
European Journal of Combinatorics 83 (2020) 103015

Contents lists available at ScienceDirect

European Journal of Combinatorics

journal homepage: www.elsevier.com/locate/ejc

Partitioning a graph into degenerate subgraphs
Faisal N. Abu-Khzam a, Carl Feghali b, Pinar Heggernes b

a Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon
b Department of Informatics, University of Bergen, Bergen, Norway

a r t i c l e i n f o

Article history:
Received 12 April 2018
Accepted 26 August 2019
Available online 3 September 2019

a b s t r a c t

Let G = (V , E) be a connected graph with maximum degree k ≥ 3
distinct from Kk+1. Given integers s ≥ 2 and p1, . . . , ps ≥ 0, G
is said to be (p1, . . . , ps)-partitionable if there exists a partition
of V into sets V1, . . . , Vs such that G[Vi] is pi-degenerate for i ∈

{1, . . . , s}. In this paper, we prove that we can find a (p1, . . . , ps)-
partition of G in O(|V | + |E|)-time whenever 1 ≥ p1, . . . , ps ≥ 0
and

∑s
i=1 pi ≥ k − s. This generalizes a result of Bonamy et al.

(2017) and can be viewed as an algorithmic extension of Brooks’
Theorem and several results on vertex arboricity of graphs of
bounded maximum degree. We also prove that deciding whether
G is (p, q)-partitionable is NP-complete for every k ≥ 5 and
pairs of non-negative integers (p, q) such that (p, q) ̸= (1, 1) and
p + q = k − 3. This resolves an open problem of Bonamy et al.
(2017). Combined with results of Borodin et al. (2000), Yang and
Yuan (2006) and Wu et al. (1996), it also settles the complexity
of deciding whether a graph with bounded maximum degree can
be partitioned into two subgraphs of prescribed degeneracy.

© 2019 The Author(s). Published by Elsevier Ltd. This is an open
access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The concept of degenerate graphs introduced by Lick and White [12] in 1970 has since found
a number of applications in graph theory, especially in graph partitioning and graph colouring
problems. This is mainly because the class of degenerate graphs captures one of the earliest studied
classes of graphs such as independent sets, forests and planar graphs. For example, results of
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Thomassen [16,15] on decomposing the vertex set of a planar graph into degenerate subgraphs
have lead to new proofs of the 5-colour theorem on planar graphs that do not use Euler’s formula.
Another example is a result of Alon, Kahn and Seymour [1] that extends the well-known Turán’s
theorem on the size of the largest independent set in a graph to the size of largest subgraph of any
prescribed degeneracy.

In this paper, we shall investigate the complexity of partitioning the vertex set of a graph
of bounded maximum degree into degenerate subgraphs. In order to make this statement more
precise, we must first proceed with some definitions. Let G = (V , E) be a graph, and let k be a
non-negative integer. We say that G is k-degenerate if we can successively delete vertices of degree
at most k in G until the empty graph is obtained. Expressed in an another way, G is k-degenerate
if it admits a k-degenerate ordering — an ordering x1, . . . , xn of the vertices in G such that xi has at
most k neighbours xj in G with j < i. In this case, the ordering is said to start at x1 and end at xn.

Given integers s ≥ 2 and p1, . . . , ps ≥ 0, G is said to be (p1, . . . , ps)-partitionable if there exists
a partition of V into sets V1, . . . , Vs such that G[Vi] is pi-degenerate for i ∈ {1, . . . , s}.

We shall consider the following computational problem.

Problem 1. Given a graph G and integers s ≥ 2, p1, . . . , ps ≥ 0, determine the complexity of
deciding whether G is (p1, . . . , ps)-partitionable.

We briefly review some existing results related to Problem 1. Let G = (V , E) be a connected graph
with maximum degree k ≥ 3 distinct from Kk+1, and let d be a non-negative integer. A d-colouring
of G is a function f : V → {1, . . . , d} such that f (u) ̸= f (v) whenever (u, v) ∈ E. Equivalently,
f is a d-colouring of G if f −1(1), . . . , f −1(d) each forms an independent set. The earliest result on
Problem 1 is most likely the celebrated theorem of Brooks [6], which states that G has a d-colouring
for each d ≥ k. Thus, given that an independent set is a 0-degenerate graph, Brooks’ Theorem
can be reformulated in the language of Problem 1 to state that G is (p1, p2, . . . , ps)-partitionable
for every s ≥ k and p1 = · · · = ps = 0. Later on, Borodin, Kostochka and Toft [5] obtained a
generalization of Brooks’ theorem by showing that G remains (p1, . . . , ps)-partitionable for every
s ≥ 2 and

∑s
i=1 pi ≥ k − s. Observe that this result is algorithmic: Given a graph G of maximum

degree k ≥ 3 and integers s ≥ 2 and p1, . . . , ps ≥ 0 such that
∑s

i=1 pi ≥ k − s, one can check
in polynomial time if G is (p1, . . . , ps)-partitionable, because the only computation needed is to
verify whether G is isomorphic to Kk+1. The question remains, however, whether one can find such
a partition efficiently whenever it exists. In this direction, Bonamy et al. [3] have already considered
the case s = 2 with p1 = 0 and p1 + p2 ≥ k − 2 by showing that one can find the partition in
O(n+m)-time if k = 3 and in O(kn2)-time if k ≥ 4. In the first part of this paper, we generalize the
first of these two results in the following theorem.

