its small size, depicted

in Figure 3.6c and compatibility with the software used here, Arduino. To power the circuit board,

I used a USB battery that was plugged into the Teensy.

The circuit board was designed as a voltage divider circuit the sensors were put into. To link the

sensors to the circuit board, I used thin, insulated wires that were embroidered onto the conductive

layer of the woven fabric with conductive thread (a twisted silver thread purchased from Statex8). The

end of these wires was first stripped off, punched through the fabric to connect with the conductive

silver threads of it, and sewn on in a coiled form, see Figure3.5(right). Each sensor was equipped with

two of those embroidered on wires, connecting the sensor to an analog pin on the microcontroller,

and to connect to Power (3.3.V) and Ground.

The circuit was soldered onto a strip board that housed the microcontroller, the datalogger (with

an SD card), the battery and the sensor connections, too. The front and back of the final design

is shown in Figure 3.7a-c. This small board was later placed underneath the chair, taped onto the

floor. For easier prototyping and debugging, the circuit board was made so that the microcontroller

8https://statex.de/en/fibres-and-yarns/
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and the datalogger could be simply removed and plugged back in, as seen in Figure 3.7d.

Figure 3.7: The chair’s circuit soldered onto a strip board: a) the final board with the microcontroller,
resistors and connection cables attached; b) the backside of the board, showing the soldering points;
c) the datalogger with a micro SD card, where the data was stored; d) the circuit board without the
electronic components attached: header pins with black framing.

3.4.2 The Chair Cover

The shape and size of the chair cover itself was determined according to available chairs at the

research lab at the Computer Science department at Queen Mary University of London9. For all

future experimental settings, I used four legged chairs without wheels that had a back rest, but no

arm rest, as is shown in the chair in Figure 3.8. As the base material of the chair cover served a

knitted light weight interlock fabric made of a cotton and elastane mix. An elastic ribbon (textile

rubber band) was sewn along the edges, so that the fabric could easily be mounted onto the chair.

The elastic ribbon, similar to a rubber band, would hold it in place. Additionally, the fabric band

stitched onto the sides of the chair cover allowed it to tied it closer to the chair between the seating

and the back rest surface.

After the sensor layers were hand stitched together to form the final sensor patch, the patches

were attached to the layer of the jersey fabric of the chair cover with the same technique: using

a cotton sewing thread and a loose hand stitch to not compress the foam, but to secure the exact

position of the sensors on the chair cover.

Sensor Placement

The sensing system was designed so that eight sensor patches were deployed in one chair cover,

distributed symmetrically as shown in Figure 3.8, and in Figure 3.9 (left) for a schematic illustration.

I divided the areas to be sensed into four key areas, two on the backrest, and two on the seat of the

chair. The distance between the sensors and the edges of the fabric cover were measured (Fig.3.9,

9since these chairs would be used for future user studies.
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Figure 3.8: The final prototype of the chair cover, facing inside out

Figure 3.9: Schematics and sketch of the distribution of textile pressure sensors across the fabric
chair cover.

right) for symmetric positioning. . While in some other works, the number of sensors deployed on a

chair, is up to 2000 pressure sensing elements (Tan et al., 2001), I intended to use a small amount

of sensors as has been proven sufficient in more recent works (Shibata et al., 2013). Moreover,

since a goal was not to identify fine grained sitting postures alone, but to explore social behaviours

through such, I started with a ‘bottom-up’ approach, identifying the most basic and fundamental

areas in which key postural movements were observed: shoulders, lower back, buttocks, and upper

legs (thighs). These are the areas that were defined on the chair cover and into which the sensors

were placed.

This was also approximated in earlier prototypes and informed by observations. The size of the

seating and back rest surface, for example, prompts the sensors to be positioned towards the edges of

the areas because of the overall relatively small surface area the available chairs provided compared

to, for example, desk chairs with larger back rests. The body therefore came in touch with the entire

surface of the planes on back and seat.
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3.5 Evaluation

The final design of the chair cover presented above now needs to be tested for its suitability as a social

sensing platform. With the aim of the design to be deployed in an interactional context, measuring

postural behaviour in conversation, a user study has been conducted.

This section describes the design and settings of this study, that was also approved by the uni-

versity’s ethics committee10.

3.5.1 Spatial Arrangement

In this work, seated social interactions of small groups are examined. Assessing different roles within

a conversation, arrangements of three-way interactions were established. To ensure equal social

and conversational rights in such constellation (Kendon, 1990b), a round table was chosen and the

three interactants were seated around it equally distributed, such as shown in Figure 3.10, with the

schematic illustration on the right, and a still image of the real life scenario on the left.

The chairs used in this experiment are the same chairs that were used when adjusting the chair

covers’ size and sensor positioning - plastic and metal chairs as seen in Figure 3.8 and 3.10 (left),

too. The goal is to capture the movements of each participant in these triads, so different relations

between conversation partners can be assessed. For this purpose, multiple identical chair covers were

produced.

Figure 3.10: Arrangement of how participants were seated on a round table - in equal distance and
distribution, the sensing chair covers highlighted in red (right).

3.5.2 Participants

Participants were recruited within the department as well as externally, of different academic and

non-academic educational degrees. They were allocated into groups of three friends or colleagues to

ensure they all had some initial level of familiarity with each other. As mentioned in earlier works on

nonverbal behaviour, familiarity is a factor that supports potentially more subtle postural movement

and can support the display of other social signals, too (Wiemann and Knapp, 1975; Riskind and

Gotay, 1982). In total, 9 trials were conducted, collecting data from 27 participants, of which were

11 female and 16 male and between the age of 20 and 40. The grouping of the participants followed

all possible configurations: male only (2 trials) and female only groups (1 trial), as well as mixed

groups with either two females, one male (2 trials); or one female, two males (4 trials).

10reference QMREC1778a, see Appendix A
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3.5.3 Procedure

All sessions of the experiment were carried out in the Human Interaction Lab at Queen Mary Uni-

versity of London. The groups of three were seated around a circular table on chairs equipped with

the sensing fabric covers. The chair covers were mounted on the chairs with the integrated sensors

on the backside, facing he chair’s surface and not coming in direct touch with the chair occupier.

Because the sensors were integrated on this back side of the cover, they were concealed from the

participants’ view. Due to their materiality and soft properties, their presence was not noticed when

sat on the chair, which was later commented on by participants. The sensor elements, with the foam

as the thickest material, are thin enough to not create a difference in height or feel like an uneven

cushion. The surface is flat and unintrusive.

Once seated, the participants were asked to resolve a moral dilemma: the balloon task11. This is

a fictional scenario describing three people in a hot air balloon that is about to crash, if one of the

passengers does not jump to their certain death. The participants’ task was to discuss options and

come to an agreement on how to resolve this dilemma and who to throw off. I aimed to record 15

to 20 minutes of conversation, so if not having come to an agreement after this time, participants

were given the option to stop the conversation or carry on (vice versa, if they came to an agreement

faster, alternative scenarios were provided to encourage further discussion). The exact instruction

can be found in Appendix A.

Prior starting the experiment, participants were given a consent form and an information sheet

stating that this research explores the relationship of postural states and social behaviour in group

discussions such as this collaborative task. At this point of the experiment (prior and during the

recording), it was not revealed to the participants what sensor type was deployed in the chair covers,

or where the exact position of the sensors were. They were fully debriefed after the session had

finished. Research ethics approval was obtained and consent forms were signed by all participants

before any video, audio and pressure sensor data was collected. Appendix A documents the details

of this procedure, including consent forms and information sheets participants were handed.

After signing the consent form and being explained the collaborative task, the sensing chair covers

were switched on just before participants sat down around the table, and the recording of video and

audio started.

3.5.4 Data Collection

Sensor Data

A circuit board with the microcontroller (a Teensy 3.2), the micro SD card and the battery all

mounted on one strip board, was placed underneath each chair. The wires were also gathered there

and laid from the sensors to the circuit board along the legs of the chair (2 wires per sensor).

Pressure readings were recorded with a sampling frequency of 4Hz (4 readings per second), the unit

of measure using these piezoresistive sensors is Ohm (Ω). Each sensor was assigned to an analog pin

on the microcontroller providing 3.3. volts to run the programme, which read analog output values

from the sensors. Moreover, each sensor was individually observed and tested to identify the range

of reading values it would provide and to find a suitable resistor that was integrated in the circuit

board.

11Other comparable dilemmas and tasks commonly used in interaction studies and conversation analysis research
are, for example, the Apartment task (e.g. Hough et al. (2016)) and the winter survival task (e.g. Murray and Oertel
(2018))
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During the experiment, the raw and unfiltered sensor data from the pressure patches was collected.

The data was then stored locally on the micro SD cards as simple text files, documenting a time

stamp, the name and numeric value of the analog sensor, its corresponding pin and sensor name

(number between 1 and 8, identifying its position on the chair cover as well). The decisions to

use the raw sensor data and to store it locally without real-time access and data monitoring was

made after experimenting with other approaches. In earlier prototypes, filtering and calibration

techniques were tested, as well as data collection through wireless communication to a server. These

preliminary tests suggested that collecting the raw sensor data was most reliable, and sufficient for

the final analysis (reported below), where, amongst other aspects, the relative changes between the

participants were calculated. Therefore, also the differences in weight had no effect on the outcome

of the analysis and the validity of the sensor data. Moreover, it was useful to examine the data for

errors in a raw state, and still enabled normalisation and filtering methods in a further stage of data

processing. As for the data storage, tests with WiFi boards were made, sending the data to a server,

where each sensor could be monitored in real-time12. Slow wifi connections and general network

problems caused gaps in data streams and prompted us to collect the data independent from such

factors.

Video Data

Additionally, the interactions were captured on two cameras placed in different corners in the room,

placed on a tripod. Each participant was wearing a lapel microphone to facilitate speaker-specific

analysis of the audio for transcription. Additionally, the audio was captured with microphones

mounted on the cameras.

3.5.5 Data Processing and Annotation

The data from the video recordings was annotated using the software package Elan (Brugman and

Russel, 2004). This open source annotation tool allows for multiple data streams to be imported

and synchronised with one interface, and to be annotated in a merged timeline. An example of the

software’s user interface can be seen in Appendix A.

Coding Scheme

With the aim of identifying different conversational states from the sensor data alone, I focused

on three distinct key behaviours that were hand coded for each participant: talk, laughter and

backchannels. When determining speaking modes, periods of overt speech were coded, regardless of

postural and gestural changes, or nodding. But exploring postural movement in interaction overall,

it was noticed that often, a postural or gestural change was performed immediately prior to speaking.

This can make the start of an utterance ambiguous. For the purposes of this study, the beginning

of utterances was defined as the onset of speaking, and finished with the offset of it. For laughter,

responsive as well as speakers concurrent laughter was noted. Therefore, laughter is annotated for

both, speakers and listeners. Backchannels were coded for all continuous verbal particles of response,

as well as repair initiations. Common examples of such listener particles are “hmm”, “yeh”, “aha”,

etc. An overview of the coding scheme for these behavioural cues can be seen in Table 3.3.

12Adafruit IO servers were used (see https://io.adafruit.com/), providing simple visualisations of the incoming data.
Also the WiFi module, a Huzzah Feather, came from Adafruit
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For further analysis, pairwise comparisons between speakers and listeners were made, too. The

elements for listener behaviours were divided into active and passive listeners. While active listeners

were defined by the sum of the annotations for backchannels and laughter, “passive” listeners were

created from the gaps of all annotations. The same was done with the other coded behaviours, too.

This means that within the listening mode, any gross and subtle body movement, as well as nodding

or any other conversational action is included. With the aim of distinguishing speakers from listeners,

this level of detail in annotations appeared sufficient, although the sensitivity of the sensors allows

for richer and more fine-grained distinctions.

Table 3.3: Coding scheme used in Elan.

Tiers per participant Social behaviour
speaking verbal utterance
laughter responsive and concurrent
backchannel responsive, repair initiation
active listener laughter & backchannel
passive listener gaps of all coded tiers

These annotations were marked in the video timeline with an annotation value of 1, while their

gaps were assigned values of 0. This created a binary coding scheme for each behaviour, assigning

these annotation values to the sensor data as well when the different timelines were aligned.

Timeline synchronisation

To align the annotations with the recordings from the sensing chair covers, the sensor data was

imported to Elan as small annotation units of 250ms (4Hz) each, synchronised with the time stamps

of the video annotations, and with an annotation value of the pressure reading.

The video was imported to Elan first, and served as a baseline for the merged timeline, onto

which the sensor data’s timestamp was fitted. This was achieved by creating a synchronisation aid

at the start of each session’s recording. With the chair covers in sight of the cameras, the sensors

were pressed to create a marked spike in pressure change - captured by both video cameras as well

as the microcontroller printing the pressure values into a txt file. This synchronisation event served

as a clapperboard throughout the experiment. Each txt file contained the information of one chair

with its 8 pressure sensors, so all sensors of a chair shared the same timestamp. Later, these spikes

in sensor data readings were used to import the sensor data files to Elan to match the timeline of

the videos showing the pressure spike being performed.

Lastly, the sensor data was recorded at a constant frequency of 4Hz, which made it easy to split it

into equal annotation units, with the sensor value documented as the annotation text. This procedure

of aligning the different timelines was done in Elan.

Final Data Sets

The merged annotated data was then exported from Elan so that a statistical analysis could be

conducted. For this analysis, the first and last 5 minutes of the recorded conversation were excluded

to account for eventual postural adjustments and initial biased behaviours due to the study settings

(assuming that participants would adjust to a more natural behavioural pattern once familiarised

with the setting and once feeling more comfortable in the recording environment). This was also
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Figure 3.11: A simplified diagram of the different steps for the processing and analysing of the
multimodal data from the chair experiment.

done because, even though participants were grouped so that there was a level of familiarity, some

had only know each other briefly.

These cropped data files determined the final data set that was used for analysis, which consisted

of 82963 data points (instances) in total, 10656 for talk annotations, 1001 for laughter and 459 for

backchannels, and the rest classified as passive listener behaviour, including all other behaviours

and movements that were not annotated for this study. This means, there are 81962 non-laughter

data points, 82504 non-backchannels, and 10656 non-talk data points. The big differences in the

numbers between speech and the other two behaviours can be explained with the total duration of

these different behaviours. The total time of talking instances is summed up to 87.95 minutes, while

the total time for backchannels is 3.79, and for laughter 8.26 minutes. The remaining data points

account for the gaps of these coded behaviours, which were used as passive listener data. On average,

participants provided data sets of 4880 coded instances, or ca. 20 minutes with a maximum of 26.4

min (6338 instances) and a minimum of 11.8 min (2832 instances).

A diagram summarising the steps of the data collection and further processing, as well as analysis

is shown in Figure 3.11.

3.6 Results

The data from all eight sensors were analysed in a General Linear Model Multivariate Regression

using SPSS v.24. Talking, Laughing and Backchanneling were included as binary predictors coded

as 1 or 0 for presence / absence of each behaviour. All two and three-way interactions of these

three factors were included in the model. Participants were also included as a main effect to ensure

individual variation was accounted for.

3.6.1 Multivariate Tests

Multivariate Tests (Pillai’s Trace, Wilk’s Lambda, Hotelling’s Trace, Roy’s Largest Root) show all

three dialogue factors reliably predict the outputs of the pressure sensors. Here, I focus on reporting

the results of Pillai’s Trace test statistics, a generally robust test for a small sample size like this.
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The F statistics for Talk is F(8,82933) = 9.68, for Backchannel F(8,82933) = 10.2 and for Laughter

F(8,82933) = 6.95 (all with Degrees of Freedom df = 8). The p values of all three behaviours are

p < 0.00 with Alpha = α = 0.05. The effects are very small with Partial Eta Squared, the proportion

of variance associated with the effect, of 0.001. This is different when looking at participants as the

main effect, where the contribution of individual variation is, in contrast, much larger. Pillai’s Trace

shows an F statistic of F(8,82933) = 6.95, a p-value p < 0.00 (α = 0.05) and the percentage of variance

with the effect, Partial Eta Squared η2p = 0.71. Results of the other tests are almost identical, with

the exception of small variations in F statistics and Partial Eta Squared, which can be viewed in

Appendix A, and an overview of the results of the Pillai’s Trace are summarised in Table 3.4.

Table 3.4: Multivariate Tests (Pillai’s Trace) with Alpha α = 0.05 for all three coded behaviours:
Talk, Laughter, Backchannel. From left to right, p-value, F statistic, Degrees of Freedom, and Partial
Eta Squared are reported.

Behaviours p < α F(8,82933) df η2p
Talk .000 9.679 8.000 .001
Laughter .000 6.946 8.000 .001
Backchannel .000 10.210 8.000 .001

3.6.2 Between-Subject Effects

Tests of Between-Subjects Effects and pairwise comparisons analyse the contribution of each of

the eight sensors to talk, backchannel and laughter. The results of these tests show that different

patterns of pressure changes across the chair are associated with the different conversational states,

with different effects on different sensors.

The overview of these Between-Subject Effects in Table 3.5 shows that the lower body (thigh and

leg sensors) provides overall more significant clues for each coded behaviour than the upper body

does (waist and shoulder sensors). Here we can see that all behaviours rely on the sensors on the

seat, the area around thighs and buttocks, to be discriminated. The p-values of Talk and Laughter

show that both thighs are significant, and the sensor on the left buttocks is significant for all three

behaviours. The sensors most sensitive to talking were in the seat of the chair, in particular in both

thighs and the left buttocks, while the shoulders were least significant for it, which can be deduced

from Table 3.5. In general, the left side appears more important in these tests than the right side, in

particular for buttocks, waist and shoulders, as Table 3.5 lists. The waist appears only significant for

backchannels, here also the left side more than the right. The Partial Eta Squared for all behaviours

is η2p = 0.000. A more illustrative overview of the results of the tests conducted here is also shown in

Figure 3.13. Additionally, examining the estimated marginal means of the sensors reveal the patterns

of pressure changes for each behaviour.

3.6.3 Estimated Marginal Means

Talking

For mode of talking, estimated means show that the sensors correspond to increased pressure from

the thighs and reduced pressure from the buttocks, which is illustrated in Figure 3.12c. The standard

error SE of the 8 different sensors for Talk are listed in Table 3.6 and range from SE = 2.83 (right

waist) to SE = 9.44 (left thigh).
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Table 3.5: P-values of Tests Between Subjects with Alpha = α = 0.05 for all three coded behaviours:
Talk, Laughter, Backchannel. Results smaller than α are highlighted in bold.

Sensors Talk Laughter Backchannel
Thigh Left (L) .000 .009 .063
Thigh Right (R) .000 .006 .001
Butt L .017 .000 .000
Butt R .356 .383 .173
Waist L .092 .351 .000
Waist R .145 .656 .004
Shoulder L .000 .086 .000
Shoulder R .611 .739 .370

Table 3.6: Standard Error of the Mean of each sensor in relation to Talk, Laughter and Backchannel

Thigh L Th. R Butt L B. R Waist L W. R Shoulder L Sh. R
Talk 9.447 7.546 4.749 5.291 3.925 2.831 5.334 7.032
Laughter 13.482 10.769 6.777 7.550 5.601 4.040 7.612 10.035
Backchannel 13.644 10.899 6.859 7.641 5.669 4.088 7.704 10.156

These means of all sensors during speech describe a body posture that can be interpreted as

‘keying up’ and sitting straight, shifting the weight slightly forward (as opposed to slouching or

leaning back), also illustrated in Figure 3.15 below. Furthermore, the sensor pair for the buttocks

seemed to be the one mostly relevant for identifying speech than identifying the other behaviours.

Table 3.8 summarises the deduced postures from the different patterns in pressure across all coded

behaviours.

Laughter

In contrast to this, laughter corresponded to reduced pressure in the thighs and increased pressure

in the buttocks with no significant changes detected in the seat back, see Figure 3.12b. The most

significant sensors for laughter are the ones for the thighs, placed close to the edge of the seat placed

where the back mid thigh touches the chair cover, also illustrated in Figure 3.13. This strong focus on

the thighs compared to all other sensors is what distinguishes laughter from the other two behaviours

most. Additionally, estimated means show a very small decrease of pressure in the waist and in the

shoulders. These results don’t make it easy to deduce a static sitting posture, but may suggest

more movement around the legs and the torso. This also corresponds to laughter being a dynamic

movement rather than a static posture.

The Standard Error SE for laughter is reported in Table 3.6.

Table 3.7: Contribution of different sensing areas to coded behaviours and conversational state

Social Behaviour Significant Sensors Least Significant Sensors
speaking both thighs, left buttocks, left shoulder right shoulder
laughter both thighs, left buttocks both waist sensors
backchannel left thigh, buttock and waist right buttocks and shoulder
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(a) BACKCHANNELS:
thighs: L(176.345), R(199.648);
butt: L(172.195), R(189.949);
waist: L(246.298), R(351.819);
shoulders: L(114.193), R(189.709)

(b) LAUGHTER:
thighs: L(118.642), R(137.770);
butt: L(178.079), R(187.614);
waist: L(229.081), R(342.121);
shoulders: L(143.385), R(179.532)

(c) TALK:
thighs: L(187.513), R(209.379);
butt: L(137.721), R(175.910);
waist: L(231.599), R(345.421);
shoulders: L(137.810), R(195.288)

Figure 3.12: Estimated means of all participants for backchannels, laughter and talk. (L = left, R =
right)

Figure 3.13: Illustration of significant sensors for detecting talk, laughter and backchannel.

Table 3.8: Different patterns of pressure changes across all eight sensors for each coded behaviour,
and the derived sitting posture from these.

Social Behaviour Pressure Changes in Sensors Deduced Posture
speaking more pressure in thighs, sitting up straight,

less pressure in buttocks slightly leaning forward
laughter less pressure in thighs, no distinct posture,

more pressure in buttocks more dynamic posture shifts,
little less pressure in waist probable leg movement
little more pressure in shoulders

backchannel more pressure in thighs, sitting straight,
more pressure in buttocks, no tendency to lean forward,
more pressure in waist leaning more towards left
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Figure 3.14: Typical speaker and listener postures illustrating the distribution in pressure across
the chair cover. Left: a speaker is leaning forward, applying most pressure on the back thighs and
reducing pressure in buttocks. Right: a listener leaning back and shifting the weight from the thighs
to the buttocks and lower waist.

Backchannels

A noticeable outcome for backchannels that distinguished it from the other behaviours was the slight

asymmetry of the sensors that contribute most to identify this state. It appears that the left side

of the body is more significant than the right side. Table 3.7 and Figure 3.13 show that while the

sensors on the left thigh, buttock and lower waist are most significant, the sensors on the right

buttock and shoulder are least relevant for backchannels. Table 3.6 reports the Standard Error

SE for backchannels. Compared to the other two behavioural states, backchannels also show more

significance in the upper part of the lower body (or: the lower end of the upper body) up until the

waist, while laughter and talk are focused more around the seat surface alone.

3.6.4 Summary of Results

In summary, we can look at this correspondence between sensors and behaviours in a way that

suggests each of them has a unique pattern of pressure distribution to identify them. Laughter

seems most distinguishable from movement on the mid legs, talking from movement around the

upper legs and buttocks, and backchannels from pressure changes broadly from mid legs to buttocks

to lower waist. Figure 3.12 illustrates these outcomes with the displayed estimated means for each

sensor, showing the shifts in pressure distribution for each behaviour. The Figure also shows that, for

example, the transition from talking to backchannelling occurs through a shift in pressure distribution

from increased pressure in legs for talking to increased pressure across the entire surface of the seat

for backchannelling - a seemingly slightly more backwards leaning, minimally slouching, or ‘resting’

posture. This also gives us a clue for general distinctions between general speaker and listener

postures, see e.g. Figure 3.14 and Figure 3.15, that show modes of talking in more up-right postures

and participants leaning forward, while when returning to listener states, their posture becomes more

relaxed and leaned backwards. These findings are also backed from the Between-Subject Effects

reported above and summarised in Table 3.5.

An overview of how each sensor contributes to identifying the coded behaviours is shown in Table

3.7 and Table 3.8, and visually summarised in Figure 3.13.
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Figure 3.15: Two stills of a video displaying the findings of pressure distribution of listener and
speakers in a marked posture. Top row: participant on the right (dressed in black) leaning forward
while speaking, visibly applying less pressure on the back, and leaning back once finished their
utterance, shifting the pressure on the seat surface towards the back. Bottom row: Participant on
the left (in khaki jumper) sitting straight while listening, being addressed, and moving their torso
forward when starting to gesture and speak.

3.7 Discussion

These results show that it is possible, in principle, to detect significant aspects of social interaction

from quite limited, indirect and noisy data of self made textile sensors. The small movements

detected by these pressure sensors embedded in chair seats are small-scale and almost completely

invisible correlates of the gross body movements that typically distinguish speakers from listeners

and laughter from silence. Interestingly, even the relatively small movements associated with listener

responses such as backchannels appear to create a distinguishable pressure signature on a chair. The

ability to extract such patterns of social interaction from sensing pressure changes could replace other,

more complex motion detection systems and mitigate privacy concerns, since the data collection

is anonymous, involves no audio or video data and does not capture any of the content of the

conversation.

3.7.1 A Social Textile Chair Cover

A contribution of this chapter is to be seen from a textile perspective in regard to having shown that

textile sensing - even in a simple form as presented here - is capable of identifying cues that are not

restricted to single user scenarios, but also cues that derive from face to face interaction.

The literature reviewed here has shown good results for chair covers detecting affective states

and a variety of sitting postures using a very high number of sensors (Mota and Picard, 2003; Tan

et al., 2001; Arnrich et al., 2010). In more recent years, the number of sensors has been scaled

down, which has also been my approach when building the sensing chair cover. Here I show that
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as little as 8 sensors are sufficient to dinstinguish basic conversational states. The simplicity of

this approach provides an enticing factor in design engineering and multimodal research and could

encourage a wider use of textiles as a sensing material. Besides, this modality of using fabric sensors

also prompted participants to comment that “it felt comfortable and not different than sitting on

a ‘normal’, common chair”, adding value to the usability comfort textiles provide for a ubiquitous

computing approach to smart environments.

3.7.2 Gathering from the Buttocks

The finding of the relevance of the lower body in detecting conversational states is something that has

not been brought into focus and discussed to much extent before. There are indications in previous

works that the buttocks are relevant in detecting postural movement as well as social behaviours.

Mota and Picard (2003) for example identified four significant areas on the seat through feature

engineering, two on the buttocks, and two on thighs. Also Shibata et al. (2013) mention that legs are

relevant for perceiving dominance, and D’Mello et al. (2007a) notes that the back rest of the chair

was not significant when distinguishing affective states.

Further, my results link listener behaviour to increased back pressure, and speaker behaviour to a

decrease in pressure towards the back, which links to findings of D’Mello et al. (2007a), who describe

a “heightened” posture distinct to interest, as opposed to a posture applying more pressure in the

back distinct to boredom.

The sensing chair cover of this work revealed that movements on the seat surface, initiated by the

buttocks and legs, potentially provide social signals that add to a more complete understanding of

participants’ body language in social interaction. While there is a vast amount of literature analysing

facial and gestural signal in great detail, the lower body is mentioned, if at all, only very marginally.

This might be due to its rather small scale movements that do not appear to be intentional and as

directional as other signals. (Kleinsmith and Bianchi-Berthouze, 2013) pointed out works mentioning

legs and lower body postures relevant to some affective states and behaviour. However, the buttocks

as a large muscle contributing to such corpus has not been discussed to this extent.

The results of this study suggest, however, that legs and the lower body in general are worth

investigating further as a social signal in the scope of this research, and will draw attention to small

scale as well as large scale shifts in posture of the lower body further.

From another viewpoint, it is arguably also the movements deriving from the upper body that

are picked up from the sensors underneath the buttocks. Gestures, leaning into different directions,

and even shoulder shrugging are not only local movements, but affect the entire body. The buttocks

could therefore be where these movements oscillate to. In this case, we could speculate about how

well in general the simple sensors can pick up such upper body movement, so that it may be sufficient

to place sensors underneath the buttocks to capture both, torso and leg postures.

Both perspectives enable to envision a potential new set of unidentified lower body postures as

social signals, and propose for the legs to be put into more spotlight in the analysis of nonverbal

communication.

3.7.3 Future Work and Improvement

Further development to optimise the design and engineering of the sensors would doubtlessly improve

the quality of the sensing and data collection. Reevaluating the design in regards to size, shape and

amount of sensors could refine their performance and improve the results, too. As it can be seen in
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the timeline of developments in sensing chairs, the amount of sensors has been reduced, and with the

results suggesting that the buttocks sensors may be sufficient to detect gross movement, it may be

possible to scale down the required numbers of sensors even further.

The demonstration that even relatively crude sensors can detect minimal changes in posture,

suggests that future work should explore the possibility of capturing more complex social behaviour,

too, especially relational questions such as whether interactions are, for example: convivial or com-

bative; autocratic or egalitarian, or whether it is possible to characterise regularities in multiparty

interaction (see e.g. Abney et al. (2014)).

We have seen that in this fairly small data set, individual variation is large. With a data set of a

higher number of participants, this could potentially be reduced and patterns of postural movement

would show more clearly across the data population. Another take on this, however, would be

to use the characteristics of individual variation and exploit other analysis methods, for example

machine learning approaches, to train person specific classifiers. These (admittedly more “timely”)

mechanisms in general would also improve the accuracy and robustness of this basic analysis, although

it would at the same time undermine the advantage of anonymity.

3.7.4 Potential Applications & Further Questions

What could this form of sensing be used for? Where could such chairs be deployed? The principle

opportunities for application are in any situations where there is value in the ability to unintrusively

gather information about general patterns of social interaction including levels of interest and en-

gagement. One example is architecture where the ability to sense a building’s energy performance

and patterns of air flow is highly valued but currently has no social counterpart. I speculate that the

ability to make simple, systematic assessments of a building’s ‘social performance’ by instrumenting

the chairs in a building could also have a significant positive impact on domestic and workplace

design. For example, the chair covers could assess the engagement of group meetings, providing data

that could inform interior arrangements of furniture to facilitate social encounters.

A second example is in the evaluation of audience responses, for example continuous audience

response measure, CARM, which is used by broadcast hosts to evaluate their programs. The de-

ployment of such a sensor network in an auditorium, meeting room or a classroom could help to

assess levels of engagement of students and other audiences. A significant advantage of using chairs,

as opposed to wearable devices in such context is that the identity individuals does not need to be

revealed, and yet detailed information about social engagement can be retrieved. In addition, there

are possibly applications to augmented human interaction where, for example, live feedback about

how much people are dominating (or not) a conversation can have significant effects on the conduct

of the interaction (Donath, 2002).

Other questions that arose were, whether it is easier to detect emotional cues than it is to detect

turn taking. Is it more obvious - from a perspective of a chair - if a person is speaking or listening

than it is if a person is confident or shy? And what is more important for such detection: maintaining

or changing a postural state?

Furthermore, focusing on the dynamics of continuous postural behaviour, the act of leg crossing,

for example, could be of interest in exploring social interaction, as well as general movement of feet,

that was mentioned in observational studies before, but hasnt been carried further for this project.

If nothing else these results shed some light on Stephen Fry’s (1984) advice that when delivering
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Shakespeare one should “always gather from the buttocks”13.

3.7.5 Summary

In this chapter, the design and evaluation of a textile based pressure sensing chair cover has been

introduced. With a design of 8 woven pressure sensing patches, basic conversational states are

distinguished. My work confirms findings of previous works in related areas, and strengthens the

approach to use only a small number of sensors to detect postural movement from which social

behaviour can be deduced. My work furthermore includes multi-user settings, which in many works

is unattended.

Contributions

The findings deriving from this study contribute to the understanding of the relevance of lower body

movement in social interaction. They draw attention to the role of the buttocks and thereby extend

the currently established taxonomy of nonverbal cues . It is suggested, that basic conversational

states can be detected with measuring the change of pressure distribution around the buttocks and

thighs. With this, the here presented results demonstrate the power of simple pressure sensors on

a chair in detecting nonverbal behaviour, such as discriminating speakers from listeners in seated

interactions.

Based on these results, this study is a first step towards my aim to establish textiles as a sensing

technique to capture social behaviour and becoming an integral part of multimodal sensing networks

in the context of behavioural studies.

Limitations

The chair introduced here promotes the use of fabric sensor, but is one of many established sensing

seat systems using pressure sensors made of other materials. While I have focused on testing the

performance of the textile based systems for basic conversational states, focusing on the distinction

between speakers, listeners, as well as cues of laughter and backchanneling, other works have assessed

far more complex behaviour and affective states with chairs.

Furthermore, the effects of the results are small and there is a large individual variation, which

could derive from the small data set processed here, as well as from the unstaged, spontaneous

execution of postures. The methods used to analyse this postural data do not take dynamic postures

into account, which may affect the reliability of the results, too. In the scope of the next chapters,

these challenges will be addressed.

The limitations of this work can help to identify objectives and goals of next steps of this research.

At the same time, the results extracted from this exploratory study provide a basis for hypotheses to

build on. So it is in the chapter to follow where I explore textile sensing in social interaction further,

aiming to address some of the challenges faced with chairs u developing and presenting a new design.

13See https://www.youtube.com/watch?v=eOBV7DS65S8 at 03:45
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Chapter 4

Smart Trousers: Designing and

Validating A Wearable Textile

Sensor System

Chapter Overview

The last study has shown that just from measuring the changes of pressure being applied on the

seat, it is possible to distinguish basic conversational states. Here I introduce a novel design further

exploiting textile pressure sensing: bespoke ‘smart’ trousers with an embedded sensor matrix. The

design process and construction of this wearable sensing system, based on further observations, are

described and its use to detect a variety of postures validated by conducting a user study with data

gathered from 6 participants. With simple machine learning techniques, I further demonstrate its

ability to discriminate between 19 different basic sitting posture types with high accuracy.

The publication derived from the work in this chapter, presenting the design and user study, is:

Skach, S., Stewart, R., & Healey, P. G.T. (2018, October). Smart Arse: Posture Classification with

Textile Sensors in Trousers. In Proceedings of the 20th ACM International Conference on Multimodal

Interaction (ICMI ’18). Boulder, Colorado. ACM. (pp. 116-124).

DOI:https://doi.org/10.1145/3242969.3242977

4.1 Introduction

In the last study, fabric sensors in chairs were used to identify speakers and listeners, pick up laughter

and backchannels. Using textile pressure sensors on the seating surface has revealed the relevance of

the lower body in detecting such conversational states. This so far underinvestigated part of the body

implies the existence of other potentially valuable cues and patterns of movement that contribute to

a more holistic understanding of nonverbal behaviour. Subtle movements, including those from from

legs and buttocks, that are not necessarily as directed and intentional as gestures or mimicry, can still

give clues about interactional behaviour, on their own or in combination with upper body signals. In

seated conversations, which are the situational focus of this research, people continually adjust their

posture and re-arrange their hands and legs. For example: hands resting on laps; elbows on thighs;

a forward leaning posture; hands that are tucked between thighs; hands on knees and many other
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variations, that have been mentioned in literature on nonverbal behaviour in social interaction, but

not analysed in detail, compared to the rich corpus of work on gaze and gesture.

In this chapter, I look at postures of the lower body in seated situations and the positions of

hands on upper legs. The overarching question is what can these different postural states tell us

about conversational engagement and potentially even about more complex, affective states? This

will be explored step-wise in the next three chapters. For this part of the thesis, the more specified

questions addressed are, whether the same type of sensor design used in the previous chapter can

also measure sitting postures. More specifically, the previous findings raise the question, whether

ore lower body postures can be identified through this modality. Based on this, further research

objectives in regard to design engineering of the sensing system emerge: what is the best textile

sensing system to explore lower body movement further?

Chapter 3 tested a static sensing system deployed in fabric chair covers, suggesting the changes of

pressure on the surface of a seat are sufficient to identify different conversational states. The sensors

were relatively coarse grained and intrinsically limited by the fact that seat chair covers are in contact

with only a relatively small proportion of the body. Behaviours such as resting the hands in our laps

or between the knees are difficult to detect in this way. So, while the chairs could pick up changes

across the surface of the seat, they could not do that with body parts not directly in contact with it.

Here, I progress to developing and validating the same type of textile sensors in a wearable

system for the lower body: trousers. Moving from stationary to wearable sensing systems comes

with advantages as well as challenges. Rather obviously, chairs only work when someone is in contact

with them, which limits the sensing capability to the specific situation and environment. A wearable

sensing system is not restricted to a specific environment and follows and moves with the body. On

the other hand, the hardware set up, the robustness of hard-soft connections, or reliability of the

data collection run more risks to fail or break in designs of wearable solutions, since the components

are exposed to spontaneous movement of the participant. In the following chapter, I address some

of these challenges of the design engineering and exploit the advantages of wearable textile sensors

in the case study of ‘smart’ trousers. I introduce the new design of textile sensors and their circuitry

that are adapted to a wearable system. This influences the choice of materials used and the design

engineering of other hardware components such as the robustness and unobtrusiveness in regards to

the circuitry.

The basic question of concern in this work is whether we can reliably detect different seated

postures by detecting pressure changes on the surface of a pair of trousers. To do this, an unobtrusive

on-body textile motion capture system that uses a matrix of fabric pressure sensors around the thighs

and buttocks was developed. These trousers allow for a more fine grained tracking of pressure changes

and, compared to chair covers, have the potential to capture hand and elbow contact as well as more

distinct movement involving the thighs. The selected postures for testing derive from video-based

observations of naturalistic seated multi-party interactions that are taken from the last study’s data

collection. I collect a data set of a total of 19 posed postures in a controlled environment to benchmark

the sensing capabilities using automatic classification techniques.

4.2 Background

Based on the findings in Chapter 3, it is indicated that sensing the seat surface alone - the area

the lower body is in contact with, may be enough to identify a variety of postures. This varies

from other common approaches, like using a high resolution array of sensors on the seat (Tan et al.,
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2001; Meyer et al., 2010b; Mota and Picard, 2003; Arnrich et al., 2010), or recording video data. In

this section, the review on how sitting postures are detected, and what role textile sensors and in

particular trousers play when doing so.

4.2.1 Sitting Posture Classification

Being able to detect sitting postures has been a task in HCI for various applications, as elaborated in

Chapter 2. Operating a computer, whether for educational purposes or as part of office work, has an

impact on our posture, and vice versa, posture can affect the quality of tasks we carry out (Jaimes

and Liu, 2005). People slouch and slump when sitting down. Detecting such unhealthy postures can

help to intervene and encourage people to improve their posture, or to stand up for a moment (Xu

et al., 2013). But also without feedback or interference, detecting a person’s sitting posture while

they are performing a screen based task is a useful way to obtain information on their interest and

attention level, boredom and other behavioural and affective states (D’Mello et al., 2007a; Witchel

et al., 2016; Kapoor and Picard, 2005). While these examples deploy the sensors on a chair, also

floor mats have been designed to detect different body postures, for example during gym exercises

(Sundholm et al., 2014; Zhou et al., 2016).

In the last Chapter, sitting posture detection in social contexts and face-to-face interaction was

examined. Here, I focus on more controlled studies involving single users, expanding the existing

large corpus of research in this area. When focusing on capturing sitting postures in that regard, it

has been shown that pressure sensors on chairs have the potential of replacing more complex data

collection, like from accelerometers, IMU sensors (Intertial Measurement Units) or motion capture

markers Nathan-Roberts et al. (2008); Arnrich et al. (2010); Cheng et al. (2013).

4.2.2 Classification Specifications

Posture detection studies accumulate a variety of classification and other analysis approaches. Their

performance varies depending on the amount of postures that are to be distinguished, the amount

of sensors used to capture them, the number of participants as well as number of repetitions of each

posture per participant (size of data set), and lastly the type of classification algorithm used to

identify the postures.

In a study distinguishing 16 different postures related to leg crossing and upper body movements

with 9 participants (Meyer et al., 2007) using textile pressure sensors, a Naive Bayes model has

shown a success rate with only 5% error. Similarly, Tan et al. (2001) achieved a 96% accuracy with

20 participants when testing pressure maps created from 64 pressure sensors in the commercially

available “Tekscan” system. In a study classifying 9 different sitting postures with 10 participants,

using a Support Vector Machine (SVM) learning model, accuracies between 93.9% and 98.9% were

achieved (Kamiya et al., 2008). Cheng et al. (2013) reported an accuracy of 0.88 for a Linear

Discriminant Analysis (LDA) with sample data of 5 subjects, 7 postures and only 4 different sensors.

Less accurate classification is reported in (Riener and Ferscha, 2008). With a multitude of parameters

yielding different results, it is difficult to determine one parameter that is responsible for improving

classification accuracy. Reviewing existing literature, it is implied that not necessarily the amount

of sensors used is key for better posture detection, but the combination of the quality of the data set

prior analysis, as well as the data processing methods contribute to good results. Moreover, these

parameters are also determined by the use cases these sensing networks are designed for. A high

resolution of pressure sensors is not always necessary, as shown in the works of Shibata et al. (2013);
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Reference no. of sensors no. of postures no. of participants
(Meyer et al., 2007) 240 16 9

(Kamiya et al., 2008) 64 9 10
(Shu et al., 2015) 100 3 -

(Cheng et al., 2013) 4 7 5
(Sundholm et al., 2014) 6400 10 7

(Romano, 2019) 48 - -
(Donneaud and Strohmeier, 2017a) 265 - -

(Zhou et al., 2016) 128 - 6
(Strohmeier et al., 2019) 16 - -
my work presented here 200 19 10

Table 4.1: A selection of existing pressure sensor matrices showing the amount of sensors, and, where
applicable, the number of postures and participants used for evaluation; compared with the design
introduced in this chapter.

