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Two-Dimensional Block Kalman  Filtering for Image 
Restoration 

Abstract-This paper is concerned with developing an efficient two- 
dimensional (2-D) block Kalman filtering for digital image restoration. 
A new 2-D multiinput, multioutput (MIMO) state-space structure for 
modeling the image generation process is introduced. This structure is 
derived by arranging a vector autoregressive (AR) model with a causal 
quarter-plane region of support in block form. This model takes into 
account the correlations of the image data in successive neighboring 
blocks and, as a result, reduces the edge effects prominent in the avail- 
able Kalmau strip filtering techniques. The degradation model for an 
infinite extent Linear space invariant (LSI) blur and white Gaussian 
(WG) noise is  also modeled by an MIMO block state-space equation 
stemmed from a single-input single-output (SISO) 2-D state-space 
structure. The image generation model and the degradation model are 
combined to yield a composite block-state dynamic structure. The block 
Kalman filtering equations are obtained for this dynamic structure and 
then used to compute the suboptimal filter estimates of a noisy and 
blurred image. 

T 
I.  INTRODUCTION 

HE  model  of the image  formation  system  for  a blurred 
and noisy image is 

y ( i , j )  = C C h ( i , j ;  IC, ~ ) f ( k ,  I )  + v ( i , j )  
k 1  

i = 0, 1, , N 1  

j = 0 , 1 ,  * * *  , N ,  ( 1 )  

where h (  i, j ;  k ,  I ) is the spatial operator (point spread 
function or PSF) representing the blurring effect which 
may  be caused by such  phenomena as atmospheric tur- 
bulence, relative motion  between  the  camera  and the ob- 
ject being  photographed,  and  defocusing; f( i, j ) repre- 
sents the uncorrupted  image of size N1 X N2; y ( i ,  j ) is 
the  observed  image;  and v ( i ,  j ) represents the noise in 
the digitized image  which may be  due to sensors,  quan- 
tization effects, and transmission media,  etc.  The noise 
which is  a stochastic phenomenon, in  most practical sit- 
uations, may be  considered to be white  Gaussian. For LSI 
b lu r , t hePSFh( i , j ; k ,Z ) reduces toh ( i -k , j -Z )and ,  
hence, 

y ( i , j )  = h ( i  - k ,  j - 1 )  
k l  

*f(k, I )  + 4i7j). (2) 
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The  aim of image restoration is to estimate f( i, j ) from 
the observed  image y ( i ,  j ) given the PSF of the LSI blur 
and  some statistical knowledge of the noise. 

Recursive estimation techniques  (Kalman filters) have 
been very useful in 1-D digital signal processing. The  ex- 
tension of  Kalman filtering to the  2-D  case, and its appli- 
cation to image restoration, has been receiving a great deal 
of attention in recent years.  The initial attempt to model 
images by state-space  techniques  was reported by Nahi 
and  Assefi [ 11. Their  modeling  procedure exhibits several 
difficulties in representing 2-D  random fields by 1-D 
models.  Aboutalib  and  Silverman [2] have  considered the 
case of  images that are degraded by linear  motion blur and 
additive noise. The original image is modeled as the out- 
put  of a  line  scanner,  and  the blurring process is modeled 
by a  1-D  linear  dynamic  model.  However, the periodic 
nature of the scanning  procedure gives rise to nonstation- 
arity of the output image.  Later, this approach was ex- 
tended to the general motion  blur [3].  The main  problems 
in extending  the standard 1-D recursive filtering tech- 
niques to the  2-D  case  are not only  due to the difficulty  in 
establishing a suitable 2-D recursive model, but also the 
high dimensionality of the resulting state vectors. Woods 
and Radewan [4] have  proposed  two  2-D  Kalman proces- 
sors known as the Kalman Strip Filter  and  Reduced  Up- 
date  Kalman  Filter  (RUKF),  which  use vector and scalar 
scanning  schemes, respectively. The  RUKF  scheme  was 
shown to offer significant reduction in the total computa- 
tional load,  and  hence  overcome  the  computational prob- 
lems that have  precluded  the  use of 2-D  Kalman-like pro- 
cessors.  The  computational saving in this method  was 
accomplished by limiting the  updating process in the  Kal- 
man filter to a certain region in the vicinity of the point 
currently being processed. Later, Woods and Ingle [5] ex- 
tended  the  RUKF to the case of degradation  due to both 
blur  and  random noise. Over the past few  years, several 
other authors have  proposed different new 2-D  Kalman 
filtering schemes  for restoration of  images  degraded by 
both blur and noise [6]-[8]. The Kalman  window ap- 
proach  proposed by Dikshit [6] is shown to  be nonoptimal 
because of the erroneous  assumption of the  white noise 
model and  inadequate description of the  dynamic  model 
representing the original image [9]. In [7] a set of  low- 
order  Kalman filters for nearly optimal recursive image 
restoration is derived  which is suitable for parallel pro- 
cessing in the Fourier  domain.  The  Kalman strip filtering 
proposed by Suresh  and  Shenoi [8] is particularly inter- 
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esting since it is concerned  with  modeling  the blur by a 
2-D state-space structure. However,  there  are  some  prob- 
lems associated with this technique. This  method  fails to 
consider optimally the correlation between  the pixels 
along the boundaries of successive neighboring  strips. 
Moreover, the local state in this method  propagates  only 
in one  dimension, i.e., during  the intrastrip recursion and 
not during the interstrip recursion. This  consequently  re- 
sults in a  processor  which is not a  true  2-D recursive es- 
timator. 

