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“The present is theirs; the future, for which I really
worked, is mine.”

—Nikola Tesla





Abstract

The Internet of Everything (IoE) is enabling the connection of an infinity of
physical objects to the Internet, and has the potential to connect every single
existing object in the world. This empowers a market with endless opportunities
where the big players are forecasting, by 2020, more than 50 billion connected
devices, representing an 8 trillion USD market.

The IoE is a broad concept that comprises several technological areas and will
certainly, include more in the future. Some of those already existing fields are the
Internet of Energy related with the connectivity of electrical power grids, Internet
of Medical Things (IoMT), for instance, enables patient monitoring, Internet of
Industrial Things (IoIT), which is dedicated to industrial plants, and the Internet
of Things (IoT) that focus on the connection of everyday objects (e.g. home
appliances, wearables, transports, buildings, etc.) to the Internet.

The diversity of scenarios where IoT can be deployed, and consequently the
different constraints associated to each device, leads to a heterogeneous network
composed by several communication technologies and protocols co-existing on the
same physical space. Therefore, the key requirements of an IoT network are
the connectivity and the interoperability between devices. Such requirement is
achieved by the adoption of standard protocols and a well-defined lightweight net-
work stack. Due to the adoption of a standard network stack, the data processed
and transmitted between devices tends to increase. Because most of the devices
connected are resource constrained, i.e., low memory, low processing capabilities,
available energy, the communication can severally decrease the device’s perfor-
mance.

Hereupon, to tackle such issues without sacrificing other important require-
ments, this dissertation aims to deploy an operating system (OS) for IoT, the
RIOT-OS, while providing a study on how network-related tasks can benefit from
hardware accelerators (deployed on reconfigurable technology), specially designed
to process and filter packets received by an IoT device.
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Resumo

O conceito Internet of Everything (IoE) permite a conexão de uma infinidade
de objetos à Internet e tem o potencial de conectar todos os objetos existentes no
mundo. Favorecendo assim o aparecimento de novos mercados e infinitas possi-
bilidades, em que os grandes intervenientes destes mercados preveem até 2020 a
conexão de mais de 50 mil milhões de dispositivos, representando um mercado de
8 mil milhões de dólares.

IoE é um amplo conceito que inclui várias áreas tecnológicas e irá certamente
incluir mais no futuro. Algumas das áreas já existentes são: a Internet of Energy
relacionada com a conexão de redes de transporte e distribuição de energia à
Internet; Internet of Medical Things (IoMT), que possibilita a monotorização de
pacientes; Internet of Industrial Things (IoIT), dedicada a instalações industriais
e a Internet of Things (IoT), que foca na conexão de objetos do dia-a-dia (e.g.
eletrodomésticos, wearables, transportes, edifícios, etc.) à Internet.

A diversidade de cenários à qual IoT pode ser aplicado, e consequentemente,
as diferentes restrições aplicadas a cada dispositivo, levam à criação de uma rede
heterogénea composto por diversas tecnologias de comunicação e protocolos a co-
existir no mesmo espaço físico. Desta forma, os requisitos chave aplicados às redes
IoT são a conectividade e interoperabilidade entre dispositivos. Estes requisitos
são atingidos com a adoção de protocolos standard e pilhas de comunicação bem
definidas. Com a adoção de pilhas de comunicação standard, a informação pro-
cessada e transmitida entre dispostos tende a aumentar. Visto que a maioria dos
dispositivos conectados possuem escaços recursos, i.e., memória reduzida, baixa
capacidade de processamento, pouca energia disponível, o aumento da capacidade
de comunicação pode degradar o desempenho destes dispositivos.

Posto isto, para lidar com estes problemas e sem sacrificar outros requisitos im-
portantes, esta dissertação pretende fazer o porting de um sistema operativo IoT,
o RIOT, para uma solução reconfigurável, o CUTE mote. O principal objetivo
consiste na realização de um estudo sobre os benefícios que as tarefas relacionadas
com as camadas de rede podem ter ao serem executadas em hardware via aceler-
adores dedicados. Estes aceleradores são especialmente projetados para processar
e filtrar pacotes de dados provenientes de uma interface radio em redes IoT per-
iféricas.
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Chapter 1

Introduction

“The day science begins to study non-physical phenomena, it will make more
progress in one decade than in all the previous centuries of its existence.”

—Nikola Tesla

The Internet of Things (IoT) is a new paradigm were the surrounding objects
are part of the Internet. This new paradigm allows to sense and actuate on the
physical world with ubiquitous and transversal wireless motes, mainly low-end IoT
devices that reside in the network edge. Traditionally, the motes were aggregated
in a wireless sensor network (WSN) composed by homogeneous devices that could
even be disconnected from the Internet. With the rise of IoT, a variety of hetero-
geneous devices have flooded the network, creating the necessity for connectivity
and interoperability, together with processing features capable of handle the ever-
growing amount of data transmitted over the network. However, due to the scarce
resources and common energy-efficiency constraints of the low-end IoT devices,
the accomplishment of connectivity and interoperability are not straight forward,
requiring new solutions at the architectural level of the motes.

This first Chapter introduces the content of this dissertation, beginning with an
introduction to the Internet of Things in Section 1.1, and followed by a description
of the low-end IoT devices at the network edge in Section 1.2. A market analysis is
presented in Section 1.3 based on the forecasts of the electronic and communication
industries. Section 1.4 presents a general architecture to IoT regarding the flow
of information and the embedded system in IoT. In Section 1.5 the two main
requirements for IoT low-end devices, connectivity and security are explained.
Section 1.6 discussed the shift from WSN to IoT and presents a standard network
stack for IoT. Considering the increase complexity on the network edge, Section 1.7
presents the requirements for an IoT-enabled OS suitable for low-end devices.
The dissertation structure is explained Section 1.8 and Section 1.9 concludes the
Chapter.
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2 INTRODUCTION

1.1 The Internet of Things

The concept of Internet of Things (IoT) was first introduced by Kevin Ash-
ton in 1999 [1], and later clarified in [2]. It consists of a major technological
revolution that has updated the current Internet infrastructure to a much more
advanced computing network. Furthermore, all the physical objects around us
will be uniquely identifiable and ubiquitously connected to each other.

The IoT achieved such a magnitude that is now incorporated in a larger con-
cept, the Internet of Everything (IoE). The applications of IoT not only include
home appliances, wearables and everyday objects, but can be expanded to a count-
less number of applications. IoE can be used in cities, enabling monitoring of road
traffic, trash, pollution, etc., empowering the concept of smart cities [3]. Smart
buildings are another application of the IoE, allowing the monitoring and control
of lights, air conditioning, etc. [4]. On the automotive industry, IoE empower
not only the existence of connected cars but also the existence of full autonomous
vehicles [5]. Other applications of IoE include the monitoring in real time of water
quality [6], improvement of supply chains [7], food traceability [8], agriculture [9],
and much more.

Nowadays, IoT can be considered a dynamic global network infrastructure that
extends the classic Internet. It is composed by myriads of connected devices that
can interact and communicate between them, extract information and react to
the physical world. Most of the devices that compose this infrastructure reside in
the network edge and are the so called "things". They can be defined as physical
or virtual objects that have an identity, attributes, and are endowed with com-
munication interfaces. The "things" can acquire and propagate information in the
network, communicate with each other, and may have sensors and actuators to
interact with the physical world. Some of these "things" may be endowed with
intelligence by means of artificial intelligence (AI), allowing them to adapt to the
environment and learn from other "things".