Bibbo et al. (2019); Griffiths et al. (2014), and as was indicated with the pressure sensor patches on

the chair cover in the last Chapter.

In this chapter, I identify 19 different sitting postures that derive from the information of existing

literature, as well as from observations conducted and described below; 10 participants; and 200

sensors (for an overview, see Table 4.1).

4.2.3 Textile Pressure Sensor Matrices

The pressure sensors used to capture sitting postures are often presented as a matrix configuration.

The previously mentioned, commercially available pressure mat by “Tekscan”, that is often used in

related research (Tan et al., 2001; D’Mello et al., 2007a), houses a 42x48 matrix with a total of 2016

sensors with each sensor forming a 1x1cm square, equally distributed across a plastic sheet that can

be mounted on a seat. Also self made pressure sensor matrices are used for sitting posture detection,

for example in (Meyer et al., 2007; Shu et al., 2015; Cheng et al., 2013). They are often manufactured

with a lower resolution, such as an 8x8 matrix (64 sensors in total) (Kamiya et al., 2008), or a 10x10

matrix (Shu et al., 2015). There are, however, also textile pressure mats consisting of a 80x80 matrix

(6400 sensors) for a high resolution image to detect a variety of body postures and pressure points

of different body parts (Sundholm et al., 2014). While the commercially available pressure matrix

sheet consists of plastic layers, selfmade solutions of fabric sensors offer a softer and more flexible

surface, and can be as fine grained and small scale as the unit size and measurement of a yarn, as

is demonstrated in (Parzer et al., 2018). Using single strands of yarn to create a sensor matrix is

afforded by the process of weaving. With piezoresistive yarn, a pressure sensor matrix can be woven

in one layer and is fully integrated in the textile surface (Romano, 2019). In most designs, however,

strips of conductive fabrics are used and arranged in a layout of rows and columns to sandwich a

middle layer of a resistive fabric, as explained in (Meyer et al., 2007) and (Donneaud and Strohmeier,

2017a,b). Amongst a large range of textile sensors matrix designs, made of textile and non-textile

materials, deployed in chairs, used as touch pads, or utilised as wearable interfaces, the design I will

refer to most in this thesis in regards to hard- and software configuration is the matrix by Donneaud

and Strohmeier (2017a). This, as well as a selection of pressure sensor matrix designs mentioned here

is summarised in Table 4.1.

Manufacturing techniques for textile pressure matrices have been optimised in recent years (Perner-

Wilson and Satomi, 2019b,a; Strohmeier et al., 2019), since the characteristics of sensor matrices are
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desirable for many research areas.

4.2.4 Sensing Trousers

Other textile sensing designs that have been explored for classifying sitting postures are garments.

Most examples demonstrate use cases for upper body garments. Only few have focused on the poten-

tial of trousers for capturing postures. This can be explained with the upper body being considered

to contain more information about body movement and its social implications, e.g. through gestures

that are captured with tilt sensors and accelerometers, or heart rate being measured with sensors

around the chest. There are, however, works that have discovered trousers as an equally informative

interface for sensors. For example, Dunne et al. (2011) used motion capture markers on trousers to

track leg movement, and prototypes where conductive thread is stitched on trouser fabric to detect

joint movement and bending (Gioberto et al., 2013). Ribas Manero et al. (2016) measured muscle

activity with ECG sensors in running trousers with embroidered conductive threads. Similar meth-

ods are used in (Colyer and McGuigan, 2018), deploying EMG sensors in shorts1. In other works,

accelerometers were mounted on trousers (Niazmand et al., 2010). Finally, also textile sensors have

been embedded in trousers - for example patches on front thighs to recognize touch and envision new

input formats for device interaction Heller et al. (2014). What else trousers can be used for in the

context of smart, interactive clothing is discussed by Van Laerhoven and Cakmakci (2000), who ask

what trousers should and could be taught by humans.

Only a few have tested trousers as a measuring tool for bodily cues. Mostly, these tests are

directed towards sports applications, sensing muscle activity in legs (Zhou et al., 2016; Bieber et al.,

2011; Ribas Manero et al., 2016). However, touch (Heller et al., 2014) and gait recognition (Gafurov

and Snekkenes, 2009) have been explored with fabric sensors, too. In the healthcare sector, such

measurements are useful to monitor patients’ movements (Niazmand et al., 2010). In some of these

examples, the sensors are often accelerometers attached to a finished garment (Van Laerhoven and

Cakmakci, 2000) rather than integrated into the garment (Dunne et al., 2011). In designs where

electronics are detachable from ‘smart’ trousers, it is argued that this provides solutions to washability

and powering challenges (Niazmand et al., 2010).

Compared to the range of designs of ‘smart’ upper body garments, trousers are rarely the focus

of embedded textile sensors. The examples given above often present ad hoc solutions of mounting

sensors on legs, and use purchased garments to attach rather than embed textile circuitry and rigid

electronic components. To my awareness, a fine grained, carefully developed sensing network for lower

body garments has not been established for the purpose of detecting postures (and consequently,

nonverbal social cues).

4.3 Designing Sensing Trousers

Wearable textile sensing systems, especially when deployed as close to the human body as clothing,

need to meet certain requirements that distinguish them from static textile sensors. For example, the

connections between hard electronic components and soft conductive textiles must be robust enough

to allow for bodily movements like bending, stretching, or squeezing. Furthermore, the placement of

such “hard” components needs to fulfil standards of wearability comfort, and the size of these parts

should be reduced to a minimum to not interfere with natural dynamics of body movement. Lastly,

1https://www.myontec.com/
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also powering of a wearable, in a garment embedded sensing system with a battery that needs to

be replaces or recharged and in addition presents another rigid component, can be more challenging

than in other, more static systems.

Deploying fabric sensors in garments has the benefit of having an unobtrusive, non-distracting

and therefore less distorting sensing interface that is comfortable to wear and does not modify our

common surroundings. It can be independent of the environment and can be in itself sustainable and

autonomous, embedding all components necessary to collect and store data, process it and power

itself all through wearable engineering solutions. These properties have led this research to focus

on textile sensors in clothing, and the choice of materials as well as the pattern cutting design was

guided by this approach on ubiquitous technology.

In this section, I introduce the sensing trousers used in all future studies. The step-wise design

and evaluation process in chronological order are described. I start by conducting ethnographic

observations of multiparty interaction that inform the goals of the final product and provide guidance

for evaluation methods. Next, I translate the findings of these observations into designing and

prototyping for the textile sensors and style of trousers. Moreover, these observations determine that

detecting pressure is a reasonable means to sense postural behaviours on the lower body. The sensing

system thus needs to detect both the amount of pressure and the location where it occurs - a task

suited to a two-dimensional matrix of pressure sensors (Donneaud and Strohmeier, 2017b,a).

4.3.1 Observations Continued: Additional Findings

Methods

The goal of additional observations is to inform the development of the sensing trousers, and to

identify a series of sitting postures focusing on the lower body that will be used in the next user

study. The basis of ethnographic studies carried out was the corpus of videos of the last study

(Chapter 3). Including a previous pilot study, that corpus consisted of 12 videos with a total of 36

participants. The videos showed seated three-way conversations lasting between 15 and 30 minutes,

a setting continued to be used to assess the trousers further. To continue to preserve anonymity of

participants when displaying postures, the observations were captured via drawings. All drawings

were created by the author of this thesis, using black ink on paper. Different to the observations

carried out for the chair study informing the design of the sensing chair covers, where the postural

movement of the entire body as an overt movement was examined, I now focus on lower body postural

movement.Special attention is given to leg crossing and touch interaction with the hand on the upper

legs during social interaction. The findings of this second round of observations are reported below,

and summarised through hand drawings in Figures 4.1, 4.2, and 4.3. The details of what would be

captured in these observations were guided by the idea of pressure sensitive textile surfaces on the

lower body - for example the bodily surface covered by trousers.

In addition to the video corpus, which was used to identify a series of postures, three volunteers

were later asked to wear mock-up trousers and were engaged in informal, brief interactions, during

which the touch interactions on the lower body were traced with a marker on the mock-up trousers.

An example of this scenario is later shown in Figure 4.6 when describing the design of sensors and

trousers. This was done to confirm the identified sitting postures and to determine the resolution

and position of sensors.
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Figure 4.1: Drawings of different leg positions and orientations during sitting postures.

Legs and Feet

Identifying which parts of our legs and feet are positioned and moved in which ways to afford a

certain sitting posture is one of the aims of this collection of observations. For example, I examine in

how many different ways legs are crossed, and what common sitting postures are held in a scenario

with a table. While eventually, the objective is to determine the social context of when people cross

their legs, for this first step of validating the sensor system design, the investigation her concentrates

of the recurrent movement on the lower body in conversation - how we cross and touch our legs, and

in how many different ways. Hereby, the combination of postures in lower legs, upper legs, torso and

hands were observed, resulting in a variety of overall sitting postures. For lower legs, the positions

determined were either stretched or with knee bent, while for upper legs or thighs, I observed left

and right leg crossing positions, as well as a change in posture when hands were tucked between

thighs, positioning the legs slightly more spread or with thighs touching. Changes in torso were

categorised as leaning forwards or backwards postures (movements along the sagittal axis), including

details about hand postures during those changes, and sitting straight. A summary of what postures

and movements of which body parts were observed is given in Table 4.2. Additionally, Figure 4.1

shows a collection of such different leg postures including leg crossings, stretching, and leg spreading

that were observed in seated conversations.

Traces of Touch

To inform the trouser design, it is also important to determine which areas of the legs are most

commonly touched by either the other leg in leg crossing postures, or by the hand of the subject.

This additional parameter that was not paid attention to in previous observation, and that now plays

an important role in the data I aim to collect, is the touch interaction between the hands and the

legs. With the trousers, the aim is to be able to track the traces of touch of the hands on the lower

body. So, for example, a question in the observations was, where the hand palms come in touch with

the thigh, or whether both hands are placed on the lap. This is of particular interest when looking

to detect listeners who don’t use their hands to gesture as speakers do, but still perform movements
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Figure 4.2: Sketches of observations of touch interactions between the hands and legs. Shaded or
hatched areas represent the surface on which hands or arms are placed on the thighs.

body part observed sitting positions
torso movement along sagittal axis, leaning forwards & backwards;

slouching, sitting straight up
arms & hands hands on lap, between thighs, on knees ; under arm and elbow

touching thighs; or arms and hands not in touch with lower body
at all

upper legs distance between thighs: touching or spread; crossed in narrow
posture (thighs crossing), crossed with lower leg (or ankle) on
other thigh

lower legs & feet stretched out, away from chair, knees bent, lower legs and feet
underneath chair, tucked back

Table 4.2: Sitting postures observed, divided into different body parts.
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Figure 4.3: Traces of touch on legs - most common areas where hands touch on thighs, points of
touch for leg crossing postures, and the defined area of sensor placement.

that involve the hands. For example, I observed hands rubbing thighs frequently, or hands being

tucked between thighs that are pressed against each other. For speakers, it is generally assumed that

more gestural actions are performed where hands are not in touch with the legs much. Observed

postures and behaviours were most often displayed as touch between the hands and thighs, the two

thighs coming into contact with each other, and the shifting of weight when in a seated position.

But also postures in which hands were used to support a leaning forward movement, or to hold feet

in place while crossing legs appeared frequently, which was observed both in speakers and listeners,

as well as transitions between these states. Other touch points on legs are between the different legs

themselves, when knees or thighs are touching. Findings of these traces of touch are illustrated in

Figure 4.3, marking the areas on thighs where touch happened commonly in the observations.

In Figure 4.2, drawings of different touch interactions of the hands on the legs - mostly thighs -

can be seen. Areas where hand touch was most commonly observed are marked (in red), as well as

the pressure and touch areas of leg crossing postures (in green). Later, the combined area of these

most observed touch interactions were used to identify the area on the legs for sensor placement and

density, as Figure 4.2 suggests, too.

Summary

The aspects these additional observations focused on relate to leg crossing and the effect of upper

body movements on the lower body, such as gestural movement and shifts in the torso. The goal

was to determine a set of sitting postures that can be classified with the sensing trousers, as well as

to specify the positioning and types of sensors that are to be designed around the lower body. The

findings of the observations resulted in a collection of 19 different sitting postures combining positions

of different body parts (see Table 4.2, that formed the base for the followed evaluation. Together

with the additional informal tests with volunteers to trace touch interactions on legs directly, they

contribute to the further design process of the trousers, informing choice of material, sensor type and

positioning, as well as the pattern construction to accommodate for the sensor design.
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4.3.2 Materials

The trousers consist of three different types of materials: non conductive base fabric that would be

the material in direct contact with the wearers’ skin; conductive fabrics that are concealed on the

inside of the trousers and are turned into sensors; and the electronic components that collect the

data. All conductive material was integrated into the trousers so that it would not come in direct

contact with the skin when being worn.

Figure 4.4: Materials used to manufacture the textile sensor matrix and the trousers. Right: grey
resistive layer on top of conductive silver stripes stitched on cotton jersey. Black viscose jersey as
bottom layer. Middle: conductive zebra fabric. Right: microcontroller and datalogger for micro SD
card on prototype circuit board.

Conductive fabrics

Piezo-resistive pressure sensors usually consist of a combination of 3 layers: 2 highly conductive

layers, and a piezo-resistive layer in between, preventing the two layers from touching directly and

short the circuit. The resistive layer (see Figure 4.4 top left) is also conductive, but with a much

lower conductance than the other layers, that changes when the material is deformed. For this piezo-

resistive layer, a stretch jersey from Eeonyx2, EeonTex LTT-SLPA was used, which has a surface

resistance of 10-20 kΩ per square. It is made of a nylon (72%) and spandex (28%) mix that has

been tested for machine washability by the manufacturer, and weighs 163g/m2. The two highly

conductive outer layers are a single jersey ‘Zebra’ fabric, purchased from Hitek3, knitted in stripes

of 1cm conductive and 1cm non-conductive yarn, depicted in Figure 4.4 (middle). The fabric is

light weight with 129g/m2, and is made of silver-plated nylon yarn and textured polyester (for the

non conductive parts). The stripes are later cut and sewn onto non-conductive jersey, arranged into

stripes and columns of the matrix. All fabrics used to make this sensor matrix can be commercially

purchased per meter. And just as conventional, non-conductive jersey knits, these fabrics can be

produced on machines common in the textile industry, in this case an industrial knitting machine in

a fine gauge.

Non-conductive fabrics

The outer layer, the shell of the trousers, consists of a black viscose-cotton single jersey knit in a

fine gauge (see black fabric in Figure 4.8), which ensures a high wearing comfort, elasticity and good

washability. It is also a fabric that is commonly used in leggings and T-shirts. The pattern parts on

the inside of the trousers, acting as lining fabric, cover the thighs and buttocks up from the knees,

2https://eeonyx.com
3https://www.hitek-ltd.co.uk
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and are made of a light cotton elastane mix single jersey knit (pale blue fabric in Figure 4.4 and

4.5). This fabric also forms the base on which strips of conductive fabric are sewn on to create the

matrix of sensors. It conceals all conductive layers of the textile sensors integrated between them.

This layering of non-conductive and conductive fabrics make the trousers thicker on some parts:

around the thighs and buttocks. However, since all fabrics are light weight and single jersey knits,

participants and prior fitting models reported the trousers to be comfortable and only a bit ‘warmer’

around the upper legs.

Up until this point only textile materials are used in the trousers, but rigid materials are intro-

duced in order to record the change in pressure from each crossing point of the matrix, as well as to

power the system.

Electronic components

All materials that are not made of fabric are placed on a solid, custom built circuit board that houses

a microcontroller, a Teensy 3.2, a USB battery and a datalogger with a micro SD card on which the

data was locally stored (see Figure 4.4, right). The individual rows and columns of the matrix, each

forming one layer of fabric, were linked to the input pins of the micro controller through thin and

flexible insulated wires, embroidered to the fabric, as shown in Figure 4.5, and soldered to the circuit

board. The band of connected insulated wires was used to reduce thickness of all wiring from the

stripes of the matrix to the board. A textile solution with insulated yarns was too labour intensive

for the production of a first prototype, but is introduced later in Chapter 7.

One layer of the matrix is connected to analog pins on a microcontroller and the other layer to

digital pins through the wires embroidered onto the conductive fabric stripes. The other end of each

wire is soldered to connectors attached to the printed circuit board (PCB). The PCB design and

microcontroller code is adapted from (Donneaud and Strohmeier, 2017b,a). A small USB battery

is attached and both the PCB and battery are placed in the hem of the trousers near the ankle, as

shown in Figure 4.8 (on bottom right).

Figure 4.5: Wiring of the sensor matrix: encapsulated thin wires are embroidered to the conductive
fabric stripes of the rows (left) and columns (right) to connect to the microcontroller, concealed
through a fabric tubular panel on the inside leg (left).

4.3.3 Sensor Matrix

Pressure Sensors

Informed by the observations of lower body movement, two pressure sensor matrices are constructed

to be integrated in the trousers - one on each leg. The sensing area is defined around the knees, thighs
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and buttocks of the trousers, covering most of the front, side and back leg. The matrix consists of

a 10x10 grid resulting in 100 crossing points on each leg of the trousers. This is made of the cut

up silver coated stripes of the ‘Zebra’ fabric described above, and is designed in the exact shape of

trouser patterns, so that it can be later accurately mapped around the upper legs. The width of the

conductive stripes is 1cm, so that all 100 pressure points are the same size of 1x1cm. Each layer is

arranged perpendicular to the other - i.e. if the top layer is arranged in stripes running left to right,

the bottom layer is arranged in stripes running up and down. These stripes are not in direct contact

with each other but separated by the layer of the resisitve fabric. Therefore, the crossing points of

the matrix touch this in-between layer on each side to measure its change of resistance when being

compressed. Donneaud and Strohmeier (2017b) use the same principle, also adapted from preceding

work and open-source designs for pressure sensor matrices (Roh et al., 2011; Zhou et al., 2014), while

the size and selection of conductive and piezo-resistive materials varies in all these examples.

This design of a pressure sensitive matrix presents an effective method to enable measuring a

high number of sensors simultaneously and with one connected system, rather than encapsulating

each sensor and process them separately, as earlier examples of pressure matrices showed (Tan et al.,

2001; Mota and Picard, 2003).

Array and Circuit Design

The arrangement of the grid is not symmetric or distributed equally as it is in most other sensor

matrix designs, but designed to be more dense (or fine grained) with sensors closer to each other

in areas where hand touch occurred more commonly, in this case on the inner and top thigh, and

less dense at the outer leg, along the side of the thigh and across the back thigh and buttocks,

which is displayed in Figure 4.9. This applied to the vertical stripes of the matrix, while the ten

horizontal stripes are distributed equally across the length of the matrix, from the knee to the hip.

This arrangement derives from the observations that both in leg crossing postures, as well as in

postures involving hand touch on legs, the sides of legs are touched less frequently, and little change

in pressure distribution occurs because of this. On the other hand, the top leg present a surface on

which both hands and other leg parts touch each other, sometimes only on a small part of the surface

(hands). This is why a higher sensing resolution is needed, also shown in Figure 4.9, which is based

on the identified areas in Figure 4.3. Lastly, the back of the leg is in touch with the chair with a

large part of its surface, where the pressure matrix doesn’t require a high resolution for this purpose.

Each leg has its own sensor matrix, micro controller and circuit board, so each leg collects data

independently from the other. This has practical reasons, such as the limited number of input

possibilities on the micro controller or the design of the cabling integration not interfering with

wearability comfort, but also reduces the risk of error, when one leg fails to collect data, the other

one still functions without interruption. A drawback of this, however, is certainly the increased cost

with two micro controllers per pair of trousers4. Each leg has therefore a separate timestamp, that

later needs to be synchronised and aligned with other recording modalities - an additional step when

preprocessing the data for analysis.

4though a small cost of appr. 20 GBP
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Figure 4.6: Prototyping with mock-up trousers to test fit and validate observations of hand touch
interactions on legs, marking most common touch areas.

Figure 4.7: The final milled circuit board with sockets to plug in the electronic components, front
and back side (mirrored, showing the soldered connections)

Hardware

While the schematic of the sensor matrix as well as of the printed circuit board (PCB) follows in

principle the work of Donneaud and Strohmeier (2017a)5, the size, PCB design and data processing

was altered and modified to fit this new use case. The connections to the pins and the placement

of the microcontroller on the breakout board is adopted, but the amount of sensors that need to be

connected to the pins differs from Donneaud and Strohmeier (2017a), the arrangement is redesigned.

While the matrix in their example consists of 16x16 (256) data points in total, the design here

features 10x10 for one matrix. The circuit was drawn so that the board could be as small as possible,

including the additional datalogger for local data storage on a micro SD card.

The custom milled circuit board has detachable pin sockets so that the board can be removed from

the trousers, and the wires that are embroidered to the matrix can be simply unplugged. This was

useful for debugging processes while prototyping and enabled us to easily replace faulty components.

The stepwise fabrication of the circuit board is documented in Appendix B, and the final design

that was multiplied for the trousers is seen in Figure 4.7.

5https://matrix.etextile.org
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Integration in Trousers

The fabric pattern pieces forming the sensor matrix were attached to the trousers along the inside

leg seam and the crotch seam. The top end of the sensing fabric layers was stitched onto the non-

conductive fabric of the outside layer of the trousers for additional stability and for holding the

sensor matrix in place. The bottom hem of the matrix fabrics was hanging loose. The wires that

are embroidered onto the rows and columns of the matrix were attached on that bottom hem for the

columns, and along the inside leg and crotch seam for the rows. A detailed view of these specifications

can be seen in Figure 4.8. All components of the matrix were embedded into the trousers’ pattern

construction and manufacturing process, rather than deployed retrospectively.

The exact placement and density of sensors around the legs of the trousers was determined by

preliminary wearability tests. The findings of the observations conducted beforehand determined

the area in which sensors are relevant to be deployed. To optimise the location of each sensor and

to construct the matrix with the best possible distribution, the toile6 of the trousers was worn by

three volunteers that were prompted to perform a series of sitting postures involving hand touch and

engaged in a conversation. The touch points were then traced on the trousers, as shown in Figure

4.6 and transferred to the sensor matrix design, informing the resolution of sensors in different areas

across the legs.

4.3.4 Pattern Construction

Trousers that are to be tested with a large number of different people need to fit each person and fulfill

standards of wearing comfort. Both are requirements for the pattern construction of the trousers

and are supported by the choice of fabrics that are used. Additionally, the ‘seamless’ and unintrusive

integration of the sensors influences the engineering of a basic trouser pattern block, a template of

the final construction from which all pattern pieces can be cut, and further developed from.

Tailoring Leggings

The aim is to have a pair of trousers that sits close to the body, enabling more precise data collection

and posture tracking. I decided to make leggings because they are both, elastic and tight, and

are a piece of clothing that most people are familiar with and use. A standard pattern block for

trousers made of stretch fabric and without a side seam can be seen in Figure 4.9. This block was

created by the author of this thesis, applying standard pattern construction rules used in tailoring

and clothing design development. The side seam is eliminated to enable an easier integration of the

sensor matrix around the outer thighs, for which a continuous flat surface without the interruption

of seam allowances creating an uneven area is preferable. Using a stretch fabric, the shaping of

the trousers without a side seam is easy to achieve, while with woven unelastic fabrics, e.g. in suit

trousers, that would be more challenging. Housing the microcontroller and the 20 wires per leg that

link the rows and columns of the pressure sensor matrix with the circuit board unintrusively adds

certain requirements to the construction of the trousers. On the inside of the legs, a tubular fabric

panel of 5cm width was inserted, so that all wiring could be pulled through it down to the hem,

where it could easily be attached and detached to the microcontroller, as shown in Figure 4.8. This

tubular panel, sewn in a technique similar to a ‘french seam’, where seam allowance is sewn together

in two steps to conceal the raw edge of a fabric. The panel prevents the electronic components from

6or mock-up, prototype
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Figure 4.8: Inside and outside view of sensing trousers. Left: layer of sensor matrix embedded on
the inside from crotch to knees stitched onto seams of tubular panel on inside leg. Right: ‘shell’ of
trousers, fabric bands on hem with microcontroller
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Figure 4.9: Left: the ‘smart’ trousers being worn inside out. Right: the flat pattern of the trousers,
with no side seam, and the placement and mapping of the sensor matrix across the thighs and
buttocks

coming into direct contact with the skin as it is concealed between layers of the soft non-conductive

fabric. A work-in-progress image of integrating the wiring in the tubular panel can be seen in Figure

4.5. The hem of the trousers could be rolled up, so that the PCB could be tucked in and concealed.

Additional fabric bands at the hem served to tie the PCB and battery closer to the leg if needed.

Grading System

Differences in body shape also entail that the sensor points of the matrix are not always in the

very same position. With the choice of material and pattern system, however, this variation can

be minimised. The stretch knit fabric used accommodates multiple clothing sizes and body shapes

with one pattern cut, and can still sit tightly (e.g. as is worn in Figure 4.9). To allow for a wide

range of sizes, however, a grading system was developed, and three different sizes of trousers were

manufactured. The system was determined through the measurement data of 11 different subjects

(volunteers), 7 male and 4 female. Average measurements of these volunteers, as well as standard

clothing size tables formed the base for the sizes Small, Medium and Large.

This did not affect the resolution or positioning of the sensor matrix, but only the overall width

of the trousers, allowing for more fabric around the thighs and crotch area. The development of this

grading system followed a process common in the tailoring industry. This means that by increasing

one size, the crotch point is lowered by 0.5cm and widened by 1cm, in addition to inserting 2cm

along the initial side seam across the entire length of the pattern. This is repeated to increase by

another size.
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4.4 Evaluation: Posture Classification

To assess the reliability and overall performance of the sensing trousers, I conducted a user study7. I

tested 19 different postures that were identified through ethnographic observations described above,

drawing from a video corpus of 12 seated three-way conversations (36 different subjects). The postures

tested here are considered to be often reoccurring static sitting postures and are, in part, also tested

in other works, for example in (Meyer et al., 2010a; Kamiya et al., 2008; Xu et al., 2013), amongst

others.

The design for this experiment follows settings of some of those user studies with similar research

objectives, in particular orientating towards the work of Meyer et al. (2010a), who identified 16

similar sitting postures and tested these with 9 subjects in three rounds for classification purposes.

Other works evaluated gesture classification with even fewer subjects (e.g. Junker et al. (2008);

Cheng et al. (2013)). Examples like this show that even with collecting posture data of only one

person (Tan et al., 2001), but having multiple recordings per posture, results are accurate enough

for classification models.

4.4.1 Participants

The data was collected from 10 participants, aged between 19 (2) and 42 (1) years (the rest between

26 and 36years). Five female and Five male subjects of different clothes sizes were recruited. This will

provide a data set that allows us to test all three sizes of trousers that were manufactured, compare

their performance and ensure the same quality and sensor behavioural characteristics across the

different models and across different physiques of participants. Later the data of 4 participants had

to be discarded due to an error with the formatting of the data files, and the data of the remaining

6 participants was analysed.

4.4.2 Procedure

The study consisted of single user actions, in which participants were asked to perform the series of

sitting postures when instructed to do so. The study took place in the Materials Lab of the School

of Electronic Engineering and Computer Science at Queen Mary University of London, where a chair

was placed in front of a camera. Participants were putting on the trousers themselves or were assisted

to do so if needed, then asked to take a standing position in front of the chair, facing the camera.

They were briefed on the procedure and then asked to follow verbal instructions performing a variety

of sitting postures and gestures. After this instruction, while still standing, the recording started

and the instructor, positioned next to or behind the camera, read out the sequence of postures the

participant should perform. The 19 posture types are:

1. standing up (hands to the side, natural standing position)

2. sitting down, up straight = “home position” (first “natural” position taken when sitting down,

without hands, knees or lower feet touching each other)

3. sitting straight with knees touching

4. leaning back

5. leaning forward (without hands touching thighs or knees)

7Ethics Approval Reference: QMREC2133a
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6. slouching

7. leg crossing: left over right leg

8. right leg crossed over left leg

9. leg crossing: left on right leg with ankle touching knee

10. right on left leg with ankle touching knee

11. sitting up straight, hands touching knees

12. leaning forward with hands on knees

13. hands rested in crotch / on lap

14. hands tucked between thighs, knees touching (thighs pressing on hands, hands touching each

other)

15. hands on mid thighs

16. elbow on thighs, leaning forward

17. lower feet postures: both lower feet stretched out

18. lower feet bent in

19. lower feet crossed.

Here, the postures involving events around the thighs were performed twice - once on each side

(posture 7 - 10). The postures involving only movement in the lower legs were not divided into

separate instructions accounting for left and right sides(postures 17-19), since there were no sensors

covering the lower legs and the overall focus remains on upper leg movement.

Each posture was held for 5 seconds and returning to the ”home position” for 2-3 seconds in

between. This was timed by the instructor. As the home position, I determine the default sitting

posture that was first taken when sitting down onto the chair, a position that felt “natural” to

the participant and can be described as sitting up straight with uncrossed and untouched legs and

feet, and with arms handing straight down on the side. The instantaneous pressure readings from

the 200 sensor points for the duration of one posture are defined as an instance (this accounts for

4 instances per second). Each participant repeated this sequence of instances three times, which

results in approximately 60 instances per participant per posture.

4.4.3 Data Collection and Processing

Sensor Data

The raw sensor data was collected with the rows of conductive fabric of the matrix forming the

digital inputs and the columns the analog inputs on the corresponding microcontroller, a Teensy 3.2.

Pulling the digital pins high and reading analog input values from the column one by one creates

a sensor reading for all data points across the matrix. The pressure sensor data was collected in a

format in which each sensor is stored in a separate column, with each row accounting for the readings

over time, starting the recording at the onset of the microcontroller, in other words: as soon as the

trousers are ‘switched on’. A time stamp was included for later synchronisation between the two
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legs of the trousers, as well as with a video recording. A detailed documentation of the method of

how the sensor data is collected from each data point of the matrix can be found in (Donneaud and

Strohmeier, 2017a,b). Unlike in their work, however, here the data is not processed and visualised

immediately in real-time, but stored as a txt file on a micro SD card (plugged into the datalogger)

for off-line analysis. After the completion of the postures by each participant, the data is normalized

so that the minimum sensor value is 0.0, and the maximum sensor value is 1.0. The data was then

visualised and mapped to the corresponding location on the sensor grid using the open source software

platform Processing8, as seen in Figure 4.11. The Figure shows each data point on the matrix as

a circle of varying size, correlating to the applied pressure over time. This was used to informally

and preliminarily inspect the sensor data, gaining a first understanding of the sensors’ behaviour and

trousers’ performance. This visual representation of the sensor data was also useful to detect any

errors in the data, e.g. malfunctioning or disconnected sensors.

Figure 4.10: A draft sketch of how the sensors on the flat pattern block on the right map around
the leg when the trousers are assembled (left). The sensor numeration across the matrix on the leg
is arranged as follows: sensor 1 on front inner leg on knee, sensor 100 on back inner leg on buttocks,
10 sensors per rows.

Mapping of Sensors on the Trousers

The mapping of the data visualisation and sensor numeration is arranged as shown in Figure 4.10,

where the first sensor sits on the front inside leg and the last sensor on the top of the back pattern.

The sensors are counted row by row, starting on the inside front leg counted horizontally towards the

back leg (so row 1 counts sensor 1 - 10, row 2 sensors 11 - 20, etc.). A screenshot of the animation

with the same mapping can be found in Figure 4.11, showing each data point as a circle increasing in

size when the pressure on the sensor increases, e.g. bigger circles on the top end mean more pressure

on the buttocks, which would indicate a sitting position. Note that one grid depicts the data of one

leg only, so it is not representative for the whole pair of trousers.

8https://processing.org
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Figure 4.11: Visualisation of two different leg crossing postures. Each circle represents on data point
of the sensor matrix, mapped around the participant’s left leg (the observer’s right leg). Bigger circles
indicate increased pressure.

Video annotation and synchronisation

Alongside the sensor data, a video recording documents the session capturing the verbal instructions

and postures of the participant. One camera was placed in front of the chair, so that the participant

would be captured from a front view when performing the postures.

To generate a ground-truth data set of the 19 different postures, annotations for each of the

postures were added to the video recordings using the software package Elan (Brugman and Russel,

2004). All postures were hand coded as static positions, discarding any transition periods between

them. For example, the movement between crossing a leg and returning to the home position was

not included in the posture, but treated as noise and removed. The sensor data was time-aligned

with the video annotations and exported into ARFF format for further analysis. This file format

is created for further processing in the machine learning software Weka (Holmes et al., 1994; Hall

Eibe Frank et al., 2009), and organises the labels of the data and different postures into a specific

order and format. While the raw sensor data was collected during the study, the normalized pressure

readings were used as the input for the classification algorithm.
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4.5 Results

The aim for the trouser sensing system is for it to automatically recognize the posture of the wearer.

The first steps towards achieving this is to generate ground-truth data to train a machine learn-

ing model performing a classification task in order to provide a baseline indication of the system’s

performance.

The 200 sensor data points were captured at 4 Hz resulting in over 9000 total postural instances

across six participants. Of these 1327 were instances of the standing posture with 325 to 626 instances

of each of the remaining seated postures. The higher number of standing postures is due to longer

standing periods in between the cycles of posturing, which were also taken into account for analysis.

Instances where the participant was not clearly displaying one of the postures were discarded from

the data set.

The open source software Weka (Holmes et al., 1994; Hall Eibe Frank et al., 2009) was used to

train and evaluate a Random Forest model with bagging with 100 iterations. It was first evaluated

with individual participants, then as a population-level model with all participants, and finally with

individual participants withheld from training.

4.5.1 Individual Model

When training a Random Forest model and evaluating using 10 fold cross validation with stratified

data on a single participant, it showed excellent results in classifying postures with an average of

99.31% of postures classified correctly. The percentage of correct classifications for each participant

can be seen in Table 4.3, ranging from 98.80% to 99.75% average accuracy across all postures. The

models showed particularly good performance when classifying between standing and seated postures,

with only misclassifying one posture for two participants as seated with leaning back or the home

position instead of standing (participants C and D). Proportionally, this only occurred once in a

data set of 1264 (participant C) and 1649 (participant D) instances, of which were 163 (C) and

263 (D) standing position instances, and significantly fewer for the postures they were misclassified

as. The confusion matrices of these two participants are attached in Appendix B. The success in

the classification between seated and standing is likely because of the significant difference in sensor

values on the underside of the trousers, however the imbalanced data captured may also play a role.

For each participant there was up to four times as many instances of standing than any other posture

in the data set due to the sequence of positions recorded. For example, participant A with the highest

overall accuracy of correct classifications has 202 standing posture instances, and between 47 and

152 instances for all other postures (most others counting around 100 instances - half the size of the

standing posture data).

Misclassifications between the remaining 18 sitting postures were equally rare in the individual

model overall, with maximum one instance being incorrectly classified. In most of these cases,

the postures that were mixed up are similar postures, for example both relating to hands touch

on legs (thighs and knees), leg crossing or movements in lower feet. Participants showed 0 - 3

misclassifications in total, for example confusing one instance of a posture involving lower legs and

feet with a similar posture involving lower legs, too. Similarly, mostly postures were confused for

which pressure is applied on the same body parts - e.g. postures of hands touching the thighs.

When examining the F-measures, four of the six participants had the best classification per-

formance with standing (all except participants C and D) and worst with the feet crossing and

hand-dependent postures. This can be seen in Table 4.4. The Table also shows that the lowest
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Participant Individual Leave-One-Out
A 99.75% 64.26%
B 99.58% 42.71%
C 99.68% 27.93%
D 99.21% 10.97%
E 98.80% 32.20%
F 98.84% 50.10%

Table 4.3: Percentage of correct classifications for each participant when trained on a single partici-
pants and evaluated using cross-validation, and when that participant was withheld from the training
set then used as the test set. Participants C and D in bold are the two participants who misclassified
standing postures.

Postures A B C D E F Community
standing up 1.000 1.000 0.997 0.996 1.000 1.000 0.999

sitting down, home position 1.000 0.978 0.989 0.982 0.991 0.986 0.987
sitting, knees touch 1.000 0.992 0.982 0.983 0.979 0.986 0.984

leaning back 1.000 1.000 1.000 0.992 0.977 0.991 0.995
leaning forward 1.000 0.993 1.000 1.000 0.977 0.992 0.995

slouching 1.000 0.986 1.000 1.000 0.994 0.982 0.990
leg cross L over R 1.000 0.995 1.000 1.000 1.000 1.000 0.995
leg cross R over L 0.994 1.000 1.000 1.000 0.985 0.979 0.992

leg cross L on R, ankle on knee 0.988 0.994 1.000 1.000 1.000 0.991 0.996
leg cross R on L, ankle on knee 0.993 0.993 1.000 0.993 0.963 0.984 0.986

sitting up, hands on knees 0.994 1.000 1.000 0.987 0.986 0.981 0.987
leaning forward, hands on knees 0.989 1.000 1.000 0.990 0.986 0.980 0.988

hands rest on lap 1.000 1.000 1.000 0.995 0.967 0.996 0.994
hands tight between legs 1.000 1.000 1.000 0.983 0.993 0.987 0.987

hands on mid thighs 0.992 1.000 1.000 0.987 0.976 0.973 0.986
elbows on thighs, leaning forward 1.000 1.000 1.000 0.995 0.994 0.993 0.996

lower feet stretched 1.000 1.000 0.988 1.000 1.000 0.984 0.995
lower feet bent 1.000 0.991 0.990 0.976 1.000 0.984 0.990

lower feet crossed 1.000 0.992 1.000 0.981 0.990 0.984 0.992

Table 4.4: F-Measures of all 6 individual participants and as community for all 19 postures, in the
order they were performed as instructed.

F-Measure overall, 0.963 (participant E) is from a leg crossing posture. For the two participants C

and D with misclassified standing postures, their leg crossing postures performed better than other

postures. Weighted average F-Measures for all individuals are 0.993, for Recall and Precision as

well, with the best participant having average F-Measures of 0.997 for all postures, and the poorest

performing participant 0.988. Again, Recall and Precision results are identical, and can be checked

in Table 4.5. Details of F-Measures of all 19 postures for each participant are listed in Table 4.4 in

the order they were performed in the study.

4.5.2 Community Model

General Community

The next step was to examine the potential of building a generic, population-level model with a

total of 9128 instances. I started by training a Random Forest model on the aggregate collection of

postures from all six participants and then evaluating it using 10 fold cross validation with stratified

data. This had excellent results with 99.18% of postures classified correctly, with F-Measures, Recall
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Results Community Individual (Avg.) Leave-One-Out (Avg.)
Accuracy 99.18% 99.31% 38.03%

F-Measures 0.992 0.993 0.375
Recall 0.992 0.993 0.380

Precision 0.992 0.993 0.388

Table 4.5: Overview of Random Forest classification results for community, individual and leave-one-
out models. Results are averaged across all 6 participants for the last two models.

and Precision results of 0.992, summarised in Table 4.5. A detailed list of all F-Measures per posture

for this general community model are also shown in Table 4.4. Here, the best result is for the standing

posture with F-Measures of 0.999. The lowest F-Measure in the community model is for the sitting

posture without hands involved and the knees touching, which is 0.984. Leaning backwards and

forwards, as well as having the lower legs stretched were amongst the best performing postures when

looking at F-Measures.

Similar patterns occurred as when building individual models for each participant. Again, stand-

ing performed well when compared to non-standing positions, though it still has up to 4 times as

many posture instances than other postures. It had one more misclassification when compared to the

individual models - along with being confused by knees touching and the home position, it misclas-

sified a slouching posture. However, in perspective, these are a total of only 2 misclassified postures

across 1327 instances for standing. Similarly, between sitting postures, the maximum of misclassifi-

cations was on 4 occasions when slouching was falsely identified as the home position, as well as 3

times when a leg crossing posture was incorrectly classified as the posture when hands were tucked

between the thighs. Twice out of 389 instances, a leg crossing posture was confused with a posture

with hands resting on the thigh. The community model’s confusion matrix and detailed numbers of

misclassifications are reported in Appendix B.

Leaving One Participant Out

The ideal trouser sensing system would be able to train from data sets of lab-based postures, and

then correctly classify the postures of a new wearer who had not previously gone through an indi-

vidual training phase. To evaluate the feasibility of this application, I generated six Random Forest

models withholding a single participant from the set, and then tested that model with the withheld

participant data. As was expected, all participants performed much worse than when their data was

included in the training set, but all performed better than random chance.

The two participants that performed the worst here were the same that performed the worst at

classifying between standing and seated postures, participant C and D in Table 4.3. Those whose

individual models could better distinguish between standing and non-standing also performed better

when their data was not included in the training data with the best performance being 64.26% from

participant A. The average results of all tested participants when left out from the training data are

lower, with 38.03% correct classifications, and F-Measures of 0.375, shown in Table 4.5.

The classifications from the model built without participant A can be seen in the confusion matrix

in Figure 4.12. The matrix compares which postures were confused with which other postures. For

example, “hands tucked between thighs”, “hands in crotch / on the lap” and “hands on mid thighs”

were often misclassified as “hands on knees”. This can be explained with the similarity of the postures

as well as the variations of hand positioning per participant and posture repetition. For example,

participants were observed performing the same posture in a variety of ways in different cycles, but
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Figure 4.12: Confusion Matrix, participant A withheld. Number of instances are colour coded as
shown on side bar (0-202 instances, white to dark blue).

also that different participants interpreted the verbal instructions, though as precisely instructed as

possible, in different ways - for example when asked to lay their hands on the lap or crotch, each

participant would place their hands on another exact position. Other postures that were confused

with each other are “leaning back” and “home position”, both only performing movement of the

upper body and only slightly shifting the pressure distribution amongst the legs. Lastly, the postures

referring to lower leg movement were the third category of misclassifications. Lower legs being bent,

crossed or stretched did also not implicate movement of the upper legs and buttocks as much, the area

where the sensor matrix was placed. Other, less common misclassifications of the best performing

participant in the community model can be deducted from Figure 4.12.