In this paper,  a generalized 2-D  block  Kalman filtering 
scheme  for restoration of images  degraded by LSI  blur 
and additive WG noise is presented. In Section 11, a vec- 
tor AR model  with  a quarter-plane region of support is 
introduced which linearly relates a  column of pixels in a 
strip  to  other  columns  in  the  same  strip  and also to  those 
in the  previous  strip.  A  new  2-D  block state-space struc- 
ture is developed to model  the  image generation process 
[ 101. Using this structure,  each  block of image is related 
to the  three previously processed  blocks  and  a  block of 
random  noise input. The effect of infinite extent LSI blur 
can be described by a  discrete  2-D state-space equation 
[ 111. In Section 111, the  SISO  2-D state-space model in- 
troduced by Roesser [12] is used to generate  an  MIMO 
block  state-space structure for modeling  the blur. It  is 
shown that the horizontal and vertical states in this model 
propagate  in different directions and,  as  a  result, an effi- 
cient recursive implementation  scheme  can  be  devised. 
The  two  block state-space structures are combined in Sec- 
tion IV, and  an  observation noise is added to  the  model 
to form  a  composite  block  dynamic structure which ac- 
counts for both  degradations.  The  block  Kalman filter 
equations are  developed  for this new block  dynamic 
model.  Now, by moving the prediction window  and ap- 
plying the  Kalman  estimator at each  stage,  the  block es- 
timates can be  computed.  The comparison  of  the relative 
efficiency  of the  2-D  block  Kalman filtering to those of 
the  other 2-D Kalman  strip processors indicates signifi- 
cant reduction in the  total  computational cost and  storage 
requirements. The effectiveness of the proposed  block 
Kalman filtering scheme is examined on 'a  real world  im- 
age  using  a  VAX 1 1/780  computer. 

11. IMAGE  GENERATION MODEL 
The  image  generation  'model  proposed by Suresh  and 

Shenoi [SI is based  upon partitioning an  image  into  non- 
overlapping  strips  and defining a  vector AR process in 
each  strip.  This  model incorporates both horizontal cor- 
relation (limited to the  order  of the AR model) 'and the 
vertical correlation (restricted to the  width  of  each  strip). 
Using this method,  each  strip  is  processed  independently, 
and  consequently distortion occurs  at  the  edges of the 
strips because the correlations of pixels in neighboring 
strips are  neglected. In this section,  a new model is de- 
rived which takes into  account  the correlations of pixels 
within a  strip as well as those between adjacent strips.  In 
what  follows,  a  2-D  dynamic  state-space  equation  is de- 
veloped for processing  the  images in blocks. 

Fig. 1 .  The strip processing of images and vector  scanning  scheme 

Consider  an  image  which is partitioned into strips as 
shown in Fig. 1 .  The  image process  starts  from  the  upper- 
left-hand corner ofthe image  and  then  proceeds horizon- 
tally along  a  strip.  At  the  end of the  strip,  the process 
continues from the left-hand  side of the next strip until 
the  entire  image has been  processed.  Note that the assign- 
ment of orientation and  the direction of  the  vector  scan is 
purely arbitrary and  does not affect the generality of  the 
model.  Let us start with  an N X N image  which is sec- 
tioned into strips of width M .  It  is  assumed that N is  ex- 
actly divisible by M ,  i.e., N = nM where n is an  integer. 
The image is assumed to be represented by a  vector  Mar- 
kovian  random field with  zero  mean.  We define an M X 
1 vector Z (  i, j ) which  denotes  a  column  of pixels in the 
kth strip  as  follows: 

( i , j )  E ( 3 )  
CR = { ( i , j ) :  i = ( k  - I)M, 

j = 0, 1, e * *  , N -  I } ,  

k =  1 , 2 ,  . ' *  , n  (4) 
where z ( i, j ) is the  pixel  element  at (i, j ) th position and 
T denotes  matrix  transpose.  Let  the  image  process be 
modeled by a causal quarter-plane vector AR process  of 
order M ,  which incorporates the correlation of pixels in a 
strip with those in the  previous  strip. Then,  we have 

Z( i , j )  = + J ( i , j  - 1 )  + + 2 z ( i , j  - 2)  

+ . . .  + +"Z(i, j - M )  

+ e0Z(i - M , j )  + e l Z ( i  - M ,  j - 1)  

+ * + e,Z(i - M , j  - M )  + U ( i , j )  

( 5 )  
where CPi's and @'s are the coefficient matrices of the AR 
process. U (  i ,  j ) can  be  viewed as  the input which drives 
the process or  the  error in generating Z (  i, j ) from  a  linear 
combination  of  the past vectors Z (  i - k ,  j - I ). This M 
X 1 vector  is defined by 

~ ( i , j )  = [ u ( i , j )  u ( i  + 1 , j )  - * u ( i  + M - 1 , j ) ]  
T 

( i , j )  E CR. ( 6 )  

It can be  shown  (Appendix A) that U (  i, j ) is an  uncor- 
related random  vector  which satisfies 



1738 IEEE  TRANSACTIONS ON ACOUSTICS,  SPEECH,  AND  SIGNAL  PROCESSING, VOL. ASSP-35,  NO. 12, DECEMBER 1987 

E [  U ( i , j )  * U T ( i  - p 7 j  - q ) ]  = Q u ~ ( P ,  4 )  

( i 7 j )  E a ( P ,  4 )  E s (7) 

where  the set S is defined in (AS); Qu is the correlation 
matrix; 6 ( p ,  q )  is  the Kronecker delta; and E is  the ex- 
pectation. Note  that (7) does not imply that the compo- 
nents of the vector U (  i, j ) are mutually uncorrelated. The 
image process ( 5 )  can  be  assumed to  be “column wide 
sense  stationary. ” Now, define the following 2 M X 1 
vectors (Fig. 2) as: 

{(i, j )  = [z’(i - M ,  j )  Z T ( i ,  j ) ]  
T 

= [ ~ ( i  - M , j )  ~ ( i  - M + 1 , j )  

where 

0 0  
i = 1, 2, - e *  , M  ( lob)  

. .  