Theorem 1.1. Let G be a connected graph with maximum degree k ≥ 3 distinct from Kk+1. For every
s ≥ 2 and 1 ≥ p1, . . . , ps ≥ 0 such that

∑s
i=1 pi ≥ k − s, a (p1, . . . , ps)-partition of G can be found in

O(n + m)-time.

The proof of Theorem 1.1 appears in Section 2. Let us note by our earlier discussion that
Theorem 1.1 can be viewed as an algorithmic extension of Brooks’ theorem. (In fact, our approach
differs from [3] but is instead a refinement of Lovász’ proof [13] of Brooks’ Theorem — see [2] for
an algorithmic analysis of [13].) We also remark that since the definition of forests coincides with
the definition of 1-degenerate graphs, Theorem 1.1 can be viewed as an algorithmic counterpart to
several results on vertex arboricity of graphs; see [7,11] for some examples.

On a different track, one might also ask what happens if the maximum degree of the graph
exceeds s +

∑s
i=1 pi. In this direction, Yang and Yuan [18] have shown that the case s = 2 with

p1 = 0 and p2 = 1 is NP-complete for every k ≥ 4. Wu, Yuan and Zhao [17] have also shown that
the case s = 2 with p1 = p2 = 1 is NP-complete for every k ≥ 5. Extending Yang and Yuan’s result,
Bonamy et al. [4] have shown that the case s = 2 with p1 = 0 and p2 = t −2 remains NP-complete
for every t ≥ 3 and k ≥ 2t−2. They then posed as an open problem the case s = 2 with p1 = 0 and
p2 = k − 3 for every k ≥ 5. In the second part of this paper, we resolve this problem by proving,
more generally, the following theorem.
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Theorem 1.2. For every integer k ≥ 5 and pairs of non-negative integers (p, q) such that (p, q) ̸= (1, 1)
and p + q = k − 3, deciding whether a graph with maximum degree k is (p, q)-partitionable is
NP-complete.

The proof of Theorem 1.2 appears in Section 3. Let us note that finding the least integer d such
that a graph with maximum degree 3 is d-colourable can be done in polynomial time. Indeed, one
can check in polynomial time if d = 1 or d = 2 (for any arbitrary graph). If this is not the case, we
check in polynomial time if the graph is isomorphic to K4; if not, then we know by Brooks’ theorem
that d = 3. Thus, combined with the aforementioned results in [5,18,17], Theorem 1.2 settles the
complexity of deciding whether a graph with bounded maximum degree can be partitioned into
two subgraphs of prescribed degeneracy. More formally, we now have the following solution to the
case s = 2 of Problem 1.

Corollary 1.3. Given integers p, q ≥ 0, deciding whether a graph with maximum degree k ≥ 3 is
(p, q)-partitionable is

(i) polynomial time solvable if k = 3 or p + q ≥ k − 2 or p = q = 0;
(ii) NP-complete otherwise.

2. A linear time algorithm

In this section, we prove Theorem 1.1. First, we need some standard definitions.
Let k be a non-negative integer, and let G be a graph with maximum degree k. Then G is said to

be k-regular if every vertex of G has degree exactly k. A vertex v of G is called a cut vertex of G if
G− {v} has more components than G. A block of G is either K2 or a maximal 2-connected subgraph
of G, and an end block of G is a block of G that contains exactly one cut vertex of G. A forest partition
of G is a partition of V into k/2 forests if k is even and ⌊k/2⌋ forests and one independent set if k
is odd.

Lemma 2.1. Let G be a graph with maximum degree k ≥ 3. If G has a forest partition that can be
found in O(n + m) time, then G has a (p1, . . . , ps)-partition for every 1 ≥ p1, . . . , ps ≥ 0 such that∑s

i=1 pi ≥ k − s that can be found in O(n + m) time.

Proof. Suppose k is even (the case k is odd is entirely similar) and let p1, . . . , ps be integers such
that 1 ≥ p1, . . . , ps ≥ 0.

Case 1
∑s

i=1 pi = k − s. Let σ =
∑s

i=1(1 − pi), then σ is even. Let F be a forest partition of G,
and partition σ/2 of the forests in F into two independent sets, which can be done in O(n + m)
time. The resulting decomposition is a (q1, . . . , qt )-partition of G, where 1 ≥ q1, . . . , qt ≥ 0. Since
t = |F| + σ/2 = (k + σ )/2 = s and

∑s=t
i=1 qi = k/2 − σ/2 = k − s, this (q1, . . . , qt )-partition of G is

also a (p1, . . . , ps)-partition of G. Case 1 is complete.