The most important activity of the "things" in the network edge is to collect
valuable data. In fact, it is only economically viable to turn an object into a
"thing", when the value of the data generated is higher than the cost of endowing
the object with the needed functionalities. The data value is increasing in today’s
world, because with reliable data is possible to improve business models, supply
chains, transportation systems, etc. In the past data was acquired manually by
people, although, they have limited attention and accuracy making this data less
reliable. Therefore, empowering objects and machines with computers capable of
collect reliable information and make this data available over the Internet, allowing
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to see the world as never before and empower endless businesses and services.
The connection of physical objects to the Internet requires the incorporation of

suitable computational systems, able to empower such objects with the appropri-
ate processing and communication capabilities. These computational systems fall
in the category of low-end embedded systems, mostly tiny small energy-efficient
and wireless devices empowered by low-end microprocessors with scarce resources.
Even extremely constrained in terms of computing power, available memory, com-
munication, and energy capacities, it is expected that they fulfil the requirements
of a cyber-physical system (CPS): (i) reliability, (ii) real-time behaviour, and
(iii) an adaptive communication stack to integrate the Internet seamlessly [10].

1.2 Low-end Devices at the Network Edge

The typical embedded system that enables the connection of objects to the
Internet can be designated as low-end devices. Due to the increasing value of
data and due to the characteristics of the low-end devices (small fabric, low-cost
and energy efficiency) they are spreading rapidly in this new Internet era. The
emergence of devices with these features can be explained resorting to Moore’s and
Koomey’s laws. The Moore’s law specify that the transistors number will double
every two years on an integrated circuit (IC) [11], which enables the integration
of more transistors in the same space and consequently, the existence of more
powerful devices occupying less silicon area. Hence, due to the high cost of silicon
the price per transistor will also decrease, allowing the existence of an IC with the
same performance in a smaller fabric form and lower price.

Related to energy consumption, Koomey’s law explicit that the number of
computational operations per joule dissipated in an IC is been doubling every
1.57 years, this means that with a fixed computing load, the amount of energy
needed will decrease by a factor of one and a half [12]. Usually, low-end devices
are deployed in scenarios with limited access and due to the existing number
of devices maintenance should be avoided by its difficulty and cost associated.
Wherefore, to avoid maintenance, energy-efficiency is required in wireless motes,
which commonly run their entire lives in a single charge of a storage device (e.g.
batteries, micro-fuel cells, capacitors, etc.) or resorting to harvesting solutions
(e.g. solar, flow systems, thermal, etc.). The reduction of power consumption at
the IC level has making possible the deployment of myriads of devices, with low
maintenance cost and using tiny amounts of energy.



4 INTRODUCTION

Due to the importance of the "things" on the IoT, the hardware that endows
the object with the processing and communication capabilities is a preponderant
choice when designing an IoT ecosystem. The constraints of the scenario where
the system is deployed largely impact the selection of the hardware platform that
can be made, mainly, from three different groups:

• commercial of-the-shelf (COTS): Already-made devices that integrate
a central processing unit (CPU) usually equipped with several peripherals
such as timers, analog to digital converter (ADC), external memories and
even communication interfaces. A COTS solution speeds up the develop-
ment cycle and requires less non-recurring engineering (NRE) effort. By
the other side traditionally COTS devices are not customizable, have lack
of extensibility, and usually brings unnecessary hardware to the application,
increasing cost, area, and power consumption;

• Custom Platform: Devices that target a particular application, designed
and built from the scratch (e.g. application-specific integrated circuit (ASIC)).
This solution can achieve the highest performance, and can be built to op-
timize a desired constraint. More suitable for production in high scales,
or when the price per unit is a constraint due to the highest NRE cost in
comparison with the other solutions;

• Hybrid Platform: Conjugates the best of the two worlds, providing a
built in system and allowing flexibility to the final solution. The NRE
cost depends on the level of customization required. These platforms are
of special interest to extend an already developed system, implemented in
a COTS. Platforms that combine a microcontroller unit (MCU) and field-
programmable gate array (FPGA) technology on the same system on chip
(SoC) (known as Field-Programmable System-On-Chip (FPSoC) [13]), al-
lows the usage of mature software and hardware, integrating easily new
hardware peripherals with minimum efforts. The FPGA technology has
gained special attention lately, because they turned more cost-effective, with
a smaller footprint, better power consumption efficiency, and higher perfor-
mance.

1.3 IoT Market

The emergence of new business models and applications has been increasing
the potential growing of IoT. Subsequently, this market captivated the attention
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of big players in the industry, such as Arm, Intel, Qualcomm, Microsoft, IBM, and
many others. In the last years from companies to universities, multiple entities
have concentrated their efforts in develop solutions for this emerging concept,
ranging from the edge devices to the cloud, developing new hardware, protocols
and services.

Back in 2009, Cisco presented the IoE, a vast network where all the physical
things are connected, Cisco anticipated that this network would potentially rise
the number of connected devices to 50 billion, creating a USD 14.4 trillion in
Value at Stake [14]. Ericson back to that time, supported the forecast of Cisco
presenting the same value of 50 billion connections by 2020 [15]. Later in 20015,
Cisco reviewed that the global Internet protocol (IP) networks will increase from
16.3 billion in 2015 to 26.3 billion by 2020 [16]. In 2017 Ericson presented a new
forecast, proposing that by 2023 there will be 30 billion connected devices, with
20 billion related to IoT [17]. Furthermore, Ericson with DHL published a report
[18] in 2015, stating that IoT by itself, will generate USD 8 trillion worldwide in
Value at Stake over the next decade (Figure 1.1).

5Understanding the Internet of Things

1.2	 The Internet of Everything vs. IoT

As critical as IoT is in connecting the unconnected, it is only part 
of the story. Along with physical objects, people and intangible 
“things” must also be connected in new and better ways. IoT is 
a vital enabler of certain types of connection that together make 
up what Cisco refers to as the “Internet of Everything” (IoE). IoE 
connections can be machine-to-machine (M2M); machine-to-
person (M2P); or person-to-person (P2P). IoE includes not just 
the networked connection of physical objects, but also includes 
the links between people, process, and data (see Figure 2). IoT is 
most often equated to M2M connections but, as noted, definitions 
of IoT are nearly as diverse as its applications. Nevertheless, most 
observers agree that IoT implies value beyond just the physical or 
logical interconnection of objects.6 

Why is the distinction between IoT and IoE important? While IoT 
is one of IoE’s key technology enablers, so too are cloud and big
data, P2P video/social collaboration, mobility (including location-
based services), and security. Together, they create the opportunity 
for unprecedented innovation and organizational transformation. 
IoE is dissimilar from IoT in that it is not of itself a single techno-
logy transition, but rather a larger platform for digital disruption 
comprised of multiple technologies. In this sense, IoT is a subset of IoE.

6 Machina Research, “What’s the Difference Between M2M and IoT?” September 2014. See also IDC, “The Digital Universe of Opportunities:  
  Rich Data and the Increasing Value of the Internet of Things,” April 2014
7 http://internetofeverything.cisco.com/sites/default/files/docs/en/ioe_vas_public_sector_top_10%20insights_121313final.pdf
8 Cisco Consulting Services

Figure 3: IoT Value at Stake8

Current calculations estimate that IoE represents $19 trillion in 
“Value at Stake” globally over the next decade.7 Value at Stake can 
be understood as the new net profits created as a result of IoE (i.e., 
from markets that could not have existed before), as well as the 
migration of profits from losers to winners as a result of IoE-led 
market dynamics. 