Q = [ O  I,] size 2 M  X M 
T 

(11) 

and ZM is  the identity matrix of order M .  
To apply the Kalman filtering, the  image process in  (9) 

should be  arranged in the  state-space  form with an appro- 
priate state  vector. In order to construct  such a model,  the 
coefficient matrices of the AR process must be computed. 
Let us define the autocorrelation matrix of Z (  i, j ) as 

P P >  4 = E [ z ( ~  - p ,  j - q )  zT(i , j ) ]  

( i d  E a ( P ,  9 )  E s. (12) 

Now, taking the  transpose of both sides of ( 5 ) ,  premulti- 

< ,,(i,j) + zeros  i n  

r; (i,]) + 

Fig. 2. The  structur of the  state  vectors ((i, j ), (,,(i, j ), and Z (  i, j ) in 
two adjacent strips. 

the following system of equations  can be obtained which 
may be used to evaluate @ i ’ s  and Oj’s  given the autocor- 
relation matrices pk,  I ’s: 

where 

L 

( k ,  1 )  = ( ( 0 ,  11, (0 ,  2 ) ,  - .  , (0 ,  M )  Now, if we  further  assume that the  image process satisfies 
( M ,  O ) ,  ( M ,  11, - .  * , ( M ,  M ) }  an  ergodic  theorem,  good  estimates for  the autocorrela- 
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tion matrices p p , 4  can  be  obtained by IJ 

(P, 4) E (20) 
where 11 CR 11 is  the  size  of CR. 

fine a  state  vector x (i, j ) as 
In order  to  put (9) into  the state-space form,  let us de- 

x ( i , j )  = [ l T ( i , j  - M )  * * * lT(i, j - 1 )  r T ( i , j ) ]  
T 

size 2M(M + 1 )  X 1.  (21 ) 

Let Xb (i, j ) be  a  vector  such that the top M elements  (each 
element is  a  vector of size  2  M X 1 ) are identical to those 
in x (i, j ), and the  last  element is vector {b ( i ,  j ) (Figs.  2 
and 3).  Thus, 

x b ( i ,  j )  = [{'(i, j - M )  - - - l T ( i , j  - 1) lbT(i,j)] 
T 

size 2M(M + 1) x 1 (22) 

where 

At the (i, j ) th iteration,  the  vector x ( i ,  j ) is evaluated 
from  the  vector Xb (i, j ) using  the  following state-space 
equations: 

A, = 

B1 = [o 0 * ' '  0 

size 2M(M + 1) x M (25d) 

cl = [o 0 ' 0 I,] 

size M X 2M(M + 1) ( 2 5 4  

y ( i , j )  = [ f ( i , j ) f ( i  + 1 , j )  - - - f ( i  + M - 1 , j ) ]  
T 

size M X 1. (26)  

Equation (24a) generates the  vector Xb ( i, j ) from the  state 
vectors x ( i ,  j - 1 ) and x ( i  - M, j ) and prepares it for 
processing. It essentially performs  a  shift operation on  the 
vector x (i, j - 1 ) and  appends  a portion of x ( i  - M, j ) 
to the  appropriate location in Xb(  i, j ). As a  result,  the 
operations in this equation  can be  done by data transla- 
tions and appropriate addressing  which require no  com- 
putations. Equation (24b) is obtained by rearranging the 
AR process of (5 ) .  One  column  of  image pixels y (i, j ) 
is evaluated from the state vector by (24c).  The  output 
elements of the  system, f (i, j ), have  the  same  statistics 
as  the process of  which  our ideal image  forms  a  sample. 
The state-space model (24) takes  an uncorrelated random 
vector  as  its input and  generates  one  column  of pixels of 
size M in one  iteration.  This  model  can  be  extended  such 
that the image is processed in blocks  of size  M X M  (Fig. 
4). Let us define the  following  block  states, input and  out- 
put vectors as: 

~ l ( i , j )  = [ l T ( i , j  - M )  [ * ( i , j  - M + 1) 

- - l T ( i , j  - 1) l T ( i , j )  

f T ( i , j  + 1) * * l T ( i , j  + M - l ) ]  
T 

size 4M2 X 1 (27) 
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1 , j  1 

i -  I 

Fig. 4. The  structure of the block state  vectors x1 ( i ,  j ) and .xlb( i, j ) in 
the  image  generation  model. 

f ( i , j )  = [ -yT( i , j ) -yT( i , j  + 1) 

- -yT(i , j  + M - I ) ]  
T 

size M~ X 1 (29) 

u ( i , j )  = [uT(i , j )  UT( i , j  + 1) 

* - UT( i , j  + M - I ) ]  
T 

sizeM2 X 1 ( i , j )  E a; j E a- 
(30)  where 

a- = { j : j  = ( I  - 1 ) M ) )  I = 1 , 2 ,  * - .  7 1 2  

( 3 1 4  
and 

E[u( i  - k , j  - 1 )  - u T ( i , j ) ]  = QuS(k, I )  (323) 

where Q, is a correlation matrix of size M 2  X M 2  given 
by 

Qu = IM @ Qu (3% 1 
where 0 denotes  Kronecker  product  operation. 