Other tested participants, when withheld from the training set, still performed very well and with

no misclassifications distinguishing the standing posture from others, but showed frequent incorrect

classifications between similar sitting postures. For example, postures in which the torso was leaning

forward were confused with each other, such as leaning forward with elbows on thighs with hands

on knees while leaning forward. Furthermore, the home position was sometimes classified as leaning

back, while all different leg crossing positions performed well and were only rarely classified as another
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posture. Other examples of common mismatches were slouching with leaning back or lower feet

stretched, or hands on thighs with hands on knees - all postures that share some key characteristics

(e.g. when slouching, some participants also leaned back and stretched their legs). More confusion

matrices are added to Appendix B.

In summary, these different participant tests were able to recognize standing better than any

other posture. This indicates that may be a potential application in recognizing the postures of a

wearer who has not gone through a training phase, but more data needs to be collected to better

inform the machine learning model.

4.6 Discussion

This user study served the purpose to validate ‘smart’ trousers as a wearable, textile sensing system

to be carried further and tested in an interactional context to investigate nonverbal behaviour. Given

the small number of sample data used here, there is much room for improvement for this classification

model. Yet, the implications for use cases that emerge from the results of these sensing trousers are

promising, and encourage to continue to work towards establishing textile sensors as a novel modality

in the field of behavioural studies.

4.6.1 Classification Improvements

The machine learning model shows good performance when building a general population-level model,

as long as the participant being tested is represented in the training of that model. It has significantly

worse performance when testing a model with a participant who is not represented within the training

set. This indicates that the sensors could be effectively used to automatically identify postures of

individuals, as well as potentially individuals themselves, if that participant goes through a data

collection phase. Without more data and model refinement, this is not yet ready for generic use

where an unknown participant could have their postures detected without training. In addition

to a larger data set, multiple sessions of performing the postures to be classified would also help to

compensate for the variation a single participant shows when performing the same posture. Moreover,

a more balanced data set, with the same number of instances for each class, would help to achieve

more accurate and realistic results. In particular, this would imply to reduce the number of instances

used for the standing posture, or to separate this posture from all other siting postures altogether

and focus on more similar categories of postures to explore more fine grained differences in the

classification accuracies.

Another aspect of the study set up that may affect the results is the controlled data collection with

static postures in a repeating order. The trousers were worn once by each participant and have not

been tested with variations in order and duration of postures, or for consistency in multiple wearing

sessions, which could lead to minimal changes in sensor positions. In other words, clothes as sensing

systems are per se dependant on the user, layers of fabric are not always at the very same position

when being worn on different occasions, and also wrinkles, twists and other parameters come into play

in a soft, flexible sensing surface placed directly on the human body in motion. Even though the same

person performs the same, precisely instructed posture multiple times, there are individual differences

not only in the posture itself, but, in perspective to more spontaneous, not instructed situations.

Differences in the duration of such postures varies, too, given different scenarios. Moreover, in social

interaction, dynamic postures are more common, and occur in different order and with different
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transitional movements that potentially add noise to the data. I have accounted for that potential

noise regarding repetition and order effects, and plan to dedicate future work to investigate these

points further by testing the trouser design in conversational scenarios.

4.6.2 New Social Postures

The evaluation in this chapter has shown that there may be a much richer collection of postural

cues on the lower body yet to explore that has so far been invisible to other sensing technologies,

or has simply not been the centre of examination. If thighs and buttocks can provide such details

about behavioral cues with their shifts in movement and touch interactions, as I have shown with the

sensing chair covers, there are potentially additional and complimentary cues to be collected from

lower legs, feet movement or other areas of the lower body that have not been explored in detail

and that go beyond gesturing and apparent twists in posture. In comparison to the chair covers,

this wearable sensing system has the potential to pick up these more fine grained differences in these

postures, and detect additional interactional movements choreographed by upper and lower body

interacting.

Translating the classified postural movements to affective states and a measure for conversational

engagement, trousers have the potential of identifying a “smart arse”, or could detect if someone is

listening, interested, bored or restless. For example, future work is directed towards specific questions

as to whether leg crossing correlates with gaze and determining addressees; whether the position of

hands on legs bears information about levels of arousal and valence to detect stress, comfort, anxiety,

etc.; or elaborate further on findings of existing work (Witchel et al., 2016) that suggest that thigh

movement implies user attention level, or that lower legs when bent in a sharp angle (tucked towards

the chair) signal attention in listeners, too (Bull, 2016). This also leads to questions that expand on

the sensing capacities of this sensor design. Having trousers that can not only capture leg movement,

but that also pick up touch of the hands, it is intriguing to explore how well, or if at all, trousers can

also pick up upper body movement, like nodding, head turns or conversational states like speaking

and listening; and, if not, how an equivalent design would look like for garments for the upper body.

Given the lack of literature on the lower body as a behavioural social signal, these trousers

could contribute to add to this body of work and evaluate the significance, as well as richness of

leg movement in conversation. This can concern overt postures like the ones that were tested here,

but also investigate micromovements like small scale shifts and fidgeting, leg bouncing or general

orientation of feet. Overall, the evolving research question determining this research’s work to follow,

is: if trousers can detect postures, can they also detect behaviours?

4.6.3 Directions for Potential Applications

The contribution this work can make towards affect detection and understanding different modalities

of human communication could benefit applications in the medical sector for the design of therapies,

like physiological rehabilitation, as well as cognitive therapies. Furthermore, such trousers could

be designed to feed back this information to participators of social encounters and thereby help

to improve human interaction scenarios. Such “socially aware trousers” are not only potentially

enriching for interaction between humans, but also for applications in Human-Computer-Interaction

- even if that is only by replacing rigid interfaces with soft, flexible textile sensing surfaces that can

be worn unobtrusively on the body.
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Textiles that feel like everyday clothing items, electronically enhanced or not, are a material

we already engage with traditionally, and clothes are something omnipresent. This is their foremost

advantage compared to other modalities with similar sensing capacities, for example Kinect v2, which

may be able to sense muscular force, but is vision dependent and requires special spatial settings

to take bodily measures. The material aspect of sensors made from fabrics are an important aspect

when evaluated against other technology.

The ability to monitor postural shifts and pressure applications has also the potential to inform

garment construction and pattern cutting in direct dependency with the intended use case. This

could range from applications for fashion retail, e.g. clothes that take size measurements9, to the

simple objective to develop more comfortable trousers for professions that require a lot of sitting (e.g.

in offices). More speculatively, systems like these trousers can be made to identify their wearer with

application scenarios in health and safety, and could also be a gateway for an even less intrusive,

embedded contactless payment option. Such implications to the design of trousers would give the

saying ”you are what you wear” yet another notion and would make our clothing not only subject

of personal expression, but also of identification and a more active part of our everyday actions. In

the future, clothes may not only be objects that project communication, but potentially be aware of

how we communicate with others.

4.6.4 Summary

In this paper, I have presented an unobtrusive method of capturing different sitting postures that

is integrated in stretch trousers. Using a textile pressure matrix around the thighs and buttocks, it

is possible to detect different leg movements as well as gestures on the lower body. I demonstrate

that shifts in pressure on the upper leg are enough to train machine learning models to identify leg

crossing, positions of hands on thighs and knees, lower leg postures, as well as more subtle weight

shifts with high accuracy. Automatic classification models using standard machine learning tools

were tested to distinguish between 19 posture types, and have shown promising results towards this

research’s goal to establish textiles as a suitable wearable sensing design to capture body-centric

data, and eventually make garments “socially aware” - and posturally aware for a start.

Contributions

In summary, the contributions of this chapter are to the design adaptations to sensing trousers and

the pressure sensor matrix embedded in them. The benchmark study of this chapter showed that

textile pressure sensors as a wearable on-body system can compete with previously used sensors on

a chair surface.

The trousers present a design that integrates the sensing system from an early design stage

onward, advancing most sensing trousers presented in literature. The design and engineering process

of the trousers is further an addition to smart garment developments, providing solutions to circuit

and sensor integration for lower body garments. The focus on trousers is also a contribution towards

the proposed attention for lower body garments in general, standing alongside the more elaborated

works on textile sensor design for upper body garments.

9https://zozo.com/
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Limitations

The presented study comes with limitations, too. The success of the classification results is drawn

from a small data set of only 6 participants, and the performed postures and evaluated postures

are performed in an isolated, not interactional context, participants being prompted to perform

them in an instructed manner. Aiming to deploy the sensing trousers in a ‘real world’ scenario,

the here achieved results are not realistic to hold for unstaged, spontaneous postural movements.

These restrictions apply also to the machine learning model, risking to be overfitted. To overcome

these challenges and restrictions, the trousers will further be tested in different experimental set ups,

introduced in the next two chapters.

By exploring fabrics as an interface so close to our body, I anticipate that it will be possible

to identify additional postures as relevant cues in social interaction. This is what will be explored

further in the next chapter: placing the trousers in an unstaged environment, worn by participants

engaging in spontaneous conversation. After validating the design of the trousers here, I will also

elaborate on additional classification techniques and further explore the potential of trousers as a

sensing system in the work to follow.
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Chapter 5

Posturing in Conversation:

Detecting Social Behaviour with

Sensing Trousers

Chapter Overview

With a successful benchmark study that has validated the trousers as a sensing system for bodily

data, the work in this chapter proceeds to explore their potentials further in a social context. Here,

investigating behavioural and postural aspects in multi-user interaction with trousers are investigated.

Where I previously validated the sensing trousers with instructed static postures, I now seek to test

them in a context allowing for spontaneous movement in an interactional setting, paralleling the

objectives and study structure in Chapter 3 used to evaluate the chair covers. By doing so, I conduct

a user study in a similar format, looking at seated three-way conversations.

The data set I present here forms the basis for a large range of explorations spanning into the

following two chapters. In this chapter, I take on the objective of distinguishing basic conversational

behaviours, firstly focusing on the differences between speakers and listeners, and secondly testing

the trouser based wearable sensing system for additional listener behaviours, too. I explore how far

the modality of fabric pressure sensors in trousers can be explored as an instrument to analyse social

interaction, and what approaches are most suitable to achieve this. Different classification methods

are tested before a Random Forest model is used to evaluate this data set against the objectives set

out here.

The chapter is structured into first presenting a recap of relevant literature as well as the key

aspects of the design of the sensing trousers. Then, the study procedure and data collection is

reported, followed by explaining the results of classification for a Random Forest model, and a

discussion to contextualise this chapter’s findings.

The publication accompanying this chapter is: Skach, S., Stewart, R., & Healey, P. G.T. (2021).

Sensing Social Behavior With Smart Trousers. In IEEE Pervasive Computing, Vol. 20, No.3, pp.30-

40, doi: 10.1109/MPRV.2021.3088153.
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5.1 Introduction

The intentional signals we perform for people we interact with are well and unambiguously on display

and carried out as overt, marked movements. They are also mostly focused around three defined

areas: the expressions of the face, the movement of arms and the overall orientation of the torso. We

use these body parts to emphasise and support our verbal and vocal communication. Movements

in the lower body, however, are often overlooked as conversational cues, though they regularly serve

as measures to detect sitting postures in similar scenarios, not accounting for social context. Based

on the findings and observations described in the previous two chapters, I propose that these less

explored cues deriving from movements in the lower body are interactionally relevant, too, and make

a significant contribution to nonverbal communication.

As mentioned previously as well (Chapter 2), all nonverbal social signals, lower or upper body

related, have the potential to contribute information about a large part of human interaction and

contain detailed information about people’s social behaviours e.g., whether a conversation is friendly

or confrontational, whether people are interested or bored and often who or what they are talking

about. At a glance, we can identify speakers, listeners, make inferences about their relationship to

each other and the level of their engagement in the encounter. What social signals does the lower

body provide? Can leg movement identify speakers in a conversation? Can leg movement say as much

about interactional dynamics as hand movement does? And, more generically, are social behaviours

revealed through legs as much as they are through the torso? Might legs enhance or confirm what

hands and face are able to communicate? Or do we reveal additional cues with our lower body that

have so far not been deduced from the upper body?

Sensing these sometimes subtle cues can be challenging. Even more so when focusing on the

lower body, which in seated conversations often involving a table, is difficult to capture. Traditional,

vision dependant technologies can easily reach their limit in such scenarios. In addition to problems

of requiring the physical space to be instrumented, and sensitive issues around surveillance and data

protection, they risk failing to capture the body parts of interest because of occlusion, hidden by tables

or other objects in an environment. To overcome obstacles like these, on body sensing systems have

become increasingly popular, although wearable sensors often employ conspicuous forms of industrial

design e.g., encapsulated in plastic or integrated in other rigid devices, such as wristbands (Rekimoto,

2001), smart watches or belts (Trindade et al., 2014). These forms of wearable computing are usually

multi-functional and designed for conscious and reflective use which can, and often explicitly aims to,

alter a wearer’s behaviour. The on-body sensing system presented here, pressure sensitive trousers,

addresses many of the above issues and present the first textile sensing design to capture social

behaviours; a new potential filed of application for e-textiles.

In this chapter, I draw the attention back to the research questions set out in Chapter 3, asking

and elaborating on whether it is possible to detect overt conversational behaviours in a naturalistic

setting from textile pressure sensors, with the difference that now I use the sensing trousers rather

than sensing chair covers to investigate these questions. I look at the distinction between speakers and

listeners, and furthermore divide listeners into active and passive interactants, carrying out responsive

rhythmic movements such as nods and laughs but also verbal responses defined as backchannels

(Schober and Clark, 1989; Goodwin, 1979); or behaving more passively, unengaged, which will be

called “incidental” listeners. The basic research question here is whether this method of textile

pressure sensing can detect such refined behavioural states and deduce valuable information about

social interaction.
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Using trousers enables us to detect how well lower body movements signal social behaviours, and

also how effectively lower body sensors are to pick up signals the upper body provides or. Where the

four sensor patches on the chair covers provided basic information on shifts of pressure of both, the

upper and lower body, the trousers are able to pick up a larger variety of fine grained movements

and potentially detect gestural actions that previously remained undetected. In summary, the aim is

to address the objectives around behavioural studies and conversation analysis on a more detailed,

specified level with the on-body pressure sensors than may have been possible with the ones deployed

on a chair. I investigate how much of the large set of conversational behaviours and states the trousers

are able to inform us about.

The additional sensors on the trousers may help to pick up the identified cues and behaviours

more clearly than the sparse amount of sensors used before. However, the additional sensors also

run the risk of creating more noise in the collected data that the minimalist chair-based approaches

avoided. To address these questions and assess the trousers as a sensing system for capturing social

interaction, machine learning approaches and feature engineering methods are explored.

5.2 Background

5.2.1 Recap: The Lower Body in Conversation

The sitting postures that were determined in the previous Chapter derived from observations of

unstaged multiparty conversation. Some of these postures have been linked to social signals, that are

mentioned in Chapter 2. In summary, leg postures in their own rights have rarely been associated

with social behaviours, and have mostly been mentioned marginally. Most commonly, leg postures are

set in relation with gestural movement and upper body postures, which are reported to be of clearer

correlation in regards to perceived behaviours and emotions (Bull and Connelly, 1985; Mehrabian,

1968a). In particular self touch, for example hands touching legs, has been found to indicate comfort

or internal conflict (Butzen et al., 2005).

The meaning of posture changes in the lower body have been linked to boredom and interest,

signalling attention when legs and feet are tucked in, and boredom when legs and feet are stretched

out (Bull, 2016). Leg movement in general, whether that is a change of posture on a large scale, or

some small movements like fidgeting, has been associated with different attention levels (Chalkley

et al., 2017b). From looking at movement of feet, indications of speaker turns can be drawn (Duncan,

1972). The observation of static lower body postures, in particular leg crossing, has been found to

be perceived as friendly or unfriendly (Harrigan and Rosenthal, 1983), with uncrossed or crossed legs

reportedly signalling ‘openness’ or readiness for interaction (Mehrabian, 1969). The orientation of

feet in multiparty interaction can reveal the involvement of a participant in the encounter (Kendon,

1990a).

5.2.2 Evaluation of Smart Garments

Using selfmade textile sensors for classification tasks can be challenging. Their behaviour is not as

linear as from “off-the-shelf” sensors and sometimes requires more pre-processing steps before being

modeled for classification (Dunne et al., 2006a). This applies even more so when such sensors are

embedded as wearable systems in clothing, since there are additional factors to be considered, such

as washability, electrical interference through the human body and individual sensor calibration. In
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many studies that introduce smart clothing for sensing postural movement, the electromechanical

properties of the sensor design are assessed in a controlled environment (Molla et al., 2018; Metcalf

et al., 2009; Gioberto et al., 2013). The proposed application areas for smart garments measuring

body movement are commonly in sports (Schneegass and Voit, 2016), rehabilitation or other health-

care related scenarios (Wang, 2016; López et al., 2010), as well as performance art (Liang et al.,

2019b; Sicchio et al., 2016), there are few in-situ studies when testing the garments. For most of

these use cases, immediate feedback is desired, which is achieved by processing and classifying the

sensor data in real time (Helmer et al., 2008).

To detect a variety of touch interactions or body movement with textile sensors, often a network

of multiple sensors (for example in form of a sensor matrix) is used. In garments, stretch sensors

are common to detect joint movement (Mattmann et al., 2007; Gioberto et al., 2013; Metcalf et al.,

2009), and capacitive sensors to capture touch interaction and proximity (Poupyrev et al., 2016;

Vallett et al., 2016).

The methods to process this sensor data and identify different bodily actions vary, too. Techniques

from computer vision research have been applied, such as blob detection (Donneaud and Strohmeier,

2017a) or creating heat maps of sensor data. Machine learning approaches have been tested in

relation to upper body garments, too. For example, Naive Bayes classifiers with cross fold validation

have been used for posture detection through T-Shirts (Mattmann et al., 2007), and also neural

networks (e.g. LSTM) have been proposed for activity recognition (Guan and Ploetz, 2017). For

recent developments of textile pressure matrices, a variety of algorithms are tested to explore the

best performance of selfmade sensors (Strohmeier et al., 2019).

5.2.3 Classifications of Interactional Cues

While in Chapter 4, some common machine learning algorithms for sitting posture detection with

(textile) pressure sensors were briefly reviewed, the classification task encountered in this Chapter

is for social cues that can be less distinct than instructed, performed postures. Sitting postures are

often detected with pressure sensors as the only or main sensing modality. The detection of social

signals has been achieved with multimodal approaches, traditionally with video and audio techniques.

Gaussian Mixture Models or Hidden Markov Models were successful approaches to detect behaviour

in group interaction, such as the dominant person in a meeting (Hung et al., 2007). In other studies,

statistical analyses (ANOVA) and supervised learning models like k-Neirest Neighbour (KNN) have

been used, for example to detect laughter from body movement (Griffin et al., 2013). Gaus et al.

(2015), Murray and Lai (2018) and Subburaj et al. (2020) have used a Random Forest classifier

for the detection of gesture and touch in social contexts (Gaus et al., 2015), and to assess social

behaviour in group meetings (Murray and Lai, 2018; Subburaj et al., 2020). Wang et al. (2019)

and Krishna et al. (2018) propose LSTM when analysing behaviour with motion capture systems

and EMG sensors and for predicting human activity. Using neural networks for the detection of

nonverbal social signals can derive from, and can be combined with language processing methods in

multimodal sensing approaches (Murray and Lai, 2018). In summary, the combination of features,

modalities, and the classification task lead to an exploration of a wide range of analysis approaches.

The parameters in this work have led to an exploration of different classification models, too, whose

selection is based on the reports of some of the examples mentioned here and in Chapter 2.
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5.3 Study Design

In order to test whether different conversational states correlate with different postural movements,

it must be assured that the sensing system in use is able to distinguish between a variety of such

movements. In this work, it is desirable to capture the richness of micromovements and potentially

‘invisible’ shifts and changes of pressure, that may be important indicators for social behaviours.

To investigate this further, I have conducted a user study to evaluate whether the changes in pres-

sure detected by the trousers can be correlated with social behaviours exhibited during a seated

conversation.

The data set created here is used for analyses investigating conversational states in this chapter,

but also serves as the base for further explorations introduced in Chapter 6. The data set consists

of 14 three-way conversations that are recorded with video cameras and with the sensing trousers,

capturing the change of pressure of each participant’s lower body movement. I investigate four key

conversational states that are hand coded from videos and synchronised with the trousers’ sensor

data. In further pre-processing stages the data is formatted so that it can be analysed with different

machine learning approaches.

5.3.1 Trouser Design Recap

The sensor data collected for this user study stems from the ’smart’ trousers introduced in the

previous chapter (Chapter 4). Here is a brief overview to remind ourselves of the key characteristics

of the design of the sensing trousers.

• Textile pressure sensors are arranged in a matrix design with a 10x10 grid, resulting in 100

sensors per matrix and leg, therefore 200 sensors in each pair of trousers. The sensor matrix

covers the area around the buttocks and thighs, from the crotch to the knee around the upper

leg.

• The changes in pressure are collected as analog readings at 4Hz, stored locally on a micro SD

card placed in the hem of the trousers. The raw sensor data is collected as a txt file, each leg

with a unique time stamp, and normalised in a later processing stage.

• Three pairs were made in different sizes to accommodate a wide range of clothing sizes and

body shapes. Additionally, the trousers are stretchy and resemble conventional leggings with

an elastic waistband.

A schematic illustration of the trousers can also be viewed in Figure 5.1, showing the position of

the sensor matrix on front and back legs.

5.3.2 Participants

I recruited a total of 42 participants to record 14 sessions of three-way conversations. The recruitment

was done via email lists and in person approaches within the university department, as well as in

outside networks. The participants were aged between 20 and 45 years and represented a broad range

of clothing sizes. The grouping of the conversations was organised in accordance with the available

sizes of the trousers so that in each session all three pairs of trousers could be worn (sized Small,

Medium and Large) and the pressure data of all three interactants could be recorded. Furthermore,

where possible, it was attempted to allocate people into groups where a basic level of acquaintance
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Figure 5.1: Recap of the sensing system used for this study: a 10x10 pressure sensor matrix is mapped
around the upper legs and buttocks of stretch trousers: 60 sensors are placed on the front leg (left),
40 sensors on the back leg (right)

or amicable relationship was given, and it was avoided to bring together a group of people that have

never met before. Aiming for familiarity between interactants has already been a factor in the chair

study, enabling a more relaxed and casual behaviour.

Participants were grouped into triplets of different gendered arrangements: 1 group of males only,

4 groups of females only, 6 groups with 2 females and 1 male, and 3 groups with 1 female and 2 male

subjects. The data evaluated here comes from a subset of 20 of those participants, 13 females and

7 males, representing all different grouping arrangements. Of these, 4 participants were part of only

female groups, one of only male groups, 6 of mixed groups with one female and two males, and 9

of mixed groups with two females and one male. 9 participants present ‘isolated cases’, by which is

meant that noone else from their group is included in the data set. The remaining 11 participants

come from 5 different groups, so that pairs of participants share the same conversation and recorded

study session. Two sessions of mixed groups (one with 2 females and 1 male, and the other one with

2 males and 1 female) are included in the data with all participants.

This subset was determined through technical issues that occurred during the experiment. Out of

the 42 participants, for 3, the video camera recordings were faulty, and the others showed technical

faults related to either the hardware (e.g. a ripped wire that would eliminate the recording of a

group of sensors) or the software of the trousers (e.g. gaps in data collection, corrupted files). A

more detailed evaluation of the hardware performance of the sensing trousers is discussed in a separate

section in Chapter 7, addressing the errors noted here.

5.3.3 Procedure

The settings of this study follows the same guidelines that were used in the study presented in Chapter

3 when I evaluated the sensing chair covers. The groups of three were sat around a circular table with

equal distance to each other, as pictured in Figure 5.2. The round table was used to encourage equal

rights to participate Kendon (1970, 2010), see Chapter 3. All participants sat on plastic, non-movable

office chairs without arm rests, but with a back rest. The chairs were identical to the ones used in

the study evaluating the sensing chair covers. Each group was given the same conversational task -

a moral dilemma - to discuss and resolve between themselves. Enabling an ongoing conversation for

around 20 minutes in which each interactant has the same ground to participate in the conversation.

In case a conclusion was reached early, an alternative dilemma was provided (revealed to them in

advance, so no interruption during the recording took place). Overall, all conversations lasted between
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Figure 5.2: Two examples of recorded conversation, viewing the two different angles of the video
cameras used. All participants are wearing the sensing trousers.

15 and 25 minutes. During the interaction, participants were alone in the room and the facilitator

only reentered after they gave a sign that the conversation had finished or after 25 minutes.

Participants were encouraged to put on the trousers themselves, and also take them off themselves,

but were offered assistance where needed. The trousers started to record data once they were put on

and adjusted for a comfortable fit, and were switched off before they were taken off, as soon as the

conversation ended and the facilitator reentered the room. Before any recording started, everyone

was briefed on the conversation task and the overall aim of the research. They were told the scope

of the study was to look into social behaviour through exploring the relationship of postural states

in group discussions, and that the trousers they were asked to wear are used for additional data

collection. It was not revealed until after the sessions had finished that the mode of sensing was

pressure information. Consent forms were signed to allow video and on-body data collection, and

approval by the university’s Ethics Committee was granted (see Appendix C).

5.3.4 Data Collection

Throughout the duration of the conversation, the raw data from the 200 sensor points of each pair of

trousers was recorded with 10 bits of resolution at 4Hz. This results in 800 measurements (or 400 per

leg) per second, which is referred to as one reading or one instance. The sensor data was stored as a

txt file on a micro SD card and was integrated to the circuit board in the hem of each leg, powered

by a USB battery. The format and frequency the data was collected for this study are identical to

the previous study investigating sitting postures.

In addition to collecting the pressure sensor data from each of the three pairs of trousers, the

14 sessions were recorded with two video cameras that were placed in different corners of the room

to capture each participant from various angles, as seen in Figure 5.2. An LED light on the micro-

controller flashed on as soon as the trousers were ‘switched on’ by plugging in the battery once the

trousers were worn and the participant set up and ready to start the seated conversation. This was

captured by the video cameras and was the visual reference point for synchronising the sensor of each

leg and the video data. The timestamp of the sensor data starts at that onset and is later merged

with the annotations of the video data by approximating the different timelines. Additionally, and

similar to the procedure of the chair study, a reference points for the sensor data was recorded: after

the recording of trouser and video data started, a visible pressure on each leg was applied either by

the participants by pressing their hand onto a leg, or by the instructor when asked for assistance.

This would make it easier to correctly align all data streams.
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5.3.5 Coding Behavioural Cues

Annotations

The video recordings of the conversations were annotated for the four different behavioural states

this work focuses on: talking, backchanneling, laughing, and nodding. This expands the analysis of

Chapter 3 to nods, another rhythmic movement and element of listener responses that potentially

affects the overall postural behaviour.

For modes of talking, I focused on overt speech. The start and end of a verbal utterance was

determined through the on and offset of speech. Talk was split into separate annotations when speaker

pauses were longer than 400ms. This time window threshold was determined through observations,

as well as other speech transcription conventions (see e.g. Hepburn and Bolden (2014)). Talk was

also distinguished from backchannels, which were coded separately.

Backchannels are identified as verbal responses to the speaker and initiated repair, not considered

as particles of speech, and that were already examined in the chair study, too. Nonverbal signals such

as gestures or shoulder shrugs were not included in this annotation scheme. Backchannels and all

other conversational states distinguished from speech are determined as different attentive, or active,

listener behaviours.

When coding for laughter, I distinguish between smiling and laughing, based on shifts in muscular

movement, differentiating between ‘social’ (can be subtle, staged) and Duchenne laughter (sponta-

neous, embodied, entails more muscle movement) (Ekman et al., 1990). For the purpose of this

work, smiling was not included in the coding scheme and only concurrent, ‘embodied’ laughter was

accounted for.

Listeners’ head movements were divided into nods and other movements. As nods, I define distinct

up- and downwards movements of the head of a listener. While distinct nods as nonverbal responses

to the speaker were coded for, other movements like single head turns or adjustments in relation

to postural shifts were not included for this study. These would count towards other, unspecified

non-verbal behaviours and incidental movements that occurred, and were only indirectly included

in a fifth mode that I determine as incidental listener movement. This is movement that cannot be

directly attributed to displays of recipiency. Modes of incidental listeners who are not considered

recipients therefore includes all postural changes and adjustments, gestures, coughs or harrumphs,

scratching or other ostensibly incidental verbal and nonverbal signals, but also participants’ least

active postures. The annotations for this mode as a class to analyse later was created by the absence

of all others. A summary and overview of the definitions of these behaviours can be seen in Table

5.1.

Annotators

In total, a set of 5 different annotators hand coded the videos, and each video was processed by 2

annotators for cross validation using the open source software package Elan (Brugman and Russel,

2004). Annotators were recruited from the Cognitive Science research group at Queen Mary Uni-

versity of London. The hand coding was conducted with a binary approach, “1” for presence and

“0” for absence of the behaviour. The annotations were coded to a precision of 10 milliseconds (in

comparison, the sensor data is recorded at a 250 milliseconds frequency). Inconsistencies between

annotators were discussed and resolved in group sessions examining the data together. These were

formed by the author of this thesis and one of the annotators. Furthermore, a set of annotation
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Class Subclasses Description

Speaker Verbal utterance; onset of speaking; overt speech

Active Listener Backchannels Verbal response to speaker; repair initiation, e.g. “uuhhm”,
“yeah”, “aah”, etc.

Laughter Verbal or ”embodied” laughter; Duchenne smile rather than
‘social smile’

Nodding Distinct up- and downwards movement of head; no separate
head turns

Incidental Listener “Silence”; no distinct listener behaviour; includes shoulder
shrugging, coughs; listener and other head turns; posture
adjustments; posture changes; scratching; other “inatten-
tive”, unspecified listener movement

Table 5.1: Overview of the coding scheme for the annotated behavioural cues.

rules was established to help clarify a behaviour and to identify an annotation as well as to find

their correct starting and end points. The annotations are arranged into a hierarchical taxonomy

with active listener, incidental listener, and speaker as the top three classes. The active listener

class encapsulates a further three subclasses which were also annotated: backchannels, laughter, and

nodding. A description of the behaviours exhibited for each annotation type can be seen in Table

5.1.

5.3.6 Data Pre-Processing

Sensor Data

The raw sensor data from the pressure sensor matrix was first normalised before any further pro-

cessing. For this, the range of values from the analog readings of pressure were mapped onto a scale

between 0 and 1. This was done for each leg (each file of data) separately. The time stamp of each

leg’s sensor data was recreated to be merged with the annotations’ timeline. Approximating three

different timelines resulted in a lag over time of a maximum of ca. 350 milliseconds. To compensate

for this inaccuracy, annotations that were shorter than 400 milliseconds were removed.

Furthermore, overlapping annotations were removed to allow for a discrete labelling for the classi-

fication algorithms to be tested. Co-occurrences of two behaviours within the same participant were

coded separately but ultimately discarded for analysis purposes (e.g. simultaneous presence of laugh-

ter and nodding, or nodding and backchanneling), since this would have affected the models trained

to classify the individual modes. Were only a short overlap occurred in proportion to the remaining

annotation, the annotation was split and only the overlapping part was removed. For example, if a

speaker started laughing at the end of their turn, laughter and speech were coded separately and the

transition between them was treated as separate events.

Merging Timelines

After the coding was completed, the annotations were merged and time-aligned with the sensor data

of both legs and a new overall timeline was created. The baseline of the video annotations served

as the timestamps the sensor data would be approximated towards, being the most accurate. To

synchronise the different data files, a new timeline with merged information was computed. This

was done by extracting each leg’s data and annotations and find a time frame into which the three
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different data points fit into. Any data that was not assigned to one of the classes described above

were discarded for analysis. This mostly related to the beginning and the end of the conversation,

when participants were still briefed, or stood up when finishing the session.

Broken Sensors

Any sensor data from malfunctioning sensors was also removed before further analysis. In order to

evaluate the same set of sensors for each participant, any sensors that broke for one participant,

were removed from all other participants’ data. Participants with more than 1
5 (or 40 sensors) of the

sensors broken were discarded. Most commonly, when sensors were faulty, it was 10 - 20 sensors per

participant, translating into one or two wires either ripped or pulled out of the circuitry and cutting

it short, or having another contact error at some point during the recorded session. It was observed

that when sensors broke, often the same set of sensors broke, e.g. the wire of the same row or column

was pulled out. When a set of broken sensors had no overlap with other participants, this data was

discarded as well. This resulted in a sample size of 20 participants, for most of which the same set

of sensors was broken to avoid removal of functioning and well performing sensors where possible.

Most frequently when errors occurred, it was because the electrical connection to one row or column

was broken, which equals 10 sensors. However, since different participants had different subsets of

sensors broken, I removed a total of 64 out of 200 sensors for each participant. Distributed across

both legs of the trousers, 28 sensors on the right and 36 sensors on the left legs were removed for

analysis. In both legs, the very first two (bottom row around the front and back knee) and the very

last row (top row from the crotch around the hips to the buttocks) were the most common ones to

break.

Imbalanced Data Sets

The sensor data sets for each coded behaviour was of a different size because these behaviours occur

more or less frequently in relation to each other. Durations of talk are naturally longer than the more

brief, verbal listener responses, or backchannels. Durations of laughter and nodding vary. Recording

the pressure changes of a session of an average of 20 minutes therefore resulted in a large variety of

data sets, e.g. talking containing more data than backchanneling. (Exact numbers are reported in

the results section below.)

Processing of imbalanced data sets can be handled in different ways. One approach I tested is to

delete a part of the data to balance the different data sets. This is usually done by a randomised

removal of a percentage of the largest data set to make it equal to, for example, the second largest set.

This has the advantage of processing the data faster, but comes at the cost of removing potentially

valuable sensor data, since it is not known (yet) how important or biased the removed instances

are. The results reported below stem from an analysis maintaining all of the collected data without

modifying the size of data sets and without removing data of any class. Issues that derive from this

approach are accounted for in the classifying methods and address potential problems of imbalanced

data sets.

5.4 Results

The analysis first explores whether the trousers’ pressure sensors can discriminate between the two

most basic conversational states: speaking and listening. It then explores whether it can discriminate
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between all three basic states of speaking, active listening, and incidental listening of participants

who are not overtly displaying recipiency (Heath, 1982). The second stage explores whether the

trousers’ pressure sensors could discriminate between the non-verbal response directed movements

characteristic of active listeners (i.e. backchannels, nods and laughter), first without including inci-

dental movements and then taking incidental movements into account, too. This resulted in testing

for the ability to automatically discriminate between the following behaviours:

1. 2 classes: Speaker and Active Listener cues;

2. 3 classes: Speaker, Active Listener, and Incidental Listener cues;

3. 4 classes: Speaker, Backchannels, Laughter, and Nodding cues;

4. 5 classes: Speaker, Backchannels, Laughter, Nodding, and Incidental Listener cues.

Furthermore, the ability to discriminate between these classes was examined at the individual level

for each of the 20 participants and at the community level for a generalised model representative of

all participants. Additionally, each participant’s data was tested against the remaining participants’

data by withholding them from the training set.

In total, the data set consists of 22870 instances of talking gathered from all 20 participants and

12095 instances of active listener behaviours (backchannels + nods + laughter). Amongst the active

listener behaviours, backchannels had the fewest instances (2380), followed by laughter (4383) and

nods (5062). With defining incidental listening as a fifth class, presenting the entire data set of all

further unidentified listener and speaker behaviour, this forms the largest class with a total of 36828

instances. The relative distribution of cues derives from the duration and frequency of occurrence

of each of the behaviours. The number of talk instances correlate with an average duration of

3.21 minutes across all participants, while backchannels last approximately 0.68 seconds, laughter

annotations 1.90 seconds and nodding 1.45 seconds on average. Hence the number of occurrences

does not result in an initially balanced data set, since the responsive, active listener classes are mostly

shorter than speech utterances. For comparison, during a conversation of 15-25 minutes talk occurred

112 times on average, backchannels 56 times, laughter 34 times and nodding 53 times.

These are average measurements, and relative proportions of each behavioural class can vary

across individuals. Backchannels appeared to form the smallest data set in most cases, sometimes

accounting for only 1
10 of the larger set of talk instances. Nevertheless, for models of individual as

well as of general community all data sets were kept in its original size and proportion for the analysis

reported here. For preliminary tests, however, the models were adjusted to a balanced distribution

of instances by removing randomly selected data. In all four discrimination scenarios, the number of

instances was downsampled to the size of the smallest data set by randomly discarding a percentage

of the larger data set. That means, that in the case of comparing different active listener behaviours

(4 and 5 classes), all classes were fitted to the size of the backchannel data, and in the 2 and 3

class discrimination case, speaker and incidental listener samples were reduced to the size of the

active listener set. While initially, this was done to avoid overfitting a model, for the final analysis

other measures were taken to compensate for the imbalanced number of instances. In the classifier

selection reported below, parameters were set to weight the data sets differently, applying more

‘weight’ to smaller data sets, so they are eventually treated similarly in the classification training

model. The reason for not modifying the data sets is to have a realistic proportion of empirically

collected data, and to avoid biases by removing potentially valuable information. Balancing data by
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removing a random part of it would assume a balanced occurrence of these instances in spontaneous

conversation as well, which has been shown is not the case.

5.4.1 Classifier Model Selection

There is a variety of classification algorithms that can be used. Here, I focus on some that are common

in the field of ubiquitous computing and social sciences. For preliminary testing and exploring

some of these standard and established models, the open source machine learning software Weka

(Holmes et al., 1994) was used to train and evaluate classification models, following the approach

and methodology of the previous posture classification study reported in Chapter 4. This was done

with a sample data set of the annotated and pre-processed data of the first 6 participants. Drawing

from these early test results, all models were then refined and tested again with the programming

language Python (Raschka and Mirjalili, 2019), using the data analysis package pandas.

Four types of models to distinguish between the behaviours were initially investigated on all or

parts of the data sets: Random Forest, Support Vector Machines (SVMs), K-Nearest Neighbour

algorithm, and Gaussian Naive Bayes. Each of them bears different advantages and disadvantages in

regards to the type of data processed here, and by testing the different models, these characteristics

were explored. Based on the performance of these classifiers, a Random Forest classification was

selected as the model to carry further and analyse my data with. I will therefore elaborate on

Random Forest in detail below, and give a brief summary of the results of the other classifiers here.

For all tests, the data was kept in its original, imbalanced format and split into a training (60%) and

test set (40%).

SVMs have commonly been used to detect affective states or social behaviours (Di Lascio et al.,

2018), and are a popular approach for ubiquitous computing applications (Hammerla and Plötz,

2015). Two different SVMs (one of them a linear SVM) were evaluated, and both performed poorly

in comparison to other models, though the linear SVM showed better results than the non linear one.

However, both individual and general community models showed Recall and F-Measure results close

to 0.00 for mostly all classes. Even though stratified data was used during training, the test sets

of withheld participant data with sometimes imbalanced distribution of instances caused overfitting

towards the class with the largest number of instances. Overall accuracies for the different multiclass

discrimations of the linear SVM were: 0.67 for 2 class discrimination, 0.60 for 3 classes, 0.66 for 4

classes, and 0.60 for distinguishing between 5 different classes. These scores are the mean average

overall accuracy.

The Gaussian Naive Bayes (GNB) classifier performed similarly poorly. Again, the lowest overall

accuracy is reported for the 5 class discrimination with only 0.25 and the 4 class discrimination with

0.33 for the community model. Slightly better performance show the 2 and 3 class discrimination

with 0.59 (2 classes) and 0.45 (3 classes) average overall scores.

Much better results were achieved by a K-Nearest Neighbour classifier. The test set of the

community model achieves an overall average accuracy of 0.81 (5 classes) and 0.83 (3 classes) for the

test with the biggest imbalanced data included - the incidental listener set. For the discrimination

between the identified speaker and listener classes only, the model’s mean average score is 0.89 for 2

classes, and 0.85 for 4 classes.

The poor performance of the SVMs and the GNB, is probably due to the relatively large test set

and small training set. For the SVMs, this was later adjusted to 30% test set, but did not achieve

significantly better outcomes.
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Random Forest Classifier

In comparison, a Random Forest model outperformed all other classifiers that were tested for both,

individual and community models and for all different social behaviour analyses when initially evalu-

ated with 10 fold cross validation. Therefore, this analysis focuses on reporting only the performance

of Random Forest classification (Breiman, 2001). The particular model I evaluate here uses a 5 fold

cross validation1 with stratified data and bagging with 100 iterations. The trees are built with un-

limited depth, a minimum of 1 instance per leaf and a random number of seeds. A schematic of how

such trees are built is illustrated in Figure 5.3, showing the top of a tree for an individual participant

of depth 3 (Figure 5.3a) and furthermore of depth 6, too (Figure 5.3b). The tree shown here serves as

an example to illustrate the schematic of how the trees are built, and does not imply that the sensor

numbers shown in the figure (e.g. R93 stands for right leg, sensor number 93, which maps to the top

row around the buttocks) are of more significance than others. In fact, individual trees usually show

a very high variance and risk of overfitting, which is compensated through the high number of trees,

each of them presenting a model of the fit, whose average is computed for the final model fit. When

building the decision trees, the quality of the split2, so called gini impurity, is taken into account for

each tree (the higher the number, the ‘better’ is the split), as well as the number of instances at this

point to form a decision for the classifier (Raschka and Mirjalili, 2019).