Case 2
∑s

i=1 pi > k − s. Let q1, . . . , qs be integers such that 0 ≤ qi ≤ pi for 1 ≤ i ≤ s and such
that

∑s
i=1 qi = k − s. By Case 1, a (q1, . . . , qs)-partition of G can be found in O(n + m) time. This

partition is also trivially a (p1, . . . , ps)-partition of G. This completes Case 2 and hence the proof of
the lemma. □

To prove Theorem 1.1, it suffices to show by Lemma 2.1 that for every connected graph G with
maximum degree k ≥ 3 distinct from Kk+1, a forest partition of G can be found in O(n+m) time. We
will need the next two lemmas. The proof of the first lemma is essentially the same as the proof
of [8, Lemma 8] but with some minor adjustments.

Lemma 2.2. Let G be a connected graph with maximum degree k ≥ 3 distinct from Kk+1. If G is not
k-regular, then a forest partition of G can be found in O(n + m) time.
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Proof. Since G is connected and not k-regular, it is (k − 1)-degenerate. Let us first compute a
(k − 1)-degenerate ordering of the vertices of G in O(n + m) time as follows. We find a vertex v of
degree at most k − 1. Note that every neighbour of v has degree at most k − 1 in G − {v}. So the
recursive algorithm that consists of first deleting v and then, for each vertex deleted, deleting all of
its neighbours until the empty graph is obtained gives a (k − 1)-degenerate ordering v1, v2, . . . , vn
of G in O(n + m) time.

Let us now proceed to find a forest partition of G in O(n + m) time.
Case 1: k is even For i = 1, . . . , n, define Xi = {v1, . . . , vi}. By definition, vi has at most k − 1

neighbours in Xi−1. Let r =
k
2 . It suffices to show that, for 2 ≤ i ≤ n, we can compute in O(1)

time a partition {Y1, . . . , Yr} of Xi, where G[Ys] is 1-degenerate for s = 1, . . . , r , if we have as input
such a partition of Xi−1. We note first that finding a partition of X1 is trivial. Suppose i > 1 and let
{Z1, . . . , Zr} be a partition of Xi−1 where G[Zs] is 1-degenerate for s = 1, . . . , r . If vi has more than
one neighbour in every G[Zs], then vi has at least

∑r
i=1 2 = k neighbours in Xi−1, a contradiction.

Hence, vi has at most one neighbour in at least one set Zq, which we can find in O(1) time since we
only need to check the neighbours of vi in Xi−1. We put vi into Zq to get the desired partition for Xi
in O(1) time.

Case 2: k is odd For i = 1, . . . , n, define Xi = {v1, . . . , vi}. By definition, vi has at most k − 1
neighbours in Xi−1. Let r = ⌈

k
2⌉. It suffices to show that, for 2 ≤ i ≤ n, we can compute in O(1)

time a partition {Y1, . . . , Yr} of Xi, where G[Y1] is an independent set and G[Ys] is 1-degenerate for
s = 2, . . . , r , if we have as input such a partition of Xi−1. We note first that finding a partition of
X1 is trivial. Suppose i > 1 and let {Z1, . . . , Zr} be a partition of Xi−1 where G[Z1] is an independent
set and G[Zs] is 1-degenerate for s = 2, . . . , r . If vi has at least one neighbour in G[Z1] and more
than one neighbour in every other G[Zs], then vi has at least 1 +

∑r
i=2 2 = k neighbours in Xi−1,

a contradiction. Hence, vi has either no neighbour in Z1 or at most one neighbour in at least one
other set Zq, which we can find in O(1) time since we only need to check the neighbours of vi in
Xi−1. We put vi into this set to get the desired partition for Xi in O(1) time. □

A pair of vertices x, y in a connected graph G is called an eligible pair if x and y are at distance
exactly two in G and G−{x, y} is connected. The proof of the next lemma makes use of the following
result of Lovász.

Lemma 2.3 ([13]). Let G be a 2-connected graph that is not complete or a cycle. Then an eligible pair
of G can be found in O(n + m) time.

Lemma 2.4. Let k ≥ 3, and let G ̸= Kk+1 be a 2-connected k-regular graph. Then a forest partition of
G can be found in O(n + m) time.

Proof. By Lemma 2.3, we can find in O(n + m) time an eligible pair of vertices x, y in G. So there
is a common neighbour of x and y in G that we denote v. Let G′ be the graph obtained from G by
identifying x and y into a new vertex z, and let z1, . . . , zt denote the neighbours of z distinct from
v that are common neighbours of x and y in G.

Claim 1. There is a (k − 1)-degenerate ordering of G′ that starts at z that can be found in O(n + m)
time such that each zi has at most k − 2 neighbours earlier in the ordering.