IoT by itself will generate $8 trillion worldwide in Value at Stake 
over the next decade (see Figure 3) which accounts for more than 
42 percent of IoE’s overall Value at Stake. This value will come from 
five primary drivers: innovation and revenue; asset utilization; 
supply chain and logistics; employee productivity improvements; 
and enhanced customer and citizen experience. Supply chain and 
logistics alone are estimated to provide $1.9 trillion in value, which 
is a promising indication of the untapped potential and profits to 
gain from utilizing IoT in the logistics industry.

The Value at Stake calculations stem from a bottom-up economic 
analysis conducted by Cisco on dozens of IoT use cases, both pub-
lic and private sector. Each use case represents a business capability 
and resulting economic value brought about by connecting the 
unconnected.

Figure 1.1: IoT Value at Stake [18].

With a more optimistic forecast, Intel predicts 200 billion devices in the near
year of 2020. They expect a fast-growing pace in the IoT world, rising in just five
years from 15 billion in 2015 to 200 billion in 2020, pointing out that in 2025 the
total worth of IoT technology will reach the USD 6.2 trillion [19].

IHS Markit, a recognized financial services company, envisioned in 2017 that
more than 31 billion devices would be connected in 2018. Furthermore, stated that
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while the local area network (LAN) and personal area network (PAN) solutions
present de facto standards and market stability, the new IoT market presents
duplicated and overlapping wireless solutions. Therefore, this fragmented market,
leads to IoT vendors increase their shipments in over 20% year-on-year [20].

Futurum, a research and analyst firm, stated in 2017 that the global number
of connected devices and objects in operation in 2020 will be between 40 and
50 billion. As a point of reference, they illustrate that Qualcomm, alone, ships
roughly a million chips for IoT every single day. Furthermore, their estimations
envision a spending in IoT of USD 250 billion in 2020, with 40-45% of that spent
in products, and 55-60% in services [21].

Figure 1.2: IoT Market forecast: Connected devices 2014-2020 [22].

In 2017, Arm stated in a white paper [23] their forecast to the IoT world by
2035. They estimate a production of 1 trillion devices between 2017 and 2035,
reaching in 2035 a USD trillion per annum of spends in IoT hardware and services.

The market predictions diverge largely from entity to entity as seen in Fig-
ure 1.2. However, what could be extracted from the different envisions is that
for every person living on earth, there will be at least 2, maybe even 6 connected
things by 2020. The IoT arena will create a revenue opportunity for companies
beyond what Apple, Google, and Facebook are selling together today, surpassing
the economic output of Germany within the next 10 years [22].
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1.4 IoT Architecture

The IoT presents endless opportunities, consequently it has been applied to
diverse scenarios such as smart homes, wearables, smart cities, smart grids, au-
tomotive industry, agriculture, retail, to name a few [24]. The different scenarios
present unique characteristics that constrain the used technologies, network archi-
tectures and design approaches.

Figure 1.3: The general architecture of the IoT [25].

A general architecture for IoT is shown in Figure 1.3, which consists of a
four-layer vertical architecture with bottom-up data flow [26–28]. The layers that
compose this stack can be described as: (i) Objects layer, where the physical items
reside, they are identifiable and able to acquire data generated by them or by their
surroundings. These objects are identifiable with resources such as radio-frequency
identification (RFID) tags, and with ability of auto-identification trough medium
access control (MAC) addresses or an ID stored in a non-volatile memory; (ii) Con-
nection layer, that connects the physical objects with the middleware layer. The
connection resources used are influenced by the communication systems and pro-
tocols used, the network topology, the type of data acquisition systems, and the
communication capabilities of the devices; (iii) Middleware layer, stores the infor-
mation acquired in databases, related with the services provided by each physical
object. Data mining functions are applied on this layer and decisions made in
accordance. Due the big amount of data generated, some IoT applications use
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proper firmware to pre-process and filter data before streaming; (iv) Client layer,
corresponds to a specific target application. Generates the proper results and ac-
tuation in accordance with the middleware layer information. This layer is also
responsible for the connection of the object to the environment, users or provide
machine-to-machine (M2M) communication. It is on this layer that the IoT is able
to create added value, trough providing valuable information, improving safety,
mange supply chains and many more depending on each application scenario.

Figure 1.4: The IoT from an embedded systems point of view [29].

The work of this dissertation will focus on the embedded system device that
empower IoT at the network edge. Figure 1.4 shows a common topology for IoT
from an embedded system point of view. It is composed by four main components:
(i) the "thing", an embedded device endowed with processing capabilities, that is
able to communicate, sense the physical environment and/or actuate; (ii) the
Local Network, that can include a gateway, responsible by perform connectivity
aggregation trough collection of data-in-transit, processing, verification and fur-
ther retransmission to the Internet; (iii) the Internet; (iv) the Back-End Services
that comprehend enterprise data systems (Cloud) or private repositories, respon-
sible for saving data for further processing and making it available to authorized
users [29].

1.5 Connectivity and Security

The IoT is not an interface by itself, it is more a set of frameworks connected
in the vast Internet. Even more, the endpoints are built in embedded devices that
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are getting cheaper, smaller and by its nature run applications with strong com-
munication requirements. The prevalence of such a big network of interconnected
devices will impose new security and privacy threats putting all those devices at
a high risk [30]. For these reasons, strong communication and security constraints
are applied to these devices.

The communication requirements for the IoT endpoints devices include:

• Connectivity: Possibility of all the endpoint devices to be connected to the
network. The transition from Internet protocol version 4 (IPv4) to Internet
protocol version 6 (IPv6) allows the connection of 2128 devices with a unique
IP address. The usage of IPv6 augments the security over IPv4 because the
first does not use network address translation (NAT), avoiding unnecessary
addresses translation and packet modification;

• Interoperability: Ability of exchange and make use of information regard-
less the used technology. To achieve interoperability is needed the (i) incor-
poration of multimode radios that allow diverse IoT devices talk to with each
other; (ii) software flexibility that enables the support for different standard
communication protocols; (iii) strong hardware-based security, as described
later;

• Reachability: Availability of a node over time on the network. The IoT
nodes will be full reachable, with a wide deployment of IPv6, thus allowing
the unequivocal identification of the endpoints on the network.

To ensure proper security of the endpoint devices is needed to secure not only
the device, trough hardware security, but also the data contained and exchanged
by it. The security requirements for the endpoint devices are described as follows:

• Data Security: the security triad or CIA triad stands for confidentiality,
integrity and availability. It constitutes the root of trust, in data security
for the IoT devices, and is summarized below:

− Confidentiality: Ability to provide confidence on user about informa-
tion privacy. It is done by preventing unauthorized people to access
information. The data privacy can be guaranteed by, for example, en-
cryption and two-step verification;

− Integrity: Guaranty that data will remain unchanged during transmis-
sion and reception. Perhaps, if data is modified it must be noticed.
Commonly used methods to verify data integrity are checksum and
cyclic redundancy check (CRC);
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− Availability: Capability to give immediate access to data, to authorized
parties, in any condition. It guarantees that the information will be
properly saved and accessible. Two methods to guaranty availability
are redundancy and failover backup.

• Hardware Security: The cornerstone of embedded system security is to
guarantee that only authorized microprocessor code is loaded and executed,
consequently, a hardware root of trust is required. Furthermore, a hardware
root of trust should provide secure monitoring, secure validation/authenti-
cation, storage protection, secure communication and key management. A
hardware root of trust can be defined by four basic blocks:

− Protective hardware: Provides a trusted execution environment (TEE)
[31, 32] to run only privileged software. This is achieved through the
implementation of secure measures on the silicon manufacturing phase,
with the implementation of unique security keys. Protection to the
runtime memory should be implemented to protect the STACK, HEAP
and global data;

− Tamper detection and countermeasures: Code loaded from the outside
is validated before running on the secure CPU. When a validation fails
a tamper is detected triggering the countermeasures, that may include
device zeroization, used to permanently erase sensitive data, such as
cryptographic keys, device lock, among others;

− Crypto-engines: Dedicated hardware cryptographic accelerators to al-
low data and communication channels protection, without overload the
CPU.