Considering the imbalanced data sets that are evaluated against each other here, I modify the

classifier so that the different classes are weighted inversely proportional to how frequently they

appear in the overall data set. In the following sections, I report both, the accuracies when balancing

the weight of the data sets, and when each data set is assigned the same weight(Pedregosa et al.,

2011).

Feature Importance

In addition to the predictions the Random Forest classifier provides, the importance of each feature

is evaluated - each sensor across the pressure matrices in both of the trousers’ legs. The goal of

this feature extraction is to gain a better understanding of the classifier, eventually improving the

model, and interpretation of the data I work with (Strobl et al., 2008). Additionally, this may help

to discover clusters of sensor groups that would allow to reduce the high dimensionality of the 200

sensors for future iterations of the trousers. Consequently, reducing the number of sensors in the

classification algorithm would also reduce the running time (Strobl et al., 2008)

To evaluate the importance of each sensor across the sensor matrices, the gini impurity is computed

as the reduction of the criterion by that feature (Pedregosa et al., 2011), determining the quality of a

split, and the gini value is normalised (Raschka and Mirjalili, 2019). A higher value indicates higher

importance of the given feature. These gini impurity values also play an important role when building

the decision trees of the Random Forest classifier, as seen in Figure 5.3, and are the basis upon which

the results for the feature importance are extracted. This impurity based feature importance is a

property of the Random Forest classification algorithm that is generated and reported on in the

following section.

1I tested data on 10 fold cross validation (CV), too, but report the results from a 5 fold CV to improve running
time, since it did not change the results.

2a split is defined as the minimum number of samples required to split an internal node.
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(a) A random decision tree for participant A of depth 3

(b) The same tree showing 6 layers (of same participant)

Figure 5.3: An example of how a decision tree of the Random Forest classifier is built for one
participant with 5 classes to discriminate. The figure shows the top and starting point of a tree of
depth 3 and a fraction of the same tree of depth 6. For each node, it can be seen which sensor (R93,
R22, R75 etc) was taken to determine the following branches of the tree, the gini impurity value, the
number of samples, the corresponding values and the class of the instance.

133



2 classes 3 classes 4 classes 5 classes

Talk 0.958 0.856 0.976 0.865
Incidental Listener - 0.940 - 0.946
Active Listener 0.865 0.628 - -
Backchannels - - 0.519 0.263
Nodding - - 0.812 0.549
Laughter - - 0.788 0.667

Table 5.2: F1 Measures of the Random Forest classification per class, averaged across individuals.

2 classes 3 classes 4 classes 5 classes

Accuracy 0.932 0.879 0.904 0.872
Balanced Accuracy 0.912 0.810 0.770 0.660
Precision 0.933 0.866 0.868 0.808
Recall 0.912 0.810 0.770 0.660
F1 Measure 0.919 0.830 0.798 0.701

Table 5.3: Overview of Random Forest classification results for individual models across all classes.
All results present the average results across participants.

5.4.2 Speakers and Listeners

A set of models was trained to discriminate between the two classes of speaker and active listener with

no instances of incidental listening included. First each participant was treated as an independent

data set and an individual model was trained and evaluated using 5 fold cross validation. Then the

aggregate data set of all 20 participants was used to train a model also evaluated using 5 fold cross

validation. Last, 20 models trained with 19 of the participants were evaluated against the withheld

participant.

A second set of models were then trained and evaluated using the same procedure, but with the

addition of a third class - incidental listening. These are the instances where neither active listening

nor speaking behaviours are exhibited.

Individual Models

The mean accuracy for discriminating between 2 classes is 93.2% for equally weighted classes, or

91.2% for a balanced weight assignment based on the size of data sets, the best across the other three

individual model approaches. Even the worst overall percentage of correctly classified instances,

86.5%, is better than the average performance of the 5 class discrimination, which is elaborated on

below. Also Precision, Recall and F1 Scores (F-Measures) are high, averaging at 0.93 (Precision),

0.91 (Recall) and 0.92 (F1 Scores). The F1 Measures are 0.86 for listeners and 0.96 for speakers,

averaged across all participants, see Table 5.2, and Table 5.4 for details on each participant’s F1

Measures.

When the third class for incidental listener behaviour is included, the overall performance has a

lower of mean accuracy of 87.9% with equally weighted data sets, or 81.0% with balanced weighted

data sets, see Table 5.3. This is also reflected in the average Recall, Precision and F-Measure results

across all 20 participants, that show slightly lower results, as can be observed in Table 5.3, too.

When taking incidental listening into account, there is also more variation between speakers and

listeners in the results than before in the 2 classes discrimination scenario: 0.86 speakers’ and 0.63

active listeners’ F-Measures. Comparing this with incidental listeners, showing an F-Measure result
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of 0.94 averaged across all participants (Table 5.2), the results for all three behaviours are relative

to later multi-class discrimination still considerably balanced and only show slight variations in their

overall performance. An overview of the average results of Recall, F1 Measures, Precision and the

two accuracy measures are listed in Table 5.3. Additionally, Table 5.4 lists all average F1 Measures

per participant and per class.

Looking at misclassifications, the 2 and 3 class discriminations show similar results that reinforce

each other. In both occasions, speakers and listeners are rarely mixed up, but if they are, speakers

are more likely misclassified as listeners, than listeners as speakers. Expectedly, incidental listener

movement behaves the same and is mostly misclassified as listeners than as speakers. Only in 4 out

of 20 cases, it is more often confused with speakers. We can also see that adding this additional class

doesn’t necessarily decrease the performance of the model. The confusion matrices for the 2 and

3 class evaluation illustrate the above described results, and one participant’s normalised confusion

matrix can be seen in Figure 5.5a, in the top row (coloured in green). Note the confusion matrices

show the results of the classifier weighting each class equally, not balancing the weights to account

for smaller data set classes.

Participant 2 classes 3 classes 4 classes 5 classes

A 0.925 0.838 0.795 0.707
B 0.936 0.814 0.785 0.673
C 0.925 0.850 0.830 0.748
D 0.931 0.807 0.832 0.751
E 0.938 0.808 0.878 0.684
F 0.942 0.899 0.834 0.787
G 0.918 0.787 0.744 0.633
H 0.916 0.839 0.889 0.687
I 0.914 0.769 0.775 0.660
J 0.912 0.889 0.772 0.767
K 0.945 0.782 0.858 0.671
L 0.934 0.784 0.831 0.668
M 0.929 0.850 0.765 0.673
N 0.909 0.772 0.804 0.603
O 0.881 0.808 0.694 0.676
P 0.841 0.841 0.662 0.662
Q 0.934 0.859 0.808 0.727
R 0.858 0.804 0.729 0.642
S 0.919 0.886 0.768 0.753
T 0.971 0.907 0.910 0.836

Table 5.4: (Macro-)Average of F1 Score (F-Measures) on Test Data per Participant and per class.

To understand the distribution of the data better, boxplots in Figure 5.4 show the F1 Scores for

all 20 participants for the 2 and 3 class discrimination. In the 2-class scenario (left in the Figure), in

which only annotated speakers and listeners are included, speakers perform visibly better. Their F1

Scores have a narrower interquartile range with a median of 0.95. The listeners’ median of F1 Scores

is at 0.90, with two outliers at 0.775 and 0.800. Overall, the range of active listener results is wider

spread and significantly lower than the speakers’ results. This remains true in the 3 class scenario,

too. A difference in sample sets affects the F1 Scores, as can be seen in Figure 5.4, right. The active

listener class (laughter, backchannels and nods) shows the largest variance across all participants

with the lowest results. The larger sample sets perform much better, with narrower interquartile

ranges and higher overall scores.
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Figure 5.4: Boxplots showing the distribution of F1 Scores across all 20 participants in the 2-class
(left) and 3-class (right) discrimination.

Community Models

Applying the same cross validation with 100 trees to a general community model, the results are of

similarly high accuracies, with 93.1% correctly classified instances for the 2 class discrimination, and

a lower 87.7% when including the incidental listeners, and similarly when balancing the weight so

that smaller data sets are assigned more weight, with a 92.0% accuracy for 2 classes, and 82.5% for

3 classes, see Table 5.5. Examining the confusion matrices of these community models, we can see

that speaking always performs slightly better than active listening, which yet shows good average

Precision(0.93 for 2 classes, 0.87 for 3), Recall (0.92 for 2 classes, 0.83 for 3) and F-Measure (0.93 for

2, 0.84 for 3 classes) results. In both cases, talk is proportionally rarely misclassified. The confusion

matrix of the 3 class discrimination reveals that the third class is slightly more often classified as

active listening than as talk, whereas talk, just like for the individual models, is, if at all, misclassified

as listening rather than speaking. Both community model confusion matrices are illustrated in Figure

5.5b with plotted normalised results.

Each participant was tested against a community level when being withheld from the training set,

which consisted of the data of the remaining 19 participants. Here, the average percentage of correct

classification is 52.1% when comparing speakers with active listeners (which is just above chance),

and 46.3% when including incidental listeners’ data. Modifying the weight of the differently sized

data sets, the mean balanced accuracy is slightly better for the 2 class discrimination of 53.4%, but

slightly worse with 33.7% correct classification when including the third class of incidental listening.

The average results for Precision, Recall and F1 Measures can be seen in Table 5.6. While Precision

and Recall show almost identical results, indicating the classification success for both, 2 and 3 class

discrimination, is just above or equal to chance, the F1 Measures show even weaker outcomes with

an average of 0.488 for 2 classes, and 0.284 for 3 classes. All results can be compared in Table 5.6,

and present a notable decrease in overall performance compared to a general community model.

The withheld participant’s performance can also be compared with the individual model, as

is presented through the normalised confusion matrices in Figure 5.5a. This shows that even the

participant with the best results in the individual model does not keep up when tested against the

community model, but shows results around the average. Other participants that performed among

the best in the individual models did not have better results when being withheld from the training

set. Conclusively, there are no correlations found between participants’ performance in the individual

and the community model.

One could argue that the number of instances of the test set could be responsible for the variety of
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results and the overall weak performance of withheld participants. In cases of larger test sets (max.

3008 instances for the 2 class discrimination, and 4900 for 3 classes), the performance overall was

better (above average).

2 classes 3 classes 4 classes 5 classes

Accuracy 0.931 0.877 0.898 0.867
Balanced Accuracy 0.920 0.825 0.783 0.677
Precision 0.931 0.868 0.878 0.832
Recall 0.920 0.825 0.783 0.677
F1 Measure 0.925 0.843 0.821 0.729

Table 5.5: Results overview for community models across all classes. All results are average outputs
of the Random Forest classifier

2 classes 3 classes 4 classes 5 classes

Accuracy 0.521 0.463 0.615 0.457
Balanced Accuracy 0.534 0.337 0.251 0.197
Precision 0.534 0.337 0.237 0.186
Recall 0.534 0.332 0.251 0.196
F1 Measure 0.488 0.284 0.200 0.164

Table 5.6: Random Forest classification results for withheld participants (exlcuded from the training
set).

5.4.3 Backchanneling, Laughing, and Nodding

Next I explore whether the textile pressure sensors can not only distinguish listeners from speakers,

but also more fine-grained conversational states. The same training and evaluation procedure used to

evaluate the discrimination between speakers and active listeners is now applied to (1) discriminating

between the subclasses of laughter, nods and backchannels, summarised as active listeners and then

to (2) discriminating between speakers, the subclasses of active listeners, and incidental listeners

through the addition of the unspecified sensor data, determined by the gaps of all other coded

behaviours.

Individual Models

For the 4 class individual model, the overall average percentage of correct classifications is 90.4%, and

77.0% when balancing the weight distribution across the different subsets of data, while for the 5 class

model, it is 87.2%, but only 66.0% for a balanced accuracy, compare Table 5.3. Like in the previous

groupings of behaviours with 2 and 3 class distinction, this drop in the results was expected given that

the fifth class that was included, incidental listening, entails all unspecified movement and nonverbal

signals, whether accidental and intentional. Looking at the results of the participants separately,

the average accuracy ranges between 50.65% and 85.31% for 4 classes (talk, backchannels, laughter,

nods), and between 49.10% and 77.23% when including incidental listeners. These variations are

bigger than the ones in the previous model for individuals with 2 and 3 classes.

Both, for the 4 and 5 behaviour discrimination, Precision, Recall and F-Measure results demon-

strate that amongst the differentiated active listener behaviours, laughter performs best, followed by

nodding. The F1-Measures for laughter are 0.788 for 4 classes, and 0.667 for 5 classes, see Table 5.2.
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mix of best(a) Overview of confusion matrices with the individual model confusion matrices of the same participant who performed
well across all 4 classification tasks on the top row, and the same participant’s performance when withheld from the
training set on the bottom row. The scale for all matrices is the proportion of all instances.

(b) Confusion Matrices of the community models for 2, 3, 4 and 5 class discrimination. The scale for all matrices is the
proportion of all instances.

Figure 5.5: Confusion matrices of the Random Forest classification for individual, withheld and
community model (from top to bottom).
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Figure 5.6: Boxplots showing the distribution of F1 Scores across all 20 participants in the 4-class
(left) and 5-class (right) discrimination.

And while nodding shows slightly better F1-Measures of 0.812 for 4 classes, the 5 class discrimination

yields a result of only 0.549. Backchannels, in comparison perform worst with F1 Measures of 0.519

(4 classes) and 0.263 (5 classes). These results are averaged across all participants and are listed in

Table 5.2. A detailed view of average F1-Measures for all 20 participants can be reviewed in Table

5.4, and an average across all participants and classes in Table 5.3 (last two columns). In comparison,

however, talk outperforms the active listener behaviours by far with an average of 0.976 F1 Score in

the 4 class discrimination scenario, and 0.865 in the 5 class discrimination. Being the largest data set

and including the most diverse signals and movements, the fifth class of incidental listening scores

highest, with F1 Measures of 0.946. And yet, this outcome could be an indicator for the ability of

the system to detect fine grained differences of behaviour, while it struggles more to compare those

against a more generic state like talk.

Examining confusion matrices of the 4 class model, as well as the Recall and F-Measure results for

each class in more detail, we see that while ‘talk’ performs best, nodding and laughing also show good

results and rarely misclassify each other. Most participants with high Recall and F-Measure results

for laughter and nods, also have above average results for backchannels. Common misclassification of

the weakest of the 4 classes for the individual model happen towards talk, and vice versa talk instances

being classified as backchannels. An argument for this could be that these verbal backchannels in

their characteristics could be seen as particles of talk. This is illustrated with the confusion matrix

of one participant in Figure 5.5a for both, and can be observed in the 4 and 5 class discrimination

scenario.

When the class for incidental listeners is included, the confusion matrices suggest similar patterns

with talk as the strongest and best performing category. In most cases of incorrectly classified

instances, talk gets confused with either backchannel or incidental listener, and rarely with laughter

or nods. This additional behavioural category shows a wider spread of misclassifications across the

remaining four, but has overall fewest confusions with speaking. This raises the question of whether

a backchannel could be considered as talk in general, as well as to how fine grained the listener

behaviours can be defined for further system evaluation.

Summarising the results for individual models, the distribution of F1 Scores for each participant

and each class, both for 4 and 5 class discrimination is shown in Figure 5.6. Classes with smaller data

sets, such as backchannels and nods have a more scattered distribution of F1 Scores than speakers

and incidental listeners, who both have a narrow interquartile range with minimum scores still better

than the best scores of the smaller classes. In general, there seems to be a correlation between high
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F1 Scores and data set size: the larger the data set, the better the performance. Backchannels, the

smallest data set for both, 4 and 5 class scenarios, show the largest variation of F1 Scores and the

lowest median, while the largest data sets, speakers (for 4 classes) and incidental listeners (for 5

classes), demonstrate the highest values and most dense distribution of scores.

Community Models

The general community model for the discrimination between the specified 4 behaviours shows an

overall performance of 89.8%, or 78.3% for balanced weighting of classes, with average results of

0.878 for Precision, 0.783 for Recall and 0.821 for F1 Measures, see Table 5.5. With Recall results

of 0.777 for backchannels, 0.833 for laughter, 0.809 for nods, and 0.706 for talk, this reflects the

results of the individual models. Looking at misclassifications of the 4 class model in Figure 5.5b, the

correct classifications still outweigh the incorrect ones, despite showing lower overall results compared

to the individual models. Both rhythmic listener movements, laughing and nodding, are only on

rare occasions confused with each other, but most commonly with talk, and least commonly with

backchannels. The same misclassification trend is true for backchannels, being mostly misclassified

as talk. Morevoer, the confusion matrix for the 4 class discrimination in Figure 5.5b shows that talk

seems to be more distinct to nods than to laughter with fewer misclassifications towards this class.

Similar patterns can be observed when adding the fifth class, although the general accuracy drops

to 86.7% and the balanced accuracy to 67.7%. Including this class of incidental listener movement

also yields the lowest results for Precision, Recall and F1 Measures, as can be seen in Table 5.5. The

confusion matrix in Figure 5.5b reveals that backchanneling, as the smallest data set and poorest

performing class, is now more often classified as the fifth incidental listening class than as itself.

Moreover, also the performance of the class of talk drops similarly to the 3 class discrimination that

includes the large class of incidental listening, which becomes the strongest amongst all classes (and

presents the largest data set).

When training the community model for 19 participants and testing it on the withheld one, the

results show poor precision in both occasions, as Table 5.6 reveals. Here, the biggest difference in

accuracies when applying the different weighing of data sets to the classifier. While the general

average accuracy is 61.5% for 4 classes and 45.7% for 5 classes, the results of the balanced average

accuracy drop to 25.1% for 4 classes and to 19.7% for 5 classes. This is also reflected in the low results

for Precision, Recall and F1 Measures, also shown in Table 5.6. For the withheld participants, the

misclassification results for the different behaviours vary a lot with variations of the data size. The

number of instances ranges from 795 to 2992 for the 4 class discrimination, and from 1034 to 4887 for

the 5 classes. In the 4 class discrimination, the best Recall results are 0.875 for backchannels, 0.544

for laughter and 0.124 for nods, while talk performs much better with up to 0.988. Backchannels and

nods present mostly the smallest sample sets among all behavioural cues, both resulting in the lowest

F1 Measures. The number of instances for talk is always larger than for the remaining three active

listener behaviours, which are most often confused with talk, but less so with each other (except

occasionally with laughter, as can be seen in the corresponding confusion matrix in Figure 5.5a).

For the 5 class discrimination, the results are even worse. Average F1 Measures are as low as

0.164. The confusion matrix in Figure 5.5a displays the results of a single participant that performed

well when only observing the average classification accuracy. We can see almost all misclassifications

towards the biggest data sets - the class of talking and incidental listening. Moreover, there are more

incorrect assignments than correct ones for the small data sets of the three active listener behaviours.
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The relatively good average F1 Measures in Table 5.4 are mostly due to the performance of the two

large data sets, and are not representative when it comes to backchannels, nods and laughter.

5.4.4 Feature Importance

The results of the Random Forest classification describe how well the sensing trousers perform overall

and for specific interactional behaviours. It is also useful to ask, which sensors or sensor groups are

significant in the process of building the model. When running the Random Forest classifier, the

information on the gini impurity and therefore the values for determining the sensor importance

are computed already (Raschka and Mirjalili, 2019). Here, I look at this impurity based feature

importance and visualise it mapped on the sensor matrices embedded in the trousers with each

sensor as a crossing point of the matrices’ rows and columns. The sensors that were removed from

the analysis are also removed here (illustrated in grey in Figure 5.7), and the remaining sensors are

coloured in a range of red tones, visualising the sensors with higher importance in darker colours,

and the ones with low importance in light tones of the same colour.

Community Model

First, I examine the important features for the community models, based on the data set of all 20

participants. This is depicted in Figure 5.7a for all classes. In general, across all different discrimina-

tions, the visualisation of sensor importance shows that the area around the upper buttocks is most

significant for all classes. This confirms the findings in Chapter 3. The different legs of the trousers

appear to be of slightly asymmetric importance, and the front outer thighs of lowest importance

overall. Moreover, a small area on the inner thigh close to the crotch holds relevant features and

the mid right thigh appears slightly more significant than the left one. The very bottom row of the

sensor matrix (greyed out) can not be analysed due to faulty senor data in this area, which would

map to the knee.

On this first glance, there is a major overlap of sensor importance across all four classification

models. When examining the results in detail, however, fine grained differences between the four

scenarios can be found. In particular, there seems to be a shift in significant sensors when including

the class of incidental listening (3 and 5 class discrimination, see top and bottom right in Figure 5.7a),

compared to the classifications only including the data of active listener behaviours and speakers (2

and 4 classes, see top and bottom left of Figure 5.7a). Looking at the importance of the sensors

around the buttocks, the very upper buttocks area appears more relevant for the 2 and 4 classes only

distinguishing between speakers and listeners, while the mid or central buttocks are more relevant

when incidental listening is included in the classification. The most significant sensors for the 2 and

4 classes are also more concentrated in the buttocks area, while for the 3 and 5 classes the more

significant sensors in the buttocks area cover a larger surface.

Moving on to the sensors covering the thighs, similar differences for the incidental listening data

can be observed. The sensors of low importance in the 3 and 5 class discrimination are slightly wider

spread across a larger area on the front thighs than in the 2 and 4 class scenarios, for which the very

bottom front thigh seems least important and the mid thigh slightly more important in general. In

all four cases, the back mid thigh of the right leg also appears more significant than the equivalent

of the left leg.

Lastly, the sensors in the crotch area of the trousers do not seem to follow the 2 and 4, and 3

and 5 class discrimination pattern, but rather only distinguish between the 2 class scenario and the
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2 classes 3 classes

4 classes 5 classes

(a) Sensor importance of community models from all 20 participants for all 2-5 class discrimination variations.

individual: Will = amongst best performing individuals

2 classes 3 classes

4 classes 5 classes

(b) An example of an individual’s sensor importance visualisation for all class discrimination variations. The participant
illustrated here is amongst the best performing for the classifier’s individual model.

Figure 5.7: Comparison of the sensor importance for community (top) and individual (bottom)
models for all class discriminations across both legs of the trousers. The colours of the circles for
each data point are mapped from pale (not important) to dark red (most important), representing
the importance of the individual data point (sensor). The grey circles on the data points represent
the broken sensors that are not included in the analysis.

142



rest, see the top left of Figure 5.7a. When looking at the differences between speakers and active

listeners, the inner top thigh close to the crotch area is of slightly lower importance than for all other

multi-class models.

Individual Model

Extracting the important features for each participant reveals a relatively large individual variation

across all multi-class discriminations. In Figure 5.7b, one participant is depicted that performed

well in the Random Forest classification (see participant “T” in Table 5.4) in all different scenarios.

While in some core characteristics, this example is representative for the other 19 participants’

feature importance, other sensors and sensor groups of seemingly high or low importance are specific

to this participant. Therefore, the feature extraction for this individual model is only described in

detail briefly. Rather, I point out some general differences between the results for individuals and

the community model. Examples of other participants’ feature importance for all different class

discrimination is illustrated in Appendix C.

Something that varies strongly from the feature importance for the community data that was

also one of the most clear patterns, is the importance of the buttocks. Across most individuals,

sensor groups around the buttocks area are not yielded as highly significant, but rather single sensors

are very concentrated around one point or very small surface area. This implies that high pressure

has been applied on very small surface areas in patterns varying from participant to participant.

Additionally, the asymmetry in results between the right and left leg becomes more visible when

examining the important sensors for individual participants - another indication for a large variation

across people.

If anything, one can observe a minor trend towards slightly higher sensor importance on the inner

leg, as well as on the outer, towards the side seam leaning buttocks area, rather than on mid or inner

buttocks, and the top thigh in general.

5.5 Discussion

Overall, the results show that distinct conversational states can be readily discriminated using only

information from pressure changes on the thighs and buttocks. While we are used to thinking of upper

body movements, especially of the head and hands, as natural signals of communicative engagement,

the idea that similar information can be signalled by lower body movements is less familiar. The

simplest explanation is that these systematic patterns of lower body movement are simply transla-

tions of upper body movements. For example, vigorous gesticulation or laughter inevitably causes

movements in other parts of the body including the legs. This does not detract from their potential

interest as a target for sensing. However, observations suggest that these are not solely secondary

movements. Some movements, such as leg crossing or ‘bouncing’ would appear to be both poten-

tially significant signals and ones in which causation works in the opposite direction with lower body

movements having secondary effects on upper body movement. Nevertheless, these oscillations of

one body part to another can help to identify different roles in a conversation.

5.5.1 Individual Variation

Both, in the confusion matrices as well as the visualisations of the feature importance, a large

individual variation can be observed. While general community models that average the data set of
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all 20 participants used in this analysis, show good performances, the F1 Measures, Precision and

recall values drop significantly when withholding one participants from the training set and testing

the model on the individual. The good performance of the individual models across all classes,

however, indicates the existence of distinct patterns of nuances of nonverbal behaviour and bodily

movement. What could be concluded with these results, is, that people show repetitive nonverbal

patterns, but everyone does so differently, which has already been acknowledged by Ekman (1992);

Scheflen (1973b). This outcome is not unexpected, since each of us has developed specific signals

of embodied social behaviour that we perform consistently, but that can be very different from our

conversation partners. We are, in this sense, more similar to ourselves than to others. And while

this leads to poor results in the testing model reported here, it also bears advantages in regards to

personalised, social computing applications.

The visualisation of the feature importance shows where these individual differences lie. We can

observe, which sensors determine the classified social signals in each person differ. This explains

the results from the classifier, in particular the poor performance of individuals when tested against

the remaining participants. So, while for general community models, areas of importance can be

identified, it is difficult to identify in more detail which single sensors are most important, given the

variation of individuals. So, for future iterations of the sensor design, the number of overall sensors

can be reduced and the areas of sensing refined, e.g. placing more sensors in the buttocks area, and

fewer on the top thigh, or also modifying the required size of sensors in specific areas.

The visualisation of feature importance also showed the asymmetry of the importance of the

sensors in the different legs. Overall, the right leg seems to be slightly more important for the Random

Forest classifier than the left leg. Reasons for such asymmetry, at this point, can only be speculations.

Leaning more towards one side than the other might correlate with spatial orientations towards

speakers, but could also be linked to right or left handedness. Another speculative explanation,

however, are also the broken sensors in the trousers. While on both sides, similar amounts of sensors

were removed, they are not fully symmetric, as can be seen in the sensors marked in grey in Figure 5.7.

Further explorations towards postural shifts and a more fine grained dissection of bodily movements

may help to explain this phenomenon better.

5.5.2 Additional Conversational Cues

Individuals do not only display distinct movement patterns of pressure application, speakers and

listeners also move differently. For example, they produce different gesture types (Bavelas et al., 1992)

and quantitative data from motion capture shows that their hand movements are both faster and

more frequent (Healey et al., 2015). The fact that this difference can be picked up using lower body

pressure sensors reinforces how marked it is. More interestingly, the sensors can also discriminate

between people’s listening behaviour depending on how actively they are signalling their attention to

the speaker. I speculate that this is a combination of two factors: one is the motion signature of the

active signals themselves (nods, backchannels, laughter) and the other is the suppression of incidental

movements that can be interpreted as a sign of distraction or inattention. This is consistent with

the finding that direct addressees appear to suppress their hand movements relative to ratified but

unaddressed participants (Healey et al., 2015; Battersby and Healey, 2010).

This work serves as an investigation towards potentially yet unexplored nonverbal cues in conver-

sation. I identified three active listener signals for the scope of this study, but acknowledge that there

may be a range of other signals not specified, that are conflated within the category of incidental
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listeners. The variety of its subcategories, such as shoulder shrugging, fidgeting, coughing or more

overt movements like slouching, leaning back or performing a gross postural change, could affect

the classification accuracy. The misclassifications of the 3 and 5 class discrimination that include

the unspecified class of incidental listener movement could be interpreted as indicators of additional

conversational cues. Therefore, splitting this class into further subcategories may reveal interesting

correlations between different postural patterns, and might also reduce the problem of noise for the

samples of incidental listener movement. The sensors around the upper legs or buttocks have there-

fore given way to a more fine grained exploration towards such cues. This comparatively simple

modality of pressure sensors could help to detect interactionally significant behaviour and movement

that conventional technologies have so far overlooked. With the methods introduced here, we can

furthermore draw attention to areas of the body that have not been considered as contributing parts

to nonverbal communication, as was already indicated with the work on chair covers. The buttocks,

for example, seems to bear conversational information and picks up both movement from the torso

as well as from the legs. So, instead of focusing on hand gestures or facial cues, I have explored a

technique to expand on these measures to analyse human interaction.

But even within the already identified cues in this work, there is more to exploit. Nodding, for

example, is a movement mainly performed by first addressees, while laughing can be more ambiguous.

Detecting different addressees in a conversation with more than 2 participants could give additional

insights that help to assess overall dynamics in a conversation. Moreover, nodding and laughing

appear to be events that are distinct to other behaviours in a conversation including unclassified

gross posture shifts (see Chapter 6). Looking for further correlations between these behaviours and

conversational roles could be a task textile sensors could approach, and that will be explored further

in the next chapter.

5.5.3 Tweaking Algorithms

So far, the detected behaviours were predetermined and annotated. However, looking for correlations

in speaker and listener behaviours, this is not always the case and as mentioned above, additional

signals may be hidden in unspecified data and not be coded for. Also, the goal is to eventually be

able to find behavioural patterns without involving a camera.

Temporal Structure

The mention of nods and laughter as two rhythmic movements opens the discussion for another aspect

not addressed in this analysis: temporal structure. With different methods, like extracting features

over time using the Fourier Transformation (FFT) or sequence analysis (LSTM), dynamic shifts

within one behaviour could be detected and be used to identify yet more fine grained and versatile

movement. Also exploring other classifiers further might yield different results, taking temporal

structure into consideration. Alternatively, Conditional Random Fields (CRF) may be useful to

specify the window size of the data. Another option would be to observe the sensor data through a

rolling window and moving average, possibly reducing the dimensionality of the data for that.

However, even without a classification model that takes temporal relationships into account,

the two rhythmic active listener classes show interesting and distinct behaviours. Examining the

confusion matrices of both, individual and community levels with all participants present in the

training set, the number of their pairwise misclassifications is low, and they are typcially confused

with speaking. This could be due to the sample size of the speaking class, or due to the variety of
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movement that happens within speaking, different speaker movements were not discriminated.

Data Balancing

Preprocessing the data is key to the outcome of classification algorithms. This data showed extremely

imbalanced sets of different identified behaviours - backchannels forming the smallest data set and

talking, as well as incidental listening the largest. Addressing this imbalance with different methods

potentially yields different results. I have decided to not downsample the data as such, but to

balance the weighting of the classes when testing the classifier. With this approach, smaller classes

were treated as more ‘important’ or significant while the weight of larger classes was reduced. An

alternative approach to balancing is adaptive boosting (Freund and Schapire, 1995; Hastie et al., 2009)

which involves weighting different classes in different ways. Depending on the goal of a classification,

the question as to which set of data is to be treated more importantly than another becomes more

relevant. Only wanting to detect speech, for example, would not require to increase the weight of

laughter and nods, but rather ‘tune’ those down to achieve better results.

Another way to balance the different data sets is to downsample the large ones. A downside to

this is, however that potentially valuable data is removed and could lead to further biasing of the

results. Other methods can also upsample smaller data sets, creating synthetic data points with a

variety of methods. This, too, however, bears the risk of overfitting towards a specific group of data

points and not considering others enough, which would be a less useful approach to the data set.

In this case here, therefore, manipulating the data sets themselves, would affect the results of the

classifier and not provide a true representative outcome.

In summary, there are many parameters to experiment with, especially when taking this approach

further and evaluating the trousers in an even less controlled environment, or “the wild”, which

may lead to even more imbalanced data sets of different categories of behaviours and movements.

Therefore, the goal of such data balancing approaches is always to reduce the risk of overfitting,

and improve the accuracy and stability of the classifier that is applied - something that should be

considered prior to acquiring data.

Further Feature Reduction

In addition to balancing the differently sized data sets, other feature engineering methods that are

supported by the classification algorithms can be explored. Here, I have reported on the feature

importance across both sensor matrices in the trousers. This shows us which areas of the matrices

are more or less relevant for the classifier. By being able to cluster certain sensors into differently

significant areas eventually also leads to the question as to how many sensors are needed to detect the

determined behavioural cues in total. Even though the trousers were designed with initially a matrix

of 100 sensors per leg, almost 1
3 rd of the data points was discarded for analysis - effectively removing

sensors. However, the goal is to identify the most significant sensor points and reduce the overall

number of sensors without compromising on the ability of behaviour detection. The initial intended

oversampling of data points serves to later investigate feature importance and, for future iterations of

such custom-made ‘smart’ trousers, optimise the required and reduced number of features. Another

approach to address these aspects and reduce the number of features is to use a principal component

analysis (PCA), or linear discriminative analysis (LDA) (Pedregosa et al., 2011). They are both

methods to check for and to prevent overfitting. LDA, in contrast to PCA, takes the class labels -

the behaviours in this case - into account and uses the variance of data points to find so called ‘super’
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attributes.

5.5.4 Potential Applications

When identifying signals for different behaviours in the past, we relied on the postural information

from technologies based on visual recording systems - these are also where familiar nonverbal cues

are drawn from. Being able to distinguish small muscular movements, invisible to an observer’s eye,

may reveal a new layer of patterns of movement that correlate with social behaviours and that are

distinct to other known signals. Understanding nonverbal behaviour in human communication is key

to many applications in health care, but also in HCI and even robotic research, for example when

designing humanoids. E-textiles play an increasingly important role in these disciplines and are often

used to capture bodily data, although only rarely in relation to behavioural cues.

The ability of textile sensors to pick up such social behaviours in all their subtlety makes them

a promising method for unintrusive, ubiquitous computing. In contrast to many works that suggest

a network of multiple sensors of different modalities is needed to capture complex collaborative

behaviours in social interaction, this design presents a simple, “easy-to-make” approach to the field.

In proportion to the entire body, a relatively small area around upper legs is used that functions

as the sensing surface. It could be shown that with trousers, it is possible to identify individuals’

behavioural states with high accuracy. These results only hold as long as the participant is already

included in the training set. Withheld, this classification task becomes much more challenging, yet

pursuable. A data set of 20 participants is comparatively small, and a larger corpus may be able to

improve the performance of a community model. This aims at being able to detect such behaviours

of participants whose sample data has nor previously been recorded. Depending on the application,

this may or may not be needed. Trousers that are to identify their wearers, for example, require their

own sample data, and not that of others.

5.6 Summary

The sensing trousers can reliably distinguish conversational states: speaking vs listening and explicit

active listener behaviours: laughter, backchannels and nodding. Simple machine learning approaches

can automatically discriminate between speaking and listening with high accuracy. For individual

participants, the different groupings of behaviours are clear, and when testing the models on a general

community level, the performance is good. It is only when withholding a participant in the training

set, that the boundaries of my sensing system show and the behaviours are confused with each other.

Backchannels perform worst; laughter and nods, even though both rhythmic movements, seem to be

distinct to each other and only rarely confused; and talk performs best, also forming the largest data

set. One conclusion drawn from these results is that we all as individuals move differently, but in

characteristic ways.

Contributions

While the previous chapter has validated the design of the smart trousers through a benchmark study

in a controlled environment, in this chapter, it was possible to show the performance of the trousers

in a naturalistic setting, evaluating spontaneous postures in multiparty face to face interaction. This

work is a contribution to the yet sparse corpus of bodily data captured in such settings.
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Further, the findings of Chapter 3 could be confirmed and strengthened, spotlighting the inter-

actional relevance of the buttocks area when discriminating embodied social signals and basic con-

versational states. These findings expand the existing, limited knowledge of lower body behaviours.

The methods these findings were gained also contribute to the field of smart textile developments,

exploring classification methods for smart lower body garments. With the here used parameters,

including the contextual setting and type of smart garment used, this work presents a novelty and

introduces the first pair of trousers used for conversation analysis.

Limitations

Something that the approach here has not covered so far, are the movements that occur surrounding

the identified conversational states. While I have looked at overt speech, I have not accounted for

other significant nonverbal cues in relation to speech, such as preparatory postural adjustment. These

more overtly embodied signals have so far been summarised in the category (or class) of ‘incidental’

listening and are not further identified or distinguished. That includes small scale movements such

as fidgeting, as well as large scale movement like a change in sitting posture or leaning a body part

forwards or backwards. These types of movement may have interactional relevance.

Further work in the next Chapter (Ch 6) will explore these, and dissect posture shifts and other

movements of different body parts in their own rights, widening the angle of inspection into this data

set that forms the core body of this research.

The work to follow is directed at exploring potential correlations between other listener behaviours

and postural micromovements, as well as between participants, for example by analysing statuses of

different addressees in a conversation. My goal is to uncover yet concealed behavioural cues that

may be significant signals in social interaction. So that eventually, we might be able to teach our

trousers to ‘listen’ to our conversations.
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Chapter 6

Sifting Through Shifts:

Explorations on Posture Shifts

Chapter Overview

In the last chapter, I focused on capturing overt conversational behaviours that speakers and listeners

perform, and have classified these with supervised machine learning techniques. This approach

required to identify and annotate and predetermine the behaviours to explore. Something that has

not been accounted for so far, is an unsupervised data driven approach to take into account all

movement that happens outside of the previously determined categories. In particular, these could

be postural adjustments in relation to a speaker’s utterance, or marked changes of sitting postures

while listening.

Here, a more detailed exploratory assessment of previously unclassified movements is presented,

examining them for additional distinctive features. Furthermore, rather than using supervised learn-

ing classification algorithms, a new approach is introduced: analysing interactional and behavioural

events based on distinctive features in the sensor data.

This divides the chapter into two analyses exploring the same data set from different perspectives.

The data used for these explorations presented here comes from a subset of the data set introduced

in the previous Chapter 5: seated three-way conversations captured with video and pressure sensing

trousers. The results reported in this chapter also mark the final steps of the explorations towards

detecting cues of social interaction with the ‘smart’ trousers.

The first study reported in this chapter is also available as a conference paper: Skach, S., &

Healey, P. G.T. (2019, September). Posture Shifts in Conversation: An Exploratory Study with

Textile Sensors. In Proceedings of the 23rd Workshop on the Semantics and Pragmatics of Dialogue.

London, UK. SemDial

6.1 Introduction

One of the most salient body movements people make in natural conversation is a general posture

shift in which most or all of the body goes through a momentary adjustment. While these movements

could, of course, be explained by fatigue or physical discomfort there is also evidence suggesting they

have communicative significance (Scheflen, 1964; Bull and Connelly, 1985; Hadar et al., 1984). Unlike,

say, iconic gestures or nods that accompany each utterance these are relatively global, infrequent
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movements that seem to mark larger conversational units or signal something about participant’s

stance towards an issue. Scheflen (1964) was one of the first to document these moments in detailed

case studies of psychotherapy sessions. He defined posture shifts as movements involving at least

half the body and proposed that they are organised around changes in position or point of view.

Others have since elaborated on Scheflen’s findings, suggesting different interpretations of posture

shifts and associating a variety of conversational meanings to them (Condon and Ogston, 1966; Bull

and Brown, 1977; Kendon, 1970; Ekman and Friesen, 1969b; Mehrabian, 1969).

In this chapter, I explore posture shifts further and make use of the modality the pressure sensing

trousers to detect these gross bodily shifts. I ask, what these salient movements mean and how

they contribute to conversation, and expand the exploration of the potential of pressure sensors

in trousers to detect changes of conversational states and discuss the qualitative characteristics of

some of these events. With the common judgement that posture shifts appear mainly in speakers

(Wiemann and Knapp, 1975; Hadar et al., 1984; Condon and Ogston, 1966), but findings of listeners

generally performing more movement than listeners, it is worth questioning whether posture shifts

really appear predominantly in relation to speech, or whether with more research investigating this

type of movement, the view on posture shifts should be reframed. Further, changes in pressure that

are not necessarily visible to other interactants, as well as audible conversational cues are examined.

The research questions addressed in this chapter are concerned with additional features and social

cues that the sensing trousers are able to pick up in human interaction with a focus on posture shifts

of the full body.

The approach to analyse these explorations is driven by the characteristics of the sensor data.

Instead of taking the annotations as a starting point to analyse the corresponding sensor data, I look

at significant characteristics and interesting patterns in the unlabelled sensor data first, establishing

local peaks and the largest changes in pressure across both legs’ sensor matrices. The overall aim is

to reveal potentially hidden data structures beyond the labels previously identified and investigated,

assessing what conversational and bodily signals those pressure changes correlate with. By looking at

the data first, attention was drawn to a new set of social cues so far not accounted for. For example,

identifying not only who is speaking, but is holding the floor within the conversation (Edelsky, 1981;

Dielmann et al., 2010; Dommel and Garcia-Luna-Aceves, 1997) - who is in the centre of attention

amongst the participants, will be part of this analysis. Furthermore, the dissection of the different

body parts in motion may provide a more systematic view on nonverbal communication, expanding

on previous categorisation systems (Harrigan and Rosenthal, 1983; Buisine et al., 2014; Cappella,

1997; Birdwhistell, 1970; Jolly, 2000).

