583 research outputs found

    Deploying RIOT operating system on a reconfigurable Internet of Things end-device

    Get PDF
    Dissertação de mestrado integrado em Engenharia Eletrónica Industrial e ComputadoresThe Internet of Everything (IoE) is enabling the connection of an infinity of physical objects to the Internet, and has the potential to connect every single existing object in the world. This empowers a market with endless opportunities where the big players are forecasting, by 2020, more than 50 billion connected devices, representing an 8 trillion USD market. The IoE is a broad concept that comprises several technological areas and will certainly, include more in the future. Some of those already existing fields are the Internet of Energy related with the connectivity of electrical power grids, Internet of Medical Things (IoMT), for instance, enables patient monitoring, Internet of Industrial Things (IoIT), which is dedicated to industrial plants, and the Internet of Things (IoT) that focus on the connection of everyday objects (e.g. home appliances, wearables, transports, buildings, etc.) to the Internet. The diversity of scenarios where IoT can be deployed, and consequently the different constraints associated to each device, leads to a heterogeneous network composed by several communication technologies and protocols co-existing on the same physical space. Therefore, the key requirements of an IoT network are the connectivity and the interoperability between devices. Such requirement is achieved by the adoption of standard protocols and a well-defined lightweight network stack. Due to the adoption of a standard network stack, the data processed and transmitted between devices tends to increase. Because most of the devices connected are resource constrained, i.e., low memory, low processing capabilities, available energy, the communication can severally decrease the device’s performance. Hereupon, to tackle such issues without sacrificing other important requirements, this dissertation aims to deploy an operating system (OS) for IoT, the RIOT-OS, while providing a study on how network-related tasks can benefit from hardware accelerators (deployed on reconfigurable technology), specially designed to process and filter packets received by an IoT device.O conceito Internet of Everything (IoE) permite a conexão de uma infinidade de objetos à Internet e tem o potencial de conectar todos os objetos existentes no mundo. Favorecendo assim o aparecimento de novos mercados e infinitas possibilidades, em que os grandes intervenientes destes mercados preveem até 2020 a conexão de mais de 50 mil milhões de dispositivos, representando um mercado de 8 mil milhões de dólares. IoE é um amplo conceito que inclui várias áreas tecnológicas e irá certamente incluir mais no futuro. Algumas das áreas já existentes são: a Internet of Energy relacionada com a conexão de redes de transporte e distribuição de energia à Internet; Internet of Medical Things (IoMT), que possibilita a monotorização de pacientes; Internet of Industrial Things (IoIT), dedicada a instalações industriais e a Internet of Things (IoT), que foca na conexão de objetos do dia-a-dia (e.g. eletrodomésticos, wearables, transportes, edifícios, etc.) à Internet. A diversidade de cenários à qual IoT pode ser aplicado, e consequentemente, as diferentes restrições aplicadas a cada dispositivo, levam à criação de uma rede heterogénea composto por diversas tecnologias de comunicação e protocolos a coexistir no mesmo espaço físico. Desta forma, os requisitos chave aplicados às redes IoT são a conectividade e interoperabilidade entre dispositivos. Estes requisitos são atingidos com a adoção de protocolos standard e pilhas de comunicação bem definidas. Com a adoção de pilhas de comunicação standard, a informação processada e transmitida entre dispostos tende a aumentar. Visto que a maioria dos dispositivos conectados possuem escaços recursos, i.e., memória reduzida, baixa capacidade de processamento, pouca energia disponível, o aumento da capacidade de comunicação pode degradar o desempenho destes dispositivos. Posto isto, para lidar com estes problemas e sem sacrificar outros requisitos importantes, esta dissertação pretende fazer o porting de um sistema operativo IoT, o RIOT, para uma solução reconfigurável, o CUTE mote. O principal objetivo consiste na realização de um estudo sobre os benefícios que as tarefas relacionadas com as camadas de rede podem ter ao serem executadas em hardware via aceleradores dedicados. Estes aceleradores são especialmente projetados para processar e filtrar pacotes de dados provenientes de uma interface radio em redes IoT periféricas

    A Survey on Facilities for Experimental Internet of Things Research

    Get PDF
    International audienceThe initial vision of the Internet of Things (IoT) was of a world in which all physical objects are tagged and uniquelly identified by RFID transponders. However, the concept has grown into multiple dimensions, encompassing sensor networks able to provide real-world intelligence and goal-oriented collaboration of distributed smart objects via local networks or global interconnections such as the Internet. Despite significant technological advances, difficulties associated with the evaluation of IoT solutions under realistic conditions, in real world experimental deployments still hamper their maturation and significant roll out. In this article we identify requirements for the next generation of the IoT experimental facilities. While providing a taxonomy, we also survey currently available research testbeds, identify existing gaps and suggest new directions based on experience from recent efforts in this field