Notwithstanding security being a major concern in IoT, it is let out of the
scope of this dissertation. Therefore, this work will only focus on the connectivity
of low-end IoT devices.

1.6 IoT Network Stack

The IoT is the expansion of the current Internet services, so it as to accom-
modate each and every object which exists in this world or likely to exist in the
coming future [33]. Although, today’s Internet is dependent on IPv4 that is based
on a 32-bit addresses, and therefore able to generate only 4,294,967,296 unique
addresses. The IPv4 address exhaustion occurred in Feb.3 2011, however it had
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been delayed using remapping methods such as NAT [34]. Considered this limita-
tion, IPv6 was developed aiming to have enough addresses to scale the Internet for
decades to come, which according the estimates may include 50 billion connected
devices by 2020 [34]. IPv6 uses a 128-bit address that empower the generation of
3.4 × 1038 unique addresses, opening the Internet to a new era and allowing the
connection of countless devices [34,35].

WSNs at the IoT edge, are mainly composed by oodles of inexpensive low-
power devices, with small computing capabilities, scarce memory, and mainly rely-
ing on IEEE 802.15.4-based networks. Essentially this network supports low band-
widths, small packet sizes and typically suffers from severe and frequent packet
loss [36, 37]. In order to endow such devices with IPv6 connectivity, the network
stack deployed in IoT require an adaption layer to deal with the constraints of
the IEEE 802.15.4 MAC/physical layer (PHY) and thus achieve IPv6 compliance.
The IPv6 over low-power wireless personal area networks (6LoWPAN) deals with
such limitations, through the introduction of mechanisms of header compression,
fragmentation, reassembly, and stateless auto configuration as well as implement-
ing modifications to the neighbour discovery, reducing bootstrapping complexity
[38, 39]. This adaptation layer allows the big shift from traditional WSN to IoT,
thus, enables the usage of IPv6 in such constrained devices, and due to its interop-
erability and lightweight implementation is being while deployed on constrained
embedded systems [40].

Figure 1.5 presents the network stack proposed by the Internet of Things -
Architectural Reference Model (IoT-ARM) [41], which is a standard stack that
aims to increase the connectivity and the interoperability among IoT devices [42].

COAP, MQTT, XMPP, DDS

UDP/TCP 

IPv6, RPL 

6LowPAN 
IEEE 802.15.4 MAC 

IEE 802.15.4 PHY 

Application Layer

Network Layer

Data Link Layer

Physical Layer

Transport Layer

Figure 1.5: 5-layer IoT-ARM Communication Model [42].

Other protocols could be adopted to the network stack, however, the presented
in Figure 1.5 are recommended to be used on low-end devices endowed with a low-
power radio interface.
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1. Physical Layer: Is defined on IEEE 802.15.4 standard and suits the needs
of the target devices.

2. Data link layer: The MAC layer provides access to the media and is part of
IEEE 802.15.4 protocol. In this layer resides also the 6LoWPAN adaptation
layer allowing the usage of IPv6 in resource constrained devices.

3. Network layer: Address and routes data through the network, traditionally
enabled by IPv4, and recently upgraded to support IPv6. The IPv6 Routing
Protocol for Low-Power and Lossy Networks (RPL) [43] is a routing protocol,
that improves the route of data between autonomous devices in the Internet.

4. Transport layer: The user datagram protocol (UDP) and transmission
control protocol (TCP) are the transport protocols used in the Internet. Of-
ten, TCP is considered too complex for low-power and lossy network (LLN),
thus, not suitable for devices with few resources, and demanding for low
power consumption. UDP is the most suitable and deployed on IoT scenar-
ios.

5. Application layer: The hypertext transfer protocol (HTTP) that is used
on the Internet is too complex for constrained nodes, thus alternative mecha-
nisms have been developed for LLN. One of the most important mechanisms
is constrained application protocol (CoAP), a web transfer protocol target-
ing M2M applications, and capable to interoperate with HTTP. CoAP runs
over UDP while Extensible Messaging and Presence Protocol (XMPP) and
Message Queuing Telemetry Transport (MQTT) run-over TCP.

1.7 Operating Systems for Low-end IoT Devices

The complexity of the IoT arena is rising rapidly and the amount of data and
protocols that need to be managed is pushing IoT low-end devices out of them
comfort zone, thus the integration of a full-fledged OS is required. A general
propose operating system (GPOS) such as Linux is so far considered too complex
for IoT low-end devices [10]. Besides, the usage of lightweight OS dedicated to
WSN in more powerful IoT devices result in less energy-efficient implementations
and do not exploit all the devices capabilities [10].

Furthermore, it is desirable that the OS provides capabilities of a modern
full-fledged OS, such as native multi-threading, hardware abstraction, dynamic
memory management, a friendly application programming interface (API) and
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at least C or C++ programming languages. Portability and interoperability are
important at the OS level, thus open standards and APIs such as POSIX should
be adopted. A complete and comprehensible documentation is required to make
the best use of the OS and ease application design. Another important point when
choosing an OS for IoT is the maturity of the code, widely deployed and tested
code with commercial applications and a large community of contributors are more
unlikely to have undetected errors, thus open source code should be always a first
choice [44].

1.7.1 Requirements for an IoT OS

Due to the characteristics of the IoT low-end devices, an OS suitable for this
field of embedded systems must fulfil several requirements and provide modularity
and configurability, to be possible his deployment in different hardware platforms
and applications. The widespread requirements are:

• Small Memory Footprint: Low-end devices exhibit scarce memory re-
sources, usually a few kilobytes of random-access memory (RAM) and read-
only memory (ROM) [45]. Consequently, the OS should have a small foot-
print maintaining an acceptable performance and convenient API;

• Support for Heterogeneous Hardware: The OS suitable for the IoT
need to be able to deal with a heterogeneity of hardware architectures, is
desirable to support various MCUs architectures and families from 8 bit to
32-bit architectures, enabling support to devices with different capabilities
such as memory management unit (MMU) or floating-point unit (FPU);

• Energy Efficiency: Due to the power constraints of IoT low-end devices,
the OS should make use of the power saving modes available on the MCUs,
resorting to efficient schedulers policies to switch to sleep modes as soon as
possible;

• Real-Time Capabilities: Various applications require precise timing and
timely execution, thus the OS should guarantee worst-case execution times
and worst-case interrupt latencies;

• Network Connectivity: The need to support multiple link layer tech-
nologies and provide communication with other Internet hosts, led to the
use of network stacks based on IP protocols directly on IoT devices [46].
Thus, a key requirement for an IoT-OS is offer support for heterogeneous
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link layer technologies, such as low-power radio and wired technologies. Fur-
thermore, should provide a modular network stack based on standard (open
standards are mandatory, such as those specified by Internet engineering
task force (IETF)) IP protocols relevant for IoT [46] (a full-fledged TCP/IP
implementation as well as a 6LoWPAN stack) that support evolution and
integration of multiple network protocols;

• Security: IoT devices can be deployed in critical or industrial infrastruc-
tures with life safety implications (in this case certification of all the applica-
tion including the OS, may be mandatory), in other hand the communication
capabilities of this devices entail dangerous, so it should meet high security
and privacy standards. Often deployed in critical applications with difficult
physical access and high failure cost, these systems must be robust and thus
the OS reliable. From a security data point of view the IoT OS should fulfil
the CIA triad. Secure mechanisms for software updates must be incorpo-
rated and open source used as much as possible [47].