The proof of the claim is almost entirely contained in the proof [9, Lemma 9], but we repeat it for
completeness. We shall prove Claim 1 by successively deleting vertices of G′ such that the earlier a
vertex is deleted, the later it occurs in the ordering.

The ordering starts at z and ends at v (note that v has degree k− 1 in G′). The order of deletion
of the remaining vertices is determined as follows. Since, by definition of an eligible pair, the graph
G∗

= G′
− {z} is connected, each neighbour of z distinct from v is joined to v via a path in G′.

We consider each such path (in an arbitrary order) and delete each (remaining) vertex of the path
distinct from v in the order in which it is encountered, if one traverses the path from the neighbour
of v towards the neighbour of z on the path. Each vertex has degree at most k − 1 at the time it is
deleted and each zi degree at most k−2. At this stage, we are left with a graph whose components
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are (k − 1)-degenerate. Then simply successively delete the remaining vertices distinct from z of
degree at most k − 1 in this graph. The claim is proved.

Let us now find a forest partition F ′ of G′ in O(n+m) time with the property that z and zi belong
to different forests for each i = 1, . . . , t . Define the sets Xi, Yi and Zi as in the proof of Lemma 2.2.
We put z ∈ Z1. Note that each zi has at most one neighbour in at least one Zq for some q ≥ 2 since
otherwise zi has at least k−1 neighbours in Xi−1, which contradicts Claim 1. Thus, if we put zi ∈ Zq,
we get F ′.

To complete the proof, since every common neighbour of x and y in G is not a member of Z1,
the graph Z ′

1 = Z1 ∪ {x, y} \ {z} is also a forest and, if k is odd, can be insured to be an independent
set. Therefore, F = (F ′

\ Z1) ∪ Z ′

1 is a forest partition of G. □

We are now able to finish the proof of Theorem 1.1.

Proof of Theorem 1.1. By Lemma 2.1, it suffices to show that we can find a forest partition of G
in O(n + m) time. We first check in O(n + m) time whether G is k-regular. If G is not k-regular, we
apply Lemma 2.2. If G is k-regular, we compute in O(n + m) time a block decomposition of G (by
using, for example, a depth-first search algorithm). If G is 2-connected (that is, G contains exactly
one block), we can apply Lemma 2.4.

So we can assume that G is a connected k-regular graph and not 2-connected. We consider an
end block B of G, and let v be the cut vertex of G that is contained in B. Let G′

= G − B, and let
B′

= B − {v}. Note that G′ and B′ are not k-regular. Applying Lemma 2.2, we find a forest partition
F ′ of G′ and a forest partition F ′′ of B′.

Two cases arise.

Case 1 There exist a forest F ′
∈ F ′ and a forest F ′′

∈ F ′′ such that both F ′ and F ′′ contain at least
one neighbour of v. In this case, we pair off

• F ′ with F ′′,
• the forests in F ′

\ F ′ with the forests in F ′′
\ F ′′ arbitrarily, and

• the independent set in F ′ with the independent set in F ′′ (if k is odd).

This yields a forest partition of G−{v} that we denote F∗. If F ′ and F ′′ each contains exactly one
neighbour of v, then F = (F∗

\ (F ′
∪ F ′′))∪ (F ′

∪ F ′′
∪{v}) is a forest partition of G (that can be found

in O(n + m) time). So we can assume that F ′
∪ F ′′ contains at least three neighbours of v. Suppose

that k is even. Since |F∗
| = k/2 and v has degree exactly k, by the pigeonhole principle there exists

a forest F∗
∈ F∗

\(F ′
∪F ′′) that contains at most one neighbour of v. Hence F = (F∗

\F∗)∪(F∗
∪{v})

is a forest partition of G. Similarly, if k is odd, then F∗ contains either a forest that contains at most
one neighbour of v or an independent set that does not contain a neighbour of v. In either case, a
forest partition of G can be found. This completes Case 1.

Case 2 k is odd, the independent set I ′ ∈ F ′ and the independent set I ′′ ∈ F ′′ together contain at
least two neighbours of v. In this case, we pair off

• I ′ with I ′′ and
• the forests in F ′ with the forests in F ′′ arbitrarily.

This yields a forest partition of G − {v} that we denote F∗. Since |F∗
| = ⌈

k
2⌉ and v has

degree exactly k, there must be a forest F∗
∈ F∗ that contains at most one neighbour of v. Thus

F = (F∗
\ F∗) ∪ (F∗

∪ {v} is a forest partition of G. This completes Case 2.
From Cases 1 and 2, the one outstanding case to complete the proof of the theorem is when k

is odd and v has:

• precisely one neighbour in G′ that also belongs to the independent set in F ′, and
• no neighbour in B′ that belongs to the independent set in F ′′.

In the remainder of the proof, we shall circumvent the second bullet point by constructing a new
forest partition of B′ in O(n + m) time whose independent set contains at least one neighbour of v.
The following claim will be essential.
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Claim 2. There is a (k − 1)-degenerate ordering of the vertices of B′ that starts at some neighbour w
of v that can be found in O(n + m) time.