In the scope of this approach, an extended annotation scheme that derives from the data centred

investigations is introduced. It is divided into categories such as types of movements, visibility of

movements or postural shifts causing the peak in pressue data - or, in other words, that cause the

major change of pressure distribution across the sensing area in the trousers. Further categories

for the new annotation scheme concern directions of movement, but also additional conversational

states like the status of addressees, as well as giving more prominence to the lower body and full

body posture shifts. With these approaches and explorations, my research also seeks to expand

on the existing categorisation when describing body movement in social context by suggesting an

additional scheme for annotation. I further aim to test the limits and additional potentials of the

wearable textile sensing system for applications in social behavioural studies, but also to shed light

on conversational social signals that have yet been underinvestigated or only mentioned marginally.
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6.2 Background

6.2.1 Categorising Postural Movement

Scheflen (1964) has described posture shifts mostly in relation to speech and has defined them as a

movement involving at least half of the body. Cassell et al. (2001) adds by defining a posture shift as

a motion or a “position shift for a part of the human body, excluding hands and eyes”. According to

this, nodding accounts for a posture shift, too. Harrigan and Rosenthal (1983), too, discuss nodding

as a postural movement. Others have assigned nodding to verbal backchannels (Delaherche et al.,

2012).

These examples show that it can become complex to divide the body into different segments to

analyse nonverbal behaviour. Harrigan and Rosenthal (1983) have analysed body movement under

the following factors: 3 trunk angles (forward, backward, straight), 2 arm positions (on lap, crossed),

2 leg positions (open, crossed) and nodding as distinct head movement. Bull and Connelly (1985),

on the other hand, identified 3 postures related to the upper body and 5 related to the lower body,

evaluating them in relation to 6 different categories of speech. Several systems describing full body

postures have been introduced, both based on movements of different body parts, as well as affective

associations of postures. For example, Buisine et al. (2014) categorises idle, still, and congruent

postural movement, while Dael et al. (2011, 2012) categorises movement on three levels, according

to their social context (function), the body parts in use (anatomical), and the body’s orientation in

space (form). In the research of Cappella (1997), nonverbal behaviour is analysed dividing body parts

into micro-units, annotating movement separately for e.g. eyes, mouth, head, elbows, wrists, fingers,

etc. Describing postural behaviour through small grouped body movement has already been done

by Birdwhistell (1970), too, naming smallest units kine, that can be grouped into kineme, implying

social meanings of small unit movement, as well as more complex kinemorphs, which include gestures.

These categorisations to define behavioural actions, Birdwhistell’s theory of kinesics were based on

muscular tension, as well as the duration of the movement. They have not been established as a

universally used system, though, and have been criticised as not suitable to explain bodily actions

(Jolly, 2000).

These examples illustrate the amount of detail that is commonly given to the lower body compared

to the upper body, the latter divided into more fine grained patterns of movement. Observations of

the posture shifts in the lower body only document two overt leg crossing positions.

6.2.2 Posture Shifts and Conversational Roles

Posture Shifting Speakers

There are several suggestions as to what postural shifts mean and what role they play in punctuating

communication between interactants, between speakers and addressees, and also when in conversation

they are most likely to appear. Generally, posture shifts have been associated with changes in topics,

so called locution cluster, coined by Kendon (1970), or situations (Gumperz, 1982). Often, they

are also reported in connection to speaker behaviours, or listeners’ perception of speakers. Hadar

et al. (1984) reports that they appear primarily at the start of a speaking turn, when the interactant

changes their state from listener to speaker, or after a long speaker pause. They can accentuate

speaker behaviours in fine grained ways (Ekman and Friesen, 1969b), and the change of speech

categories is also accompanied by changing postures (Bull and Brown, 1977).
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Speakers are said to punctuate the end of their turn and maintain a more upright posture overall,

leaning rather forward than backwards (Wiemann and Knapp, 1975), or emphasise words and phrases.

Duncan (1972) suggests foot movement as a potential turn unit marker. Micro-movements like facial

expressions, e.g. raising an eyebrow, can be in line with changes in tonality, such as lowering one’s

voice (Condon and Ogston, 1966). The speaker’s role also determines the status of listener addressees.

By turning their body towards a recipient, or in some cases touching them, the speaker selects that

recipient as the first addressee (Scheflen, 1973b).

Shifts Beyond Speech

Posture shifts can also appear outside of speech, although listeners’ postures are examined less often.

It is suggested that the status of an addressee can be interpreted by the openness of their legs and

arms (Mehrabian, 1968b), and that listeners synchronise with speakers (Condon and Ogston, 1966)

and shared postures between them are linked to a high rapport (Lafrance and Broadbent, 1976).

Also pauses between speech as listener turns are associated with postural adjustments by (Hadar

et al., 1984).

Posture shifts are interesting signals in interaction in their own right. For example Bull has

considered frequent posture changes as a marker of boredom (Bull, 2016). Condon and Ogston (1966);

Lafrance and Broadbent (1976) also reported on postural synchrony, leading to higher rapport, or

if incongruent, are indicators for negative relations between people Lafrance and Broadbent (1976).

Posture shifts are also self synchronised movements to speaker turns , as signals for different levels of

engagement in a conversation (Schegloff, 1998) or to correlate with tonic stress (Bull and Connelly,

1985). Furthermore, the exposure and intensity of such movement may present cues to interpersonal

relationships. For example, Wiemann and Knapp (1975) suggested that the more familiar interactants

are with each other, the more subtle the postural shifts and bodily movement, moving parts of limbs

(fingers) rather than entire body parts. This can be linked to Kendon (1972)’s observation that

generally, those body parts are in more motion than the torso and the legs.

Although posture shifts are important non-verbal signals (Kleinsmith and Bianchi-Berthouze,

2013), not least because of their relative scale, there is not an extensive body of literature on them

compared to other non-verbal signals such as the small movements that don’t affect larger body

parts (gaze or gestures). More attention has been given to posture as a static feature of participation

in conversation, especially in relation to posture matching as indication of affiliation or attraction

(Beattie and Beattie, 1981; Bianchi-Berthouze et al., 2006; Mehrabian, 1969; Lafrance and Broadbent,

1976), in their spatial formation (Kendon, 1990b).

6.3 Methodology

In this chapter, the data set presented in the previously is evaluated against a broader range of

postural movements and nonverbal behaviours. Instead of focusing on sitting postures and basic

conversational states alone, I extend the numbers of features by more dynamic postures, focusing on

shifts in postural movements in an interactional context, analysing individual body parts, and also

extend the conversational states introduced previously, now looking at different statuses of addressees,

amongst other aspects.
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Figure 6.1: A reminder of the distribution of the 10x10 textile pressure sensors across one leg of the
designed and manufactured ’smart’ trousers: 60 sensors on the front leg, 40 sensors on the back leg.

6.3.1 A Brief Trouser Data Recap

The multimodal data used for this chapter’s investigations consists of the pressure sensor data of the

trousers and the video data of the 14 sessions of three-way seated conversations.

Trouser Design

The matrix is deployed around the upper leg, covering the area from the knee upwards to the buttocks

in the back and the crotch in the front, see illustration and schematic in Figure 6.1. With a sensor

matrix mapped around each leg, a total of 200 sensors is embedded in one pair of trousers, 100 on

each leg, of which 60 are mapped on the upper or front leg, and 40 on the back leg (back thighs

and buttocks). (A detailed documentation of the design and manufacturing process of this wearable

sensing system is also reported in Chapter 4.)

Participant Subsets

I select two subsets of the collected data to hand code for the additional features. One set of 5

participants serves to analyse postural shifts, as well as pre and post speech movement. A second set

of 10 participants serves to detect major changes in pressure across the sensor matrix, that is further

annotated for an extended set of nonverbal cues. The subsets of data come from the previously

analysed 20 participants and were selected by the performance for individual and community based

classification tasks. The 5 participants used for the first analysis is represented as a subset in the

second analysis.

Procedure

Later, the sensor data of both legs was synchronised with the coded annotations. Before this syn-

chronisation process, the broken sensors mentioned above were removed, which resulted in a total of

165 sensors used for further processing and analysis. For each participant, the same sets of sensors

were removed to retain consistency.
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Figure 6.2: The sensing trousers worn by the participants are highlighted in yellow

6.3.2 Data Analysis Approaches

There are two different approaches to assessing the data sets presented here. While the sensor data

and video recordings are identical to what I was already working with in the last chapter, as well as

the preprocessing of the data, the analysis to examine the aspects I focus on now deviates from the

ones previously reported.

Factor Analysis

The procedure in the first exploration presented below (section 6.5) uses a factor analysis aiming

to reduce the complexity of the 200 pressure sensors in the matrix when identifying posture shifts

in relation to speakers and listeners. The approach follows the previous methods of annotating the

recorded conversations and comparing these with the synchronised sensor data that is collected from

the trousers. Hence, the sections or sets of sensor data looked at for certain behaviours and postures

is predetermined by the annotations that are coded.

Peak Detection

For the second exploration documented in section 6.6, the basis of investigation was not to prede-

termine the types of movements and behaviours, but to first extract interesting characteristics of

the sensor data before annotating the correlating events. These events were therefore only identified

through the findings in the sensor data, yielding major changes in pressure. This approach resulted

in a much larger set of annotation tiers that is described in the next section.

Observations

Additionally, for both explorations with different takes on the same data set, observational findings

are reported. They focus on evaluating the annotated behaviours and movement types and were

conducted using the video recordings of the subset of conversations.

6.4 Extended Annotation Scheme

Elan (Brugman and Russel, 2004) was used to annotate the video recordings for all behavioural

and postural cues investigated here. At least two annotators were used for the behavioural states

examined and coded for all participants in the last chapter - overt speech, backchannels, laughter

and nods, as well as for annotations used for the data subset for analysing posture shifts: pre-speech,

post-speech and posture shifts (elaborated on below). The two annotators were the author and an
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Class Tier Name Description
Behaviours Talk on- and offset of overt speech

Pre-Speech 2sec immediately before talk
Post-Speech 2sec immediately after talk
Laughter overt, ’embodied’ laughter
Backchannel verbal listener responses
Nods Head nodding
Floor Holder centre of attention of conversation
First Addressee Listener primarily addressed by speaker
Second Addressee Listener not addressed by speaker

Body Parts Torso trunk movement (incl. shoulders), twists, leaning
Buttocks movement in hips, buttocks (e.g. adjustments, wiggles)
Legs any large & small scale leg and feet movement
Arms gesturing, touch interaction with other body parts
Head all significant head movement beyond nodding

Visibility Concealed underneath the table surface
Revealed above the table surface

Movement Type Posture Shift gross movement of torso & legs
Fidgeting rhythmic small scale movement

Movement Axis YZ axis Coronal plane, leaning sidewards movement
XY axis Transverse plane, up and down movement
XZ axis Sagittal plane, back and forwards leaning movement

Intention Intentional directed, interactionally relevant movement
Incidental accidental, reactional movement

Table 6.1: Overview of the hand coded annotations in Elan for a set of 10 participants. The an-
notations highlighted in bold are used for the first exploration presented in this chapter, while the
remaining annotations were conducted following the second exploration of peak detection.

additional paid research assistant. As described in Chapter 5, annotation rules were established and

discrepancies were resolved in data sessions examining the videos together. Criteria regarding hand

coding accuracy was applied here, too, marking events with an accuracy of a 10 milliseconds time

frame in the Elan timeline interface. For all additional cues that are presented in the following section,

including identifying types and visibility of movement, as well as individual body parts in use, that

are identified through detected peaks in the sensor data, one annotator was used (the author).

In total, 23 different parameters were used to create an annotation matrix that served for further

analysis. Below, these parameters are described and divided into annotation clusters, distinguishing

between behavioural cues, types of postural changes and finally details of bodily movement. Nat-

urally, some of these parameters would co-occur. For example, head movement and nodding are

expected to overlap largely, and in any type of coded movement, mentions of which body part was

in motion can be found in the annotation matrix. A summary and overview of all hand coded

annotations used for analysis in this chapter can be seen in Table 6.1.

6.4.1 Conversational Context

Expanding on the annotations that were conducted in the previous chapter, I focus on basic conver-

sational behaviours that occur in three-way conversations: speakers and listeners. The annotations

for speakers are described as overt speech with starts and ends of annotations defined by onset and

offset of audible speech. Other first pass coding focused on active listener behaviours, in particular

on nodding, laughing and backchannelling, determined as reported in Chapter 3 and 5.
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Preparatory Movement

Second pass annotation then coded the moments immediately before and after speaking arbitrarily

defined as 2 seconds just before, and 2 seconds just after speech. These were coded regardless of other

non-verbal behaviours or marked bodily movement and are included in the analysis to investigate

preparatory movement in relation to speech.

Addressees

Third pass coding was used to identify first and second addressees. This is to determine the status

and level of engagement of listeners and distinguishes, who of the non-speakers is addressed by the

speaker. While the first addressee is identified through orientational and directional cues from the

speaker, emphasised by gaze, gesture or torso posture, the second addressee is determined indirectly,

through the absence of a speaker and first addressee annotation mark.

Centre of Attention / Floor

Lastly, participants who present the centre of attention within the conversation were coded for, for

the purposes here named floor holders. This category is largely determined by the gaze of interactants

- coding for who is being looked at by the others. While this mostly overlaps with speakers’ turns,

there are rare cases in which participants draw the attention of others outside of their speaking turn

just before or just after speech (within a 2 second window in both directions), and were yet identified

as the floor holders. In these instances, the centre of attention was reached through marked laughter

and a posture change, while noone else was talking either.

In summary, the annotations in relation to conversational context are: Speech; Pre- and Post

Speech; First or Second Addressee; ”Active Listener” Behaviours divided into Backchannels, Laughter

and Nods; and Floor Holders.

6.4.2 Type of Movement

Here, the overarching question is, which type of movement, if any, is performed. For the scope of

this work, posture shifts and fidgeting was observed.

Posture Shifts

Posture shifts are defined as gross body movement involving either or both, the upper and the lower

body, describing a positional movement of these body body parts. This includes leaning forwards,

backwards, and sidewards, but also performing leg crossing and adjusting sitting position with thighs

and hips (shifting the weight within a seated counterpose). Both, speaker and listener posture shifts

were included. In the scope of this work, I exclude gaze and gestures from identifying as posture

shifts, but treat those as separate annotations.

Fidgeting

Fidgeting accounts for bouncing, wiggling, rubbing hands on thighs, and generally small scale move-

ment that implies a certain rhythm and repetition. Both, leg and arm movement, as well as the

interaction between them is included. One-off movements or head nods are not included in this

annotation category.
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Figure 6.3: Different axes of movements the annotations correlate with: XY axis presents the Trans-
verse plane, YZ axis the Coronal plane, and XZ axis the Sagittal plane.

6.4.3 Movement Axis

Furthermore, the nature of bodily movement was divided into directional facets. Three dimensions

of movement are coded: back- and forward leaning (longitudinal) movement along the Sagittal plane

in coordinates on the Z and X axis in Figure 6.3; sidewards movement along the Coronal plane in

Y and Z axis in Fig.6.3; and up- and downward movement along the Y and X axis in Fig.6.3, the

Transverse plane. Where combinations of directions along these planes and axes appeared, only the

dominant movement was annotated for. Diagonal forwards and backwards leaning was annotated as

Sagittal movement rather than coronal movement.

6.4.4 Visibility of Movement

The relevance of a nonverbal conversational cue relates, amongst other factors, to the visibility of

such movement, whether it is concealed or revealed from interaction partners. In this work, with

a table present in the seated interaction, the visibility of postural behaviour can be described in

regards to movement below or above the table - assuming this correlates to general visibility and

invisibility of the movement for others. Furthermore, determining whether a movement is concealed

or revealed is dependant on the other interactants. Therefore, this annotation category is always in

reference to others, to the conversational set up and relates to visibility of the subject’s movements

to their recipients. For example, leg movement or hand touch carried out underneath the table would

be coded as concealed, where the body parts above the table surface are not markedly affected by

the movement. Leaning forward or moving heads and arms would be coded as revealed movement,

clearly visible to others and performed mostly above the table surface.

In cases where the performed movement contains both, revealed and concealed elements, which

also results in having different body parts in action, the event was either split in two separate events
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with all according annotations following, or the significantly dominant movement performance was

accounted, while the minor or side event was dropped from annotation. This was allowed only,

however, when the allocation was unambiguous.

6.4.5 Different Body Parts

As indicated above, for each movement type and behaviour, different parts of the body are in motion.

Here, I observe and note them as isolated events to obtain a holistic and precise decomposition of

interactional movement during the detected peak of pressure change. The coding of the different body

parts is not binary, since more than one identified part could be moved simultaneously. Thereby, I

divide the human body into the following parts, that are also illustrated in Figure 6.4 below:

Torso annotations include all overt upper body movement and accounts for marked twists like body

torques the torso is involved in, as well as smaller scale adjustments and posture changes in

the torso. The defined area of the torso is the trunk, between hip bones and shoulders (collar

bones).

Buttocks are defined as the area around the hip bones and the crotch, presenting a link between the

thighs and the torso. The buttocks are separated from torso annotations because it was observed

that some postural adjustments and shifts seem to be executed with marked movements in this

area rather than significant other upper or lower body movement. An example for this is

wiggling and weight shifting from one butt cheek to the other. Annotations in which the

buttocks are highlighted can also include overall posture adjustments, fidgeting and sidewards

wiggling.

Legs involve any large and small scale movement of the upper and / or lower legs and feet are

annotated here. Leg crossings, leg bouncing, tip-toeing, and other marked movement possibly

responsible for a peak of pressure change in the sensor data are accounted for.

Arms annotations account for any significant movement of arms, but don’t include hand movement

only. For example, marked gesturing would be included here, while subtle finger movement

without at least the underarm in motion would be ignored. In cases of touch interactions

between the arms and legs, both categories would receive an annotation.

Head movement annotations are largely in co-occurrence with nodding. The difference to the nod-

ding annotations, however, are, that here, I also include head shakes and arhythmic, ”one-off”

movement of the head such as shrugs, changing the direction of gaze in a marked, noticeable

way.

The last two categories, arms and legs, have been included in the annotation scheme despite

being in no obvious relation to the sensing system, which is placed on the lower body only, because

it was observed that in some cases, overt movements of these body parts affect the overall position

and dynamics of the body and therefore the distribution of pressure across the sensing area in the

trousers. Especially in combination with other body parts performing marked movement, a more

significant peak in the sensor data could be observed.

6.4.6 Incidental and Intentional Movement

Lastly, I analyse and code the performed movement for its interactional intention. These events

are divided into accidental, or incidental movement and intended, more directed or orchestrated
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Figure 6.4: The five different body parts accounted for in the movement annotations: torso, buttocks,
legs (including feet, not shown here), arms, and head.

movement. By accidental movement, I mean any non intended movement that does not align with

any other behaviour introduced above. This is something that is not interactional and is, if anything,

at most in correlation with a behaviour or other movement, such as an action like scratching, as

well as unrelated postural adjustment (e.g. when adjusting the chair rather than being related

to conversational topics). Other events that were coded as incidental or accidental, are postural

reactions to a cough, sneeze or hiccough, some hand to face or head movements (e.g. scratching,

twirling, stroking one’s hair), occasional stretching of the back, and in general seemingly uncontrolled

movement in an unrepetitive, arhythmic manner. Intentional movement was only coded indirectly

as absence of incidental movement.

6.5 Exploration One: Posture Shifts

6.5.1 Data Subset One

The first explorations towards posture shifts are done with a small subset of 5 of the 20 participants: 4

female, 1 male. The participants were selected randomly from a predetermined subset of participants.

Two participants of this subset were part of the same conversation, so that 4 different conversations

are presented here.

6.5.2 Annotation Driven Approach for Data Processing

First, I explore posture shifts as gross bodily events during a conversation with the annotation and

analysis methods we are already familiar with, aiming to evaluate the relevance of these bodily

adjustments in an interactional sense. The highlighted annotations summarised in Table 6.1 are

used to look at movement in relation to speakers and listeners, focusing on postural adjustments in

preparation to and immediately after speech. The data synchronisation consists of time aligning the

video annotations and pressure sensor data of 4Hz sampling frequency - this process is explained in

further detail in Chapter 5, where the same principle has been applied.

In summary, these explorations on posture shifts in relation to speakers and listeners included

the following annotations:
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Comp. Total % of Cumulative
Variance in %

1 55.151 34.255 34.255
2 36.034 22.381 56.637
3 23.190 14.404 71.041
4 11.958 7.427 78.468
5 8.823 5.480 83.947
6 6.055 3.761 87.709
7 3.444 2.139 89.848
8 2.613 1.623 91.470
9 2.408 1.495 92.966
10 1.352 0.840 93.806

Table 6.2: Variance Explained (Extraction Sums of Squares Loadings) for first 10 components

• Speech

• 2 seconds immediately before and immediately after speech

• Posture Shifts

The first part of the data analysis explores posture shifts in relation to speakers and listeners and

approaches questions, as to how and if marked bodily movements relate to these basic conversational

states. Here, I look at the small data set of five randomly selected participants. The results are

reported in two steps: a) an investigation of the pressure sensor data with a factor analysis and b)

observations of the interactional context of the posture shifts.

Across the 5 participants in the videos, posture shifts occurred on a regular basis. In a time

window of 15 minutes, an average of 37 posture shifts were annotated per participant, which equates

to 2-3 posture shifts each minute. By posture shift, I define the positional movement of the torso and

/ or the lower body including the legs. In the scope of this work, gaze and gestures are excluded from

postural shifts, but acknowledge that gestures in particular are often described as part of a postural

shift that affects the dynamics of at least the entire torso (Cassell et al., 2001).

6.5.3 Factor Analysis

The 200 pressure sensors on each participant (100 right leg, 100 left leg) produce a relatively complex

array of pressure measurements with a significant amount of redundancy between sensors. Hardware

failures reduced this to 165. If a sensor failed on one participant the data were deleted for all

participants to ensure equivalent sensor arrays were used for each person. The sensors yielded a total

of 6278 pressure measurements across the whole sample. In order to reduce the complexity of the

sensor data a factor analysis was calculated using SPSS (v.25). This yielded 10 components that

account for 94% of the variance, see Table 6.2. Appendix D lists further outputs up to component

31, which cumulatively covers 98% of the variance, although components 11 - 31 account for less

than 0.6% of the variance individually (component 11 for 0.6%, component 31 for 0.078%).

The influence of the four coded behaviours (also listed in Table 6.1) on pressure changes was anal-

ysed using Automatic Linear Modelling with forward stepwise model selection. Talk (1/0) Beforetalk

(1/0) Aftertalk (1/0) and Participant (1-5) were used as predictors and the regression factor score

for each component from the factor analysis for each pressure observation as the target.

For Component 1 the model fit is 88%, Information Criterion -10,438. The analysis shows that

‘Participant’ (p < 0.000), ‘Postureshift’, (Coefficient = -0.133 p = 0.003) ‘Talk’ (Coefficient = -
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(a) Participant (b) Posture Shifts

(c) POSTURE (d) Participant

Figure 6.5: Estimated Means of the first factor for the top ten significant effects (p < 0.05) are
displayed

0.047, p < 0.000) and ‘Beforetalk’ (Coefficient = -0.041 p < 0.004) predict changes in first factor

(component) of the pressure data. The estimated means of these effects for Factor 1 are illustrated

in Figure 6.5. Components 2-8 are primarily predicted by Participant with different Components

picking out different subgroups of participants. There are two exceptions: Component 3 is also

marginally predicted by ‘Aftertalk’ (Coefficient -0.031, p < 0.000) and Component 6 is also predicted

by ‘Postureshift’. Component 9 which has a relatively poor model fit (4.5% accuracy, and Infor-

mation Criterion -216.0) is predicted by ‘Postureshift’ (Coefficient = -0.204, p < 0.000), ‘Aftertalk’

(Coefficient = 0.125, p = 0.001) and ‘Beforetalk’ (Coefficient = 0.101 p < 0.005).

The effect of the individual sensors for Component 1 from the computed component matrix are

visualised in Figure 6.6, showing which sensors have positive and negative associations. The colours

in the Figure are mapped so that the dark tones represent positive association, and the light ones

negative associations. The two sensors with the highest positive values are on the mid front leg

(L64=0.914 and R61=0.909), and the sensors with the most negative associations are on the right

back leg (R87=-0.763) and the left lower front thigh (L32=-0.777). A full component matrix with

all values is attached in Appendix D. From this, we see that the front mid thigh on the left leg,

and the mid buttocks of the right leg affect the predictions most positively, while the sensors in

crotch proximity, on the upper buttocks, as well as on lower mid thighs have negative associations.

Interestingly, these patterns are not symmetrical.

The raw pressure data changes corresponding to the predictors found for Component 1 are il-
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Figure 6.6: Component Matrix: visualisation of component 1 for each sensor, mainly discriminating
posture shifts, talk, and pre-speech movement. Dark colours show positive associations, bright tones
negatives (similar to a heat map).

lustrated in Figures 6.7c, 6.7a and 6.7b. Note that, in effect ’Beforetalk’ is the inverse of Talk but

sampled over a smaller data set. Together they show that talking is associated with an overall in-

crease in lower body pressure (when seated) and that the shift takes place in a two second window

prior to speaking. Conversely, large scale posture shifts are associated with an overall decrease in

lower body pressure.

Overall, these preliminary results suggest that the array of pressure sensors can be used to dis-

criminate between global posture shifts and also the smaller movements people make immediately

before and after speaking. This replicates the earlier analysis of the pressure data comparing talking

vs. listening using machine learning techniques (Chapter 5). The results also highlight the substan-

tial individual variation in the pattern of the pressure data. Individual identities form the largest

and most consistent predictor of pressure patterns across all the analyses.

6.5.4 Observational Findings

The posture shifts coded from the videos were explored to develop hypotheses about the possible

functions of the large scale posture shits in this corpus. For a better overview, the types of posture

shifts are divided according to the time of their appearance in relation to overt speech: before, during,

after and between speakers’ turns. The findings reported here emerge from observations of the video

data (2 cameras capturing each participant’s movement from different angles). Additional notes

from these observations per participant are attached in Appendix D. Other than the factor analysis

reported above, the findings here do not take the pressure sensor data into account and focus on the

visual inspections of the videos alone.
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(a) TALK (b) BEFORE TALK

(c) POSTURE

Figure 6.7: Pressure change when talking, before talking and with posture shifts, from left to right.
Average Normalised Sensor Data

Preparatory Movement

Listed below are the four categories of posture shifts before a speaker’s turn, and are also illustrated

in Figure 6.8:

1. Start and end of movement several seconds before utterance (end of movement ≥2sec before

talk), however still close enough to be seen as preparatory.

2. Start of movement before speech, outside of 2sec window, but completion within this time

window, up to the very start (onset) of speech.

3. Occurrence of posture shift precisely within 2 seconds before speech, ending at the very start

of utterance.

4. Posture shift starts within 2sec just before, and is executed and completed during speech

The evaluation of the sample set of 5 participants indicates that, considering the frequency of

these categories, 80% of preparatory postural movements happens in part or as a whole within a

time window of the 2 second annotations. The remaining preparatory posture shifts happen largely

between 4 and 3 seconds before speech. This describes the most common types of preparatory posture

shifts: 2) and 4) in Figure 6.8 and the list above - the completion of a posture shift just before or

during a speaking turn. These findings support hypothesis on posture as preparation for speech, and

also align with previous suggestions that posture indicates turn taking and interactants signal their

next speaking turn through these movements.
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Figure 6.8: Preparatory Movement Types: 1) performed several seconds before utterance; 2) com-
pletion within 2 sec before talk; 3) start & end within 2 sec window;, completion often precisely at
start of talk; 4) start within 2 sec window, overlap with talk.

Delayed Post-Speech Shifts

It was observed that postural shifts that are not classified as preparatory movement, but rather as

post-speech movement, follow a different pattern. Overall, they occur slightly less frequent and are

only rarely performed in the immediate aftermath of talking utterances (inside the 2seconds time

frame). This is not to say they don’t exist, but more commonly, they seem to be performed with a

short delay. This delay can be categorised in similar ways as the preparatory movement (mirroring

Figure 6.8), segmenting the post-speech movement with 2 second windows:

1. overlap with speech: posture adjustment performed towards the end of speech and beyond:

start of movement within speech, completion after speech has ended.

2. no delay: start of postural movement immediately after offset of speech

3. short delay: after utterance ends, postural shift is performed with a delay of ≤ 2 seconds (within

the specified time window)

4. long delay: considered as a movement being performed more than 2 seconds after speech has

ended (outside specified time window)

I have found that only rarely, post-speech movements are performed immediately at the offset of

speech. Most postural shifts that are associated with the end of an utterance are performed with

a delay between 1 and 4 seconds after talking (with rare outliers up to 5 seconds after, everything

later than this was not linked as a post-speech postural adjustment) - yet 49% of them falling into

the specified time window of 2 seconds post talk. In fact, most movements of this category started

within this time window, but at the same time, a much higher percentage (28%) of posture shifts

started only clearly after 2 seconds post speech. Again, this means that categories 3) and 4) are the

most common amongst post-talk postural movement - with a short or long delay.

Active Listener Postures

Postural adjustments that do not appear to be closely associated with speaking are also observed.

These postural movements often co-occur with other conversational behaviours and appear to signal

something about a participant’s relation to what is happening in the interaction. I observed that

in most cases where not linked to speaker behaviour, posture shifts are related to specific ‘active’

listener signals, such as nodding, backchannelling or laughing but that go somewhat beyond these

specific forms of concurrent feedback. Two examples are depicted in Figure 6.9, and a summary of

co-occurrencs between posture shifts and previously coded conversational behaviour is listed in Table

6.3. From the table, it can be seen that just over 40% of the coded posture shifts are associated
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Figure 6.9: Examples of postural shifts, to be read from top to bottom: Left: Listener leans towards
speaker, responds to their posture change (leaning forward). Right: Listener posture shifts on the
left; postural transitions from listener to speaker and back, on the right.

with speech, while 42.4% are assigned to ‘active listener’ behaviours, divided into laughter(28.8%),

nods(6.5%), and backchannels(7.1%).

In some cases, shifts in postures seem to predict these behaviours, too, similar to the patterns of

preparatory movement for talk. From the preliminary observations and the small data set here, the

movement patterns for backchannels were most similar to the ones for talk. This seems plausible if

considering backchannels as a subset, or subcategory of speech. During nodding, the movement of

both torso and legs appeared visibly more subtle and was observed to only become more embodied

when close (within 5 seconds) to a speaking turn. This could be discussed as another extended

preparation for speech, too. When looking at laughter, postural movement was expectedly the most

marked and obvious. It is to note, that with laughter, smiling was not included.

Additionally, the observations suggest that not only during these active listener behaviours, but

also for the transition from inattentive to attentive listeners, postural shifts play a role in embodying

these shifts, expanding on the findings of Kendon (1972), Scheflen (1964), Gumperz (1982) and

others. Posture shifts in between these identified listener and speaker behaviours make up 17.4% of

the annotated, observed movements, shown in Table 6.3.

Participant Speech Laughter Nods Backchannel Rest (‘Non-Talk’)
P1 16 16 2 0 2
P2 10 18 4 5 6
P3 17 3 1 3 8
P4 17 7 4 3 9
P5 14 9 1 2 7

total 74 53 12 13 32
in % 40.2 28.8 6.5 7.1 17.4
avg. 14.8 10.6 2.4 2.6 6.4

Table 6.3: Overview of all observed postural shifts for all 5 participants, and
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6.5.5 Discussion

The results of this exploratory study suggest that posture shifts are a significant and rich interactional

phenomenon. It is furthermore suggested that this type of nonverbal behaviour can be detected with

sensors around the thighs and buttocks. Nonetheless, it is important to acknowledge that the data

sets presented here are small and the observations made here can only be considered preliminary.

The following themes emerging in relation to the study of posture shifts are a general discussion of

what my preliminary findings may imply in the context of the wider literature on posture shifts.

Topic Changes in Speech

Kendon (1972) has discussed posture shifts in relation to changes in topics, and Bull and Connelly

(1985) have also noted different postural patterns in different categories of speech (e.g. drawing back

legs or raising a foot during a statement). In this work, I have not considered differences in what is

being said, but have treated it like a broad, overt event. Posture shifts that were performed during

speech were coded and included in the analysis, but were not further divided into more fine grained

categories of nuanced speech. Therefore, I did not examine whether postural movement during a

speaker turn correlates with topic changes. From observation, however, it is suggested that in some

occasions, there is evidence to confirm the works of Kendon, Cassell et al. (2001), Schulman and

Bickmore (2011), and others. For example, the participants of this sample set that have embodied

such topics in a marked way, have moved both their torso and lower body significantly. Following

this, it would be interesting to explore whether different markedness of posture shifts correlate with

different conversational events not only in individual cases, but in a general conversational structure.

Individual Variation

The most obvious point about the data presented here is the large levels of individual variation.

Individual participants showed patterns of movement that seemed distinct to them, and may be a

starting point towards an approach to identify individuals through postural movement. Nonetheless,

the analysis suggests that there are still commonalities in the patterns of posture change that may

generalise across indivduals.

Familiarity and Synchrony

The idea that interactants move in different ways depending on how familiar they are with each other

comes from Wiemann and Knapp (Wiemann and Knapp, 1975), and suggests more subtle movement

when participants know each other. This aligns with the works of Kendon (1990b), discussing spatial

organisation as a signifier for interpersonal relationships. This pehenomenon was noted in individual

cases and have not gathered enough evidence to support Wiemann and Knapp’s suggestion in full,

but have observed that the number of gross body movements decreased after the first 5 minutes into

the conversation. After that, movements became more subtle. In this context, it is to note that the

participants grouped together, were in different personal relationships: some knew each other briefly

(e.g. same workplace), some were not familiar with each other at all.

Bouncing, Swinging and Fidgeting

In consideration of individual variation, there were some nuances postural movements I observed

that were more or less distinct in different participants. Rhythmic, continuous events were leg
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bouncing and back- and forwards swinging with the torso. These events occurred alongside other,

previously mentioned behaviours that present more specified social signals and are to find for each

participant: nodding and laughter. In some cases, they also appeared to correlate with affective

states. One participant, for example, bounced their leg in supposedly uncomfortable moments.

Another participant, when listening and not giving any other cues to speakers, continuously moved

his torso back and forth, lightly swinging. Others have performed smaller movements like fidgeting

more frequently than gross postural shifts.

Handedness and ‘Footedness’?

One additional suggestion emerging from this study is that the pressure sensors of the left leg appear

to be more discriminative of posture shifts than the right leg. This might have two reasons: the

variation of the sensor performance, considering self made sensors as difficult to calibrate; or a

potential correlation with handedness. There are some indications that people gesture differently

with their dominant hand - this might influence the pressure distribution of legs, too. If, for example,

one leg would prove more dominant and relevant to detect a range of postural movements, would it

be possible to collect data from that half of the body only to achieve similar results and explore the

same research questions? To elaborate on these ideas, more information about the participants is

required, that was not asked for in the studies.

6.5.6 Summary

The findings of this exploratory study are summarised as the following key points:

• Preparatory (pre-speech) posture shifts happen within a 2 seconds window before the start of

an utterance, so immediately before the onset of speech.

• Post-speech shifts are performed with a delay from speaking turn (after a few seconds pause

after the end of a turn).

• In total, more posture shifts were associated with listener behaviours than within speech.

• Additionally, some findings already mentioned in Chapter 5 were confirmed in this study,

especially in regard to a large individual variation, the relevance of buttocks (compare feature

importance and factor analysis), and a slight asymmetry in pressure distribution for the relevant

features.

6.6 Exploration Two: Peak Detection

6.6.1 Data Subset Two

A second subset for a more detailed analysis going beyond posture shifts consists of 10 participants, 7

female and 3 male. This set of participants includes the 5 selected above for their good performance

in individual models for different classifications analysed in the previous section, and additional 5

that were selected based on similarly good performance from a ranking of all participants.
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Figure 6.10: Sensor data reduced to one dimension: Shown in blue is the normalised sensor data,
and in comparison in orange the filtered data. The ticks on the time axis (x axis) mark the most
significant peaks.

6.6.2 Data Driven Analysis Approach

Peak Detection

Instead of starting with labelling the data for posture shifts observed in videos, now the reverse,

a data driven approach is taken. The sensor data is visualised and inspected for large changes in

pressure, described as local peaks in sensor readings, without predetermined conversational context. I

define such peak as the highest local amplitude. The aim here is to detect data structures potentially

ignored from previous analysis, based on the most significant shifts in pressure distribution across the

200 sensors of the sensor matrix. This approach therefore does not take observable (visible) posture

shifts as the starting point for investigation, but discusses a larger range of conversational verbal and

nonverbal behaviours based on these data structures.

To do so, first the dimension of the sensors is reduced to create one linear representation (one

dimension) of the data, as can be seen in Figure 6.10. The normalised pressure readings of each in-

stance and sensor is compared to its previous1, and the difference between each element is calculated.

In other words: two instances of each sensor are compared, and the sum of all 200 sensors is created.

The absolute value of this sum forms the entry for this instance, reducing the readings of all sensors

to one reading. An example of one participant’s data of this computation is the blue graph in Figure

6.10. The Figure shows a range of small and large peaks in the data, that is now dissected. Here,

I look at the largest, local changes of pressure by applying a filter on the data first to reduce the

magnitude of the peaks - see the orange, smoothed graph in the same Figure. A second order low

pass Butterworth filter is used with a cutoff frequency of 0.06Hz. This means that peaks within a

determined time frame of around 16 seconds are detected. Additionally, to coarsen the grain of these

local peaks further, I only consider the peaks for further analysis, that are one standard deviation

above the mean.

The final set of filtered peaks was then assigned the timestamps of the video data (after syn-

chronising the sensor and video data as done before), so that the large shifts in pressure could be

synchronised with the corresponding videos and annotated for an extended set of social behaviour

and movement. Figure 6.11 visualises this processing step with the examples of speech and listening

annotations of one participant.

1in terms of the spreadsheet format the data is put in with each row presenting a new reading or instance, and each
column being assigned to one of the 200 sensors.
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Figure 6.11: Alignment of detected peaks in pressure data (bottom) and corresponding annotations
of ’talk’ and ’listener’ (top).

Further Ethnographic Observations

The data subset that is analysed here comes from ten participants, whose sensor data was processed

and filtered to detect local peaks of pressure change with the method described above. Applying the

low pass filter and selecting only the local maxima one standard deviation above the mean yielded

between 11 and 28 peaks per participant, with a total of 187 peaks across all ten participants.

These peaks were time aligned with the video data, so that the social context to the detected

major changes in pressure recordings could be examined. This also served as a base for the extended

annotation scheme introduced above. In the event of a detected peak, the corresponding video clip

was extracted including 10 seconds before and after the peak. This seemingly large time window was

selected to be able to analyse the peaks appropriately in a conversational context and annotate for

the correct social and bodily cues. This process happened in two steps: first, conducting multiple

data sessions in which the videos were observed, the “peak clips” selected, discussed and analysed and

in which the annotation scheme was established. Secondly, the videos displaying the detected peaks

were annotated while in parallel inspecting the sensor data visualisation. This direct comparison

of video and sensor data was useful to eradicate any errors, and to examine potential clusters or

patterns of types of peaks.

Considering the large set of signals considered here, it is worth remembering that the sensing

surface this information is extracted from stems from the lower body alone. So, given that it is

trousers used to detect not only leg movement here, but a variety of upper and lower body signals,

as well as conversational behaviours, the observations address questions on what happens - bodily

and socially - when our body goes through such significant shift in pressure distribution in seated

conversation; what the expectations towards the movements are this analysis exposes, whether they

will be obvious to an observer or reveal something that is generally concealed.

Statistical Analysis

After the identified peaks of pressure data are annotated and categorised following the coding scheme

of Table 6.1, an ANOVA is performed, a non-parametric Friedmans two-way analysis of variance

by ranks to explore differences or co-occurrences across the additionally identified behaviour types

and movements. With this additional analysis, the observations annotated could be examined for

correlations.
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Annotations Labels
Behaviour Speech Pre-Speech Post-Speech Floor Holder

55 26 27 66
Laughter Nod Backch. 1st Addr. 2nd Addr.

42 15 28 75 55
Movement Type Posture Shift Fidgeting

97 64
Axis Sidewards Forth/Back Up/Down

33 100 32
Visibility Concealed Revealed

53 134
Intention intentional incidental

26
Body Parts Torso Buttocks Legs Arms Head

133 68 79 86 17

Table 6.4: Overview of labels assigned to the 187 peaks for 10 different participants, grouped into 6
categories with a total of 23 labels.

6.6.3 Observational Findings

The video clips showcasing 187 peaks are analysed following the 23 annotations describing six different

categories. In the previous section presenting results of a preliminary analysis focusing on posture

shifts, these movements are now presented from a data driven perspective of detected peaks. An

overview of the different annotations reported here, and their definition, can be seen in Table 6.1.

The following observations are presented according to the grouping of the coding scheme.

It should be noted that the reported observations and statistics do not derive from discrete

annotating. Detected peaks had between 3 and 11 labels, for which e.g. behavioural cues and body

movement was both coded and general co-occurrences between annotation categories were allowed.

This resulted in a total of 1311 annotations for the 187 peaks. An overview of these annotations is

shown in Table 6.4.

Behaviours

Of all detected peaks, only 30% are assigned to speakers. The rest is listeners’ movement, divided

into primary and secondary addressees. 75 times (40%) when a major change in pressure is detected,

the participant is classified as the primary addressee. The remaining 30% comes from secondary

addressees (55 annotations). Amongst these possible conversational states in a three-way interaction,

first addressees seem to display most overt bodily movement. But also the previously discussed pre-

speech and post-speech movements are included in the listener categories.It appears, that in the

2 seconds time window immediately before and after speech, major bodily movement is rare (26

annotations for pre-, 27 for post-speech, both equivalent of around 14%).