1.8 Dissertation Structure

The remaining of this dissertation is structured as follows:

• Chapter 2 presents an analysis of prominent OS and platforms that enable
the development of this dissertation. Also, analyses the evaluation tools
that allow the development of such a work and presents a literature review
of relevant state-of-art in the development of heterogeneous solutions for IoT
devices.

• Chapter 3 analysis heterogeneous architectures for low-end devices with spe-
cial focus on an in-house project the CUTE mote. The structure of RIOT-
OS is presented in this chapter and described the deployment of such OS
on a COTS platform with the usage of IAR Workbench. Furthermore, is
presented the heterogeneous architecture developed and the deployment of
RIOT-OS in this platform. The chapter concludes with the evaluation of
the COTS and heterogeneous solution.

• Chapter 4 presents a discussion of hardware acceleration on low-end IoT
devices, followed by the analysis of the MAC Layer Accelerator (MLA) de-
ployed in CUTE mote. Then, several improvements to the hardware acceler-
ator are presented, emerging XIOT, a refactoring of the MLA. Furthermore,
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this chapter describes the integration of XIOT in RIOT-OS and finalizes
with the evaluation of the architecture.

• Chapter 5 concludes the dissertation discussing the obtained results in the
different platforms and analyses the advantage of hardware network-related
accelerators in low-end IoT devices. For last, are presented future develop-
ments for this work.

1.9 Conclusion

This Chapter has introduced the IoT world, with focus on this dissertation core,
the low-end devices at the network edge. It was analysed the bottom-up flow of in-
formation in IoT and how embedded systems play a critical role in the generation
and streaming of information. The two main requirements for embedded systems
in the IoT were also discussed, with special attention to the connectivity chal-
lenges. To solve those challenges was presented a network stack for the low-end
devices in the IoT edge. Knowing that the complexity on the edge is increasing,
the low-end IoT devices can benefit from an embedded OS, thus, the requirements
for an OS suitable for these devices were discussed. Finally, was described the
overall structure of this dissertation. The next Chapter presents relevant state of
art and the tolls used during this dissertation.





Chapter 2

State of Art

“If I have seen further than others, it is by standing upon the shoulders of
giants.”

—Isaac Newton

This Chapter analyses the existing tools and hardware solutions that allow
to develop the work of this dissertation, as well as the current state of art in
heterogeneous architectures for low-end devices. Section 2.1 analyses the most
prominent and suitable OS for low-end IoT devices in the network edge. Then,
Section 2.2 describes the hardware platforms used for the development of the het-
erogeneous architecture and the COTS solutions used for performance comparison.
Section 2.3 presents the main tools that allow the development, test and evalua-
tion of the developed work. The state of the art of heterogeneous architectures
is presented in Section 2.4, with special focus on CUTE mote project. Finally,
Section 2.5 concludes this Chapter.

17
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2.1 Operating Systems for IoT

Traditional WSN were mainly homogeneous networks with a single connection
point, or in some cases even disconnected from the Internet. As seen previously in
Section 1.5 and Section 1.6 of Chapter 1, the transition from WSN to IoT requires
wireless motes to guarantee connectivity, interoperability and reachability. The
accomplishment of these requirements can only be achieved with the integration
of an IP compliant network stack in the motes. However, the incorporation of a
network stack largely increases the complexity of the software deployed in the IoT
devices. To manage such complexity, the integration of an OS in these devices is
mandatory, however, due their scarce resources this is not straightforward.

The OSes available for IoT present a variety of features, and even that all of
them guarantee in somehow the basic features to create at least a node in a WSN,
not all of them fulfil the requirements presented in Subsection 1.7.1. Therefore, the
design choices of the OS will impact its behaviour and applications. A summary
of the design options of an OS for resource constrained (and connected) embedded
device is presented below.

• Architecture: The design structure and modularity of the OS are deter-
mined by the adopted architecture, which may be monolithic, microkernel
or layered architecture. The monolithic architecture is all compiled into a
single system image, resulting in a small OS footprint with reduced overhead
in the interaction between modules. Consequently, the low fragmentation
and isolation of this architecture makes it difficult to maintain and more
prominent to system failures, due to errors in single modules. On the mi-
crokernel approach the kernel size is shortened, providing a minimum set of
functionalities inside the kernel. The interaction between user and kernel
space is provided by the usage of user-level servers. By the fragmentation
achieved, the reliability, customization and maintainability are improved in
comparison with the monolithic architecture. However, the communication
between user and kernel space introduces a degradation of performance. In
the layered approach the OS is split into various layers, implementing each
of them a functionality. This architecture presents less modularity that the
microkernel, however, it is more flexible and reliable than the monolithic
design;

• Memory Allocation: As described before, IoT low-end devices have scarce
resources, including memory. Therefore, the strategy for memory allocation
must have in consideration the available resources, and it can be either static
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or dynamic. The static memory allocation is a simple and a useful technique
to deal with reduced memory. No memory allocation is done in run time, as
drawback it results in an inflexible device. The dynamic strategy makes the
system more flexible and allows a better management of the memory space.
However, it can be a hard task to be performed by an MCU with reduced
resources, mainly because of the absence of MMU that makes the memory
management difficult, and decreases the system’s security;

• Network Buffer Management: Regarding the specificity of an OS for IoT
devices, the usage of a network stack built in a layered fashion creates the
necessity of exchanging information between each layer of the stack. This
can be done either by reference, or by memory copy. Some OSes present a
new approach, where a central memory manager is used to handle the data
between layers in a more efficient manner;

• Driver Model and Hardware Abstraction Layer: A clear-cut driver
model enables the integration of different peripheral drivers into an appli-
cation, facilitating further integration of new drivers into the OS. A well-
defined hardware abstraction layer empowers the portability between differ-
ent MCU families and architectures;

• Scheduling Strategy: IoT devices are applied to a wide range of scenarios,
both with real-time and non real-time requirements. This enforces the OS
to implement proper scheduling policies to fit the application requirements.
The scheduler applied to IoT devices should have in consideration the energy
consumption as well as the memory usage;

• Programming Model: Two models are dominant in the IoT arena and
can be defined either as event-driven or multi-threading. On a programming
model based on event-driven, the execution of a task is triggered by an event,
e.g., an interrupt. This model is more suitable for devices with scarce re-
sources, and is often implemented by the execution of an event loop, instead
of a more complex scheduler and a shared-stack model [44]. In a multi-thread
environment, the usage of a scheduler is imperative to manage the execution
of threads. This approach enables de development of more complex systems,
but requires more powerful hardware resources than the event-driven model;

• Programming Languages and Debugging Tools: The usage of stan-
dard programming languages such as ANSI C or C++ simplifies the portabil-
ity between platforms, and enables the usage of well-established toolchains
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and tools (development and debugging). Besides, dialects or OS-specific
languages may be used to solve performance and safety-relevant issues that
low level languages such as C are not able to solve. Due to the constrained
resources of the low-end devices, some of them do not offer debugging in-
terfaces. Alternatively, it can be used the printf() function over a UART
or even a light-emitting diode (LED) connected to a general-purpose in-
put/output (GPIO) port to provide debug information;

• Testing: A crucial phase in the development of any application is the test-
ing process, thus the OS should provide facilities to help in this process. The
hardness of testing IoT devices arise from their distributed, deeply embed-
ded and often very constrained nature. An extensively used technique to
test hardware-related parts, such as device drivers, is the usage of hardware
emulation tools, e.g., MSPSim or Emul8 [48]. Network emulators and simu-
lators such as Cooja or ns-2/ns-3, that allow for the integration of OS code,
are an asset for such a task [49];

• Feature Set: Two main groups compose the set of features provided by
the OS. One comprehends the kernel functionalities, such as timers and
synchronization mechanisms, and other the high-level features of the system
that might include a shell or cryptographic libraries;

Some available OS solutions to deploy in an IoT device at the network edge
include Contiki-OS [50], Tiny-OS [51], Linux, RIOT-OS [52], FreeRTOS [53], Ama-
zon FreeRTOS [54], Mbed OS [55], Mantis [56], Nano-RK [57], NutOS [58], Man-
sOS [59], MicroC/OS-III [60], µClinux [61], etc. However, most of them does not
fulfil the requirements described in Section 1.7 of Chapter 1. In the remaining
of this Section are described in detail the most prominent OS solutions for the
low-end IoT devices.