Let u be a vertex in B \ (N(v) ∪ {v}). Since B is an end block of G, it is 2-connected. Thus, by
Menger’s Theorem, there are at least two internally disjoint paths in B linking u and v. Clearly,
at least one of these paths contains some neighbour of v distinct from w. We successively delete
vertices of degree at most k−1 in B′ starting with every neighbour of v in B′ distinct from w towards
every other vertex distinct from w. At the end of this procedure, we delete w. This proves the claim.

Using the ordering given by Claim 2, we can now proceed (as in the proof of Lemma 2.2) to
obtain a forest partition F ′′ of B′ such that w belongs to the independent set of F ′′ (by simply
placing w ∈ Z1 at the start of the algorithm) in O(n + m) time.

Given that we have guaranteed that at least two vertices in the neighbourhood of v belong to
the independent set, the theorem follows. □

3. Hardness for large maximum degree

In this section, we prove Theorem 1.2. This will be done by exhibiting polynomial time reductions
from new variants of SAT, where each reduction ‘‘corresponds’’ to some combination of values of p
and q in a (p, q)-partition of the graph. Let us first introduce these new variants of SAT.

Recall that an instance (X, C) of SAT consists of a set of Boolean variables X = {x1, . . . , xn} and
a collection of clauses C = {C1, . . . , Cm}, such that each clause is a disjunction of literals, where a
literal is either xi or its negation ¬xi for some xi ∈ X . A function g : X → {true, false} is called a
satisfying truth assignment if θ = C1 ∧ . . . ∧ Cm is evaluated to true under g . A SAT instance (X, C)
is called an RSAT instance if each clause is a disjunction of either exactly two literals or exactly
four literals, and each literal appears at most twice in C. A clause in C is called a k-clause for some
positive integer k if it contains exactly k literals. We will reduce from the following variants of RSAT.

NAE-RSAT
Instance: An instance (X, C) of RSAT.
Question: Does (X, C) have a satisfying truth assignment with at least one true literal

and at least one false literal per clause?

EXACT-RSAT
Instance: An instance (X, C) of RSAT.
Question: Does (X, C) have a satisfying truth assignment with exactly one true literal

per clause?

ALL-RSAT
Instance: An instance (X, C) of RSAT.
Question: Does (X, C) have a satisfying truth assignment with at least one true literal

per 4-clause and exactly one true literal per 2-clause?

Lemma 3.1. Each of the above variants of RSAT is NP-complete.

We require the following well-known NP-complete decision problems; cf. Garey and John-
son [10].

An instance (X, C) of SAT is a 4-SAT instance if every clause in C is a 4-clause.

4-SAT
Instance: An instance (X, C) of 4-SAT.
Question: Does (X, C) have a satisfying truth assignment?
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NAE 4-SAT
Instance: An instance (X, C) of 4-SAT.
Question: Does (X, C) have a satisfying truth assignment with at least one true literal

and at least one false literal per clause?

1-in-4 SAT
Instance: An instance (X, C) of 4-SAT.
Question: Does (X, C) have a satisfying truth assignment with exactly one true literal

per clause?

Proof of Lemma 3.1. Clearly, each of the above variants of RSAT is in NP. We simultaneously show
that they are NP-hard by exhibiting a generic reduction from an instance (X, C) of SAT in which
every clause contains exactly four literals. (Our proof is identical to the proof that the variant of
3-SAT in which every literal appears in at most two clauses is NP-hard. It will merely suffice to
make a few additional observations.)

Let θ = C1 ∧ . . . ∧ Cm. If a variable y ∈ X appears (as y or ¬y) in k > 1 clauses, then we replace
y with a set of new variables y1, . . . , yk in the following way: we replace the first occurrence of y
with y1, the second occurrence of y with y2, etc. If some of these occurrences are negated then we
replace those occurrences with the negated versions of the new variables. We repeat this for each
variable that appears in more than one clause. Next we link the new variables for y to each other
with a set of clauses (y1 ∨ ¬y2), (y2 ∨ ¬y3), . . . , (yk ∨ ¬y1). We denote by (X ′, C′

= {C ′

1, . . . , C
′

m′})
the resulting instance, and let θ ′

= C ′

1 ∧ . . . ∧ C ′

m′ . Notice that every literal appears in at most two
clauses of C′. Moreover, every 2-clause in C′ has exactly one true literal since in every satisfying
truth assignment g ′ of the variables in X ′, we have g ′(y1) = · · · = g ′(yk) for every y ∈ X . Thus, for
every satisfying truth assignment to the variables in X and X ′,

• θ has at least one true literal and at least one false literal per clause if and only if θ ′ has at
least one true literal and at least one false literal per clause;

• θ has exactly one true literal per clause if and only if θ ′ has exactly one true literal per clause;
• θ has at least one true literal per clause if and only if θ ′ has least one true literal per 4-clause

and exactly one true literal per 2-clause.