Dissecting the other behavioural cues further, I divide the state of listeners into more detailed

listener responses: backchannels, laughter and nods. Amongst them, laughter shows expectedly the

most peaks and corresponding marked movements - yet only forming less than a quarter (22,5%) of

all movement peaks. Backchannelling and nodding occur similarly rarely as preparatory movement.

Nods yield the fewest peaks, which was expected.

Lastly, the observations on participants representing the centre of attention in the conversation,

here described as floor holders, link 35,3% of peaks to this state. This is slightly more than speakers,
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and slightly less than first addressees, confirming previous observations and the definition of this

category.

Body Parts

The majority of peaks measured by the trousers is assigned to torso movement - 71,1%. Bearing

in mind that the annotations for different body parts can overlap in the annotation scheme, or in

other words, are not coded binary to each other, the leg movement responsible for pressure changes

accounts for 41,7% of all peaks, and buttocks for 36,4%. Together, this makes up slightly more than

torso movement, implying that major changes and shifts in pressure application when seated are

caused by both, the upper and lower body movements equally. A summary of the annotations for

the different body parts including the results for head and arm movement can be seen in Table 6.5.

Body Parts Torso Legs Buttocks Arms Head
annotations of 187 peaks 133 79 68 86 17
annotations in % 71,12 41,71 36,36 45,99 9,09

Table 6.5: Summary showing which body parts have been associated with major changes in pressure
(detected peaks). The annotations for these categories are not binary coded and can therefore overlap.

Movement Type

When examining significant shifts in pressure distribution across a large sensing surface, we could

expect to see a marked posture shift. Here, I add fidgeting to such nonverbal signals movement, that

I distinguish from posture shifts. Both describe overt bodily changes and adjustments of at least half

the body.In the analysis here, more than half of the major peaks in pressure changes are assigned to

posture shifts (51,87%, equals 97 detected peaks), and 34,22% (64 annotations) are associated with

fidgeting movement. Such postural movement can further be described through its movement axes,

which I annotated separately, too.

Movement Axis

The majority of axis related movement is a forwards and backwards movement (alongside the Sagittal

plane). 53,48% (or 100 events) of all annotated peaks is related to XZ-axis movement, while both,

up and downwards and sidewards movement alongside the Coronal plane makes up 17% each. These

are torso movements and are annotated independent of other social behaviours or bodily events, so

can co-occur with, for example laughter, which would often be associated with a back and forwards

leaning shift in posture, but also other behavioural cues, such as signalling attention through leaning

forward, or signalling the end of a turn by leaning backwards.

Visibility

With these results of body shifts and back and forwards movement, as well as torso movement

presenting the majority of the analysed data peaks, it is not surprising that most of these movements

are visible to the other interactants, and revealed rather than concealed. In fact, only 53 of the 187

events of significant pressure changes are categorised as concealed movement.
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Intention of Movement

Lastly, I determine whether the movement surrounding the detected peak in the sensor data is

performed intentionally or incidentally. As stated when introducing the annotation scheme, however,

I have found that only around 14% of the movement seen in the data peaks would be described as

incidental, including actions like correcting one’s posture, movement occurring while unintentionally

coughing, or scratching. This means, that the majority of movement that is performed during

interaction is in fact interactionally relevant and contributes to the conversation.

6.6.4 Results: Nonparametric Analysis

In addition to, and to confirm some of my observational findings, a statistical analysis was carried out.

To analyse this relatively small data set with many annotation variables as well as large individual

variation, non-parametric statistical tests based on comparison of ranks across conditions were used

and run in SPSS v.24. I report the results of a Friedmans two-way analysis of variance by ranks

for analysing behaviour types. First, I focus on correlations between the different roles within a

three-way conversation, before I examine the type and direction of movement more closely.

Participant Role

The counts of peaks that were summed and compared here are from speaker, primary addressee and

secondary addressee. This was to investigate, whether speakers move more (show more peaks) than

listeners. The results of the Friedmans Related Samples Two-Way Analysis show that there is no

overall difference (N = 10, FriedmansStatistic = 3.00, p = 0.223 with df = 2 Degree of Freedom,

and with Alpha = α = 0.05). No evidence is found that large movements are specially associated with

dialogue role and, in particular no evidence is provided that they are specially associated with speak-

ing. Furthermore, there is no suggestion that primary recipients shift posture less than secondary

recipients (there is evidence though that, e.g. primary recipients tend to suppress hand movements,

which suggests posture shifts may have an independent function).

We can now break down the participant roles a little more by looking at the relative contribution of

arm and leg movements to the detected local peaks of movement. Within-subjects comparison of the

count of peoples arm movements in each participant role test, whether peoples movement peaks are

associated with the hands and arms more common when they are speakers than primary or secondary

addressees (N = 10, FriedmansStatistic = 7.70, p = 0.021). Pairwise comparisons for these roles

yielded the following results (all with N = 10 and Alpha = α = 0.05): Secondary vs. Primary

Addressee: TestStatistic = 2.12, p = 0.034 ; Secondary Addressee vs. Speaker: TestStatistic =

2.24, p = 0.025 ; and Primary Addressee vs. Speaker: TestStatistic = 0.91, p = 0.911. This suggests

that the speaker and primary addressee are equally likely to have movement peaks associated with arm

movements, while secondary addressees have reliably fewer peaks associated with arm movements.

The same question can be applied to leg movement. However, here, the Friedman Statistic (= 0.39)

of the Related Samples Two-Way Analysis shows no reliable difference (p = 0.823). In summary, we

can say that peaks driven by hand movements are more likely to occur in speakers than in recipients,

while for peaks driven by leg movement, no such conclusion and clear distinction can be made.

172



Movement Axes

The same tests were carried out to examine the correlation of different movement axes along the

Sagittal (front-back movement) and the Coronal plane (sidewards movement), as well as up and

downwards movement along the Y axis. The counts of shifts on each axis were summed for each

participants and a within-subjects comparison using Friedmans Related Samples Two-Way Analysis

of Variance by Ranks. Here I investigate, whether one of the axis movements is more frequent than

others in major changes of pressure (peaks). Overall, the difference in the use of the three axes

suggests that large movements are normally oriented with respect to the O-space (Kendon, 1990a),

the overlapping transactional space between participants (N = 10, FriedmansStatistic = 9.89,

p = 0.007 with Alpha α = 0.05). When comparing the axes pairwise with each other, the overall

preponderance of front-back (Sagittal) movement becomes clear. However, it is worth noting that

for one participant, up-down movements were more frequent than sagittal movements. The results

of these pairwise comparisons are: Up-down vs. Sides: (N = 10, TestStatistic = 0.1, p = 0.823)

; Up-down vs. Front-Back (N = 10, TestStatistic = 1.25, p = 0.005) ; and Sides vs. Front-Back

(N = 10, TestStatistic = 1.15, p = 0.010).

Next, I investigate whether the peaks of movement can be linked to preparation to speech. Here,

the comparison of counts of peak movements 2 seconds before and 2 seconds after speaking (pre-

and post-speech) for each participant were tested by applying another non-parametric test: Related

Samples Wilcoxon Signed Rank Test. No reliable difference was found (N = 10, TestStatistic = 23.0,

p = 0.95 with Alpha α = 0.05), which suggests that the major changes in pressure distribution are not

especially associated with preparatory movement for speech. This is consistent with the finding above

that they are also not associated with participant role (speaker, primary or secondary addressee).

6.6.5 Discussion

Speaker and Listener Peaks

Scheflen (1964); Hadar et al. (1984); Condon and Ogston (1966) and others have linked posture shifts

mostly to speech utterances, to emphasise, prepare or contrast verbal content. Listener movements,

in comparison, have not been studied to the same amount of detail. The peak detection here, however

shows that the most overt movement comes from primary addressees, and only around a third of major

movement shifts is associated to speakers. No clear evidence was found that preparatory movement

to speech is performed as a large posture shift, either. These results of the nonparametric analysis

confirm the observational findings. Why do listeners move so significantly more than speakers? Does

that indicate that attention is being embodied most obviously? Do addressed participants in a

conversation feel as if they have to showcase attention level? Or does being addressed unconsciously

bring more tension and quite literally, pressure changes with it? The findings show that it may be

worth investigating these movements further, exploring posture shifts in relation to social behaviour

and affective states from a listener’s perspective.

The peaks analysed here, however, do not only cover large scale posture shifts, but also smaller

movements that within the chosen rolling window have yielded as local major peaks. This raises

the question how visible overt movements are to observers and interaction partners. For example,

some of the detected peaks are associated to laughter rather than explicit posture shifts, and just

under a third of peaks stems from secondary addressees, who are given least attention by the other

interactants in a constellation of three-way conversations.
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Independent of participant role, laughter was expected to yield the most overt peaks of postural

movement, but has shown to form only 22,5% of the major peaks. This may be because the laughter

recorded here is not always very overt or as embodied as we may imagine. A possible future study

could look into different types of laughter (e.g. social vs Duchenne laughter, fake vs. genuine laughter)

to explore how different movements correlate with it.

In this work, I have focused on comparing only a few annotated behaviours and movement types

that were observed during the recorded conversations. With the extended annotation scheme pre-

sented here, further potential correlations can be explored, that may yield unexpected nonverbal

behavioural patterns contributing to social interaction.

Upper and Lower Body Peaks

The observational finding that most peaks of movement derive from the torso can be seen as a

confirmation with the finding of the nonparametric analysis that the principle axis of movement

is found towards and away from the O-space, along the Sagittal plane. The reason for this could

be biomechanical constraints on ease of movement, speculating that the seating arrangement used

in the studies affords back and forwards movement better than sidewards movement or rotation.

Another explanation could be the sensitivity to the O-space and shared gesture space as the ‘centre

of the conversation and therefore centre of movements. Furthermore, this could be linked with the

embodiment of laughter, often moving along this axis.

Dividing the body halfs into upper and lower body movements has further shown that speakers

and primary addressees have more marked arm movements than secondary addressees, while no such

distinction could was found for leg movements.

6.6.6 Summary

In summary, the results of both analyses indicate, that the sensors in trousers are able to pick up

overt postural changes in the upper body, too. And vice versa, that marked movement in the upper

body seemingly oscillates down to the lower body. The ability of trousers to pick up movement from

the upper body, and that even through small scale movement, one body half measures movement of

the other, can lead to new research questions. For example, whether a head nod can be monitored

by sensors in the buttocks, or similarly, whether a head shake also makes the buttocks shake. In

regards to the trousers as a sensing surface capable of detecting these interactional correlations, we

can ask, how listeners’ trousers look like, or how trousers need to be designed to comfort certain

speaker postures, allow for specific axis movement more than for other, or afford laughter better,

engaging their wearer in a directed fashion.

These preliminary explorations can form the foundation of further research into postural shifts in

conversation, which would require to collect a larger data set to validate and expand on the findings

reported here.

The summarised findings deriving from the observations and nonparametric analysis presented

here are listed in the following key points:

• Speakers do not move more overtly than listeners. More posture shifts were labelled as primary

addressees than as speakers.

• The annotated posture shifts do not necessarily correlate with the largest shifts in pressure

distribution across the trousers. Local pressure peaks have been observed to present small
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scale movement, too.

• Both, the upper body (torso) and the lower body (buttocks and legs) cause posture and pressure

shifts. These findings indicate, that the sensing trousers are able to pick up upper body

movement, too.

• Movement along the Sagittal plane is the dominant posture shift causing peaks in pressure

distribution.

6.7 Conclusion

These exploratory analyses contribute to the discourse on the meaning of posture shifts and other

marked bodily movement and their role in conversation. In the first part of the analysis, it was shown

that it is possible to identify different types of posture shifts related to and surrounding speech

utterances. I have further expanded on these findings, evaluating different types and occurrences

of movement against their conversational context, examining correlations between behaviours and

movement axes. Although posture shifts have traditionally been associated with turn markers or cues

for emphasising verbal content, this work indicates that these salient movements are interactional

signals in their own rights, and used by both, speakers and listeners.

The two preliminary analyses presented here combine ethnographic studies and statistical methods

that support each other’s findings. They serve as explorations to test the potential and limitations

of the sensing trousers as a “socially aware” piece of smart clothing and give us an idea of future

application areas, too. Finding the appropriate analysis methods is as important as providing a

well designed, reliable sensing system. With this chapter, I close the series of studies investigating

conversational cues and will proceed with reflecting on the engineering aspects of the prototype used

for these studies, assessing it for their performance as a wearable soft computing system design.
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Chapter 7

Design Investigations

Overview

When developing wearable textile sensing systems, there are many design variables that can be

explored that lead to different solutions for final products. In the chapters 3 and 4, I introduced

designs for sensing chairs and trousers, custom made for the purpose of capturing nonverbal behaviour

in seated social encounters. All parameters of these prototypes were developed in consideration of

this particular use case and have served as first iterations of prototypes for a concept proof. This

chapter leaves space to discuss design and engineering related topics of the textile sensors that were

developed in the scope of this research. I revisit the designs and suggest refinements in regards to

sensor and manufacturing techniques. The principles of these improvements are then carried further

into the development and presentation of a new iteration of the sensing trousers, whose mechanical

features are tested in a preliminary user study.

Further, I reflect on the potential of smart clothing as a sensing modality in social interaction, for

behavioural studies, and conclude with thoughts on the impact of the engineering details of garment

construction, like the importance of pattern cutting, as well as on the role of specific items of clothing

in a cultural context.

The new iteration of the sensing trousers presented here can also be found in the conference

proceedings: Skach, S., & Stewart, R. (2019). One Leg at a Time: Towards Optimised Design

Engineering of Textile Sensors in Trousers. In Adjunct Proceedings of the 2019 ACM International

Joint Conference on Pervasive and Ubiquitous Computing and International Symposium on Wearable

Computers (UbiComp/ISWC ’19 Adjunct).

7.1 Introduction

Custom made textile sensors encounter design and manufacturing challenges that differ from conven-

tional printed circuit board based sensors. The field of e-textiles commonly deploys such sensors on

the human body, overcoming these challenges is crucial for reliable sensor performance and usability.

This means working towards wearability, comfort, robustness, and ubiquitousness for a user-centred

design approach is important, as well as achieving sensor reliability to capture natural human move-

ment, that is often subtle, unpredictable and shows large individual variation. These parameters for

the design of textile sensors is relevant given the prognosis of the predicted growth of the sector of

smart clothing (Ju and Lee, 2020; Fernández-Caramés and Fraga-Lamas, 2018). The investigations
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carried out in Chapters 5 and 6 explore the performance of the developed trousers in the context

of unstaged, spontaneous interaction, examining conversational cues and interactional bodily move-

ment. The participants in these studies moved in a non-choreographed or instructed fashion. Here,

robustness, comfort and other design engineering aspects of the presented trouser design are evaluated

as a step of an iterative design process for optimised sensing trousers and textile sensors embedded

in smart clothing. Based on these findings, I introduce a second prototype that integrates these

improvements, and that is evaluated against these factors in the form of a single user pilot study.

Before closing this exploratory chapter on design investigations, the importance of tailoring, or

pattern cutting in the design process and engineering of wearable, soft sensing systems, as well as the

aspect of fashion design in the same process and its impact on human behaviour are discussed. This

is presented as a continuous design process following the developments of smart sensing trousers,

proposing ideas for further design iterations.

7.2 Even Smarter Trousers: Towards Optimised Design En-

gineering for Embedded Textile Sensors

7.2.1 Introduction

What makes a good, wearable textile sensor for an article of “smart clothing” from an engineering

perspective? In the field of wearable technology, pushing forward the state of the art for electronic

textiles is often shown through self-made sensors and Open Source libraries (Perner-Wilson and

Buechley, 2010; Stewart, 2019; Satomi and Perner-Wilson, 2007).

More conventional products using printed circuit boards bear the risk of being intrusive when

collecting data. Knitted or woven fabrics consist of a material we are very familiar with that augments

our everyday environment, and which follows our movements more organically. As such they are

particularly relevant to the wider field of ubiquitous and unobtrusive computing. A common surface

to integrate textile sensors is naturally the human body itself, in the form of utilising clothing.

Handcrafted sensor designs can be evaluated against technical requirements like any other sensor

system, but they are likely to have more sensor-to-sensor variability than sensors that can be pur-

chased “off the shelf”. There are several challenges that come with making your own textile sensors.

One is the connection between flexible and rigid components which occurs when linking fabric sensors

with batteries, microcontrollers or other electronics that textiles cannot yet replace (Buechley and

Perner-Wilson, 2012; Buechley and Eisenberg, 2009). This is an obstacle to the wider task of creating

soft, wearable technology that is as physically robust as more rigid counterparts.

There is a large corpus of work assessing the performance, durability and washability (Molla

et al., 2018; Berglund et al., 2014) of textile sensing systems. These considerations add to the more

general questions of how the sensors perform in regards to continuously reliable data collection, or

linearity of sensor behaviour (Acar et al., 2019). Depending on the intended application of a design,

different test methodologies are followed. Usually, they can be divided into two approaches: testing

a textile sensor’s performance with a machine or with users. A systematic investigation of self-made

sensors often happens on machines specifically built for these purposes (Stewart and Skach, 2017;

Liang et al., 2019a; Atalay et al., 2013), and can extensively test the sensors’ behaviour over time

and other material related characteristics, like piezo-resistance for stretch or pressure sensors. Other

experiments address this aspect and further explore textile sensors in more natural settings, such
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as directly on the human body during a specific task (Pizarro et al., 2018). These aspects are all

crucial in the process of designing and manufacturing a good sensor, and it is important for these

components not to be overlooked for the assessment of a wearable, textile sensor capturing bodily

data: interactive settings in which body movement is not created in isolation, but within a more

natural context.

7.2.2 Mechanical Evaluation of the Sensing Trousers

A Brief Recap

The design of the sensing trousers, referred to here as prototype 1, has been sufficiently introduced

in Chapter 4. Therefore, I summarise only the details of the manufacturing process relevant for the

mechanical and design engineering evaluation:

• The pattern of the trousers is constructed so there is no side seam, but only a seam along

the inside of the leg (an inseam). This was done to allow a smooth transition from sensor

connections from the front to the back leg.

• Each layer of the matrix forms a separate sheet of fabric to allow for easier debugging and to

conceal all conductive material from the skin. The trousers consist of a total of 4 layers: 3

matrix layers (1 for rows, 1 for columns, 1 for resistive fabric sheet) connected to the trousers’

shell through the crotch and inseam.

• Hard-soft connections of the matrix are embroidered, fabric stripes are connected to the circuit

board through insulated ribbon wire. All wiring runs along the inside of the leg, concealed with

a 5cm wide tubular fabric panel, 20 connected wires per leg.

The assessment of the mechanical performance of the trousers considered here stems from the

second user study that was reported in Chapter 5, where a total of 42 participants wore the trousers

over a period of 20 minutes each, engaged in a conversation. The details of the data collection and

study setting are found in Chapter 5.

Findings from Examining the Hardware Design

Exposing the trousers to this quantity and type of use allows to examine their mechanical performance

in addition to their sensor performance explored in previous chapters. From this available data set,

here the data of 26 participants is used to evaluate the hardware design (the remaining were discarded

for this part due to software related issues).

number of ripped wires 0 1 2 3 or more

participants 4 12 5 5

Table 7.1: Overview of number of wires pulled out of sensor embroidery during first user study.

In particular, the robustness of the hard-soft connections is reviewed, as this presented the most

vulnerable element in the design. Amongst the 26 participants, up to 4 wires were pulled out from

the embroidered connection to the pressure matrix in a single wearing. With each wire connecting

to a column or row of the matrix, 10 sensors were lost. An inspection of the sensor data showed

4 participants with no faulty data, 12 with only one wire pulled, and 5 participants with either 2,
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Figure 7.1: Summary of all commonly broken sensors across all participants are highlighted in red.
These sensors were removed for analysis.

3 or 4 disconnected wires. A summary of the commonness of the occurrence of pulled or ripped

wires is given in Table 7.1, showing 4 participants with no faulty data, 12 with only one wire pulled,

and 5 participants with either 2, 3 or 4 wires disconnecting sensors. Now looking at the position of

these disconnected sensors in Figure 7.1, it could be seen that for both, the connections to rows and

columns, wires connected closest to the knee and crotch were most prone to breaking., also coinciding

with the areas where body creases or garment folds are most common (knee bent and hip bent).

In all cases where only one wire was pulled off a column - connected around the knee, it was the

wire furthest away to the inside right leg where all wires were gathered, highlighted in Figure 7.1.

The Figure also illustrates the two columns for which the embroidered wire broke on the front leg,

which can be found closely to the outer side of the left leg - in a position where a fold can appear

when seated. It was similar to the rows of the matrix, where all embroidered connections were at

the front inner leg. Here, the wire positions around the body folds or joints were most likely to be

disconnected - that is the first row around the knee on both legs, the second row on the right leg as

well as the top (last) row on the left leg. An overview of these sensor rows and columns is shown in

Figure 7.1. Comparing the front and back leg, more wires were ripped on the front leg, and only one

wire was disconnected on the back.

Therefore, while it was considered best for the design of the sensor matrix to have no side seam

and only have a narrow panel along the inner leg to house the wiring, the tests showed that this

position may increase the risk of the wires alongside the inner leg to be pulled off their embroidery.

Additionally, participants were informally asked about comfort after a recording session had

finished and the trousers were taken off again. The list of questions is attached in Appendix E. Some

participants reported feelings of restriction when putting the trousers on and moving their legs freely

(e.g. leg crossing), being conscious about the wiring. Some also mentioned that while the trousers

were comfortable to wear, the additional layers on the top thigh would make them warm after a

while.

7.2.3 An Improved Iteration of Sensing Trousers

The findings derived from the interactions with the participants were used to design a new iteration of

the sensing trousers. With a new design, I refer to the previous trousers as “prototype 1” and to the
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Figure 7.2: Comparison of different wiring solutions and hard-soft connections. Prototype 1 (top)
depicts the thin ribbon wires embroidered onto the conductive fabric. Prototype 2 shows fabric wires
made of conductive yarn and sewn onto the conductive stripes, insulated with braided paracord.

new ones as “prototype 2” from now on. With suggestions for another iteration of the trouser design,

the above identified difficulties in the user study with the trousers’ hardware can be addressed. In

this section, the development of design related improvements towards a more robust, durable, and

comfortable pair of pressure sensing trousers is presented. Significant changes of this new iteration

of the trousers concern the connections between textile and electronic components, as well as the

overall wearing comfort. In summary, to improve this, the pattern construction was slightly adapted

through adding a side seam, the fabric layers were reduced, and instead of metal wires, conductive

threads were embedded.

Hard-Soft Connections: Textile Wires

Instead of using ribbon wire, highly conductive copper yarn1 was insulated with textile paracord,

following the techniques introduced by Posch and Fitzpatrick (2018), where conventional tailoring

and garment manufacturing equipment is utilised to provide suitable e-textile tools as an alternative

to their rigid and less flexible counterparts. These textile wires are hand made by twisting 3-4 strands

of highly conductive yarn together to form the core of the wire, and pulling them through a tube

like braided paracord that forms the insulation layer. The paracord used is 3mm in diameter and

consists of synthetic yarn. To prevent its ends from fraying, they were singed. Using yarn instead of

wire has the advantage of being more soft, flexible, and being sewable with a conventional (domestic)

sewing machine (the stitches can be seen in Fig.7.3b), while the wires used before had to be hand

stitched onto the conductive fabric. A comparison of how the different wire designs are attached to

fabric is depicted in Figure 7.2.

In prototype 1, a total of 20 wires all run along the inner leg down to the ankle. Although

the string of wires were attached together through a connection in the insulation layer to keep the

wires untangled and running in parallel down the leg to the circuit board, see Figure 7.2, the more

1Purchased from Karl Grimm, http://www.karl-grimm.com/
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rigid materiality added to bulkiness of the design. In prototype 2, the less bulky fabric wires were

distributed to run alongside the inner and outer side of the leg - ten on each side. The ‘wires’ for the

matrix columns ran along the inside leg, with the rows of the matrix running along the outer side

seam, see Figure 7.2 and 7.3b. This design has the advantage that the fabric wires are independent

from each other, unlike the ribbon wires that were connected in a band, and don’t pull each other

out under strain. Therefore, the new wires can withstand more strain overall. A disadvantage of the

separated wires, however, is the risk of getting tangled.

(a) Construction steps for tailoring Prototype 2: reducing layers of fabric by attaching conductive ‘rows’ and ‘columns’
of the sensor matrix onto the resistive fabric layer and the shell of the trousers directly; and adapting the pattern
construction with added side seam. Construction steps from left to right.

(b) Left and Centre: Close-ups of textile wires consisting of 4-strand copper yarn insulated with singed
paracord. These new wires are machine sewn onto the conductive fabric strips forming the rows and columns
of the matrix. Right: new placement of groups of wires running alongside both, the inner and outer leg for
a balanced distribution.

Figure 7.3: Details of the second trouser prototype with improved wiring, and fabric layering design,
as well as adapted pattern construction.
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Reducing Layers

Following comments from the first study’s participants regarding the noticed thickness of the trousers

around the sensing area, which made the trousers warmer, the aim for a new iteration was to reduce

the layering of the fabrics. Although it is useful to be able to separate the matrix’ layers for early

stage prototyping, for a future, higher tier prototype, this is not needed. The first prototype features

4 layers, arranged as shown in Figure 7.4 (left). In that design, in the case of any material related

flaw, the rows, columns and resistive layer could easily be replaced. This was useful since it was the

first prototype produced. After sufficient testing, however, such precautions become redundant and

a higher fidelity design can be developed, reducing the amount of layers needed by merging them

were possible and saving material. Now, the layers for the second prototype were reduced by half, see

Fig.7.4 (right). This was achieved by using thermal bonding to attach the conductive fabric stripes

forming the outer layers of the sensor matrix directly onto the other fabric layers. The thermal

bonding used here is appropriate to maintain flexibility of the fabrics. Figure 7.3 shows the steps of

manufacturing the new prototype and of creating the overall thinner trousers, showing the reduced

layering. The columns of the sensor matrix were bonded onto the non-conductive fabric of the outer

layer or shell of the trousers. This can be done with a domestic iron as well as with a heat press.

For additional robustness, the stripes attached to the non-conductive fabric layer can also be sewn

on with a sewing machine, or affixed by hand as done in Figure 7.3a (yellow lines). The rows of

the matrix were bonded onto the resistive layer that forms the lining of the new trouser design and

determines the size of the sensing area (from upper buttocks to knee), see Figure 7.3a. A schematic

illustration of both prototypes’ layering system is shown in Figure 7.4.

Figure 7.4: Comparison of the layering of the two trouser prototypes. Left: Prototype 1 with a total
of 4 layers that can be separated. Right: new Prototype 2 with a reduced 2 layer matrix design.

Modified Pattern Construction

In relation to the distribution of wires, the pattern of the trousers was adapted for the new prototype,

too. Having found that with some wires regularly being disconnected at the same position (see Figure

7.1, one approach to address this issue was to distribute the wires so not all are gathered in one area

and the connection from wires farther away from the circuit board are not put under increased strain.

At the same time, the trouser seams acted as a useful concealing element for wires in prototype 1,
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Figure 7.5: Comparison of the pattern construction of a) the previous design (prototype 1) and b)
the new iteration (prototype 2)

which is a desirable design goal for prototype 2, too.

To address this, the approach for the new iteration of the trousers was to introduce a side seam in

addition to the inseam, as seen in Figure 7.5, where the seams for both prototypes are highlighted in

red. Using the seam allowance on the inside of the trousers as a support to loosely stitch the fabric

wires to, having two seams now allowed to distribute wires to both the inseam and the side seam,

creating less bulk. In this solution, all wires sewn onto the rows of the matrix could be stitched along

the side seam (see Fig.7.3b), and all wires of the matrix’ columns could be run along the inseam.

With the observations that the side of the upper legs is not touched or in touch with other surfaces

regularly in sitting postures, the area around the position of the side seam does not feature sensors.

Only the rows of the sensors and the resistive fabric layer are connecting the front and back leg

along the side seam. Therefore, the risk of this (in an ‘unused’ area on the trousers) added seam of

disrupting the performance of a sensor or sensor group is minimal. Another ‘side effect’ of adding

a side seam is the possibility to tailor a more refined silhouette of trousers. While this is not as

relevant for jersey knit trousers as these, it is a construction detail relevant to style and fit of trousers

in general. The result of this adapted pattern design is illustrated in Figure 7.5, and shown as a

fabric cut in Figure 7.3a.

7.2.4 Piloting Prototype 2

The second prototype was evaluated in a small single user pilot study. While in the previous user

studies tested the trouser design as well as the sensor performance, this pilot study reported here

does not collect sensor data or does not seek to detect postural cues. The sensor matrix was not

connected to a microcontroller. Instead, this last study focuses on mechanical aspects only, drawing
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attention to the elements shown to be risk and error prone in the previous prototype. In particular,

the carried out examinations can be summarised into the following two aspects:

• The wearing comfort in regard to change in wiring (material and distribution) and reduced

layering;

• The robustness of hard-soft connection with machine sewn wires and their feasibility in regard

to their fabrication technique (use of bonding tape).

Participants

10 participants, 8 female and 2 male, tested the new trousers. All participants, with the exception

of 1 male, took part in the evaluation involving multiparty seated conversations and were therefore

familiar with the concept of sensing trousers, having worn prototype 1. They were between 25 and

36 years. Other than in the previous study, however, participants here were not offered assistance

when putting on and off the new prototype - this was to examine potential usability issues at an

early stage.

Procedure

The goal of this pilot study was to imitate the type of postural movements and strain applied during

the study of the previous trouser design, so the two prototypes can be compared. Participants put on

the trousers by themselves and were asked to perform a series of sitting postures that were identified

and selected as common in the previous data set. This sequence of postures was performed twice

by each participant. To further imitate the amount of uses of the first prototype, participants were

asked to take the new trousers off and put them on again after each cycle. The postures performed

were (in the same order for each participant):

• putting trousers on;

• standing position;

• sitting down (‘home position’ as in Chapter 4);

• crossing legs in both directions (one after the other: first left over right; then right over left

leg);

• stretching lower legs and feet;

• stretching out lower legs;

• leaning forward with elbows resting on thighs;

• rubbing thighs with hands;

• hands resting on knees;

• fidgeting, which was described as a combination of bouncing legs, rubbing legs with hands or

tucking hands between or under legs;

• taking trousers off.
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After each session, but not between the cycles, the trousers were inspected for any errors or broken

elements, with special attention given to the performance of the new yarn-based wiring regarding

connection technique and distribution of wires. Participants were also asked to comment on the

comfort and wearability of the trousers. Since these tests were intended as an informal study, the

sessions were not recorded and only notes were taken by the instructor and in some cases an assistant

volunteer.

7.2.5 Preliminary Findings

The outcome of the pilot study evaluating the new trousers is divided into the received participant

feedback on wearing comfort regarding the design changes undertaken, as well as the mechanical

performance of the fabric based wiring.

Participant Feedback

All (10) participants mentioned improved comfort and reduced thickness of the second prototype.

Participants pointed out an overall ‘softer’ touch of the new trousers compared to the first proto-

type and said they felt “lighter to wear”. It was also reported that movement could be performed

more comfortably and without concerns of damaging the sensors in the trousers or wires. The one

participant who had not taken part in the previous study said although he had been told of the

presence of a sensor matrix, this was not something they could feel when wearing the trousers. It

was pointed out that through the thin outer fabric, the trousers felt more like sport leggings than

the previous prototype. In summary, the received feedback was positive. The notes taken during

participant interactions are attached to Appendix E (for each participant).

Robustness of Wires

While the participant feedback is mostly concerned with the implications of the reduced layering of

fabrics in the trousers and change of wiring materials, a quantitative inspection of the adapted design

and its mechanical properties looked promising as well. None of the yarn-based wire connections were

ripped from the pressure matrices. Although not as much worn as the first prototype, there were no

signs of the machine sewn connection being loosened, being torn or put under mechanical pressure

from the 10 trials with 2 cycles each. This is, as expected, a significant improvement compared to

the first prototype, and is summarised in Table 7.2, along other compared features with the first

prototype.

7.2.6 Comparing the Two Prototypes

After this preliminary testing of the new iteration of the trousers, the performance of the two pro-

totypes can now be compared following the above specified parameters of the wearing comfort that

includes assessing all design elements relating to the new layering and fabrication techniques; and

the mechanical robustness of the new wiring technique and distribution.

Hard vs. Soft Wiring

When comparing the number of wires damaged, ripped or pulled in detail, prototype 2 clearly out-

performs the first pair of trousers, with no damage being done to the wire connections whatsoever,

as the comparison Table 7.2 shows. Sewing conductive thread instead of embroidering wires adds to
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Prototype 1 Prototype 2

Number of layers 4 2
Fabric layer connection machine sewn thermal bonding
Connection type wire thread
Connection method hand embroidered machine sewn
Connection path all on inseam distributed (inseam + side seam)
Side seam no yes
Number of trials 26 10
Number of ripped ’wires’ 22 0
Number of seams on leg 2 2

Table 7.2: Overview of Prototypes 1 and 2 of the sensing trousers, comparing different aspects of
design engineering.

the trousers’ robustness and also allows for more flexibility in the placement of the yarn-based ‘wires’

(see Figure 7.3b). This means they can be attached in areas that are subject to higher pressure,

strain or abrasion without increasing the risk of breaking or being damaged. In comparison, the

embroidered wires of the first prototype easily pulled out of the hand embroidered stitches, or the

thin, untwisted core of the wire broke when being pulled too much. The conductive yarn, in contrast,

is twisted and difficult to break without tools. While both techniques - embroidering and machine

sewing have been used in the field (Satomi and Perner-Wilson, 2007), the latter has become more

popular in recent year not least through the availability of conductive yarn thin and flexible enough

to be used with conventional domestic sewing machines2.

One disadvantage the hand-made fabric wires pose in comparison to the ribbon wires is the labour-

intensive threading of the conductive thread through the hollowed paracords. It requires more steps

than the already insulated wires. With advancing textile technologies, however, insulated textile

yarns are being developed as well, as already sampled in Briot et al. (2020), for example.

Fabrication Feasibility

This evaluation focuses on the mechanical aspects of the design engineering, which is only one factor

to consider for smart garments. The next step would be to assess the performance of the textile sensor

matrix in the new iteration of trousers. In addition to the feasibility of the time-consuming making of

textile wires, a factor to examine here is, whether the technique of thermal bonding when connecting

the different layers of conductive and non-conductive fabric compromises the measurement capability

by restricting the natural properties of the stretch fabrics. A risk this design presents in comparison

to the first prototype is the over-stretching of the bonding material, for example through use over

time, resulting in detachment of conductive fabric stripes from their base fabric. For prototype 1,

all conductive stripes were machine stitched onto their base fabric, listed amongst other compared

factors in Table 7.2. Although the bonding process is more time-efficient, it is less robust and needs

to be further tested for this design. In other designs, e.g. in Liang et al. (2019a) and Freire et al.

(2018), this technique has provided promising results for textile stretch sensors made from similar

conductive fabrics.

2Manufactured and purchasable by Statex, Karl Grimm, Plug & Wear, or Barts & Francis, amongst others
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Suggestions for Further Improvement

For further prototypes that could not be implemented int the scope of this research, additional

technical improvements for embedding sensors in a textile surface are proposed and sampled, building

on the findings from the evaluation of the first two, as well as on other recent developments in the field

of smart textiles, for example suggested by Satomi and Perner-Wilson (2007); Posch and Fitzpatrick

(2018); Freire et al. (2018, 2017). As securely routing the electrical connections with less bulk

improves wearability and robustness of the trousers, for a higher tier prototype, the electrical ‘wires’

can be integrated directly to the fabric of the garment to further improve performance. Instead

of manually insulating them with paracord and creating separate strands of wires that risk being

tangled, these elements of a circuitry can be integrated into the creation of a textile surface, using

methods like multi-layered weaving or knitting. Figure 7.6 shows a developed swatch of a knitted

fabric seamlessly creating insulating tubes (rows) which can hold conductive yarn. By knitting

tubular elements into the fabric, the copper yarn is insulated without further post-manufacturing

processes, as used in the earlier prototypes described here. This suggestion of a third iteration has

not been developed into a fully functioning garment, but serves as a proof of concept for a technique

that could enable even more concealed technologies. The technique used here is an adaptation of a

knit structure named Milano Rib (see e.g. Greinke et al. (2021b).

Figure 7.6: Exploration of integrated wiring system in a knitted surface.

Depending on the use case and pattern design, an integrated circuit with all its components could

be produced with this technique, varying in trouser design, style, pattern construction and also matrix

design. Industrial, computerised knitting machines are able to manufacture these on large scale, and

with metal yarns like the ones used here, or also other textile techniques like polymerized dying

(Honnet et al., 2020). Adding developments of integrating sensors and other electronic components

into the fibre core through nanotechnology (Dias, 2015) could help to eradicate all rigid components

of a circuit. Additionally, pattern construction can be used to integrate these components in desired

ways, appropriate for different use cases (Kettley et al., 2010).

Possibilities and requirements of component integration are, lastly, determined by the way a piece

of clothing is used and how it is worn. For example, sensing systems integrated in a tailored suit

don’t have the same washability requirements, care instructions or abrasion appearances as when

integrated in casual wear stretch trousers, and could therefore pose an advantage when using fragile

electronics (Stewart, 2016; Greinke et al., 2021a). Additionally, ‘second layer’ or outerwear garments

are often lined, which offers another possibility to conceal electronic components altogether, other

than single layered shirts (e.g. Harms et al. (2008)). This may also be an advantage if dry cleaning
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is required, so that chemicals don’t come in direct contact with sensors and circuitry.

7.3 Exploratory Design Adaptations

The concept of embedding soft, flexible sensors in casual wear trousers like the ones I propose prompts

ideas on further use cases of such garments, and also on variations of the design of the trousers and

of the sensor matrix. To conclude the report and documentation of the various studies of the smart

trousers, I present a selection of additional designs and engineering solutions that aim to expand

the spectrum of how textile sensors in trousers can be envisioned in the future. The aspects these

additional design explorations concentrate on are the textile sensor matrix, it’s arrangement and

integration to trousers; the extension of sensor types; and the consideration of trousers as a product

of our everyday wardrobe. The following suggestions are based on the experience of the handling and

reception of the trousers throughout the conducted experiments, and are motivated by other current

developments in smart textiles and clothing as well as the gaps deriving from them.

7.3.1 Matrices Refined

Matrices have been a desirable sensor network design in the field of e-textiles for some years as a

potentially high resolution sensing surface, and have been envisioned in various designs, materials

and techniques, for example by Perner-Wilson and Satomi (2019a,b), Donneaud and Strohmeier

(2017b,a), Romano (2019), Roh et al. (2011), Zhou et al. (2014), and Strohmeier et al. (2019).

Customised Mapping

The sensor matrix presented in prototype 1 and 2 is designed so that the data points are relatively

equally distributed across the upper legs, with a slightly higher concentration (60 data points) on the

front thigh than on the back thigh (40 data points). This was determined by observations of touch

interactions and variations of sitting postures around the leg area. However, also other distributions

and placements of these elements of a matrix are possible. Figure 7.7a and 7.7c present preliminary

ideas of such variations utilising the rows and columns of the matrix as design aspects in different

ways contributing to the aesthetics of a sensing garment. All elements of such sensor networks, the

different fabrics, yarns, the components of the sensors - rows, columns, can be revealed or concealed

- can be placed on the top side of the garment or in the lining. Combinations and layering of the

revealed and hidden rows and columns can be used to create check patterns, as suggested in sketches

in Figure 7.7c, as well as pinstripe like patterns, often found in formal wear, e.g. tailored suits. The

exact areas of the body that are to be measured can be defined on a fine grained basis, as noted in

previous chapters with a factor analysis (Chapter 6) or yielding sensor importance with a Random

Forest classifier (Chapter 5). The exact number of sensors needed can be increased or decreased in

my matrix design, following the results of the previous analyses. Detecting speakers may require

a different number of sensors than detecting listeners or laughter. Additionally, the buttocks were

found to be important sensing areas, but have used fewer sensors in this area compared to the front

top thigh. Sensing postural shifts may be possible with sensors on the backside of trousers alone.

Vice versa, if only hand touch on the legs were to be captured, sensors on the top inner leg may be

sufficient.
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Figure 7.7: Different matrix designs: a) matrices adapted to concentrate around certain leg areas
on the same fit and pattern of the trousers as prototypes 1 & 2 ; b) alternative design to a matrix
design, resulting in smaller sensor points and reduced use of conductive materials; c) variations of
different trouser designs and styles incorporating sensor matrices.

Material Integration

The number of materials used to manufacture the trousers can be varied, too. While in this work’s

smart trousers, 1cm wide stripes of highly conductive fabric were cut to create 1cm2 sensors, the size

of the data points can be decreased to the size of a stitch, as indicated in Figure 7.7b and shown

by Perner-Wilson and Satomi (2019c). This also leads to a more efficient and cost-effective use of

the resistive layer between the conductive rows and columns, that can be cut as stripes (see also

Figure 7.7b and run alongside one direction of the conductive stripes. Moreover, the trousers cover

the entire upper leg, having mapped sensors from the front inner thigh to the backside, and from

the knees to the crotch and upper buttocks area. With more efficient use of materials, the rows and

columns of the sensor matrix can be reduced, or the material that is not forming a data point of the

matrix, can be cut to be reduced in width. Optimisations in regards to material waste are important

for working towards a final product able to be scaled for manufacturing.