2.1.1 Contiki-OS

Contiki-OS [50] is an OS developed around the microIP (uIP) stack, targets
the resource-constrained embedded systems, and it is currently applied in fields
such as WSN or IoT. Architecturally, Contiki-OS is implemented in a modular
approach, that is close to the layered architecture [62]. OS facilities are provided
in the form of services, having their own implementation and interface, which
increases the granularity of the OS and decreases the interdependence between
system modules.
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The programming language adopted to develop Contiki-OS was C, a highly
portable language. The supported platforms cover a wide range of resource-
constrained devices, including 8-bit AVR platforms, 16-bit and 20-bit MSP430
platforms, and 32-bit Arm Cortex M3 architecture [44].

An event-driven programming model is used in the kernel space, where the
event handlers run in the same context and to completion. No priority is assigned
to the event handlers, however, they can use internal mechanisms for preemption
[63]. In the application space, Contiki provides partial support for multithreading
by implementing a lightweight form of threads, which are designated by Pro-
tothreads [64]). Those lightweight threads are stack-less and have a very small
memory overhead. Besides the partial multithreading support, none sophisticated
scheduling algorithm is materialized, consequently the OS does not fulfil the re-
quirements for real-time applications. Contiki provides power saving modes, by
switching to the deepest sleeping mode supported, when the OS finishes all the
pending tasks.
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Figure 2.1: Contiki-OS architecture stack and supported IoT stack.

Contiki offers support for dynamic memory allocation. To ensure that no
fragmentation happens in the memory, a memory allocator manager is used for
compacting memory when there are free blocks in the system. The absence of
a memory protection mechanism between different processes makes the overall
system unprotected [63].
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Contiki provides support to a wide range of protocols used in the IoT commu-
nication stack such as IPv6, 6LoWPAN, RPL, and CoAP [44]. An implementation
of uIP [65] is provided with a minimum set of features needed to have a minimal
TCP/IP stack, compliant with its full implementation on more powerful devices
and OSes. This way, low-end devices can interoperate and communicate with
remote servers without the need of protocol translation/adaptation in the mid-
dle. Another stack supported by Contiki is Rime [66], a lightweight stack able
of provide a set of distributed programming abstraction layers. Such stack can
be used when a simple and isolated network is needed by the final application.
Simulation capabilities are provided in Contiki by Cooja [67], a simulation tool for
WSN. Contiki enables the load and unload of individual applications or services
at run-time [50], which makes possible the remote upgrade of the system.

The source code of Contiki is available under a BSD license on GitHub with
a large community of contributors and forks. A rich API and documentation are
available enhancing the development process.

2.1.2 TinyOS

TinyOS [51] is a component-based and application-specific OS designed for
WSN, with a low OS footprint targeting very constrained platforms. The OS im-
plements a monolithic architecture and uses a component-based model. According
the specificity of the application, the components will compose a static OS image,
to be deployed on the mote. A component is an entity that exposes one or more
interfaces, consisting of three computational abstractions: commands, events and
tasks. This OS provides a single stack and there is no isolation between kernel
and user spaces.

The programming model followed by TinyOS is the event driven model, with
the addition of TOSThreads [68] in version 2.1, which enabled the support for
multithreading. TOSThreads, a preemptive application level thread library for
TinyOS, provides the ease programming of a threading model and the efficiency
of an event-driven kernel. For these threads a cooperative scheduling algorithm is
used, thus the kernel relies on the threads to yield the processor. Consequently,
the programmer is responsible by managing concurrency. In TinyOS each thread
has to allocate a task control block (TCB) with fixed memory space.

The scheduling algorithm employed by earlier versions of TinyOS relied on a
non-preemptive first-in-first-out (FIFO) scheduling algorithm, thus the tasks on
this FIFO ran to completion. The task execution is not an atomic process, and it
can be interrupted by an interrupt handler, command or event. To be compliant
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Figure 2.2: TinyOS architecture stack and supported IoT stack.

with the requirements for real-time applications, later versions of TinyOS imple-
ment an earliest deadline first (EDF) scheduling algorithm. However, in this policy
there is no guaranty that the deadlines will be meet when the system is overload,
compromising the deployment in systems with strong real-time requirements.

Since low-end IoT devices are resources constrained, MMUs are not always
present in every device. Thus, TinyOS presents an efficient memory safety method
[69] incorporated in the latest versions. In this OS only static memory allocation
is used, consequently no heaps, function pointers or virtual memory mechanisms
are used.

The OS communication capabilities encompass a Berkeley low-power Internet
stack (BLIP) [70], an implementation of the 6LoWPAN stack that include TCP,
UDP, Internet control message protocol version 6 (ICMPv6), IPv6, RPL and
CoAP. The OS also uses Hydro routing protocol [71] to ensure reliable unicast
communication within an IPv6 sub network with lossy links [72].

The set of features of TinyOS comprehend a file system, database [73], security
[74] and simulation support provided by TOSSIM [75]. TinyOS uses a C dialect
called NesC [76], which is a component-based and event-driven programming lan-
guage [44]. The source code is provided under a BSD license, with extensive
documentation, tutorials and examples.

2.1.3 RIOT-OS

RIOT-OS [52] is an OS developed to fill the gap between WSN OS and full-
fledged OS. Aiming to allow easy portability among a wide range of devices,
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the OS is implemented in two distinct parts, hardware-dependent and hardware-
independent code, with well-defined interface and independence of the modules.

RIOT-OS implements a modular architecture built around a microkernel in-
herited from FireKernel [77]. It uses a multi-threaded programming model similar
to Linux, on which each thread has a unique TCB and its own memory space.
The development of the multi-thread model gives special attention to the mem-
ory usage, by designing a very small TCB and minimizing the usage of the stack
during run time. The use of multi-threading on RIOT-OS is optional, thus, it can
be removed and the user application be the only thread running on the system
decreasing this way the memory requirements. For thread synchronization and
communication RIOT-OS offers mutex, semaphore and messaging queues.

Application 
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Figure 2.3: RIOT-OS architecture stack and supported IoT stack.

The scheduler algorithm implied in RIOT-OS is based on fixed priorities and
preemption. The scheduler policy enforces the thread with the highest priority to
run-to-completion, that can only be interrupted by an interrupt request (IRQ). In
order to promote energy efficiency, RIOT-OS proposes a tickless scheduler, i.e., it
works without any periodic event, aka tickless. The system enters in sleep mode
after switching to the idle thread, that will determine the deepest sleep mode
possible, and only external events will wake up the system. In brief, RIOT-OS
presents soft real-time capabilities [52].

On this OS the use of dynamic memory allocation is only allowed on the
user application space. On the kernel side, runtime of O(1) is guaranteed by the
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exclusive use of static memory allocation [10].
The OS is written in standard ANSI C language, with some hardware depen-

dent parts written in assembly [44]. RIOT adds support for C++ programming
language enabling this way the usage of powerful libraries. The use of standard
languages allow to employ well-known toolchains and debugging tools, as well as
increase portability features.