The block state-space model  becomes 

M 

+ 

- 

12 M 

0 ’  
I2 M 

B1 = 02 61 01 

where 

alj = - j  j = 1, 2, . . , M (35a) 

ki’s are defined in (10) and !Pk = 0 for k < 0 or k > M .  
a,. = * 

rJ M f i - j  + *lai-l,j + *2ai-2,j 
+ * * + *i- lal j  

j =  1 ,2 ,  , M  i = 2 , 3 ,  , M  

7 1 

0 0  
i = 2 , 3 , . * * , M .   ( 3 3 )  

It  can  be  shown  (Appendix B) that aG’s, Xi’s, and pi’s for 
i = 2 , 3 , - . .  , M can  be  evaluated recursively by 
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In the block  dynamic  model  (33), (33a) represents a 
shift operation on  the vector xl( i, j -. M )  plus the  ex- 
traction of  elements  from  the  previous state vector xl( i - 
M ,  j ) .  These operations can be  done  with indirect ad- 
dressing and essentially no computation.  After  the  com- 
pletion of this step,  vector x l b ( i ,  j ), which consists of 
three previously processed  blocks  and  zero  entries  in the 
present block, is evaluated.  Then (33b) is performed to 
advance  the state vector xl( i, j ) and  estimate  a  block of 
image data.  Therefore, (33b) and (33c) generate the pre- 
sent block of the estimated  image  from  three past pro- 
cessed  blocks  and  a  block of uncorrelated random  vectors. 
The state vector xl( i, j ) then  propagates to  the  next  iter- 
ation for  subsequent processing. Moreover, part of  the 
elements in this  vector  are  saved  which will be recalled 
when the  processing  window is moved to  the adjacent 
block in the following  ,strip.  This  procedure is accom- 
plished simply by writing the new required elements  over 
the old elements  in  the storage. Thus, while the local state 
consists of  only  two  vectors, xl( i, j - M ) and x l (  i - M ,  
j ), the global state  has  to include all the vectors xl( i - 
M ,  j ), V j  E CR- in  the  previous  strip  when  the  processing 
is moved to a  new  strip.  A pointer is used to keep track 
of the  head  of the global state vector. To implement this 
process more efficiently, only those elements in xl( i - 
M ,  j ) which will be recalled by the recursive process need 
to be stored in the global state.  This is called reduced 
updating  of  the global state [4]. 

111. LSI  BLUR MODEL 
The state-space model  derived by Suresh  and  Shenoi [8] 

for  an infinite extent LSI blur takes a  column of the input 
in a strip and generates a  column  of  output in conformity 
with the strip filtering model.  This structure was  origi- 
nated from the Roesser [12] 2-D SISO  model. In this sec- 
tion,  the  problem of modeling  the blur by a  2-D  block 
state-space structure  is  considered.  A new version of the 
block state-space structure  derived in [13] is developed. 
Because  the  block  state vectors in this MIMO structure 
propagate  in different directions,  an efficient recursive im- 
plementation  scheme is suggested. 

Let f (  i, j ) be  a  single pixel element at the ( i ,  j ) th 
position generated  by the image  process  in  the  previous 
section, y ( i ,  j ) be  the blurred pixel at the  same location. 
Define  an n1 X 1 vertical state  vector R( i, j ) and an n2 
X 1 horizontal state  vector S( i, j ). Then, Roesser's  SISO 
state-space model is given by 

(37b) 
where G I ,  E,, E3,  E4,  S1, T2, X1,  X2, and 6: are matrices 
of appropriate dimensions.  Note that the global state in 

this model consists of initial conditions R(  0, j ), V j  1 0 
and S( i, 0), V i  I 0, which  refer to the state along  the 
boundaries. Thus, it provides  the  information  about the 
entire past history of  the  image.  The local state, on the 
other  hand, consists of vectors R ( i ,  j ) and S ( i ,  j ) which 
propagate  during the  state  recursion.  Let us define the  fol- 
lowing  "block state" vectors: 

R r ( i , j )  = [ R T ( i , j )   R T ( i , j  + 1) * * 

RT(i ,  j + M - l ) ]  size Mnl X 1 
T 

(38) 
S C ( i , j )  = [S*( i ,  j )  S T ( i  + 1 , j )  * 

T sT(i + M - 1, j ) ]  size ~n~ X 1 

(39) 
where R, ( i ,  j ) and S, ( i ,  j ) denote  the  states associated 
with the  boundary  elements of the ( i ,  j ) th block  along 
the horizontal and vertical directions, respectively (Fig. 
5) .  Using  these  two  vectors,  the  block  state-space  model 
can be completely  characterized.  Recursive application of 
(37a) and (37b) for  each  element  of  the  block state vectors 
yields the  following 2-D block  state-space  model [111, 
[13]: 

( i , j )  E CR; j E a- 
wheref ( i ,  j ) is defined in (29),  and 

y ( i , j )  = [ Y T ( i , j )  Y T ( i , j  + 1) 

. - a  Y T ( i , j  + M - I ) ]  
T 

( i , j)eCR; ~ E C R -  (41) 

denotes  a  block of blurred pixels (size M 2  X 1 ) 

El = 

I 

Mnl X Mn2 



1742 IEEE  TRANSACTIONS ON ACOUSTICS,  SPEECH,  AND  SIGNAL  PROCESSING, VOL. ASSP-35, NO. 12, DECEMBER 1987 

where 

i 
i 

size Mn2 X Mnl 

E4 = size Mn2 X Mn2 (42d 

F,  = 1 :  ( 4 3 4  

r .  K2F2 * - 0' 

M2 x M 2  

Y ( i , j )  = [ y ( i , j )   y ( i  + 1 , j )  - * . y ( i  + M - 1 4 1  T 

( i , j )  E a (46) 