Given that 4-SAT, NAE 4-SAT and 1-in-4 SAT are NP-complete, it follows that ALL-RSAT, NAE-RSAT
and EXACT-RSAT are NP-hard. This completes the proof. □

Proof of Theorem 1.2. The problem is clearly in NP. To show that it is NP-hard, we simultaneously
exhibit two reductions from a generic instance of RSAT.

Given an instance (X, C) of RSAT we construct two graphs G and H of maximum degree k ≥ 5
in the following way. We let f :

⋃
C∈C C → {1, 2, 3, 4} be a function that associates an integer

between 1 and 4 to every literal such that

• if literal ℓ is the jth occurrence of y for some y ∈ X , then f (ℓ) = j, and
• if ℓ is the jth occurrence of ¬y for some y ∈ X , then f (ℓ) = 2 + j.

Next, to each variable x ∈ X , we associate a variable gadget S(x, k) as illustrated in Fig. 1 for
S(x, 5). It is a graph with 12 vertices ax,i, a′

x,i, a
∗

x,i for i ∈ {1, . . . , 4}, six vertices x̂, x̂′, x̂∗, x̃, x̃′, x̃∗ and
six copies K (̂x), K (̃x), K (1), K (2), K (3), K (4) of a complete graph on k−2 vertices. We add edges between
vertices ax,i, a′

x,i, a
∗

x,i for i = 1, . . . , 4 and x̂, x̂′, x̂∗, x̃, x̃′, x̃∗ in the way depicted in Fig. 1. Moreover,
we add edges from

• each of ax,i, a′

x,i, a
∗

x,i to every vertex of K (i),
• each of x̂, x̂′, x̂∗ to every vertex of K (̂x), and
• each of x̃, x̃′, x̃∗ to every vertex of K (̃x).
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Fig. 1. The graph S(x, 5).

Fig. 2. The clause gadget that connects S(x, 5) and S(y, 5) via black edges, where literal ℓ corresponds to variable x and
literal ℓ′ to variable y. Grey edges are edges of S(x, 5) or S(y, 5) and black edges are edges of G and H .

Next, for each 2-clause in C with literals ℓ and ℓ′ corresponding, respectively, to variables x and
y for some x, y ∈ X , we construct a 2-clause gadget that connects S(x, k) and S(y, k) in the way
depicted in Fig. 2. We refer to ax,f (ℓ) and ay,f (ℓ′) as special vertices of the gadget. Finally, for each
4-clause in C with literals ℓ1, . . . , ℓ4 corresponding, respectively, to variables x1, x2, x3, x4 for some
x1, x2, x3, x4 ∈ X , we construct a 4-clause gadget that connects S(x1, k), . . . , S(x4, k) in the way
depicted in Fig. 3. We also refer to each axi,f (ℓi) as a special vertex of the gadget. This completes the
construction of G and H . Note that G and H both have maximum degree k ≥ 5.

Claim 3. Let p, q ≥ 0 such that p + q = k − 3. Then in every partition of S(x, k) into a p-degenerate
subgraph P and a q-degenerate subgraph Q either
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Fig. 3. The clause gadget that connects S(x1, 5), . . . , S(x4, 5) via black and dashed edges, where literal ℓi corresponds to
variable xi for 1 ≤ i ≤ 4. Grey edges are edges of S(xi, 5) for 1 ≤ i ≤ 4. Black edges are edges of both G and H while
dashed edges are edges of H only.

• ax,1, ax,2 ∈ V (P) and ax,3, ax,4 ∈ V (Q ), or
• ax,1, ax,2 ∈ V (Q ) and ax,3, ax,4 ∈ V (P).

Proof sketch of claim. It suffices to show that if ax,1 ∈ V (P), then ax,2 ∈ V (P) and ax,3, ax,4 ∈ V (Q ).
Let us then assume that ax,1 ∈ V (P). Recall that the set of neighbours of ax,1 in S(x, k) induces a
complete graph K (1) on k− 2 vertices. Given that p+ q = k− 3, it follows that exactly p vertices of
K (1) are members of V (P) while the other q + 1 vertices of K (1) are members of V (Q ). This implies
that both a′

x,1 and a∗

x,1 belong to V (P).
Let us now show that x̃ ∈ V (Q ). If x̃ ∈ V (P), then again we find that x̃′, x̃∗ and exactly p vertices

of K x̃ are members of V (P) while the other q + 1 vertices of K x̃ are members of V (Q ). But the set
{ax,1, x̃, x̃′, x̃∗} ∪ ((K (1)

∪ K x̃) ∩ V (P)) induces a graph of minimum degree p + 1, which contradicts
that P is p-degenerate. Hence x̃ ∈ V (Q ).