    WiRoTip: an IoT-based Wireless Sensor Network for Water Pipeline Monitoring

    Get PDF
    One of the key components of the Internet of Things (IoT) is the Wireless Sensor Network (WSN). WSN is an effective and efficient technology. It consists of senor nodes; smart devices that allows data collection and pre-processing wirelessly from real world. However, issues related to power consumption and computational performance still persist in classicalwireless nodes since power is not always available in application like pipeline monitoring. Moreover, they could not be usually suitable and adequate for this kind of application due to memory shortage and performance constraints. Designing new IoT WSN system that matches the application specific requirements is extremely important. In this paper, wepresent WiRoTip, a WSN node prototype for water pipeline application. An experimental and a comparative studies have been performed for the different node’s components to achieve a final adequate design

    A pulse sensor interface design for FPGA based multisensor health monitoring platform

    Full text link
    The FPGA-based platform is critical for producing an inexpensive early validation platform design. In past years, sensor nodes based on the FPGA platform have been proposed to be IoT low-end devices. In this study, we present the FPGA based IoT low-end reconfigurable pulse sensor interface design that can be integrated with a multi-sensor healthcare platform to monitor a human pulse vital sign and be able to distinguish between user normal, Bradycardia, or Tachycardia heart rate. The pulse sensor interface is implemented by VHDL programming and FPGA technology. The designed pulse sensor peripheral interface is reliable and reconfigurable. It can collect vital body signs with the accuracy of a 15 nanoseconds period. The peripheral in FPGAs embedded system has been tested by placing the biosensor on the user’s fingertips. The BPM can be updated every 15 seconds

    An Architecture of Future Forest Fire Detection System

    Get PDF
    With the progression of advancement in micro-electromechanical system (MEMS), several revolutions has been made in the field of Internet of Things (IoT), in which any objects can ability to transfer data over a network without requiring human-to-human or human-to-computer interaction. In this field, Wireless Sensor Network (WSN) is become so popular for sensing and monitoring physical and environmental conditions and continuously sending this data to the external cloud for further analysis. Forest fire is one of the most dangerous disasters for the ecological environment. It destroys animal habitats and food chain, damages ecosystem and deaths of forest lives. Therefore fast fire detection and monitoring system may help to protect the forest ecosystem. Therefore we proposed an architecture having a novel mesh network which will be smarter for collecting data from the nodes of WSNs. Our proposed methodology would be more beneficial in the future smart forest

    Design and implementation of application-specific medium access control protocol for scalable smart home embedded systems

    Get PDF
    Thesis (M.S.) University of Alaska Fairbanks, 2016By incorporating electrical devices, appliances and house features in a system that is controlled and monitored either remotely or on-site, smart home technologies have recently gained an increasing popularity. There are several smart home systems already available, ranging from simple on-site home monitoring to self-learning and Wi-Fi enabled systems. However, current systems do not fully make use of recent technological advancement and synergy among a variable number of sensors for improved data collection. For a synergistic system to be provident it needs to be modular and scalable to match exact user needs (type of applications and adequate number of sensors for each application). With an increased number of sensors intelligently placed to optimize the data collection, a wireless network is indispensable for a flexible and inexpensive installation. Such a network requires an efficient medium access control protocol to sustain a reliable system, provide flexibility in design and to achieve lower power consumption. This thesis brings to light practical ways to improve current smart home systems. As the main contribution of this work, we introduce a novel application-specific medium access control protocol able to support suggested improvements. In addition, a smart home prototype system is implemented to evaluate the protocol performance and prove concepts of recommended advances. This thesis covers the design of the proposed novel medium access protocol and the software/hardware implementation of the prototype system focusing on the monitoring and data analysis side, while providing inputs for the control side of the system. The smart home system prototype is Wi-Fi and Web connected, designed and implemented to emphasize system usability and energy efficiency

    A Comprehensive Survey on Networking over TV White Spaces

    Full text link
    The 2008 Federal Communication Commission (FCC) ruling in the United States opened up new opportunities for unlicensed operation in the TV white space spectrum. Networking protocols over the TV white spaces promise to subdue the shortcomings of existing short-range multi-hop wireless architectures and protocols by offering more availability, wider bandwidth, and longer-range communication. The TV white space protocols are the enabling technologies for sensing and monitoring, Internet-of-Things (IoT), wireless broadband access, real-time, smart and connected community, and smart utility applications. In this paper, we perform a retrospective review of the protocols that have been built over the last decade and also the new challenges and the directions for future work. To the best of our knowledge, this is the first comprehensive survey to present and compare existing networking protocols over the TV white spaces.Comment: 19 page
    corecore