( 4 7 4  El = € Y  size nl X n1 

E2 = [ E ; " - ' € ,  €?-*E2 * * - €,] size n, X Mn2 

E3 = 1 
E d  = 

Kl = 

size n1 X M 

Mn2 X M 
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It is observed that the 2-D MIMO block  state-space 
model in (40) has  a  form  similar to its SISO 2-D state- 
space counterpart. The block state vectors R,( i, j ) and 
S,( i, j ) propagate  in vertical and horizontal directions, 
respectively,  to generate the  vectors I?,( i + M ,  j ) and 
S,( i ,  j + M )  which  correspond to the states associated 
with  the horizontal and vertical boundary  elements  of ( i  
+ M ,  j ) th and (i, j + M )  th blocks, respectively (Fig. 
5 ) .  These  latter vectors are computed recursively using 
(40a,  b),  while  the  output  block  at  the ( i ,  j ) th position is 
being  evaluated.  The  block  state  vector R, ( i + M ,  j ) will 
not be  needed until the  processing has been  moved to the 
next  strip at the ( i  + M ,  j ) th position. The block state 
vector R, ( i ,  j + M ) ,  which is yequired for  processing  the 
block at  the (i ,  j + M ) th position and is computed in the 
previous  strip  (the result of processing the ( i  - M ,  j .+ 
M )  th block), will be recalled from  memory. Thus,  for 
the recursive process to  work,  all  the  state  vectors, I?,( i 
+ M ,  j ), b’j E 03- , that are  evaluated  when  processing 
the kth strip  must  be stored as they will be required for 
processing the next strip.  This indicates that the global 
state consists of the vectors R,( i, j ), V j  E CR- while  only 
the  local  state is involved in each  iteration.  Note that the 
vectors R, (0, j ) and S, ( i ,  0) are available externally for 
the first stage of the recursion process. 

Iv. BLOCK STATE-SPACE DYNAMIC MODEL A N D  

KALMAN FILTER EQUATIONS 

The  image  generation  model in (33) and the blur model 
in (40) can be  combined,  and  the  observation noise may 
be added to form the following  composite  block  dynamic 
model  which  accounts for both  of  the  above processes. 

x l b ( i , j )  = G x l ( i , j  - M )  + H x l ( i  - M , j )  

(5   l a )  

( i , j )  E @; j E (51c) 

and v (i, j ) is  the  observation noise vector of size M 2  X 
1 with 

E [ v ( i  - k , j  - 2 )  - ~ . ‘ ( i , j > ]  = Q,S(k ,  I )  ( 5 2 )  

where Q, is  the correlation matrix of  size M 2  X M 2  de- 
fined in a  manner  similar to Q, in  (32b).  Note  that the 
subscript ( i ,  j ) in  each  vector  represents  the  location of 
the first pixel at  the  beginning  of  each  block. Now if this 
is mapped in accordance  with  the nature of  the  vector  scan 
such that the kth block  corresponds to the  block  with the 
first pixel at  the ( i ,  j )th position,  then we have 

w ( i , j )  = w ( k )  (53a 1 
w ( i , j  + M )  = w ( k  + 1) (53b) 

w ( i  + M , j )  = w ( k  + n )  ( 5 3 4  

where k = (in + j ) / M  + 1, n = N / M ,  and w can be 
any  block  vector  in  the  model.  Using this mapping, (51) 
can  be rewritten as 

x l b ( k )  = G x l ( k  - 1) + H x l ( k  - n )  (54a) 

( 54b 1 

The  model in (54) is  a  linear  dynamic  model,  with  the 
state vectors x1 ( k ) ,  R ,  ( k ) ,  and S, ( k ) ,  that propagates 
differently. The state vector Xlb  ( k )  is generated  from  the 
state vectors x1 ( k  - 1) and x1 ( k  - n )  using  only  shift 
operation and data translation.  Then,  the  state vector 
xl ( k )  is evaluated  from X l b  ( k )  using  the  least  square pre- 
diction equation.  The  state  vector R, ( k )  will be computed 
as described in Section 111. The  state  vector S, ( k )  is eval- 
uated  along the direction of the  vector  scan, i.e., it prop- 
agates directly from  the kth iteration to the ( k  + 1)th it- 
eration except at the  boundary  of the image  where the 
boundary condition is applied.  The  Kalman filtering equa- 
tions (with an extra step) for  the  block  dynamic  model 
(54) are 

& ( k )  = ~ i , ( k  - 1 )  + ~ i , ( k  - n )  (55a) 

P b ( k )  = AP,(k - l ) A T  + BQ,BT ( 5 5 4  

K ( k )  = Pb(k)CrT  ( C r P b ( k ) C r T  + e,}-’ 
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n n 

where “ ” and at the  space vectors denote thg esti- 
mates before and  after  updating,  respectively; andf(k) is 
the  suboptimal  estimate of the original image; and matrix 
C‘  is defined as 

C‘ = CAI-’ (56a 1 
where  the  nonsingular  matrix A ’  is given by 

(56b) 

The  error  covariance matrices of the  state vectors before 
and  after  updating at the kth iteration, P b ( k )  and Pa ( k ) ,  
are, respectively, 

& ( k )  6 E [ ( ~ ( k )  - X ( k ) )  ( ~ ( k )  - ~ ( k ) ) ~ ]  (57a) 

P , ( k )  4 E [ ( X ( k )  - X ( k ) )  ( X ( k )  - 8 ( k ) ) ‘ ]  (57b) 

where 

The above  Kalman filtering equations can  be  divided  into 
two parts [14]: 

i) the  state prediction and  update  part: ( S a ) ,  (55b), 

ii) the Kalman gain evaluation part: (55c), (55d),  and 

The  Kalman gain evaluation in part ii) is determined by 
the  model  parameters  and the initial estimate of the  mean 
of the state vector.  Note  that parts of Pa( k )  generated in 
(55f) will not be  needed  when  the  processing is moved to 
the k + lth stage.  These parts correspond to  two  blocks 
of image data estimated at stages ( k  - 1) and ( k  - n - 
1 ) and the state vector R, ( k  + n ) which is not used until 
the’ processing is moved to the k + nth stage.  These parts 

(55e),  and (55g); 

(55f). 

will be replaced by the  corresponding parts of previously 
stored Pa’s,  i.e., those of the image  block and the state 
R,( k + 1 ) estimated at k - n + lth stage.  This  newly 
formed Pa ( k )  is now used in (5%) to generate Pb ( k  + 
1 ). However,  since  the  Kalman gain matrix  converges to 
a constant matrix  after  a certain number of iterations that 
depends  on  a particular model,  the  Kalman gain part can 
be evaluated off-line until it converges within a predefined 
tolerance factor and then is used in the state estimation in 
part i). Kalman filtering is applied to the  image  through 
the  above  model  such that at each  iteration,  a  block of 
noisy  and blurred pixels of size M X M is taken as input 
and a  block of smoothed pixels is produced as its output. 
When  compared to the SISO scheme,  a delay at the output 
is expected  because  the output is available only  after the 
entire  block has been read and  processed. 