Let us next show that x̂, ax,2 ∈ V (P). If x̂ ∈ V (Q ) then, by the same reasoning, x̂∗, x̂′ and q vertices
of K x̂ are members of V (Q ) while the other p+1 vertices of K x̂ are members of V (P). Since x̃ ∈ V (Q ),
we similarly find that x̃′, x̃∗ ∈ V (Q ). But the set V (Q )∩ ({̂x, x̂∗, x̂′, x̃, x̃′, x̃∗}∪K x̃

∪K x̂) induces a graph
of minimum degree q + 1, which contradicts that Q is q-degenerate. Similarly, if ax,2 ∈ V (Q ) then
the set V (Q )∩ ({̂x, x̂∗, x̂′, ax,2, a′

x,2, a
∗

x,2}∪K (2)
∪K x̂) induces a graph of minimum degree q+1. Hence

x̂, ax,2 ∈ V (P) as needed.
It remains to show that ax,3, ax,4 ∈ V (Q ). Using the fact that x̂ ∈ V (P), one can argue as before

that ax,3 and ax,4 are indeed both members of V (Q ). □

Claim 4. Let p, q ≥ 0 such that p + q = k − 3. Consider any partition of S(x, k) into a p-degenerate
subgraph P and a q-degenerate subgraph Q . Then each vertex in P (respectively, Q ) that is not a special
vertex or a neighbour of a special vertex has degree p in P (respectively, degree q in Q ).

Proof. This follows from the proof of Claim 3. □

We distinguish three cases depending on the values of p and q.

Case 1 p = 1 and q ≥ 2.
In this case, we reduce from ALL-RSAT. More precisely, we will show that (X, C) has a satisfying

truth assignment with exactly one true literal per 2-clause if and only if G admits a partition into
a p-degenerate graph P and a q-degenerate graph Q . By Lemma 3.1, deciding whether G has a
(p, q)-partition with p = 1 and q ≥ 2 is NP-hard.

Suppose that (X, C) has a satisfying truth assignment with exactly one true literal per 2-clause.
For each x ∈ X and each literal ℓ corresponding to x, if ℓ is set to true, then we put ax,f (ℓ) in V (Q ),
and if ℓ is set to false, then we put ax,f (ℓ) in V (P).
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By Claim 3, this partial (p, q)-partition of G extends to a (p, q)-partition of each variable gadget
of G. To see that this gives a partition of G into a p-degenerate graph P and a q-degenerate Q , notice
that

• the degrees of vertices in each of P and Q are not affected by the 2-clause gadgets, and
• no cycle in P is formed by the 4-clause gadgets given that at least one special vertex of each

4-clause gadget belongs to Q .

Using Claim 4, one may then easily check that a p-degenerate ordering of the vertices in P and a
q-degenerate ordering of the vertices in Q can be obtained.

Conversely, suppose that G admits a partition into a p-degenerate graph P and a q-degenerate
graph Q . For each x ∈ X and each literal ℓ corresponding to x, if ax,f (ℓ) ∈ V (Q ), then we set ℓ to
true, and if ax,f (ℓ) ∈ V (P), then we set ℓ to false.

By Claim 3, this is a valid truth assignment to the variable in X . Notice that at least one special
vertex of each 4-clause gadget is a member of V (Q ) given that p = 1. Notice also that exactly one
special vertex of each 2-clause gadget is a member of V (Q ), for if two special vertices, say ax,i and
ax,j, of a 2-clause gadget are in V (Q ), then ax,i, ax,j, their neighbours in Q and a′

x,i and a′

x,j would
induce a graph of minimum degree q+ 1 in Q . Similarly, if both ax,i and ax,j are in V (P), then these
vertices together with their neighbours in P and a′

x,i and a′

x,j would induce a graph of minimum
degree 2 in P . Hence we have a satisfying truth assignment of (X, C) such that each 4-clause has at
least one true literal and each 2-clause exactly one true literal. This completes Case 1.

Case 2 p = 0 and q ≥ 2.
In this case, we reduce from EXACT-RSAT. More precisely, we will show that (X, C) has a

satisfying truth assignment with exactly one true literal per clause if and only if H admits a partition
into a p-degenerate graph P and a q-degenerate graph Q . By Lemma 3.1, deciding whether H has a
(p, q)-partition with p = 0 and q ≥ 2 is NP-hard.

