15 research outputs found

    Token Jumping in minor-closed classes

    Full text link
    Given two kk-independent sets II and JJ of a graph GG, one can ask if it is possible to transform the one into the other in such a way that, at any step, we replace one vertex of the current independent set by another while keeping the property of being independent. Deciding this problem, known as the Token Jumping (TJ) reconfiguration problem, is PSPACE-complete even on planar graphs. Ito et al. proved in 2014 that the problem is FPT parameterized by kk if the input graph is K3,â„“K_{3,\ell}-free. We prove that the result of Ito et al. can be extended to any Kâ„“,â„“K_{\ell,\ell}-free graphs. In other words, if GG is a Kâ„“,â„“K_{\ell,\ell}-free graph, then it is possible to decide in FPT-time if II can be transformed into JJ. As a by product, the TJ-reconfiguration problem is FPT in many well-known classes of graphs such as any minor-free class

    Reconfiguring Graph Homomorphisms on the Sphere

    Get PDF
    Given a loop-free graph HH, the reconfiguration problem for homomorphisms to HH (also called HH-colourings) asks: given two HH-colourings ff of gg of a graph GG, is it possible to transform ff into gg by a sequence of single-vertex colour changes such that every intermediate mapping is an HH-colouring? This problem is known to be polynomial-time solvable for a wide variety of graphs HH (e.g. all C4C_4-free graphs) but only a handful of hard cases are known. We prove that this problem is PSPACE-complete whenever HH is a K2,3K_{2,3}-free quadrangulation of the 22-sphere (equivalently, the plane) which is not a 44-cycle. From this result, we deduce an analogous statement for non-bipartite K2,3K_{2,3}-free quadrangulations of the projective plane. This include several interesting classes of graphs, such as odd wheels, for which the complexity was known, and 44-chromatic generalized Mycielski graphs, for which it was not. If we instead consider graphs GG and HH with loops on every vertex (i.e. reflexive graphs), then the reconfiguration problem is defined in a similar way except that a vertex can only change its colour to a neighbour of its current colour. In this setting, we use similar ideas to show that the reconfiguration problem for HH-colourings is PSPACE-complete whenever HH is a reflexive K4K_{4}-free triangulation of the 22-sphere which is not a reflexive triangle. This proof applies more generally to reflexive graphs which, roughly speaking, resemble a triangulation locally around a particular vertex. This provides the first graphs for which HH-Recolouring is known to be PSPACE-complete for reflexive instances.Comment: 22 pages, 9 figure

    A polynomial version of Cereceda's conjecture

    Get PDF
    Let k and d be such that k ≥ d + 2. Consider two k-colourings of a d-degenerate graph G. Can we transform one into the other by recolouring one vertex at each step while maintaining a proper coloring at any step? Cereceda et al. answered that question in the affirmative, and exhibited a recolouring sequence of exponential length. However, Cereceda conjectured that there should exist one of quadratic length. The k-reconfiguration graph of G is the graph whose vertices are the proper k-colourings of G, with an edge between two colourings if they differ on exactly one vertex. Cereceda's conjecture can be reformulated as follows: the diameter of the (d + 2)-reconfiguration graph of any d-degenerate graph on n vertices is O(n 2). So far, the existence of a polynomial diameter is open even for d = 2. In this paper, we prove that the diameter of the k-reconfiguration graph of a d-degenerate graph is O(n d+1) for k ≥ d + 2. Moreover, we prove that if k ≥ 3 2 (d + 1) then the diameter of the k-reconfiguration graph is quadratic, improving the previous bound of k ≥ 2d + 1. We also show that the 5-reconfiguration graph of planar bipartite graphs has quadratic diameter, confirming Cereceda's conjecture for this class of graphs

    Partitioning a graph into degenerate subgraphs

    Get PDF
    Let G=(V,E)G = (V, E) be a connected graph with maximum degree k≥3k\geq 3 distinct from Kk+1K_{k+1}. Given integers s≥2s \geq 2 and p1,…,ps≥0p_1,\ldots,p_s\geq 0, GG is said to be (p1,…,ps)(p_1, \dots, p_s)-partitionable if there exists a partition of VV into sets~V1,…,VsV_1,\ldots,V_s such that G[Vi]G[V_i] is pip_i-degenerate for i∈{1,…,s}i\in\{1,\ldots,s\}. In this paper, we prove that we can find a (p1,…,ps)(p_1, \dots, p_s)-partition of GG in O(∣V∣+∣E∣)O(|V| + |E|)-time whenever 1≥p1,…,ps≥01\geq p_1, \dots, p_s \geq 0 and p1+⋯+ps≥k−sp_1 + \dots + p_s \geq k - s. This generalizes a result of Bonamy et al. (MFCS, 2017) and can be viewed as an algorithmic extension of Brooks' theorem and several results on vertex arboricity of graphs of bounded maximum degree. We also prove that deciding whether GG is (p,q)(p, q)-partitionable is NP\mathbb{NP}-complete for every k≥5k \geq 5 and pairs of non-negative integers (p,q)(p, q) such that (p,q)≠(1,1)(p, q) \not = (1, 1) and p+q=k−3p + q = k - 3. This resolves an open problem of Bonamy et al. (manuscript, 2017). Combined with results of Borodin, Kostochka and Toft (\emph{Discrete Mathematics}, 2000), Yang and Yuan (\emph{Discrete Mathematics}, 2006) and Wu, Yuan and Zhao (\emph{Journal of Mathematical Study}, 1996), it also settles the complexity of deciding whether a graph with bounded maximum degree can be partitioned into two subgraphs of prescribed degeneracy.Comment: 16 pages; minor revisio

    Shortest Reconfiguration of Matchings

    Full text link
    Imagine that unlabelled tokens are placed on the edges of a graph, such that no two tokens are placed on incident edges. A token can jump to another edge if the edges having tokens remain independent. We study the problem of determining the distance between two token configurations (resp., the corresponding matchings), which is given by the length of a shortest transformation. We give a polynomial-time algorithm for the case that at least one of the two configurations is not inclusion-wise maximal and show that otherwise, the problem admits no polynomial-time sublogarithmic-factor approximation unless P = NP. Furthermore, we show that the distance of two configurations in bipartite graphs is fixed-parameter tractable parameterized by the size dd of the symmetric difference of the source and target configurations, and obtain a dεd^\varepsilon-factor approximation algorithm for every ε>0\varepsilon > 0 if additionally the configurations correspond to maximum matchings. Our two main technical tools are the Edmonds-Gallai decomposition and a close relation to the Directed Steiner Tree problem. Using the former, we also characterize those graphs whose corresponding configuration graphs are connected. Finally, we show that deciding if the distance between two configurations is equal to a given number ℓ\ell is complete for the class DPD^P, and deciding if the diameter of the graph of configurations is equal to ℓ\ell is DPD^P-hard.Comment: 31 pages, 3 figure
    corecore