Remark I :  If we  consider  the relations 

A’-’A = A ,  o z 
and 

Lo J 
where 0 represents the direct sum  operation, and denote 

P c ( k )  2 A’-’Pb(k)   (A’- ’ ) ‘  ( 5 W  

where 

Now using these relations,  (55c),  (55d), and ( S f )  be- 
come 

P J k )  = [ A ,  o Z ] ( P a ( k  - 1) [ A ,  o Z I T  

K ( k )  = A’Pc(k)  C r {  C P C ( k )  C T  + Q,) (59b) 

P , ( k )  = A’P,(k)  A f T  - K ( k )  CP,(k)  AIT. ( 5 9 ~ )  

Closer investigation reveals that  the  above equations rep- 
resent a  combination of filtering and one-step prediction 
equations. This is due to the fact that the states R, and S, 
are evaluated one step ahead  based  upon  the  given infor- 
mation  in  the current block y (  k ) .  Thus, the parts of the 
above equations which  correspond to these states are sim- 
ilar to those of one-step predictor [14]. This is also evi- 
dent by the  presence of matrix A’ in (59b) and (59c) and 
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its special structure. As far  as x1 is  concerned,  the for- 
mulations  show filtering process,  because  the relevant 
term  corresponding to x1 in A' is an identity matrix  and 
thus the equations for  this  part  are  analogous  to  those of 
filtering equations. 

Remark 2:  It is observed  that  the  dimension  of the state 
vector in (54) is M (  4M + nl + n2): If M is chosen to be 
greater than nl and n2, the application of Kalman filtering 
equations would result in order of (3 ( M 6 )  computations. 
Since  a  block  of  the  output pixels of  size M X M is pro- 
duced at each iteration, the  order  of  computations  per  each 
output pixel is (3 ( M 4 ) .  Subsections  of x1 ( k ) ' s  ( M  X M 
elements) and R,( k ) ' s  ( M  X n1 elements) of a  strip  have 
to be stored for  use  in  processing the following  strip. If 
the image is stored row  by  row on sequential-row-access 
devices, sufficient memory  must  be reserved so that the 
image  can  be read and written M rows at a time. The 
memory  requirement for  the data storage  in the block  Kal- 
man filtering process is n X M X (2M + n1 ) or N X (2M 
+ n ] ) .  However,  since  the matrices in  the  Kalman filter 
equations require .O ( M 4 )  storage,  the overall memory re- 
quirement  of  the  block  Kalman filtering will be (3 ( M4).  

The  order  of  computations required for the RUKF [4] 
per  each output pixel is found to be (3 ( M 3 N  ) where M in 
this reference is the  order  of  the  NSHP recursive model 
and N is the width  of  the  image. For practical applica- 
tions,  an  approximate  RUKF is suggested in [4] which 
further reduces  the order of  computations to 0 (M4), i.e., 
independent  of N .  This  saving is achieved by confining 
the region where the error  covariance and gain are eval- 
uated to  a fixed region which encloses the region of sup- 
port. for  the local state.  As  a  result,  the  block  Kalman fil- 
tering requires the same  order  of  computations as with the 
approximate RUKF.  However,  the  memory  requirement 
for  the  block  Kalman filtering is smaller  than that of  the 
approximate  RUKF [ 0 ( M 3 N ) ] .  The strip filtering scheme 
in [SI requires an  order  of  computations  of 0 ( M 2 L 3 )  per 
each output pixel,  where M in this reference is the strip 
width and L is the  order of the AR process. If L is chosen 
to be equal to M (as in  our block state-space model),  the 
order  of  computations  becomes (3 (M5) per  each output 
pixel which is larger  than that of the  block  Kalman filter. 

V. IMPLEMENTATION 
The  proposed  block  Kalman  processor  has  been  imple- 

mented to restore the  "FRISBEE  image" corrupted by 
both WG noise and  LSI  blur. Fig.  6 shows the original 
FRISBEE  image  which contains fine details.  This  image 
has  a resolution of 512 X 512 pixels and the number  of 
gray levels which is 256.  There  are basically three pro- 
cesses involved in our  simulations: a) the model building 
process; b) the  corruption process; and  c)  the restoration 
process. In the  model builder program, first, the  image 
model is constructed using the method  in Section 11; sec- 
ond,  the  blur model is generated  based  upon  the structures 
derived in Section 111. The LSI  blur  with PSF of 

h ( i , j )  = e -0.8i e -0.q i , j  > 0 (60) 

Fig. 6 .  Original FRISBEE image. 

is used.  This  has  been realized by the  following  2-D 
SISCO state-space equations: 

~ ( i  + 1 , j )  = e-'.' ~ ( i ,  j )  + e-'.' s ( i , j )  + f ( i , j )  

( 6 1 4  
~ ( i ,  j + 1) = e-'.' ~ ( i , j )  + f ( i , j )  ( 61b 1 

( 61c 1 
y ( i ,  j )  = e-'.' R ( i ,  j )  + e -O.' S(i, j )  + f ( i ,  j ) .  