RIOT defines a flexible layer-separating architecture [78], incorporating two
programming interfaces for the network subsystem, labelled as (i) netdev and
(ii) sock. In (i) is offered a generic network driver interface, whereas in (ii) a
high-level network interface is provided for applications access [52]. One of the
implemented stacks by RIOT is GNRC, the default IP stack [78], based on the
standard IP protocols, that supports 6LoWPAN, IPv6, RPL, UDP and CoAP
implemented with well-defined interfaces and interprocess communication (IPC)
[40]. A port of the full 6TiSCH stack is implemented in the form of OpenWSN
[79] and CCN-lite is implemented as a port of the Information Centric Networking
(ICN) [44]. On the default network stack, GNRC, a centralized network buffer
is used to store packets, headers and other networking meta-data, allowing to
transmit only the addresses of the information between the network layers, without
need for data copy or duplication of data.

As described in Section 1.7, update over-the-air is an important feature, thus
it can be included in RIOT with the integration of a boot-loader and two firmware
slots. Through the 6LoWPAN network stack, a RIOT image (featuring a software
update module) can be downloaded into the system allowing the reconfiguration.
RIOT goes even further by providing a secure update with integrity and authen-
ticity of the downloaded firmware using state of the art public-key crypto and
hashing algorithms [52].

RIOT provides a hardware visualizer that allows the compilation and execu-
tion of RIOT applications on a host OS. Other hardware simulators can be used
to compile and test RIOT such as MSPSim & Cooja [52], IoT-Lab [80] or DES-
Testbed [81]. A wide set of features is provided by RIOT, of which stand out a
powerful command-line interpreter (a Linux-like shell), a virtual file system and
cryptographic libraries. The source code of RIOT is available on GitHub un-
der a LGPL v2.1 license. A consistent documentation is provided in a standard
form with the usage of Doxygen. The community around RIOT-OS is quite ac-
tive through the development of code updates, bug detection and publication of
scientific papers and academic works.
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2.1.4 FreeRTOS

FreeRTOS [53] is a popular real-time operating system (RTOS) widely de-
ployed in industrial and commercial applications as well as used in several research
projects. A large community use this OS and it has been ported for many MCU
architectures and platforms. The architecture of FreeRTOS is fairly simple, all
the OS is splitted in four files written in C, usually is considered more a threading
library than a full-fledged OS [44]. FreeRTOS employs a multi-threading program-
ming model based on tasks, with each task being instantiated statically with its
own stack.

The OS presents real-time features provided by the implementation of a pre-
emptive, priority-based round-robin scheduler, and by synchronization objects
such as mutexes and semaphores. Since version 7.3.0 a optional tickless mode
is supported in the scheduler [44]. Dynamic memory allocation is supported by
the OS in five different modes: (i) allocate only, memory cannot be freed, (ii) allo-
cate and free, without coalescent of adjacent free blocks, (iii) wraps of the standard
C library malloc() and free() for thread safety, (iv) an algorithm similar to (i),
but with coalescent of adjacent free blocks to avoid fragmentation and, (v) an
improvement of (iv), with the ability to scatter the heap over several memory
sections.

FreeRTOS does not natively provide a network stack, , however multiple stacks
from third-party can be used as a supplement to the OS. Ports of network stacks
were developed to match with FreeRTOS, of which stand out the adaptation of
IwIP and Nabto.

The OS does not define a driver model or abstraction layer, rather it works
with vendor supplied board support package (BSP). FreeRTOS does not provide
any debug or testing capabilities, instead it resides in third-party solutions, due
to the portability of the OS it can easily integrated in standard tools. FreeRTOS
offers rich documentation, compromising books, trainings and a broad API. The
source code is provided under a GLP license.

2.2 Hardware Platforms

The development of a heterogeneous solution for low-end IoT devices, with the
integration of hardware accelerators presents various challenges, as described in
[36]. The common constraints for IoT devices, that reside on the network edge
include low-price, power consumption, processing capabilities, memory resources,
among others. Thus, the following requirements should be considered, not only



STATE OF ART 27

in the choice of a platform, but also is desired their accomplishment in the final
solution:

• Implement an IoT-enabled network stack, that promotes the communi-
cation requirements for an IoT device: (i) connectivity, (ii) interoperability,
and (iii) reachability;

• Provide scalability, to allow the inclusion of new hardware accelerators;

• Provide availability, an important feature for sensitive applications that
have the potential to cause harm on persons or goods;

• Empower design modularity and customization to facilitate the efficient
integration of only the required components, optimizing the usage of re-
sources and power;

• Facilitate portability, enabling the fast integration of a heterogeneous set
of devices, including different communication interfaces and OS;

• A secure hardware architecture, in a commercially available low-power
SoC.

• Data protection mechanisms that enable the accomplishment of the CIA
triad requirements identified in Section 1.5.

Having in consideration the requirements previously presented and the hard-
ware solutions described in Section 1.2 of Chapter 1, relevant platforms for this
dissertation are analysed in the next two subsections.

2.2.1 Texas Instruments

Texas Instruments (TI) offers a broad portfolio of wireless connectivity de-
vices including the lowest power and longest-range solutions across 14 wireless
connectivity standards, certified and third-party modules that allow the quick
and efficient development of IoT motes. The more relevant TI solutions for this
dissertation are:

• Wireless MCU SoC: The CC2538 and the CC2650 are wireless SoC that
combine a powerful Arm Cortex-M3-based MCU and a robust IEEE 802.15.4
radio transceiver. This combination enables the device to handle complex
network stacks with security, heavy processing applications, and over-the-
air download. Powerful hardware security accelerators enable quick and
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efficient authentication and encryption, while leaving the CPU free to handle
application tasks. The multiple low-power modes with retention enable quick
startup from sleep and minimum energy spent to perform periodic tasks.

• SmartRF transceivers: The CC2420 and CC2520 are true single-chips 2.4
GHz IEEE 802.15.4-compliant RF transceiver designed for low power and
low voltage wireless applications, enabling through serial peripheral interface
(SPI) interface connectivity in MCUs that do not provide it natively. Exten-
sive hardware support for packet handling, data buffering, burst transmis-
sions, data encryption, data authentication, clear channel assessment, link
quality indication and packet timing information are included in the chip.

• Development Platforms: SmartRF05EB, SmartRF06EB offer support for
the two MCU described before providing hardware that enables the fast de-
velopment of IoT solutions. The SmartRF06 Evaluation Board is designed
to the CC2538 and other evaluation module (EM) from the same family,
providing an integrated XDS100v3 debug probe that allows the download
and debugging of software on the CC2538 SoC. This debugger is supported
by several integrated development environments (IDEs) such as IAR Work-
bench and Keil for Arm Cortex-M.

2.2.2 Microsemi SmartFusion2

The FPGA market is accounted for USD 63.05 billion in 2017 and growing
at a fast pace, being expected to reach USD 117.97 billion by 2026 [82]. This
ebullient market offers a variety of solutions from different suppliers and targets
the specificities of a wide range of scenarios. Therefore, a variety of development
boards could have been considered to fulfil the requirements stated for low-end
IoT devices. From Microsemi, was considered the PolarFire and IGLOO2 FPGA
Families [83, 84], but both failed in provide a hard-core MCU. The same fact is
observed in the LatticeXP2 [85], where only a soft-core can be included. From
Xilinx, the Zynq-7000 series comes with an Arm Cortex-A9 [86] that is not ap-
propriated for a low-end device. The low-cost family from Altera the Cyclone V
[87] includes also an Arm Cortex-A9, what for the previous reason does not fulfil
the requirements specified before. Nevertheless, Microsemi produces the SmartFu-
sion2 [88], a powerful FPSoC that combines an Arm Cortex-M3 MCU and FPGA
fabric with power efficiency, exceptional reliability and proven security. This SoC
is included in the SmartFusion2 Security Evaluation Kit [89], and provides an
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easy and secure platform for the development of cost-optimized designs suiting
perfectly the stated hardware requirements.