Suppose that (X, C) has a satisfying truth assignment with exactly one true literal per clause. For
each x ∈ X and each literal ℓ corresponding to x, if ℓ is set to true, then we put ax,f (ℓ) in V (P), and if ℓ

is set to false, then we put ax,f (ℓ) in V (Q ). By Claim 3, this partial partition of H can be extended to a
(p, q)-partition of each variable gadget. Clearly, this forms a (p, q)-partition of every 2-clause gadget.
To see that it also forms a (p, q)-partition of every 4-clause gadget (and therefore a (p, q)-partition
of H), consider a 4-clause gadget with special vertices ax1,f (ℓ1), . . . , ax4,f (ℓ4). Suppose without loss of
generality that ax1,f (ℓ1) are in V (P) and ax2,f (ℓ2), ax3,f (ℓ3), ax4,f (ℓ4) are in V (Q ). We extend this partition
to the rest of the 4-clause gadget so that a′

x1,f (ℓ1)
∈ V (P) and a′

x2,f (ℓ2)
, a′

x3,f (ℓ3)
, a′

x4,f (ℓ4)
∈ V (Q ). It is

clear that no two vertices in V (P) are adjacent so it remains to show that vertices in V (Q ) induce
a q-degenerate subgraph. Notice that vertex a′

x4,f (ℓ4)
has q neighbours in V (Q ) since its neighbours

that are not in K (4) are in V (P). The procedure of first deleting a′

x4,f (ℓ4)
, followed by the neighbours

of a′

x4,f (ℓ4)
in Q , followed by ax4,f (ℓ4), ax2,f (ℓ2) and ax3,f (ℓ3) in this order etc. (the rest of details are left

to the reader) a q-degenerate ordering of vertices in Q can be obtained.
Conversely, suppose that H has a (p, q)-partition. For each x ∈ X and each literal ℓ corresponding

to x, if ax,f (ℓ) is in V (P), we set ℓ to true, and if ax,f (ℓ) is in V (Q ), we set ℓ to false. By Claim 3, this is a
valid truth assignment to the variable in X . As in Case 1, exactly one special vertex of each 2-clause
is in V (P). Consider a 4-clause with special vertices ax1,f (ℓ1), . . . , ax4,f (ℓ4). Exactly one of these special
vertices is in V (P):

• If at least two of them are in V (P), then they are not adjacent (since p = 0). Thus
axi,f (ℓi), axi+2,f (ℓi+2) ∈ V (P) (for some i = 1, 2), which implies a′

xi,f (ℓi)
, a′

xi+2,f (ℓi+2)
∈ V (P). This

is impossible since a′

xi,f (ℓi)
and a′

xi+2,f (ℓi+2)
are adjacent.

• If all of them are members of V (Q ), then, considering edges of the gadget that are in H but
not in G, one can find a subgraph of Q with minimum degree q + 1.

This shows that we have a satisfying truth assignment of (X, C) with exactly one true literal per
clause. This completes Case 2.
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Case 3 p, q ≥ 2.
In this case, we reduce from NAE-RSAT. More precisely, we must show that a (X, C) has a

satisfying truth assignment with at least one false literal and at least one true literal per clause
if and only if H admits a (p, q)-partition. By Lemma 3.1, deciding whether H has a (p, q)-partition
with p, q ≥ 2 is NP-hard. Since the arguments are entirely similar to those of Cases 1 and 2, we
leave the details to the reader.

The proof of the theorem is complete. □

4. Concluding remarks

Let us first note that a straightforward adaptation of the proof of Lemma 2.2 leads to the
following statement.

Proposition 4.1. Given integers s ≥ 2 and p1, . . . , ps ≥ 0, a (p1, . . . , ps)-partition of a graph G with
maximum degree k ≥ 3 that is not k-regular can be found in O(n+m)-time as long as

∑s
i=1 pi ≥ k− s.

It is therefore unlikely that the time complexity increases by more than a factor of n in the
outstanding case where G is k-regular.

Conjecture 4.1. Let G be a connected graph with maximum degree k ≥ 3 distinct from Kk+1. For every
s ≥ 2 and p1, . . . , ps ≥ 0 such that

∑s
i=1 pi ≥ k− s, a (p1, . . . , ps)-partition of G can be found in O(n2)

time.

We make a few remarks on the case s ≥ 3 with
∑s

i=1 pi < k − s. A simple application of
Proposition 4.1 leads to the following statement.

Proposition 4.2. Given non-negative integers p, q, p1, p2, . . . , pt , q1, . . . , qt ′ such that
∑

pi = p − t
and

∑
qi = q − t ′, if a graph G is (p, q)-partitionable, then G is also (p1, . . . , pt , q1, . . . , qt ′ )-

partitionable.

Proposition 4.2 can be understood to mean (although rather imprecisely) that the complexity of
Problem 1 in the situation when

∑s
i=1 pi < k−s does not increase as s increases. Phrased differently,

Proposition 4.2 states informally that if one can find a partition into two subgraphs with prescribed
degeneracy, then one can also find a partition of the same graph into more than two subgraphs
with prescribed degeneracy, provided some condition on the sum of the prescribed degeneracies is
met.

We therefore hoped that the problem is NP-complete whenever s is as large as possible (that
is, when a partition into independent sets is sought) as this would suggest that the problem is
NP-complete for every s ≥ 2. As it happens, however, when s is of maximum value, the problem is
tractable as long as k is not too small and (k− s)−

∑s
i=1 pi is not very large [14]. This might indicate

that determining the frontier between tractability and hardness for every value of s in Problem 1
will be a difficult task.
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