Note that both nl  and n2 are equal to 1 for  this  model. 
These equations are used to generate  the  corresponding 2- 
D block state-space equations.  The  composite  block dy- 
namic  model in (54) is then formed  which will be used in 
the restoration process. In the corruption program,  the  im- 
age is first blurred with the above  PSF  which has been 
implemented  using  the  following difference equations: 

q ( i , j )  = e-'.' q ( i , j  - 1) + f ( i , j )  (62a) 

y ( i , j ) '  = e-'.'y(i - 1 , j )  + q ( i , j ) .  (62b) 

WG noise of  zero  mean is then  added to the image  and 
the variance of this noise is chosen to provide signal-to- 
noise ratios (SNR)  of 0 and  15  dB. The degraded  images 
for these cases  are  shown in Figs. 7 and 8, respectively. 
In the restoration process,  the  Kalman gain is first pre- 
evaluated and  the  approximate steady state  is  obtained in 
18 iterations. Then  the  block  Kalman filtering equations 
developed in Section IV are implemented to  estimate  a 
block  of the  image. A block size of 4 X 4 is chosen 
( M  = 4). Since  the  AR  process in (5 )  takes  into  account 
the correlations of pixels in neighboring  strips,  the effec- 
tive correlation distance  of  the  block  state-space  model in 
(33) is 8 X 8. The matrices in  the model of (51) contain 
many identity and  zero  elements,  thus, efficient algo- 
rithms which  take  advantage  of  the specific structure of 
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Fig. 7. Degraded  image  (SNR = 0 dB). 
Fig. 9. Restored  image  (SNR = 9.2 dB) 

Fig. 8. Degraded  image (SNR = 15 dB) 

Fig. 10. Restored image  (SNR = 21.6 dB) 

these  sparse  matrices  have  been  developed to enhance  the 
computational  speed  further. The restoration  process is 
performed  on a VAX 1 1 /780 computer  and  takes  approx- 
imately 150 s for  the  entire  image.  The  signal-to-noise 
ratios of the restored images  are  measured  to be 9.2 and 
21.6  dB which  show  considerable  improvement  in  the 
quality of the  processed  images. The restored  images 
using block  Kalman filtering method developed in this  pa- 
per  are  shown in Figs. 9 and 10, respectively. 

VI. CONCLUSION 
The block  Kalman  processing method proposed in this 

paper is based on developing a vector AR model in a strip 

which relates a column of pixels  to a specified set of col- 
umns in the  same  strip  (determined by the  order of AR 
model) and  also  to  those of the  previous  strip.  This model 
incorporates  the  correlations  between  the  adjacent  strips 
and,  as a result,  circumvents  the  edge effects that  are a 
drawback in conventional  strip filtering schemes.  The 
vector AR  model  is arranged in form of a block  state- 
space  equation in order  to  estimate a block of the  de- 
graded image  at a time. A recursive  formula  is  derived to 
solve  for  the  matrix  elements in this  image  generation 
model. The effect of an infinite extent LSI blur is  modeled 
by a 2-D MIMO block state-space  structure  derived  from 
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a 2-D SISO state-space model. It has  been  shown [15] that 
for  modally  controllable  and  modally  observable 2-D sys- 
tems,  a  “modal  controller  form”  or  a  near canonical re- 
alization can  be  obtained.  Without  loss of generality, in 
this paper we have  implemented our model  using  a sepa- 
rable blur for  which  a  canonical realization is directly 
available if the  system is separately locally controllable 
and observable [ 161. It must be mentioned that the sepa- 
rable blur does  indeed  occur in practical cases  such as 
diffraction limited blur  and  atmospheric turbulence blur 
with long  exposure  recording. The  two  block state-space 
models are then combined to form  a  composite  block  dy- 
namic  model  which  accounts  for  both degradations. Block 
Kalman filtering equations are then derived  for this block 
dynamic  model. The amount  of  computation  and the 
memory  requirements for this scheme  have  been  obtained 
and then compared to those of  the  other 2-D Kalman pro- 
cessors. This  comparison indicates that the  order  of  com- 
putation for  the block  Kalman filter is equivalent to that 
of approximate  RUKF [4], whereas it is reduced by a fac- 
tor of M ( M  being the width of a strip) when  compared to 
that of the  Kalman  strip filter [SI. As  a  consequence, the 
2-D block  Kalman filtering technique  proposed in this pa- 
per  provides  a  powerful  method for finding the  suboptimal 
estimates of noisy  and blurred images  when  a vector scan- 
ning  scheme is considered. 

APPENDIX  A 
The image  model (5) is a  system of M linear equations 

in z and u which is  to  be evaluated at (i, j ) E 63 as defined 
in (4). Each  element of the vector Z(i, j ) can  be written 
as 

where 

W = { ( k ,  1 ) :  ( - M  + 1 5 k 5 M ,  

1 
1 ~ 1 s M ) U ( l < k ~ M ,  Z = O ) }  

p l ( m  + 1,  ‘1 - k )  -M + 1 I k I 0 ,  

1 5 Z I M  (A2) 

O S I S M  (A3 1 
UlGfl = 

Ol(m + 1 , M +  1 - k )  1 s  k s M ,  

pl( i, j ) and el( i, j ) are  the ( i ,  j )th entry of  the matrices 
and el, respectively. The signal u ( i  + m, j ) can be 

viewed as  the error in  generating z ( i  + m, j ) from  a  lin- 
ear combination  of z ( i  - k ,  j - I ) ,  V ( k ,  I )  E W. By 
the orthogonality principle,  the  mean  square  error G [ u ( i  
+ m , j ) 2 ] ,  m = 0, 1 ,  * - , M - 1, is minimized  when 

E [ u ( i  + m , j )  z ( i  - k,  j - I)] = 0 

m = 0, 1, , M -  1 ( k , I ) E W  

( i , j )  E a. (A4) 