7.3.2 Beyond Matrices

An overall accompanying question when designing sensor networks in trousers has been, what designs

other than matrices could be useful and interesting to explore. While matrices have great advantages

in providing a high resolution of data points, some applications and scenarios may not require this

level of complexity and would allow for a reduced, simplified, as well as more specifically located

sensor design. Moreover, additional modalities of sensing may be required for different applications.

We have already seen trousers with integrated EMG sensors (Liu et al., 2019) or ECG sensors to

measure muscle activity, for example in running exercises (Ribas Manero et al., 2016). Also haptic

feedback is possible to deploy in trousers, for example in yoga pants3. But even focusing on the

piezoresistive sensing networks used in my prototypes, there is a large variety in leg signals that can

be picked up and accompanying placements of pressure and stretch sensors, as indicated in Figure

7.8. Instead of matrices, patches, stripes or larger pattern areas can be used as sensors, capturing

specific touch or pressure points or leg movement. The sketches in Figure 7.8a-f show examples of

combinations of such, and are all based on observations of leg movement and touch interactions in

recorded conversations. The pattern cutting and fit of the trousers depicted there resembles the

3https://www.wearablex.com
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Figure 7.8: A variation of sensor placements in ‘smart’ trousers as constructed for prototype 1 and
2. The areas coloured in red represent pressure sensor suggestions, while the blue coloured areas
suggest stretch sensing.

prototypes introduced earlier, but is also based on research of sportswear, e.g. leggings used for

running.

Varying in sensor placement, size and type can further specify the exact postures we can capture

with different designs. Stretch sensors on knee patches, such as drafted in Figure 7.8 a and d can

focus on measuring leg postures like stretching out the lower legs and feet or tucking them back,

behind a chair. The red sensing areas on the upper thigh in the same Figure present pressure sensors

that can detect hand touch, either on a specific point (Figure 7.8a or along and within a determined

area (Figure 7.8 c and e). These additional sensing suggestions could also be combined with the

existing prototype of a pressure sensor matrix, providing additional information and cross-validation

amongst sensors with the same principle of piezoresistive sensing.

7.3.3 Alternative Design Pathways

While optimisation methods affect the components of sensor matrices, matrix designs are not limiting

on the overall design of the trousers they are to be embedded in. In this work, stretch trousers close

to the body have been introduced, imagining legging like trouser styles or also stretch, skinny jeans.

A question that emerges is, how close to the skin do sensing trousers really have to be in order to

still capture bodily actions accurately. Or, in other words, can body movement also be captured

with loose garments, such as jogging or sweat pants? Some works have explored this question with

unbuttoned jackets (Bello et al., 2021), or other upper body garments (Harms et al., 2008).

The objective to move towards more ‘casual’ fitting trousers is also based in potential use cases for

such. Unbiased, unstaged, and natural social and postural behaviour is mostly performed in familiar

and private environments, for example at home. The nature of interactions that we encounter at

home are different to the ones in professional or more formal environments (Vinciarelli et al., 2008).

This affects the expressiveness, and potentially other parameters of nonverbal behaviour that we aim

to capture, too. But even when not in social exchange with other humans, sensing body movement
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Figure 7.9: Variations of sensing trouser styles, sensor matrices suggested on more casual, loose fitted
jogging pants rather than legging slim fit designs.

at home can be relevant. Simple activity recognition or presence sensing in smart environments could

be done less intrusively with clothing people naturally wear in those environments, than deploying

gadget like devices on or off the body. Also in the fast evolving research in gaming technologies,

‘smart casual pants’ could be used for control and for device interaction mechanisms, and also sensing

postures of gamers for both ergonomic and game-play purposes.

Figure 7.9 sketches out initial design variations of loosely cut trousers with consideration for

integrated sensor matrices and additional sensor patches on the knee (as in Figure 7.9a, unintrusive

placements of the microcontroller and other electronic hardware (Figure 7.9b, and suggestions for

pattern constructions of sensing areas to spare the side parts but include the lower legs in Figure

7.9c. These sketches also address the concern raised above in regards of material efficiency, sparing

out the side area of the legs and focusing on the precise sensing areas only.

7.4 Design for Human Interaction: Clothes and Their Role

in Wearable Technology

7.4.1 On the Role of Pattern Cutting

The Relationship Between (Smart) Textiles and Pattern Cutting

The evolution of smart textiles can be compared to the evolution of textiles in general, their history,

cultural and societal status and technological enhancement. This includes the processing of textiles,

too. Since their early developments, textiles have played an important role in the history of human

culture. Methods to manufacture fabric surfaces, from spinning yarn to mechanical knitting tech-

niques, have been developed not long after the first stone tools were invented and before the time
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when agriculture began to spread. This dates back approximately 30,000 years (Hirst, 2019). These

felted, knitted and woven surfaces had a functional purpose, as well as a cultural and social meaning.

Felts, probably the first textiles in history, were traditionally given less worth than weaves, which, in

comparison, require a thread to be spun prior to creating the textile surface. The latter were treated

(and traded) as valuable goods. So it was not until the 11th Century that the idea of cutting into

such preciously woven fabric became popular (Koch-Mertens, 2000a). Only then, the craft (or art,

as it is often referred to, see e.g. Sprenger (2009)) of pattern cutting and tailoring was developed,

but quickly led to extravagant, close to the body fashions, peaking with tights-like trousers or very

narrow sleeves in the Medieval ages (in the Gothic period). This new possibility to emphasise body

shapes instead of draping around them had great impact on the fashions of the time, even so that

at one point, finely cut, detachable sleeves were given to women by their admirers the same way in

more recent centuries flowers have been (Koch-Mertens, 2000a).

Jumping ca. 600 years from the Middle Ages into the future marks the era when textiles, and in

particular clothing was first considered as an appropriate material for on-body sensing. The discovery

of this material property and the possible textile manipulation (e.g. through conductive coating)

fits well into an age in which ubiquitous computing has been established and seems to become

an increasing fundamental part of an ambient, ‘smart’ environment (compare e.g. Kettley et al.

(2010)). In recent years, we have seen many examples of how electronic textiles can be integrated in

clothing for various applications (Kettley, 2016; Seymour, 2019). For example, being able to capture

postures with upper body garments (Dunne et al., 2006a) has proven useful for patient monitoring,

rehabilitation (Wang et al., 2015), affect detection, but also in playful approaches for performance

art (Greinke et al., 2021a) or as interfaces for virtual games. Developments of smart garments can

already be found in commercially available products, too (Poupyrev et al., 2016; Gonçalves et al.,

2018; Fernández-Caramés and Fraga-Lamas, 2018). Examples like Poupyrev et al. (2016), Greinke

et al. (2021a), Griffin and Dunne (2016), Capineri (2014), and the documented works of Perner-

Wilson and Buechley (2010), Buechley and Perner-Wilson (2012), Kettley et al. (2010), or Posch and

Fitzpatrick (2018), demonstrate how each step of the manufacturing process of a garment, including

the 2D layout of fabric patterns, can be taken into account when aiming to integrate electronic

components in a “tailor-friendly” way.

Trouser Patterns

In this work, too, pattern cutting and the consideration of textile specific knowledge forms a substan-

tial part in the development of a well performing wearable sensing system, as indicated in previous

chapters. This concerns the optimisation of circuitry embedding, as well as sensor placements and

the construction of the garment in consideration of the material choices, as different materials ac-

commodate different fits and patterns, indicating also different use cases. This applies to different

garment types, as well, since constructing a lower body garment is different from constructing an

upper body garment. Leg movement is distinct from torso movement and therefore has different

requirements on robustness of sensors, and therefore also to material properties. It encounters higher

pressure, strain or abrasion in certain areas, through, for example, sitting down or walking. The

development of smart garments for lower body data collection must account for these aspects.

In the trousers, the tube like panels on the inner leg conceal the wiring - something that would

not have been possible if not taken into account from an early manufacturing stage. This contrasts

also work of textile sensing in which circuitry and sensors are deployed on a finished garment that
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is purchased and hand-manipulated in a post-production stage to house all electronics, see e.g.

Ribas Manero et al. (2016); Liu et al. (2019), or Cha et al. (2018). The integration of the sensor

matrix followed the seam lines and pattern pieces of the trousers, so that precise locating of sensors

can be achieved. Another advantage of tailor made wearable sensors is the saving of materials.

Knowing where and how conductive materials are required on the body and considering that when

manufacturing the garment works towards zero (or as little as possible) waste of material, see Figure

7.7b.

In conclusion, acknowledging and integrating pattern cutting into the design of e-textiles can lead

to new applications, processes and optimised designs that are more cost efficient and more pleasant

to wear. This is important for a more comprehensively interdisciplinary approach, combining the

‘art’ of bespoke tailoring, couture, and textile craftsmanship (Kettley et al., 2010). In some areas of

the fashion industry, we find ‘fully fashioned’ knits and weaves (pattern blocks knitted in shape) for

the purpose of zero-waste material, as well as custom fit sized pieces. Bringing these disciplines and

technological developments, that are traditionally related, together could transform the practices of

smart clothing research. Finally, the historical and cultural resemblance between the appearance of

textiles and pattern cutting, with the process of pattern making emerging much later than its textile

relative is worth discussing and investigating further, both in its traditional use and for human

centred computing. With the idea that the material itself affects the manufacturing process, and

also determines its applications (Schmelzer-Ziringer, 2015), future tasks will include bringing these

aspects together for a cohesive, and optimised, functioning product.

7.4.2 Dressing Up for Conversation: Clothing in Interaction

Physical Allowances of Clothing

The fit and form of garments also influences the social interactions we have, not least through the

practices of pattern cutting. While clothing itself is commonly described as an extension of our

cultural and bodily self, and serves as a tool of expression, it also determines our interactions on

a more fundamental level. The clothes we wear, their materials, textile structures, shapes and

construction techniques allow or restrict certain body movement, make the performance of postures

easier or harder. Clothing in this sense not only limits and enables movement, but also directs it

(Ekman and Friesen, 1969a; Harrigan and Rosenthal, 1983; Koch-Mertens, 2000a,b; Candy, 2005,

2007).

Throughout history, the fashions of dressing have contributed to these regulations and were

sometimes intentionally imposed to their wearers. Fashion has always been carefully designed for

specific actions or inactions, e.g. ‘unpractical’, decorative domestic dresses of 19th Century compared

to the first corset free dresses in the early 20th Century (Koch-Mertens, 2000b). Worn in different

scenarios, these two examples very clearly and obviously predetermined the types of movement a

wearer’s body can carry out in them. It goes as far as not being able to sit down or lift a leg when

wearing specific pieces of garments. In some cases, this not only affects the wearer, but also interaction

partners, for example being restricted in how close they are able to stand next to each other by the

sheer circumference of a 18th Century French court dress, or also by spikey leather jackets and razor

blades in lapels established in the 1980s Punk subculture (Schmelzer-Ziringer, 2015). In general, the

use of different materials and clothing styles is acknowledged to “demand a different gait, posture

and demeanour” (Sweetman, 2001; Candy, 2005), and followingly can affect our nonverbal behaviour

(Candy, 2007).
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Clothing Eliciting Social Cues

We can therefore ask, how much our style of dressing affects the bodily social signals we transmit.

How much does our clothing physically interact with our body? What consequences does 21st Century

(western) clothing has on our ‘freedom of movement’ and ability to interact with others? For example,

do skinny jeans enable different social cues than loosely cut suit trousers? Are the legging-like smart

trousers of this research indirectly determining the participants’ postural behaviours in a different

manner than jogging pants or non-elastic wool or denim trousers would? These questions are less

about the communicative component of clothing as a tool for personal and cultural expression, and

more about the physical formations and coordination our wardrobe allows our body to perform,

in regards to materials as well as pattern construction. Questions that emerge from the conducted

research and that this chapter only addresses briefly and in part speculatively. Nevertheless, questions

in relation to what these explorations imply for future design pathways.

Arguably, the rigid components used in the prototypes of the sensing trousers can cause irritation

and hesitation in how movements are performed. Although trying to minimise such disruption by

placing the circuit board and the battery in the hem of the trousers, participants’ consciousness of

their presence might have influenced their postural behaviour. For the second prototype, no rigid

components were attached when tested, so conclusions can only be drawn from the participants’

reactions in the study reported in Chapter 5. Assuming that it is possible to overcome issues of bulky,

rigid electronic components by new technologies and smaller devices like batteries or microcontrollers,

there are still elements of the trousers that can be influential in determining wearers’ movements. The

fit close to the body is not comfortable for all people, and making body parts visible to interaction

partners can cause discomfort, as also indicated by Harrigan and Rosenthal (1983). This issue can

be addressed by suggesting second layer trousers, or exploring looser fits for trousers incorporating

the sensor layer of fabrics as it done for upper body garments (Bello et al., 2021; Hardy et al., 2019;

Harms et al., 2008).

Fashion and Conversation Analysis

Despite the ability of clothing to partake in communication in this sense, forming another layer of

nonverbal signals, it is only marginally mentioned in social and behavioural studies, or in conversation

analysis. Ekman and Friesen (1969a), for example, acknowledge the restriction of movement induced

by clothing, and repeatedly talk of the mini skirt as an item that prevents marked movements, but

also mention socks and how they omit the view on toes and therefore the restriction on executing

bodily social cues with toes. Also Harrigan and Rosenthal (1983) describe what observees of dyadic

interactions are wearing for the purpose of discussing visibility of certain body parts. They add, how-

ever, the function of clothing not only to communicate and express, but also to conceal information,

e.g. on gender. This argument of the visibility of body parts and the following instrumentalisation

of them is linked to the mini skirt as well. While it restricts marked leg postures, such as spreading

legs, it makes the legs visible differently from trousers (Ekman and Friesen, 1969a). The skirt being

a posture imposing piece of clothing is also acknowledged by Noroozi et al. (2021), who discuss these

observations in relation to gender specific postures and movements.

Interestingly, Ekman and Friesen (1969a) wrote about the mini skirt when it was at its peak of

fashion popularity in Europe (Koch-Mertens, 2000b), which raises yet another question as to how the

cycles and seasons of fashion, as well as the manifestation of certain fashion appearances like the mini

skirt influence social interaction through the lens of postural movement and nonverbal behaviour.
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The prevalence and familiarity of the clothes we wear should provide us with the same possibilities in

regards to interaction. For example, does fashion styles affect overall variation of physical behaviour

and hence non-verbal cues when silhouettes, materials and fits determine, afford or restrict the range

of possibilities for such? These perspectives are rarely taken in literature on fashion theory, e.g.

Barthes (1983, 2006) or Simmel (2003), even though a lot of attention is given to the social role

clothing, and fashion, plays and what power it has in our cultural and societal environment. They

discuss, amongst other aspects, what role fashion has in our society and how it sits between us as an

interface for communication. Therefore, understanding human interaction better would be beneficial

for the design of clothing, and enabling clothing to measure interactional behaviour would also extend

the interactional functions of clothing and enable the development of new products

Open Questions

The relation of fashion, clothing and performed social behaviour sparks questions for the design

processes of smart garments that go beyond the scope of this thesis. For example, how do fashion

designers need to engineer and construct clothing, so that their wearers are all given equal opportuni-

ties to perform and transmit bodily cues? What items designed for which scenarios (e.g. casual wear

versus formal wear) allow for and enable certain movements? In regards to the trousers designed and

tested here, these concerns were taken into account to the degree that there were no differences in

the design and fit of the different models each participant was wearing. All pairs of trousers showed

the same properties, not distinguishing between gender related pattern constructions or size related

restrictions.

7.5 Summary

This chapter serves as an exploratory approach to aspects of design engineering that have emerged

through the developments and tests in previous chapters. Learning from challenges faced and errors

made, the original design was reviewed and improvements are suggested and a new prototype is

tested. These led to further design territories for sensing trousers that can be addressed in the future

and that are touched upon here in a mostly idea-based and speculative discussion. Followingly, areas

crucial to the developments of garments like pattern construction are acknowledged and concluded

in an appeal for a more prominent role of such areas in the field of wearable technology.

Contributions

The contributions that derive from the design developments, and the pilot study documented in this

chapter can be summarised as follows:

• A suggestion for an improved design of smart trousers was presented and tested. This proposed

prototype refines the design pathways for sensing lower body garments.

• The consideration of integrating electronic components in an early design stage, a pre-production

level, is different to many works in posture recognition and affective computing. Accounting

for techniques of embedding circuitry leads to improved design and fit of the wearable system.

• Highlighting and acknowledging the role of pattern cutting and tailoring in smart garment

design.
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The discourse on design aspects started here leaves many open questions this work does not

answer in the scope of this thesis, too. There are limitations to the above claims: Further tests are

needed to verify the findings of this small pilot study on a larger scale. This includes tests with more

participants, as well as in more natural settings than the one presented here, responding to suggested

application areas and putting the trousers “into the wild”.
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Chapter 8

Discussion

Chapter Overview

In this chapter, the results of the previous studies are summarised and discussed, highlighting con-

tributions and limitations of this work. The discussed findings are divided into contributions to

behavioural studies, contributions to the social sensing domain, as well as contributions to the design

of smart clothing and textiles. These core themes determine the structure of the following chapter

when discussing and concluding the work of this thesis.

Here, I revisit the key themes deriving from the presented work in Chapters 3 to 6, its outcomes,

processes and implications, and compare similarities, overlaps, as well as differences of the findings

throughout. I expand on ideas touched upon, identified limitations, and elaborate on remaining

challenges, open questions and potential future implications of this interdisciplinary research.

8.1 Summary of Contributions

The key findings deriving from the developments and evaluations of the chair covers and trousers

divide into contributions to behavioural studies, as well as to the field of textile sensing. In that

order, these findings are summarised as follows:

• “We gather from the buttocks”: Throughout the studies, the lower body, including legs and but-

tocks, emerged as a potentially interesting and significant body part to examine as a transmitter

of social signals. The buttocks showed crucial when distinguishing speakers from listeners, as

well as when picking up laughter and postural shifts. The attention this large muscle receives

in this work extends the knowledge about lower body movement and social signals, that is, in

comparison to our knowledge about upper body signals, yet limited.

• The above indicates as well, that sensors on the lower body are able to pick up upper body

movement, and have also shown that local peaks in pressure distribution can correlate with fine

grained postural shifts. The sensors in the trousers allowed an in-depth exploration of a variety

of nonverbal cues, examining listener movements and postural shifts in relation to different

conversational states. Part of these explorations exposed the individual differences of postural

patterns.

• In addition to the many use cases textile sensors have been demonstrated as successful, this

work adds the detection of speakers and listeners through textile pressure sensing. This is
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explored further in the thesis and more fine grained social behaviours and body movements are

measured, contributing to the initially set goal to establish textiles as a suitable modality for

behavioural studies and proposing textiles as a tool to analyse conversation, and more generally,

to measure human interaction. In particular the use of trousers as a wearable sensing system to

assess social behaviour in unstaged face to face conversation has been explored in this research

for the first time.

• I presented a new design of sensing ‘smart’ trousers, developing existing textile pressure sensing

matrices further by adapting them to trouser patterns and mapping them onto legs following

patterns of touch interactions and pressure applications in sitting postures. The design engi-

neering of the trousers promotes the role of tailoring techniques when developing smart gar-

ments and shows how existing techniques can be combined for fabrication improvements and

the integration of a wearable circuitry. The consideration of textile and garment manufacturing

techniques for the deployment of body worn sensors is different to many existing studies on

posture recognition and in nonverbal behavioural studies.

• With the explorations into simple machine learning techniques, I furthermore contribute to the

discussion of suitable data analysis methods for smart clothing and body-worn, textile sensing

systems. With the classification models used here, it was possible to determine smart textiles

as reliable sensors to capture body postures. Further analysis and feature engineering showed

that wearable sensing in trousers achieve comparable results to static sensing systems.

• Lastly, the presented data set further adds to a sparse corpus of non-acted data sets for nonver-

bal behavioural studies involving full body movement, and its results show that such natural

settings can yield comparable accuracies with acted data sets. The design and experimental

evaluation of the chair cover contributes to a large corpus of pressure sensors in chairs to detect

sitting postures by adding the discrimination of speakers and listeners, while the validation of

the trouser design through the sitting posture study shows that a wearable pressure sensing

network can detect a large variety of sitting postures with as good results as chairs.

The studies conducted in this research have opened new avenues for smart clothing and textiles

to explore, extending the yet dominant use of smart textiles in settings where interpersonal, social

relationships do not play a lead role. Vice versa, the textile sensors present an unexplored modality

in behavioural studies and affective computing, able to capture details of postural movement that

have been left unattended by other modalities. Altogether, this work promotes textiles as a suitable

measurement for automatic detection of nonverbal signals, providing unobtrusiveness through their

material and structural properties.

8.2 Embodying Interaction

8.2.1 Additional Conversational Cues

The questions around detecting nonverbal cues the lower body provides, focused on three active lis-

tener signals: backchannels, nods, and laughter. However, the variety of movements so far categorised

as ‘incidental listening in Chapter 5 can be split into further sub-classes like fidgeting or shoulder

shrugging, which might improve classification accuracy, in particular in regards to the 3 and 5 class

discrimination I reported on. Such additional movements include overt, large scale shifts as well as
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micro-movements that are difficult to capture with the naked eye. This suggestion is supported by

the findings in Chapter 6’s peak detection, showing that local peaks of pressure change does not

always correlate with the most dominant conversational roles, and can, for example, be elicited by

addressees rather than speakers. Classifications could also be modelled with some of the behavioural

features identified in Chapter 6, analysing body movement in regards to type, direction and body

part. However, these followingly smaller datasets could also create less accurate and therefore less

reliable results, e.g. distorted through outliers and large individual variation.

In settings like the ones used for the studies - seated conversations with the presence of a table oc-

cluding the sight on legs and feet movement, events like leg bouncing or tip-toeing often go unnoticed,

but can be tracked. It was also seen that the chairs and trousers are able to pick up movements that

are mainly induced by the upper body. These appear to translate to the seating surface so that pres-

sure sensors on the lower body can detect them, too, as the results of the classifications for laughter

and nodding suggest - even if that holds true mainly for individual data sets. Also the observational

peak detection findings in Chapter 6 indicate that the lower body, in particular the area around

the buttocks, picks up upper body postures and behavioural cues. This suggests a pressure sensing

system can be used to explore even more fine grained movements and conversational states than the

ones addressed in this work. Brought to an extreme, it could provoke questions like: Can trousers

detect the raising of an eyebrow? Can our clothes identify a tongue-in-cheek moment? Based on

the findings in Chapter 5 and 6, additional postural dynamics and behavioural correlations could

be explored. Here, the basic conversational roles and cross-participant relations were investigated:

speakers and listeners, and primary addressees and listeners who are not addressed and consequently

more passive. Although the nonparametric analysis in Chapter 6 yields not many significant cor-

relations between specific behaviours and body movements, and Additionally, it seems some of the

annotated movements are not intentional, audience designed signals that occur in response to the

situation, some tending to occur out of sight - arguably because people are sensitive to the way they

might distract speakers.

8.2.2 Talking Through Your Arse

Whether looking at interpersonal or individual cues, my finding across Chapters 3, 5, 6 evaluating

the textile sensor performance in spontaneous conversation, was that the buttocks are potentially

useful areas to measure social interaction from. The sensor importance analysis in Chapter 5, as well

as the factor analysis in Chapter 6 draws attention to the buttocks as a sensing area for social signals

that has so far been left unattended, and confirms also the findings from Chapter 3, where listeners

and speakers could be distinguished from the pressure applied on the buttocks.

The buttocks contain one of the largest muscles in the body (the gluteus maximus) making

pressure changes easy to detect. They provide the principle support surface for the body when

seated. This makes them especially useful for pressure sensing of movements by seated participants.

Moreover, buttocks as the centre of the body, the link between torso and legs, pose new research

questions for the studies of nonverbal behaviours. Could it be, that this apparently very active part

of and centre of our body can capture both, upper and lower body movement, presenting the surface

on a seat where the social cues of the different body parts meet?

Revisiting the results of the chairs and trousers, we can see that distinctions between listeners

and speakers, as well as between different active listener behaviours can be made with sensors on the

buttocks as dominant sensing areas. This appears to work equally well with coarse grained sensor
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patches on the seat’s surface and the fine grained resolution of data points of a sensor matrix in

trousers. This work is the first to mention this body part as interactionally and socially relevant.1

Drawing attention to this, from significant embodied behaviour previously excluded body part con-

tributes to all studies examining full body posture and movement and challenges the assumption that

the upper body is the most informative part for social signals.

This finding emerged as a theme across all studies and sensing design. On the chair, the right but-

tock appeared particularly important for the detection of speakers and backchannels, while laughter

seems to be transmitted more from the centre of the body (Chapter 3). Also the analysis in Chapter

5 extracted the sensing areas on the upper buttocks as important when distinguishing between dif-

ferent behaviours. There, the buttocks appeared relevant for all identified behaviours and both, in

the community model and for individual participants. These results are backed up with the factor

analysis done in Chapter 6, that suggests the buttocks as a sensing area accounting for most of the

variance when identifying posture shifts in relation to conversational states.

If simple pressure sensors on the seat surface can detect conversational states, how much else can

we extract from them? What other interactionally relevant information may buttocks alone hold? For

example, it remains possible that there are distinct movements of the buttock muscles that provide

unique signals - e.g. clenching when anxious, however the data collected here doesn’t provide any

direct support for this. The work here focuses on few basic conversational states, while postural cues

indicating affective states have not been studied. So, while trousers work well for detecting some

behaviours, they may not work for others. For example, they may not be capable of replacing face

recognition technology extracting fine grained features in the face.

8.2.3 Postural Asymmetry

Another interesting finding is the seemingly asymmetric postural behaviour in social signals. Across

all studies, I have observed that sensors and sensor clusters that are of particular importance when dis-

tinguishing between conversational behaviours are not distributed equally and symmetrically around

both legs and buttocks. And although buttocks on both sides of the body have been discussed as

important areas to capture movement from, I found differences as to which ‘bum cheek’ appeared

more relevant than the other for certain behaviours. For the chair covers, talking and laughing could

be detected best with the sensors on the right half of the buttocks (together with the sensors under-

neath the thighs), while backchanneling is associated with the left body half in general. Asymmetric

appearance emerged again in Chapter 6 in the factor analysis. Indications of this asymmetry could

also be seen when examining the sensor importance in Chapter 5, where the sensors most relevant

for discriminating the 2 - 5 class scenario were distributed unequally across the two legs. This was

shown for community models, for which it could be argued that it results from a small data set of

very diverse individuals. Examining individuals’ feature importance for all classes2, however, implies

a slightly asymmetric behaviour for each participant, too.

What does this asymmetry mean? What can this finding tell us about embodied social behaviour?

One suggestion that was briefly mentioned in Chapter 6 was the potential correlation with right- or

lefthandedness. In that sense, we could further ask, whether it is possible to determine something

like a ‘footedness’ or ‘legness’ that could be described as a more active behaviour, or more movement

with one half of the body compared to the other. here is evidence for differences in leg dominance

1Only in British comedy, the importance of “gathering from the buttocks” has been expressed in relation to acting
classes. See reference in Chapter 3, Fry & Laurie.

2See additional visualisations of those in Appendix C.
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similar to hand asymmerties. Both are linked to lateralisation (Sadeghi et al., 2000). So in addition

to having a dominant hand with which we gesture and act more than with the other, do we also have

a dominant leg or lower body half with which we execute nonverbal cues more than with the other?

It is unlikely this asymmetry is due to the seating position of participants, since they were arranged

in a circle. Another, perhaps more plausible explanation for this asymmetry could be the body

movement of participants primarily into a certain direction, for example leaning towards a recipient

or the speaker, or performing postural mimicry with certain conversation partners. This again could

be determined by the spatial arrangement people find themselves in. With further analysis, it may be

possible to determine the social structure from looking at the pressure distribution of the two body

halfs. For example, information about where the speaker was sitting may be extracted by looking at

the pressure changes on thighs and buttocks of a listener? By knowing towards which direction an

observee leans towards, what can we tell about other conversation partners? Exploring these questions

would build on, and possibly expand on the work of Kendon (1970), Schegloff (1998) defining and

understanding the interactional space we build between each other during social encounters. There

is, however, also the possibility that this seemingly asymmetric behaviour is due to the dynamics of

posture shifts as such, indicating body movement, or the individual variation that the results need to

account for. The peak detection in Chapter 6 takes movement into account, while in Chapter 5 and

3, instantaneous data was examined. The asymmetric results may also be an indication of posture

shifts and other postural movement that was not taken into account here.

8.3 Notes on Classification Features

8.3.1 Individual Variation

A finding that seemed to play an important part in the achieved results was the differences between in-

dividuals. This was shown in particular through the poor classification results in the “leave-one-out”

scenario, excluding the data of one participant in the training set and testing it on them. However,

when all participants were included in both, training and test sets, the percentage of correct classi-

fications is reasonably high (much better than chance) for the identified behaviours. This indicates

that while there seem to be large overlaps in general in the ways we embody certain conversational

states, the models do not hold well when evaluating an individual against the remaining community.

The details of how we perform nonverbal behaviours and movement is subject to large individual

variation. The implications of individual variation have already been acknowledged in the first study,

and confirms notes in related literature (Scheflen, 1973b; Ekman, 1999). Individuals develop their

own behavioural patterns and establish mutual conventions with their interaction partner over the

course of an encounter. This also depends on the general relationship participants maintain with each

other, which can determine the movements, the space between them, and also the markedness of sig-

nals (Vinciarelli et al., 2008). This could mean that the results are limited to the specific conditions

under which the conversations took place. Additional stages of data processing and analysis could

look into these correlations and test, how the postural shifts we perform vary in different groupings,

e.g. with more participants, or with certain relations to other participants.

In the case of the data processed here, it can be argued that one obvious parameter that might

help to improve these performances is a larger data set. The sensor data evaluated here stems from

27 participants on chairs, and 20 trouser wearing people. For the explorations in Chapter 6, an even

smaller subset of participants was examined. A larger group of participants to test on would impact
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the F-Measure results, as well as the patterns of sensor importance for both group and individual

models. Similarly, more data from the same participant would provide more clarification on the here

indicated unique but systematic motion signatures we exhibit in interaction.

The Implications of Feature Importance

The visualisation of the feature importance yields groups of sensors that are more significant than

others to discriminate target classes, and that spark discussions as to how many sensors are needed

to detect behavioural cues. Future iterations of trousers can be designed to address this aspect of

further feature reduction. With a large variety of more and less important features across individuals,

this may result in different densities of sensors needed to detect behaviours, depending on that

individual’s training data set. In the context of bespoke tailored smart clothing, this could further

mean that sensor placement in addition to sensor amount can be individually determined to track

body movement accurately for one person only, allowing for ‘bespoke identification’ applications.

Trousers as well as chairs may be able to recognise their wearer or occupier by their individual

movement patterns.

Aiming at a community level classification, design engineering parameters like the resolution of

the recording frequency, the robustness of hard-soft connections, and additional classifiers like time

sensitive approaches could minimise the large individual variations, too. Nevertheless, the data set of

a wider community, or the test of an individual against a community model may not be desired. But

where could these results be useful? Could a weak performance on a withheld community level and

a good performance on an individual level unveil an advantage for a potential application of smart

trousers? I have briefly touched on the idea of trousers identifying their wearers in Chapter 5, for

which a data set of a community is not needed. If the trousers perform reliably in detecting their

wearer (or a chair its occupant), they could be just as reliable in detecting a stranger.

8.3.2 Limitations on Classification Methods

The success of identifying embodied social behaviours very much depends on the parameters of the

data collection. In Chapters 3 - 5, a limited amount of conversational states and behavioural cues was

set out to be distinguished between. The data analysis approach used here required predetermined

categories, or classes. It was only in Chapter 6 that I expanded on it and created a more fine grained

annotation scheme, which derived from a data driven exploration to identify moments of big changes

in pressure and examined their correlation with conversational behaviours and events.

Pathways to Unsupervised Methods

The factor analysis, as well as the sensor importance drawn from the Random Forest classifier revealed

patterns of movement characteristic for different conversational behaviours, and serves a starting

point for further explorations towards data driven feature engineering. The peak detection analysis

highlights the potential significance of peaks in posture movements that have received relatively

little attention in the literature. The peak detection showed that these movements can be overt

postural changes, as well as small and sudden shifts of nonverbal behaviour. While in this thesis,

the majority of data analysis relies on a supervised take on the data set, the explorations in Chapter

6 revealed it would be interesting to explore unsupervised methods further, too. Especially when

having sensors so close to the body, able to pick up micromovements and brief touch points between

different body parts, new patterns of postural shifts and nonverbal signals could be detected that are
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not previously identified or annotated for. This could be achieved with approaches of clustering, as

well as a Principal Component Analysis (PCA) or Linear Discriminative Analysis(LDA), which are

briefly mentioned in Chapter 5. These methods are not only useful to detect patterns beyond the

predetermined classes, but also to reduce the amount of features used to detect these classes. Similar

to the factor analysis, these approaches can help to understand the classification process better and

also visualise potential sensor correlations.

Dynamic Features

This thesis mostly focuses on classifications based on instantaneous samples of data, and does not

included time sensitive approaches. However, when examining moments of bodily movement and

dynamic posture shifts, further experimentation with time series analyses may improve the perfor-

mance of the models. For the peak detection, a rolling window was used to segment the sensor data

and identify local major changes of pressure. There are other techniques that could be used when

preparing the data for classification models, for example applying Fourier Transformations on the

sensor data. This step happens in the pre-processing stage of the data analysis, providing different

variations to generate a continuous view on the sensor data and accounting for changes over time,

but also when classifying the processed data, different methods may offer different results. Other po-

tential methods that account for the parameter of time more are Conditional Random Fields (CRF)

or sequence analysis (LSTM).

Imbalanced Data Sets

In addition to these suggestions that may improve the results of the classifiers, the size of the data set

overall, as well as the variations in size of the different subsets of data could affect the performance of

the models. I have accounted for imbalanced data sets in Chapter 5 and 6 by modifying the weighting

of the classifier and by using analysis approaches that account for individual variation in small data

sets better. Nevertheless, larger data sets would help to clarify the findings. This could be achieved

by collecting more data of more people, which may yield better results in community models as

well as feature reductions for sensor groups. It could, however, be achieved by collecting more data

of the same participants as well. Accounting for the individual variation discussed above, a larger

data set of the same participant would provide even higher accuracies in identifying individuals

and detecting more subtle changes of movements. All approaches to balance data sets, however,

may also distort the proportions of natural occurrences of the annotated behaviours. In unstaged,

spontaneous interaction, different behaviours create different data sizes because they occur less often.

For applications investigating natural face-to-face conversation in everyday environments, the data

sets created to train classification algorithms would be naturally imbalanced. For example, speaking

forms a much larger data set than backchanneling simply because of the duration of the two events.

8.4 Tailoring Smart Textiles

8.4.1 Implications for Technical Refinements

Reviewing the sensor importance and factor analysis in Chapters 5 and 6, it is obvious that the high

number of sensors integrated in the trousers’ matrix may not be necessary for further iterations.

This concerns the overall resolution of sensors, but also the placement of sensors across the thighs
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and buttocks. The findings show that the inner thigh, and the upper buttocks are more relevant

in detecting nonverbal cues than the side of the legs. This derived from the series of observations

and from inspecting the feature importance for the classified behaviours in Chapter 5: speaking,

laughing, backchanneling, and nodding. It holds true for most participants and only varies in the

exact sensor which yielded more or less significant in individuals. It is possible to design trousers that

would embed a high resolution sensor matrix, but could activate specific sensors or sensor groups

for detecting specific movements, or to track movements tailored to their wearer. For example, if we

encountered a task in which we are interested to detect the posture of tucking hands between the

thighs, or detecting hands resting on the lap, as done in Chapter 4, only specific sensor groups on the

inner thighs or upper thighs are needed. The intended oversampling helped to identify a wide range

of such postures and their relevant sensing areas that can be refined for future prototype designs.

This approach of determining important sensor placements on the human body by first oversampling

data for test scenarios before extracting relevant features can be adapted to other smart clothing

designs, for example for the upper body, too.

The role and importance of pattern cutting was discussed as part of the process of developing

wearable textile sensing systems in Chapter 7, too. Paired with the findings on sensor importance,

the construction of a smart garment can take these parameters into account by moving seams to

most convenient places, by utilising seam allowances and inner lining to conceal wiring, and to avoid

broken connections in a fabric circuit. Moreover, pattern cutting techniques can accommodate both,

seamlessly integrated sensors as well as modular forms that allow for easy detachment of components,

as is often desired especially for washing purposes and the removing of rigid electronic components,

or replacing batteries.

8.4.2 Open Questions for Future Smart Textiles

Considering the outstanding technical improvements and only marginally mentioned challenges for

higher tier prototypes for smart garments, further questions addressed to the designers and makers

of such soft systems arise. Such questions concern textile sensing on the body and in form of smart

clothing, as well as questions of scalability of the individual resources and processes.

The lab environment the prototypes have been used in did not require to solve some of the common

issues smart garments encounter as a product for a wider market, or in ‘real world’ situations. For

example, I have not investigated how durable the here presented design solutions are in regards

to washing the trousers and chair covers, what other powering possibilities there are to reduce the

amount and size of rigid components (for example solar cells integrated in the textile surface, as in

Smelik et al. (2016)), and how the connection to the microcontroller can be designed in a way that

it does not pose a problem when debugging the sensing system but also when washing the fabrics.

Garments can detect acceleration, tilt, pressure, temperature and probably many other measur-

able elements that a human body provides when in social interaction with others. But could jumpers

ever capture gaze or voice as well, or detect laughter? Where are the limits of sensing garments? And

towards which areas of sensing human behaviour could garments enrich our world? These questions

are not least directed at garment designers, being confronted with potential changes to their work

processes when integrating sensor systems on an industrial levels. How much can aesthetics of gar-

ments vary, how flexible and unrestricted is a clothing designer if, for example, a sensor matrix was

to be integrated in suit trousers? How much do the choices of textile sensor design affect the rest of

the design decisions? What design elements are interchangeable and what are fixed parameters when
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embedding sensors? With wearable technology on the rise to be introduced in everyday products,

currently often through devices deployed in sportswear for personal use, the skill set of designers

is shifting, too. A new generation of fashion designers therefore may have to adapt basic skills of

electronic engineering, and an engineer developing a wearable sensing system has to be aware of the

possibilities textile materials offer.

8.4.3 Towards Socially Aware Smart Textiles

The general idea that interfaces like computers can be socially aware was coined by Pentland (2005),

calling upon a better consideration of social context in human-device interaction, and arguing for

better, ubiquitous integration of technology in dialogue with societal needs. It appears that with

textiles, which are part of our social structure in a natural way, the premises for this appeal are

fulfilled. In order for pieces of technology to become socially aware, however, we must accept them

into our everyday environment, consent to the data acquisition that is taking place. The success or

failure of a product of technology can be measured by how well it is accepted into our everyday life

and actions, or how willingly we adapt to it (Candy, 2007). The unintrusive integration of digital

technologies and sensing networks for a better social acceptance is desired in many research projects

(Kettley, 2008). The social perception of visible or invisible technology is an important aspect to

consider when testing the performance of an introduced device itself, as mentioned in Rekimoto

(2001); Profita et al. (2013) and Riener and Ferscha (2008).

In regards to an appeal of unintrusively embedding technology in our environment and products

of everyday life, the base fabrics used for the trousers and chairs, cotton and viscose with a small

percentage of elastane, are commonly used as surface materials for these products and are a material

we have already accepted into our social environment. The context in which the textile sensors are

placed shows that they alter human behaviour only minimally, if at all. The participants’ reactions

reported in Chapter 7 for the second trouser prototype confirm that, emphasising the comfort and

unintrusiveness of the design. Chapter 7 furthermore discussed aesthetics as a method to overcome

issues with social acceptance. Fashion design offers solutions and could be a gateway to establish

textile sensing on a broader level.

8.4.4 Speculative Clothing to Enhance Communication

Having looked at some conversational states in detail, for example distinguishing listeners from

speakers, can we design trousers that encourage speaking? Or trousers that support laughter? Re-

membering the basic differences of these conversational states from the chair cover study in Chapter

3, which suggested listeners having a minimally more slouched posture than speakers with more pres-

sure on buttocks and less on thighs (a posture indicating lifting of the legs and shifting the weight

towards the tailbone), trousers could either exaggerate this posture or compensate it. Pattern cut-

ting techniques can be used to construct garments so they afford certain sets of postures better than

others - postures we linked with certain social behaviours. With the claim that not only behaviour

elicits embodiment, but also embodiment elicits behaviour (Barsalou et al., 2003), we could explore

whether our clothing can elicit postures and followingly embodied behaviours, too. For example, an

upright posture has been associated with better attention levels (Bull, 2016; D’Mello et al., 2007a)

compared to a slumped posture, as have been tucked in legs compared to stretched out legs (signalling

boredom or disinterest (Bull, 2016)). Therefore, a question we could explore in the future, is, that
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if trousers allow their wearers to sit more comfortably in them having their legs tucked in, will that

make them more attentive?

While the pattern construction of this work’s trousers does not take these possibilities into consid-

eration, they could serve as a prototype in the development of such garments, and further determine

the correlations of postures and behavioural cues. Where so far, fabrics and their colours have been

able to reveal status of wealth and religious affiliation (Koch-Mertens, 2000a), they may be able to

take a role in understanding and encouraging social interaction in the future. Nonverbal cues allow

for an immediate decoding of a social encounter. A brief glance is enough to identify speakers and

addressees. Clothing can enhance these roles, supporting the correlating postural movements through

such proposed construction procedure. The idea to communicate conversational states through cloth-

ing adds a layer to the complexity and fine granularity that clothing entails as a cultural and social

instrument.

