2,231 research outputs found

    Restoration of motion blurred images.

    Get PDF

    Single Frame Image super Resolution using Learned Directionlets

    Full text link
    In this paper, a new directionally adaptive, learning based, single image super resolution method using multiple direction wavelet transform, called Directionlets is presented. This method uses directionlets to effectively capture directional features and to extract edge information along different directions of a set of available high resolution images .This information is used as the training set for super resolving a low resolution input image and the Directionlet coefficients at finer scales of its high-resolution image are learned locally from this training set and the inverse Directionlet transform recovers the super-resolved high resolution image. The simulation results showed that the proposed approach outperforms standard interpolation techniques like Cubic spline interpolation as well as standard Wavelet-based learning, both visually and in terms of the mean squared error (mse) values. This method gives good result with aliased images also.Comment: 14 pages,6 figure

    Image Restoration for Long-Wavelength Imaging Systems

    Get PDF

    An Iterative Shrinkage Approach to Total-Variation Image Restoration

    Full text link
    The problem of restoration of digital images from their degraded measurements plays a central role in a multitude of practically important applications. A particularly challenging instance of this problem occurs in the case when the degradation phenomenon is modeled by an ill-conditioned operator. In such a case, the presence of noise makes it impossible to recover a valuable approximation of the image of interest without using some a priori information about its properties. Such a priori information is essential for image restoration, rendering it stable and robust to noise. Particularly, if the original image is known to be a piecewise smooth function, one of the standard priors used in this case is defined by the Rudin-Osher-Fatemi model, which results in total variation (TV) based image restoration. The current arsenal of algorithms for TV-based image restoration is vast. In the present paper, a different approach to the solution of the problem is proposed based on the method of iterative shrinkage (aka iterated thresholding). In the proposed method, the TV-based image restoration is performed through a recursive application of two simple procedures, viz. linear filtering and soft thresholding. Therefore, the method can be identified as belonging to the group of first-order algorithms which are efficient in dealing with images of relatively large sizes. Another valuable feature of the proposed method consists in its working directly with the TV functional, rather then with its smoothed versions. Moreover, the method provides a single solution for both isotropic and anisotropic definitions of the TV functional, thereby establishing a useful connection between the two formulae.Comment: The paper was submitted to the IEEE Transactions on Image Processing on October 22nd, 200

    Two-dimensional block Kalman filtering for image restoration

    Get PDF
    Includes bibliographical references.This paper is concerned with developing an efficient two-dimensional (2-D) block Kalman filtering for digital image restoration. A new 2-D multiinput, multioutput (MIMO) state-space structure for modeling the image generation process is introduced. This structure is derived by arranging a vector autoregressive (AR) model with a causal quarter-plane region of support in block form. This model takes into account the correlations of the image data in successive neighboring blocks and, as a result, reduces the edge effects prominent in the available Kalman strip filtering techniques. The degradation model for an infinite extent Linear space invariant (LSI) blur and white Gaussian (WG) noise is also modeled by an MIMO block state-space equation stemmed from a single-input single-output (SISO) 2-D state-space structure. The image generation model and the degradation model are combined to yield a composite block-state dynamic structure. The block Kalman filtering equations are obtained for this dynamic structure and then used to compute the suboptimal filter estimates of a noisy and blurred image

    Restoration of Atmospheric Turbulence Degraded Video using Kurtosis Minimization and Motion Compensation

    Get PDF
    In this thesis work, the background of atmospheric turbulence degradation in imaging was reviewed and two aspects are highlighted: blurring and geometric distortion. The turbulence burring parameter is determined by the atmospheric turbulence condition that is often unknown; therefore, a blur identification technique was developed that is based on a higher order statistics (HOS). It was observed that the kurtosis generally increases as an image becomes blurred (smoothed). Such an observation was interpreted in the frequency domain in terms of phase correlation. Kurtosis minimization based blur identification is built upon this observation. It was shown that kurtosis minimization is effective in identifying the blurring parameter directly from the degraded image. Kurtosis minimization is a general method for blur identification. It has been tested on a variety of blurs such as Gaussian blur, out of focus blur as well as motion blur. To compensate for the geometric distortion, earlier work on the turbulent motion compensation was extended to deal with situations in which there is camera/object motion. Trajectory smoothing is used to suppress the turbulent motion while preserving the real motion. Though the scintillation effect of atmospheric turbulence is not considered separately, it can be handled the same way as multiple frame denoising while motion trajectories are built.Ph.D.Committee Chair: Mersereau, Russell; Committee Co-Chair: Smith, Mark; Committee Member: Lanterman, Aaron; Committee Member: Wang, May; Committee Member: Tannenbaum, Allen; Committee Member: Williams, Dougla

    An Improved Observation Model for Super-Resolution under Affine Motion

    Full text link
    Super-resolution (SR) techniques make use of subpixel shifts between frames in an image sequence to yield higher-resolution images. We propose an original observation model devoted to the case of non isometric inter-frame motion as required, for instance, in the context of airborne imaging sensors. First, we describe how the main observation models used in the SR literature deal with motion, and we explain why they are not suited for non isometric motion. Then, we propose an extension of the observation model by Elad and Feuer adapted to affine motion. This model is based on a decomposition of affine transforms into successive shear transforms, each one efficiently implemented by row-by-row or column-by-column 1-D affine transforms. We demonstrate on synthetic and real sequences that our observation model incorporated in a SR reconstruction technique leads to better results in the case of variable scale motions and it provides equivalent results in the case of isometric motions

    Image Restoration Model with Wavelet Based Fusion

    Get PDF
    Image Restoration is a field of Image Processing which deals with recovering an original and sharp image from a degraded image using a mathematical degradation and restoration model.This study focuses on restoration of degraded images which have been blurred by known or unknown degradation function. On the basis of knowledge of degradation function image restoration techniques can be divided into two categories: blind and non-blind techniques.Three different image formats viz..jpg(Joint Photographic Experts Group),.png(Portable Network Graphics) and .tif(Tag Index Format) are considered for analyzing the various image restoration techniques like Deconvolution using Lucy Richardson Algorithm (DLR), Deconvolution using Weiner Filter (DWF), Deconvolution using Regularized Filter (DRF) and Blind Image Deconvolution Algorithm (BID).The analysis is done on the basis of various performance metrics like PSNR(Peak Signal to Noise Ratio), MSE(Mean Square Error) , RMSE( Root Mean Square Error). Keywords— Lucy Richardson Algorithm, Weiner Filter, Regularized Filter, Blind Image Deconvolution, Gaussian Blur, Point Spread Function, PSNR, MSE, RMS
    • …
    corecore