As can be  seen,  the  scalar model  in (Al) is a  semicausal 
minimum variance representation (MVR) driven by col- 
ored noise [17]-[19]. In fact, { u (  i + m , j )  1 is a  moving 
average and correlated in the  noncausal direction “i” and 
white in the causal direction ‘7. ” However, the station- 
ary vector  Markovian representation in (5) is a causal vec- 
tor counterpart of (Al) and  possesses the following  prop- 
erties [ 171. Arranging (A4) in vector form yields 

E[U( i , j )  zT(i - p , j  ,- q ) ]  = o 
(i, j) E 63 

(P, 4 )  E ((0, I ) ,  (0 ,  - - * 9 (0 ,  M I ,  

(M, O), ( M ,  - * * 9 (MY M I ) .  (A51 

Making  use  of (5),  we get 

E [  u(i , j)  uT(i - p , j  - q ) ]  

= E [ ~ ( i ,  j )  ~ ‘ ( i  - p, j - q ) ]  

- ~ [ ~ ( i , j )  ~ ‘ ( i  - p , j  - q - I ) ]  a: 
- . . .  - E [  ~ ( i ,  j) zT(i - M - p, 

j - M - q ) ]  ( i , j )  E 63. (A6) 

By vector  Markovian  assumption,  the  symmetrical  prop- 
erty of autocorrelation,  and (A5), we can  deduce  from 
(A6) that 

E [  u(i, j )  u‘(i - P, j - 411 = QU 4 )  

(i, j)  E 63 (p, q )  E S (A7) 

where the  set S specifies the  entire past of the  model  and 
is given by 

S = ((p, q):p = O , M ,  2M, . * *  ; q E [ - N , N ] J .  

(‘48) 
Qu’is  the autocorrelation matrix  and 6 ( k ,  I ) is the  Kro- 
necker  delta. 

APPENDIX  B 
Lemma: Given  a  sequence  of matrices !Pi, i = 0, 1 ,  . . .  , M ,  and ! P k  = 0 for k < 0 or k > M ,  and let us 

define the elements aij’s, Xi’s, and Pi’s by 

cylj = ! P M + l - j  j = 1 ,  2, - - * , M 

a,. q = 9 ~ + i - j  + P l a i - 1 , j  

+ \ E 2 a i - 2 , j  + - * * + Pt-1 “y 
j =  1,2 ,  , M  i = 2 , 3 ,  , M  

(B2) 
X1 = !Po (B3 1 
Xi = ! P l X i - 1  + P 2 X j - 2  

+ . . .  + f i - l ~ l  i = 2, 3, * - * , M (B4) 
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Pi = i2M 035) 

Pi = * l P i - l  + * , P i - 2  

+ . . .  + \ k j - l / 3 1  i = 2,  3, - - M (B6) 

then the  elements q ’ s ,  Xi’s, and pi’s for i = 2, 3 ,  * * * , 
M can  be  evaluated recursively by 

cy.. = “. 
LJ 1 - 1 , j - 1  + a i - l , M c y l j  

j = l , 2 ; * -  , M  i = 2 , 3 ; * *  , M  

037) 
x. = cy. l - l , M X 1  i = 2,  3, + * , M  (B8) 

6. = C X - ~ , M P ~  = C Y - ~ , M  i = 2, 3, * * 2 M. 

(B9 1 
Proof: The above recursive equations can be proved 

by induction. To obtain (B7),  let i = 2, then  from  (B2) 
and (Bl) we  have 

“2 j  = q M f 2 - j  + * l Q l j  

- 
- * M + l - ( j - 1 )  + * M + 1 - M c y 1 j  

= c y 1 , j - l  + ( Y I M   a 1 , j  j = 1, 2, * , M ,  (B10) 

i.e., (B7) holds for i = 2. 

M ,  i.e., 
Assume (B7) is true  for i = 2, 3, - - , k where k < 

“kj = a k - 1 , j - l  + a k - 1 , M   “ ] j  j = 1,  2, * * * , M. 

(B11) 
For i = k + 1, (B2) yields 

“ k + t , j  - * M + k + l - j  + * lak j  
- 

f 9 2 a k - 1 , j  + * ‘ + *k a 1 j  

- - * M + k + l - j  + * l a k - l , j - l  

+ * l a k - l , M   a l j  + * 2 a k - 2 , j - 1  

+ \ k 2 a k p 2 , M   c y l j  + * f * k - l   a l j - 1  

f * k -  1 a l M   a l j  + *k a l j  

- 
- { * M + k - ( j - l )  + * l c y k - l , j - l  

+ k 2 a k - 2 , j - l  + * + q k - 1   a l J - 1  ) 

+ { * M + k - M  + * l Q ( k - l , M  + * 2 a k - 2 , M  

+ . . .  + * k -   l a l M  ) “ l j  

- - “ k , j - 1  + a k M   a l j  (B12) 

which is (B7) for i = k + 1.  Thus, (B7) holds for  all i. 
The structures of (B4) and (B6) are identical with  a  dif- 
ference  in  the initial conditions given in (B3) and  (B5). 
Therefore, if (B8) is proved, (B9) can also be  proved by 
the  same  manner.  Now,  let us obtain (B8) by induction. 

Letting i = 2  in (B4) gives 

X 2  = * , X 1  = * M + I - M X I  = 0 1 1 M X 1 ,  (B13) 

i.e., (B8) holds for i = 2. 

M ,  i.e., 
Assume (B8) is true  for i = 2,  3, + , k where k < 

X k  = a k - 1 , M h l .  0314) 
For i = k + 1, (B4) gives 

X k + l  = + q 2 h k - l  + * * + * k h 1  

= * l “ k - l , M X l  + * 2 a k - 2 , M h l  

+ . . .  + * k - l Q l M X l  + * k X I  

= { * M + k - M  + * l a k - l , M  

+ * k -   l c y l M ) h l  
+ . . .  

= a k M h l  0315) 
which is (B8) for i = k + 1.  Thus, (B8) is valid for all 
1 .  Q.E.D. 
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