8.5 Future Directions

Speculative suggestions like the one above, as well as some discussion sections in previous chapters,

form a base of potential future pathways this research can take. During the explorations on textiles

as a sensing system to detect nonverbal social signals, there were many avenues to pursue along

the way, created by the findings of the studies, whether that concerned the selection of behaviours

and postures, the experimental interactional settings, including the type of participant group, or the

design parameters of the chairs and trousers. To close with a brief outlook, some of the emerged and

discussed themes are summarised below.

8.5.1 Multimodal Sensing Systems

The sensing trousers explore the possibilities of textile pressure sensing to detect touch and postural

states. Using the same materials and data processing techniques, however, other sensing modalities

can be captured. Stretch sensors can be used for measuring the bending of a limb, for example.

Considering to take multidimensional measurements to capture additional aspects of bodily action,

a combination of capacitive and piezo-resistive sensing has been explored, being able to measure

approaching touch, touch as an event itself, and the pressure applied, as presented in the works of

Strohmeier et al. (2018), Nachtigall (2016), and Schoonen (2013). A design combining these sensing

techniques presents an example in which the same piece of fabric is able to distinguish between these

events of touch - one sensor for three different measurements.

The use of appropriate sensor types also depends on the textile surface these sensors are deployed

on. The use of pressure sensors has proven suitable both for interior objects as well as wearable

solutions like clothing. If the data that is aimed to be collected is, for example EMG data, the

base fabric surface needs to be in close contact to the skin. Measuring muscle activity, or heart rate

narrows the possibilities as to where a sensor can be placed as well as in which product they can be

deployed in. In projects where EMG data is used, the sensors are attached to a finished garment

(Ribas Manero et al., 2016; Olugbade et al., 2019), or even on the skin directly (Liu et al., 2019) and

the garment only serves to hide the sensors and wiring. In these and other examples, the garment

serves as a base fabric or shell where all components of a sensing system and electrical circuit are

attached at a “post-production” stage. The prototypes offer a sensing system that is fully embedded

in the manufacturing stage of the garment construction, which allows for a better customisation of
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the sensor design and a softer overall circuitry with fewer hard-soft connections.

8.5.2 Beyond Seated Conversation

Many of the social signals that were captured with the trousers and chairs still derive from the

upper body. While it can be argued that for leg postures, the study settings of seated conversations

were suitable, most of the torso and head movements that were picked up with our trousers can be

performed in free standing conversations as well. This sparks the question as to what textile sensing

systems may be suitable when it comes to picking up cues that occur in a larger range of spatial

arrangements. Integrated sensors on upper body garments could be designed and used to explore

subtle signals of head and gesture movements more accurately than the trousers have, and could also

expand the use cases for detecting such cues.

The trousers focused on postural movement and touch interactions induced by their wearer alone.

Although in reaction and in coordination with others, the changes in pressure measured stem from one

person only. There are scenarios, however, in which external touch becomes relevant, for example in

greetings or accidental touch in crowds. Sensors in garments could be used to explore, if the relation

of such touch interactions is amicable or hostile. Some nonverbal encounters differ from other “rules”

and conventions of interpersonal signals and behaviours apply, as acknowledged by Kendon (1990a);

Harrigan and Rosenthal (1983), and exploring them may require different sensor placements on the

body, as well as considering other types of sensing garment as the trousers in this research.

Investigations towards touch detection can be a gateway for a wider research area on affective

computing, and have been of interest to detect in relation to emotions (Ekman and Friesen, 1969a),

too. In Chapter 4, postures involving hand touch - such as tucking hands between thighs or resting

them on the lap were explored. The accuracy of detecting these touch interactions and distinguishing

them from other postures has been high and also the small amount of misclassifications with other

(sitting) postures was promising. A suggestion in regards to hand touch is, for example, that discom-

fort is displayed through rapid hand movement on the thigh or tucking hands between the thighs.

These types of self touch are self-adaptors (Ekman and Friesen, 1969b), commonly understood as

behaviours not directed at interaction partners, but have also been discussed as more active parts

of conversation, displaying engagement (Streeck, 2020). Detecting self touch with textiles fosters the

idea of unintrusive human-centred sensing to further investigate social interaction between humans,

but can also contribute to interaction with virtual agents, where self touch is reported as important

interactional parameters, too (Koda and Mori, 2014). it would be interesting to connect to the large

corpus of work on self touch, exploring it from a textile perspective.

8.6 Not On The Last Leg: Closing Remarks

Smart textiles have been well explored in different areas in Human-Computer-Interaction as ubiq-

uitous sensing technologies and soft, tangible interfaces. Something that has been largely missing,

however, is an approach of exploiting textiles as a sensing material to capture human behaviour.

First, expanding the understanding of nonverbal behaviour in regards to the lower body. Postural

changes and sitting postures in unscripted multiparty conversation were examined through ethno-

graphic observations and quantitative methods, exploring what information we can infer from the

lower body and from measuring postural movement around the legs and buttocks. The findings

provide insights into the potential richness of conversational cues the lower body contains. Second,
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the potential of textile sensors to capture social signals is explored. I have introduced two sens-

ing systems to capture embodied social behaviour without augmenting familiar surroundings: smart

chairs and trousers with embedded textile pressure sensors. In a series of four user studies, these

designs were tested for their performance of identifying body movement and conversational states,

as well as for their aesthetic and social acceptance as a ubiquitous sensing object in an interactional

context. I show that it is possible to identify basic social behaviours, as well as a large variety of

body movements through selfmade textile sensors embedded in our everyday clothing.

Overall, these explorations add to our understanding of human behaviour in social interaction.

Such understanding is key to many applications in health care, soft robotics, and in the lifestyle

segment. The shifts in pressure distribution on the lower body that were examined here would have

remained unnoticed if I had not analysed the peaks of the pressure sensor data captured by the

trousers. These findings expand on previously used modalities and can have implications for future

studies of (seated) interaction. If chairs are able to distinguish speakers from listeners and trousers

pick up laughter and detailed information on small scale movement, what other fabric surfaces could

be instrumentalised to detect social signals? Soft furnishings may be able to assess the social per-

formance of a building or room the same way our clothes may be able to monitor our performance

in social encounters. Sensing pressure in seating areas, for example, could explore how lively a con-

versation is, who is most and least active, or detect loudmouths. For trousers, we can carry forward

Wallace & Gromit ’s robotic “Wrong Trousers”3 and reimagine “Right Trousers” that assist in daily

activities, identify their wearer, monitor one’s wellbeing and react to it, too. Moreover, studying

nonverbal social behaviour can be used for designing the clothes we interact in, making fashion a

potential tool to enhance, direct, balance and encourage conversation.

3referring to the 1993 animated short film “The Wrong Trousers” by Nick Park. See
https://wallaceandgromit.com/films/the-wrong-trousers
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Appendix A

Chapter 3 Additional Material

A.1 Ethics Approval

A.1.1 Ethics Committee Approval Letter

!           Queen Mary, University of London 
                  Room W117 
      Queen’s Building 
      Queen Mary University of London 
      Mile End Road 
      London E1 4NS 
      
                  Queen Mary Ethics of Research Committee 
                  Hazel Covill 
                  Research Ethics Administrator 
                                                                                                                                 Tel: +44 (0) 20 7882 7915 
                 Email: h.covill@qmul.ac.uk 

c/o Professor Pat Healey 
CS 410 
Department of Computer Science 
Queen Mary University of London 
Mile End Road  
London         6th July 2016 
    

To Whom It May Concern: 

Re: QMREC1778a – A Sensing Chair – Exploring the Social Performance of 
Interior Furnishing.  
  
I can confirm that Ms Sophie Skach has completed a Research Ethics 
Questionnaire with regard to the above research. 

The result of which was the conclusion that her proposed work does not present 
any ethical concerns; is extremely low risk; and thus does not require the 
scrutiny of the full Research Ethics Committee. 

Yours faithfully  

!  

Ms Hazel Covill – QMERC Administrator   Patron: Her Majesty the Queen 
Incorporated by Royal Charter as Queen Mary 
and Westfield College, University of London
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A.1.2 Consent Form

Consent form 

Please complete this form after you have read the Information Sheet and/or 
listened to an explanation about the research. 

Title of Study: A Sensing Chair - Exploring the Social Performance of Interior 
Furnishing 
Queen Mary Ethics of Research Committee Ref: _____QMREC1778a______ 

%L. • Thank you for considering taking part in this research. The person 
organizing the research must explain the project to you before you agree to 
take part.  

%L. • If you have any questions arising from the Information Sheet or 
explanation already given to you, please ask the researcher before you 
decide whether to join in. You will be given a copy of this Consent Form to 
keep and refer to at any time.  

%L. • I understand that if I decide at any other time during the research that I 
no longer wish to participate in this project, I can notify the researchers 
involved and be withdrawn from it immediately.  

%L. • I consent to the processing of my personal information for the purposes 
of this research study. I understand that such information will be treated as 
strictly confidential and handled in accordance with the provisions of the 
Data Protection Act 1998.  

Participant’s Statement:  
I ___________________________________________ agree that the research 
project named above has been explained to me to my satisfaction and I agree to 
take part in the study. I have read both the notes written above and the 
Information Sheet about the project, and understand what the research study 
involves.  
Signed: Date:  

Investigator’s Statement:  
I ___________________________________________ confirm that I have carefully 
explained the nature, demands and any foreseeable risks (where applicable) of the 
proposed research to the volunteer 
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A.1.3 Participant Information Sheet

Information sheet 

Research study  
“A Sensing Chair - Exploring the Social Performance of Interior Furnishing” 

information for participants 

We would like to invite you to be part of this research project, if you would like to.  You should only 
agree to take part if you want to, it is entirely up to you. If you choose not to take part there won’t 
be any disadvantages for you and you will hear no more about it.  
Please read the following information carefully before you decide to take part; this will tell you why 
the research is being done and what you will be asked to do if you take part. Please ask if there is 
anything that is not clear or if you would like more information.   
If you decide to take part you will be asked to sign the attached form to say that you agree. 
You are still free to withdraw at any time and without giving a reason. 

The study you take part looks into social behaviour through exploring the relationship of 
postural states and social behaviour in group discussions. 

For this, we will ask you to discuss a moral dilemma. The task is to collaborate with your 
partners to resolve this “Balloon”- dilemma. Please see the instruction for the task on the 
separate sheet provided. 
 
All texts are anonymised and will contain no distressing content. 

The duration of the experiment is approximately 30 minutes and takes place in the 
Performing Lab, in the Engineering Building of Queen Mary University of London. 
Depending on the conclusion and agreement of the moral dilemma discussed, the 
experiment may be slightly shorter or longer than the set time.  You are allowed to take a 
break in between whenever you want and return to complete the experiment at any time. 
You will also receive a participant number and your data will be stored according to QMUL 
guidelines. 
It is up to you to decide whether or not to take part. If you do decide to take part you will be given 
this information sheet to keep and be asked to sign a consent form.  

If you have any questions or concerns about the manner in which the study was conducted please, 

in the first instance, contact the researcher responsible for the study.  If this is unsuccessful, or not 

appropriate, please contact the Secretary at the Queen Mary Ethics of Research Committee, 

Room W117, Queen’s Building, Mile End Campus, Mile End Road, London or research-

ethics@qmul.ac.uk.
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A.1.4 Participant Task Sheet

Participant Instruction Sheet: Balloon Task!!!
The task is to collaborate with your partners to resolve a dilemma. !!!
The situation!
Three people are in a hot air balloon. The balloon is losing height and about to crash into 
the mountains. Having thrown everything imaginable out of the balloon, including food, 
sandbags and parachutes, their only hope is for one of them to jump to their certain death 
to give the balloon the extra height to clear the mountains and save the other two. But who 
is it to be?!!
The three people are:!!
Dr. Nick Riviera – a cancer research scientist who believes he is on the brink of 
discovering a cure for most common types of cancer. He is a good friend of Tom and Susie 
Derkins.!!
Mrs. Susie Derkins – a primary school teacher. She is over the moon because she is 7 
months pregnant with her second child.!!
Mr. Tom Derkins – the balloon pilot. He is the husband of Susie, who he loves very much. 
He is also the only one with any balloon flying experience.!!!!
Your Task!
Between the three of you, you should come to an agreement about who should be thrown 
off the balloon...!!
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A.2 Sample Clip Stills

A.2.1 Stills from Study Sessions

Here are screenshots from stills of the recorded video from two different sessions. In both sequences,

a small postural change is noteable that affected the sensor readings. The stills also show the two

different camera angles from which the conversation was filmed.
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A.2.2 Annotation Interface Example

Screenshot of how the recorded conversations were annotated and synchronised using the software

package Elan (Brugman and Russel, 2004).
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A.3 Statistical Analysis

A.3.1 Multivariate Tests

This section lists the detailed results from the Multivariate tests conducted, including Pillai’s Trace,

Wilk’s Lambda, Hotelling’s Trace and Roy’s Largest Root. The results highlighted in yellow are

pointed out in chapter 3.6.
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Appendix B

Chapter 4 Additional Material

B.1 Trousers Making Of

B.1.1 Circuit Board Development

B.1.2 Sewing Process
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B.1.3 Sensor Matrix Early Development
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B.2 Task List

19 different postures were performed, each participant performed each posture 3 times (in 3 cycles).

For 10 participants, this results in 570 data samples in total, and ca 30 samples per posture. This

task sheet was printed, read out by an instructor and shown to participants.

TASK ORDER, INSTRUCTIONS FOR PARTICIPANTS:

1. STANDING UP STRAIGHT 5sec
2. SITTING UP RIGHT, NO KNEES TOUCHING, NO HANDS == “HOME POSITION” 5sec
3. SITTING WITH KNEES TOUCHING, NO HANDS 5sec
4. HOME POSITION 3sec 
5. LEANING BACK 5sec
6. HOME POSITION 3sec 
7. LEANING FORWARD 5sec
8. HOME POSITION 3sec 
9. SLOUCHING 5sec
10. HOME POSITION 3sec 
11. LEG CROSSING: LEFT TO RIGHT 5sec
12. HOME POSITION 3sec 
13. LEG CROSSING: RIGHT TO LEFT 5sec
14. HOME POSITION 3sec 
15. LEG CROSSING: LEFT TO RIGHT WITH ANKLE ON KNEE 5sec
16. HOME POSITION 3sec 
17. LEG CROSSING: RIGHT TO LEFT WITH ANKLE ON KNEE 5sec
18. HOME POSITION 3sec 
19. HANDS ON KNEE LEANING BACK 5sec
20. HOME POSITION 3sec 
21. HANDS ON KNEE LEANING FORWARD 5sec
22. HOME POSITION 3sec 
23. HANDS IN CROTCH 5sec
24. HOME POSITION 3sec 
25. HANDS BETWEEN LEGS, KNEES TOUCHING 5sec
26. HOME POSITION 3sec 
27. HANDS ON MID THIGHS 5sec
28. HOME POSITION 3sec 
29. ELBOW ON THIGHS, LEANING FORWARD 5sec
30. HOME POSITION 3sec 
31. LOWER FEET: STRETCHED OUT 5sec
32. HOME POSITION 3sec 
33. LOWER FEET: BENT IN, NOT CROSSED 5sec
34. HOME POSITION 3sec 
35. LOWER FEET CROSSED 5sec
36. HOME POSITION 3sec 
37. STANDING UP, END 5sec 

This sequence of tasks was used to instruct participants. A timer was used to change between

postures. In total, this resulted in the following amount of time recorded per participant:

20x5sec positions + 17x3sec home position + ca 37x2sec for interchange = 225sec = 3.75min x 3 =

11.25min

Trouser sizes used: S (smallest size): 3x ; M (medium size) 3x ; L (large) 4x
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B.3 Results

B.3.1 Community Model Confusion Matrix

Confusion matrix of correct and incorrect classifications for the community model of 6 participants

running a Random Forest classification, with 10-fold cross validation.
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B.3.2 Misclassifications: Confusion Matrices

Participant A

This participant performed best with an overall accuracy of 99.75% and very high F-Measures be-

tween 0.989 and 1.000 for all 19 postures. Below is the confusion matrix of the individual model of

participant A, as well as the model where A’s data is not contained in the training set, but used to

test the classification.

B.3.3 Participant C and D

Here are the confusion matrices of the participants who misclassified standing postures. All other

participants had no misclassifications between sitting and standing postures.
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Leave-One-Out Confusion Matrices

The confusion matrices here are from the model where the participant is not included in the training

set of the classifier. The Random Forest is trained on the remaining 5 participants. The confusion

matrices from this Leave-One-Out model are from participants B - F.
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Appendix C

Chapter 5 Additional Material

C.1 Ethics Approval

C.1.1 Ethics Committee Approval Letter

!            Queen Mary, University of London 
                  Room W117 
      Queen’s Building 
      Queen Mary University of London 
      Mile End Road 
      London E1 4NS 
      
                  Queen Mary Ethics of Research Committee 
                  Hazel Covill 
                  Research Ethics Administrator 
                                                                                                                                 Tel: +44 (0) 20 7882 7915 
                 Email: h.covill@qmul.ac.uk 

c/o Professor Pat Healey 
CS 410 
School of Electronic Engineering  
and Computer Science 
Queen Mary University of London 
Mile End 
London         15th March 2018 
    

To Whom It May Concern: 

Re: QMREC2133a - Sensing Trousers - Exploring Social Behaviour through 
Smart Clothing. 

I can confirm that Sophie Skach has completed a Research Ethics Questionnaire 
with regard to the above research. 

The result of which was the conclusion that her proposed work does not present 
any ethical concerns; is extremely low risk; and thus does not require the 
scrutiny of the full Research Ethics Committee. 

Yours faithfully  

!  

Mr Jack Biddle – Research Approvals Advisor   Patron: Her Majesty the Queen 
Incorporated by Royal Charter as Queen Mary 
and Westfield College, University of London
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C.1.2 Consent Form for Participants to Sign

 

Consent Form 

Please complete this form after you have read the Information Sheet and/or listened to an 
explanation about the research. 

Title of Study: A Sensing Chair - Exploring the Social Performance of Interior Furnishing 
Queen Mary Ethics of Research Committee Ref: ___QMREC2133a____________ 

%L. • Thank you for considering taking part in this research. The person organizing 
the research must explain the project to you before you agree to take part.  

%L. • If you have any questions arising from the Information Sheet or explanation 
already given to you, please ask the researcher before you decide whether to join 
in. You will be given a copy of this Consent Form to keep and refer to at any time.  

%L. • I understand that if I decide at any other time during the research that I no 
longer wish to participate in this project, I can notify the researchers involved and 
be withdrawn from it immediately.  

%L. • I consent to the processing of my personal information for the purposes of 
this research study. I understand that such information will be treated as strictly 
confidential and handled in accordance with the provisions of the Data Protection 
Act 1998.  

Participant’s Statement:  

I ___________________________________________ agree that the research project 
named above has been explained to me to my satisfaction and I agree to take part in the 
study. I have read both the notes written above and the Information Sheet about the 
project, and understand what the research study involves.  

Signed: Date:  

Investigator’s Statement:  

I ___________________________________________ confirm that I have carefully 
explained the nature, demands and any foreseeable risks (where applicable) of the 
proposed research to the volunteer 
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C.1.3 Information Sheet for Participants

Information sheet 

Research study  

“Sensing Trousers - Exploring Social Behaviour through Smart Clothing” 

information for participants 

We would like to invite you to be part of this research project, if you would like to.  You should only 
agree to take part if you want to, it is entirely up to you. If you choose not to take part there won’t 
be any disadvantages for you and you will hear no more about it.  
Please read the following information carefully before you decide to take part; this will tell you why 
the research is being done and what you will be asked to do if you take part. Please ask if there is 
anything that is not clear or if you would like more information.   
If you decide to take part you will be asked to sign the attached form to say that you agree. 
You are still free to withdraw at any time and without giving a reason. 

The study you take part looks into social behaviour through exploring the relationship of postural 
states and social behaviour in group discussions. 

For this, we will ask you to discuss a moral dilemma. The task is to collaborate with your partners 
to resolve this “Balloon”- dilemma. Please see the instruction for the task on the separate sheet 
provided. All texts are anonymised and will contain no distressing content. 

Additionally, we will ask you to wear a pair of trousers that we use for additional data collection. 
The trousers can be worn on top of your clothes, or can be worn underneath. Changing rooms are 
provided. You are also free to not wear the trousers or take them off at any time, if you feel 
uncomfortable wearing them. 

The duration of the experiment is approximately 20 minutes and takes place in the Human 
Interaction Lab, in the Computer Science Building of Queen Mary University of London. Depending 
on the conclusion and agreement of the moral dilemma discussed, the experiment may be slightly 
shorter or longer than the set time.  You are allowed to take a break in between whenever you want 
and return to complete the experiment at any time. 

It is up to you to decide whether or not to take part. If you do decide to take part you will be given 
this information sheet to keep and be asked to sign a consent form.  

If you have any questions or concerns about the manner in which the study was conducted please, 

in the first instance, contact the researcher responsible for the study.  If this is unsuccessful, or not 

appropriate, please contact the Secretary at the Queen Mary Ethics of Research Committee, 

Room W117, Queen’s Building, Mile End Campus, Mile End Road, London or research-

ethics@qmul.ac.uk.
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C.2 Annotations

C.2.1 Average Duration of Each Coded Behaviour

AVERAGE DURATION, defined as the total duration of the annotations with the 
same value divided by the number of occurrences

Participant TALK BACKCHANNEL LAUGHTER NODDING ACTIVE 
LISTENER 

INCIDENTAL 
MOVEMENT

P 1 3.81 0.69 1.90 1.36 1.41 4.33

P 2 2.68 0.45 2.68 2.42 2.45 3.05

P 3 3.34 0.65 2.21 1.80 1.64 3.54

P 4 4.44 0.91 1.90 1.95 1.44 4.31

P 5 2.93 0.53 2.20 1.70 1.20 7.11

P 6 3.70 0.86 1.31 1.26 1.12 8.42

P 7 2.76 0.36 3.16 1.14 1.53 3.08

P 8 2.53 0.81 2.42 1.15 1.25 8.50

P 9 4.27 0.49 1.80 0.89 0.82 3.06

P 10 3.67 0.70 1.50 1.34 1.20 7.04

P 11 3.88 0.68 1.43 1.00 0.97 7.86

P 12 1.75 0.71 1.60 1.28 1.21 4.53

P 13 3.72 0.61 1.88 1.28 1.28 6.52

P 14 2.51 0.74 1.57 1.08 1.25 4.73

P 15 2.63 0.72 1.50 1.47 1.32 3.39

P 16 3.81 0.63 1.28 1.00 0.97 7.41

P 17 4.11 0.74 1.64 2.12 1.93 4.81

P 18 2.41 0.87 1.97 0.85 1.37 4.16

P 19 2.24 0.68 2.10 1.13 1.18 5.72

P 20 2.98 0.83 1.90 2.80 1.96 11.15

Average 3.2085 0.683 1.8975 1.451 1.375 5.636

Minimum 1.75 0.36 1.28 0.85 0.82 3.05

Maximum 4.44 0.91 3.16 2.80 2.45 11.15

1
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C.2.2 Overall Occurrence of Each Coded Behaviour

OCCURENCE / number of annotations

Participant TALK BACKCHANNEL LAUGHTER NODDING ACTIVE 
LISTENER 

INCIDENTAL 
MOVEMENT

P 1 126 31 30 62 113 163

P 2 132 38 68 121 196 272

P 3 143 47 42 56 132 177

P 4 106 51 17 19 80 165

P 5 66 65 18 42 121 155

P 6 91 85 28 26 129 50

P 7 133 73 62 135 241 313

P 8 127 47 14 38 92 88

P 9 139 109 23 42 160 231

P 10 92 40 6 69 106 33

P 11 60 37 17 21 72 91

P 12 120 45 29 28 94 185

P 13 34 28 11 51 80 40

P 14 54 86 57 69 174 199

P 15 204 89 76 88 230 162

P 16 48 37 15 3 47 17

P 17 126 27 40 73 122 111

P 18 219 54 57 36 137 135

P 19 162 98 32 57 168 58

P 20 62 32 31 32 89 79

Average 112.2 55.95 33.65 53.4 129.15 136.2

Minimum 34 27 6 3 47 17

Maximum 219 109 76 135 241 313

1
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C.3 Results

In Chapter 5, the results shown are summarised for individual participants. For visualisations,

one participant was selected to be shown alongside the community models of the Random Forest

classifications. Here, the confusion matrices and feature importance of six more randomly selected

participants are shown.

C.3.1 Confusion Matrices
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C.3.2 Feature Importance
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Appendix D

Chapter 6 Additional Material

D.1 Factor Analysis

D.1.1 Total Variance Explained

Total 
Variance 

Explained

Component

Initial 
Eigenvalues

Extraction Sums of 
Squared Loadings

Total % of Variance
Cumulative 

% Total
% of 

Variance
Cumulat

ive %
1 55.151 34.255 34.255 55.151 34.255 34.255

2 36.034 22.381 56.637 36.034 22.381 56.637

3 23.190 14.404 71.041 23.190 14.404 71.041

4 11.958 7.427 78.468 11.958 7.427 78.468

5 8.823 5.480 83.947 8.823 5.480 83.947

6 6.055 3.761 87.709 6.055 3.761 87.709

7 3.444 2.139 89.848 3.444 2.139 89.848

8 2.613 1.623 91.470 2.613 1.623 91.470

9 2.408 1.495 92.966 2.408 1.495 92.966

10 1.352 0.840 93.806 1.352 0.840 93.806

11 0.967 0.601 94.406

12 0.784 0.487 94.893

13 0.746 0.463 95.357

14 0.717 0.445 95.802

15 0.658 0.409 96.210

16 0.530 0.329 96.540

17 0.460 0.286 96.825

18 0.423 0.263 97.088

19 0.363 0.226 97.313

20 0.334 0.208 97.521

21 0.307 0.191 97.712

22 0.279 0.173 97.885

23 0.270 0.167 98.053

24 0.226 0.141 98.193

25 0.199 0.123 98.317

26 0.179 0.111 98.428

27 0.163 0.101 98.529

28 0.158 0.098 98.628

29 0.143 0.089 98.717

30 0.130 0.081 98.798

31 0.126 0.078 98.876
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The spreadsheet above shows 31 components yielded from the Factor Analysis, with the first 9

accounting for 94.218% of the total variance, and the remaining covering a total of 98.876% together,

with components 11 - 31 only accounting for less than 1% of the variance each.

D.1.2 Component Matrix

Below are further results of the Factor Analysis conducted in Chapter 6. The analysis yielded 9

components accounting for 94.218% of variance - listed as columns in the matrix. The rows present

the individual sensors of the textile sensor matrix - 165 in total (after removing faulty and broken

sensors).

L stands for left, R for right leg. The numbers correspond to the position of the sensor on the

leg: numbers 20-30 correspond to the second row above the knee, 90-100 to the top row around the

buttocks and crotch area, running from bottom to buttocks. 21 would be positioned on the top inner

leg, 30 on the back inner leg, running across the outer side from front to back.
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D.2 Additional Notes of Posture Shifts Observations

PARTICIPANT 1 (Female) (session 3) 
- just before speech, but only completed during speech (04.15; 05.26; 06.37; 12.38 )  
- or start posture change in last 2sec of speech, then finish posture change after finishing speech (finish speech during 

posture change), e.g. at 05.47 ; 06.51 ; 07.26 
- elongated posture shift, completed 4sec before talk (05.00 - 05.15 / 16.24-16.28) 
- overlap with 2sec before speech: 07.06 ;  
- overlap with 2sec after speech: 07.20 ; 14.43  
- posture shift 4sec before speech: 07.23 
- 08.55-08.57: start in scope of 2sec before speech, but then speech utterance only very brief, and posture change 

completes after stopped talking (so posture change before, during and after speech at the same time) 
- juliana often bounces legs in uncomfortable situations, often slightly versetzt mit speech (in both directions)  
- 09.13: during backchannel, 3sec after speech 
- 09.19 without any talk relation, 10.02 , 11.04, 11.51, 12.55 (but still in response to someone else, sometimes in 

relation with laughter, backchannels, nodding, etc)  
- 09.32 with laughter aligned  
- during talk, start of posture shift at very beginning of talk: 13.14 
- during middle of talk: 15.37 ; 16.38  
- start posture change 3sec before speech: 13.58 ;  
- other observations: fewer gross body postures after a few mins into the conversation: then moving from gross to 

subtle posture shifts (confirming knapp&wiemann?)  
- she sometimes seem to perform postural changes in response to disagreement to speaker 

PARTICIPANT 2 (Male) (session 7) 
- more fidgeting than gross movement, and more bobbing up and down  
- right after talk (within 2sec): 08.27, 09.37 ; 11.15 ; 13.09 ; 13.31 ; 15.27 ; 17.44; 17.57; 22.05  
- after talk with slight delay: 12.09 ; 12.33 ; 15.14 ; 15.59; 18.55 ; 20.04  
- right before talk (into 2sec frame): 13.20 ; 20.40  
- before talk and into talk: 20.50  
- without talk relation: 08.39; 10.58 ; 12.21 + 12.54 (with laughter) ; 14.43 ; 19.21 ; 19.27 ; 19.31; 20.28; 22.16  
- 5sec before talk: 09.13 ; 13.48 ; 15.00 ; 19.56  
- during talk: 09.34 ; 15.54 ; 17.24  
- at beginning of talk, then into talk: 11.38  
- 3sec after talk: 11.56 ; 20.16  
- 3sec before talk: 18.41 
- in between two talk utterances: 17.51 

PARTICIPANT 3 (Female) (session 7) 
- 3sec after talk: 07.38 ; 21.27 
- 3sec before talk: 13.54; 16.09  
- during talk: 07.34; 20.33  
- in between talk: 8.13 ; 12.26 
- during backchannel: 08.20 (small shift) ; 09.01;  
- just before talk (within 2sec window): 09.36; 14.50; 19.12  
- just before talk and during beginning of talk: 18.04; 18.07 
- immediately after talk (with 2sec window): 12.58; 18.27 ; 19.20  
- during talk until end of utterance: 09.38  
- end of talk until right after talk: 09.55 ;  
- beginning with talk: 10.01; 12.16 ; 18.56 ; 21.16 
- after 2sec of talk: 10.12;  
- without talk: 10.29 ; 11.46; 15.54 ; 20.04; 21.10  
- right before, during and until after talk: 11.11; 12.51 
- some posture shifts seem related to extensive gesturing (e.g.12.20) 
- sometimes during listening without any movement, and then in preparation of talk posture shift 
- in response to speaker’s posture shift (15.54), but doesn't perform any other response behaviour  
- shifts posture in preparation of talk, especially when talk utterance becomes very engaged (with lots of gesturing and 

longer utterance — delivering a statement rather than an answer or so) —> posture shifts occur not only in response 
to what a speaker may have said, but also in response to speakers’ movement. 
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PARTICIPANT 4 (Male) (session 6) 
- without talk (when other speaker starts utterance): 04.03 ; 07.28 ; 08.41 ; 13.20  
- between talk: 06.23; 10.36 ; 12.25 
- just after talk: 07.01 ; 10.20 ;  
- 3sec before talk:  08.26; 09.38 ; 10.09  
- delayed after talk: 17.49 
- during talk 11.14; 14.35 ; 14.37 ; 15.30 (until end of talk) ; 18.36 ; 18.38  
- just before talk, into talk: 11.54  
- end of talk, goes into pause between talks 12.48; 13.38 ; 14.24 ; 16.26  
- end of talk: 17.02 ; 18.33  

PARTICIPANT 5 (Female) (session 1) 
- ca 3sec before talk (no overlap wth 2sec window): 04.49; 13.22 (with overlap of 2sec window); 18.36 (with overlap 

of 2sec window);  
- before talk within 2sec window: 04.52 
- just before talk, into talk: 07.22  
- during talk: 07.22 ;07.35 ; 12.57 
- before, during and after talk: 16.14 
- in between and during talk: 04.55  
- in synchrony with laughter often posture shifts performed 05.32; 06.01; 08.35; 10.07; 10.51 only feet shift posture ; 

11.38 ; 13.16  
- active listener / without talk: 06.37 ; 08.23; 14.03; 14.36; 15.06; 15.27; 17.27 
- at end within talk: 07.01 
- after talk within 2sec window: 09.30 ; 09.43; 11.21; 16.04 ; 18.44 
- after talk at end + outside 2sec window: 10.47 
- posture shifts seem to occur simultaneously or with a slight timely shift with other active listener behaviours, such as 

backchannels, laughter or nodding, or represent an active non-verbal listener behaviour themselves.  
- she has more short postural shifts, that are mostly performed by trunk movement, but are still marked “small but 

obiovus” 
- 08.02-08.07: starts during talk, lasts until end, in between and into new talk utterance a bit (bridging gaps of talks) 
- some postural shifts between talks appear to bridge speaker pauses: starting towards the end of an utterance, being 

performed fully when speaker stopped, but only finish when speaker has taken up talking again (if no-one else in the 
meantime takes the turn)  

- with beginning of talk, continuing after talk: 13.11  
- before starting new conversation topic: very obvious posture change: both torso and lower body change of position 
- sometimes also when switching from inattentive to attentive listener (just before or at start of e.g.nodding, see 19.01)  

PARTICIPANT 6 (Female) (session 6) 
- during talk / end of talk 05.31; 05.44;  
- during talk 05.51; 07.01  
- between talks: 07.11 -07.15 
- end of talk - after talk: 09.16 ; 17.11; 18.44 
- just after talk (within 2ec window): 13.33 ; 14.10; 14.43 ; 15.22; 16.58 
- 3sec after talk: 09.43 12.44; 13.36; 17.46; 21.15 
- 3sec before talk: 14.02; 17.28 
- just before talk: 17.03; 17.07 
- sometimes posture shift and fidgeting during talk, and then stops when talk stops, too (in very overt fidgeting 

movements, that has been marked as postural shifts, too) 
- movement itself sometimes appears as a bit bouncy: back-forth-back-forth - each time less overt / less energetic. 
- during talk, posture shifts sometimes attempt to punctuate speech (e.g. 09.32 “oh, i’m just on the brink”) 
- no talk / active listener (response?) 11.13; 12.11; 13.39;15.37; 16.25; 16.29 ; 17.25; 19.42 
- around 10.02 nodding become more embodied when closer to next turn 
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D.3 Plots of Non-Parametric Tests for Peak Detection

D.3.1 Participant Role: Friedmans Related Samples Two-Way Analysis

A comparison of Arm and Leg Movement results of the Two-Way Analysis of Variance by Ranks):

D.3.2 Participant Role: Pairwise Comparison

D.3.3 Axis Movement: Friedmans Related Samples Two-Way Analysis

Results of the Two-Way Analysis of Variance by Ranks:
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D.3.4 Axis Movement: Pairwise Comparison

D.3.5 Preparatory Movement

Results of the Related Samples Wilcoxon Signed Rank Test. Comparison of counts of peak move-

ments 2 seconds before and 2 seconds after speaking for each participant.
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Appendix E

Chapter 7 Additional Material

E.1 Questions to Participants on Prototype 1

The following questions were asked to all 42 participants that took part in the study reported in

Chapter 5. This short survey was carried out informally and as part of the study sessions, after the

data recording had stopped and the trousers were taken off, during debriefing with participants. The

questions were asked by the author and only handwritten notes were taken as a recording of the

given answers. The questions were:

• Did you feel any restriction in movement, discomfort or similar when wearing the trousers?

• Did you feel that the trousers modified your movement in any way? Did you adjust any move-

ment or positions consciously because of the trousers?

• Was there anything you were concerned about when wearing, taking off or putting on the

trousers?

E.2 Notes of Participant Comments on Prototype 2

The following informal notes of feedback were taken by the author and by hand (written into a paper

notebook) during the interactions with the 10 participants who tried the second prototypes of the

sensing trousers:

Participant 1:

• felt ‘good’ and ‘casually dressed’

• said would wear this design also outside of lab context

• suggested trousers as an item of home-wear

• liked design and touch of fabric

• appeared to be straight forward / not hesitant when taking and putting on the trousers (no

obvious careful handling – when asked afterwards, replied that it was because “they didn’t look

different or as if I need to be careful somehow”)
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• had no style-related preference between the new and old prototype

• commented on the ‘shiny’ surface of the conductive fabric, and that it was “very light and

summery, comfortable on the skin”

• felt no restriction when performing postures

Participant 2:

• said it was easy to put on and take off trousers

• no observed hesitation when putting trousers on and taking them off, either

• no reported feeling of wearing something ‘electronic’ or ‘smart’

• thought paracords were meant to be on outside and added as decorative material (“would be

cool when having them as fringes, could be nice when moving around or dancing”)

• continued to perform standing postures and danced and did stretch exercises while still wearing

the trousers (after the sitting posture task)

• said they felt better than first prototype

• said trousers feel comfortable and practical, would continue to wear them

Participant 3:

• feels light to wear, light-weight smooth fabric

• said it feels ‘nice’ and comfortable

• no concerns over movement

• noted they did not think about being able to rip something when handling the trousers

• said it could be fund to have the cords like fringes as part of design element

• liked it slightly more than the old trousers, commented on improved design

Participant 4:

• feels unfamiliar to wear (not their usual style of dressing)

• inspected trousers’ inside before putting them on, but did not ask for assistance and was then

“not really more careful” when putting trousers on and wearing them

• found touch of fabric nice

• said they may prefer this design over prototype 1, but could not remember the details of how

they felt in previous study

• wouldn’t know that sensors are integrated if not told (said it was the same with old prototype)
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• trousers were tight when worn - this participant would have benefitted from a slightly larger

size

• was surprised the resistive fabric can act as sensor layer (“looks like ‘normal’ leggings fabric”)

Participant 5:

• was careful and hesitant when putting trousers on, but more confident when taking them off

(after wearing them for the posture tasks)

• commented on touch of soft fabric, said it felt smooth and ‘nice’

• wondered whether it would be better to have the fabric wires on the outside of the trousers

• trousers were a bit tight for this participant

Participant 6:

• feels comfortable and in style suitable for sports applications

• said it was nice to not feel electronics

• examined inside of trousers carefully before putting them on, but didn’t seem concerned about

wearing them

• felt not affected or restricted in movement, no conscious hesitation or caution when performing

posture tasks

• had no preference between old and new trousers, said it would depend on occasion or weather

as the only notable difference remembered was the thickness of the fabric

Participant 7:

• would wear trousers for themselves

• was fast in putting them on (no obvious difference in handling the trousers)

• “was all good” ; “would wear them out for a gig, to go dancing”

• said it was easy to wear, take off and put on the trousers

• also commented on soft touch of fabric choice, also conductive and resistive fabric layer

• said they felt ‘free’ (not restricted) in moving around

Participant 8:

• liked the design of the trousers (“feels good, easy to wear”)

• no concerns about performing postures, did not appear restricted or affected in their natural

postural movement
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• said it felt very comfortable to wear both in style and feel of fabric

• preferred it over the old trousers (prototype 1), but noted that in old trousers, they were not

aware of the wiring while here they could see the wires (cords)

Participant 9:

• was first hesitant about how to put trousers on, asked where wires should go

• was then also slow when putting them on, but faster, less hesitant and less careful when taking

them off

• noted that after being reassured trousers were robust and should be treated as ‘normal’ trousers,

the handling was easier and they felt more confident

• commented on high wearing comfort (“feels cozy and soft”)

Participant 10:

• this participant would probably have needed a smaller size

• also noted that if trousers were tighter, they might have been bothered by wires pressing against

skin or affecting the silhouette of the legs

• not sure if would wear this outside lab situation because of the above wire related concern

• also suggested that “maybe it would be better if the wires were outside?”

• asked about the effect of conductive fabric in touch with skin

• said “overall, they [the trousers] are comfortable and feel soft and nice”
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Sharma, S., Tripathi, M. M., and Mishra, V. M. (2017). Survey paper on sensors for body area

network in health care. In 2017 International Conference on Emerging Trends in Computing and

Communication Technologies (ICETCCT), pages 1–6.

Shibata, T., Michishita, A., and Bianchi-Berthouze, N. (2013). Analysis and Modelling of Affec-

tive Japanese Sitting Postures by Japanese and British Observers. In 2013 Humaine Association

Conference on Affective Computing and Intelligent Interaction, pages 91–96.

Shmueli, E., Singh, V. K., Lepri, B., and Pentland, A. (2014). Sensing, understanding, and shaping

social behavior. IEEE Transactions on Computational Social Systems, 1:22–34.

Shockley, K., Santana, M.-V., and Fowler, C. A. (2003). Mutual interpersonal postural constraints

are involved in cooperative conversation. Journal of Experimental Psychology: Human Perception

and Performance, 29(2):326.

Shu, L., Tao, X., and Feng, D. D. (2015). A new approach for readout of resistive sensor arrays for

wearable electronic applications. IEEE Sensors Journal, 15:442–452.

Sicchio, K., Baker, C., Mooney, T. B., and Stewart, R. (2016). Hacking the Body 2 . 0 : Flutter /

Stutter. Proceedings of the International Conference on Live Interfaces (ICLI ’16), pages 37–42.

Simmel, G. (2003). The philosophy of fashion. The consumption reader, pages 238–245.

Singh, A., Klapper, A., Jia, J., Fidalgo, A., Tajadura-Jiménez, A., Kanakam, N., Bianchi-Berthouze,
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