Figure 2.4: SmartFusion2 Security Evaluation Kit.

This platform includes 90K logic elements (LE) in the FGG484 package (M2S090TS-
FGG484), a hard-core up to 166 MHz Arm Cortex-M3 processor, 64 Mb SPI
Flash memory and 512 Mb on-board low-power double data rate (LPDDR) static
random-access memory (SRAM). Is strengthened with industry-required high-
performance communication interfaces such as PCI Express Gen2, fullduplex Seri-
alizer/Deserializer (SerDes), RJ45 for 10/100/1000 Ethernet and JTAG/SPI pro-
gramming interfaces. The board capabilities are extended with embedded trace
macrocell (ETM), embedded static random-access memory (eSRAM), embedded
non-volatile memory (eNVM), and an extensive cluster of peripherals including
CAN, TSE, USB, inter-integrated circuit (I2C), SPI and universal asynchronous
receiver-transmitter (UART).

The SmartFusion2 brings to market a total power reduction of approximately
20% to 40% with a typical standby power consumption of 7mW. Improves security
with implementation of protection against overbuilding and cloning, and secure
boot for both the FPGA and processor. It enables data security by providing
elliptic curve cryptography (ECC), SRAM-physically unclonable function (PUF),
random number generator (RNG), advanced encryption standard (AES), secure
hash algorithms (SHA), differential power analysis (DPA) and by implementing
anti-tamper measures. It offers an exceptional reliability for safety critical and
mission critical systems through the provision of single event upset (SEU) im-
mune Zero FIT Flash FPGA configuration. More architecture highlights include
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hardware based 667 Mbps DDR2/3 controllers and integrated DSP processing
blocks. Other utilities and features can be found on the board such as push-
buttons, switches and LEDs for demo purposes, as well as test points for current
and power consumption measurements.

2.3 Evaluation Tools

The inherent complexity of developing IoT-enabled devices requires powerful
tools that allow a fast and efficient development cycle. Even more, the co-design
with integration of hardware accelerators requires simulation features and the pos-
sibility to debug the hardware and software developed. The usage of industrial
compliant, standard and well-known tools with a large community of develop-
ers are less likely to have undetected bugs can provide a better support. Next
subsections describe the selected tools used throughout the development of this
dissertation.

2.3.1 IAR Workbench

The IAR Workbench IDE from IAR Systems provides a complete development
tool for embedded systems. Contain tools for software compiling, linking and
debugging specially designed for embedded processors. To easy the development
this IDE offers preconfigured files for a wide range of devices, including header
files for peripheral I/O, linker configuration files, device description files and flash
loaders. Also, it allows the usage of customized toolchains, by invoking external
tools and offers a command line environment.

The debugger capabilities offered by IAR are one of the most extensive in
the market, thus they provide a great analyser to debug all system components,
including power analysis tools, and even RTOS middleware analysis. The debug
capabilities of IAR are especially important in this dissertation work, due to the
complex and extensive tasks of receiving and sending packets through a radio
interface. This IDE comprises rich documentation and a responsive technical
support, speeding up the development cycle.

2.3.2 Libero SoC Design Suite

Libero SoC Design Suite offers high productivity with its comprehensive, easy-
to-learn, easy-to-adopt development tools for designing with Microsemi’s IGLOO2,
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SmartFusion2, RTG4, SmartFusion, IGLOO and ProASIC3 families. The suite in-
tegrates industry standard Synopsys Synplify Pro synthesis and Mentor Graphics
ModelSim simulator, programming and debugging tools capabilities and secure
production programming support.

The design in Libero can be made using SmartDesign (a visual block-based
design creation tool, that helps to assemble and connect cores from different
providers), System Builder (design tool that uses a set of high-level questions
to define the system), hardware description language (HDL) or embedded design
flows. Simulation can be done at functional, gate-level, and timing verification
using Mentor Graphics ModelSim Pro ME.

ModelSim Pro ME provides a mixed-language simulator for Verilog, SystemVer-
ilog, and VHDL. This source level verification tool allows the verification of VHDL
code, line by line. It enables the execution of simulation at all levels: behavioural
(pre-synthesis), structural (post-synthesis), back-annotated, and dynamic simula-
tion. It also allows the simulation of peripherals connected to the MCU through
the Advanced Microcontroller Bus Architecture (AMBA) bus, thus reveals very
useful for the work developed during this dissertation.

Synplify Pro ME is included for synthesis proposes, enabling the fully opti-
mization of an HDL design for any Microsemi device. Synphony Model Compiler
ME, part of the Microsemi Digital Signal Processing Solution, enables the digi-
tal signal processor (DSP) designer to evaluate an algorithm at a higher level of
abstraction using MATLAB and Simulink along with an exhaustive set of DSP
blocksets and Microsemi intellectual property.

For power analysis, SmartPower allows the identification of static and dynamic
power consumption problems, estimation of power consumption of the overall sys-
tem or individual components. For battery-powered design, it allows the definition
of power modes and the estimation of the battery lifetime. Similarly, to Smart-
Power, it is provided the SmarrTime, a tool that allows a complete design timing
analysis. Microsemi offers the first industrial programming solution to prevent
overbuilding with Secure Production Programming Solution (SPPS). This enables
the control of the number of devices programmed, certifies the programmer and
ensures that only original Microsemi devices are programmed.

The debug solutions offered by Libero include SmartDebug and Synopsys Iden-
tify ME. SmartDebug provides a new approach to debug FPGA fabric and SerDes
without the usage of an integrated logic analyser (ILA). The SmartDebug captures
the FPGA device status and flash memory content, that gives access to any LE,
and check the inputs and outputs in real time. Finally, Synopsys Identify ME, an
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on-chip debugging tool allows the detection of design bugs, by providing internal
signals directly from the FPGA at system speed, these signals are insert into the
register-transfer level (RTL) files.

2.3.3 Thread-Metric Benchmark Suite

The Thread-Metric Benchmark Suite is an open-source, vendor-neutral, free
benchmark suite used to measure RTOS performance [90]. Thread-Metric is com-
posed of eight distinct tests designed to highlight commonly used aspects of an
RTOS, measuring each of them a specific low-level service of the kernel. In more
depth, the benchmark measures cooperative and preemptive context switch, inter-
rupt processing with and without preemption, message passing, semaphore pro-
cessing, memory allocation and deallocation mechanisms. A single evaluation
measure the total number of RTOS services that can be handled during a pre-
defined timer interval. To obtain normalized values, a calibration test can be
performed to determine the processor speed [90]. In the context of this disserta-
tion, the benchmarks are used to evaluate the impact of offloading software-based
functionalities to dedicated hardware accelerators.

2.4 Heterogeneous Architectures

Due to the ubiquitous deployment of IoT endpoint devices arises diversified re-
quirements for these motes. Consequently, the motes can incorporate a variety of
sensors and communication interfaces and their demand for performance is increas-
ing proportionally with the ever-growing amounts of data collected, processed and
transmitted over a network. This variety of requirements and solutions adopted
creates a large heterogeneity in the IoT edge. However, at the network edge a
good balance between performance and power consumption should be achieved
[25], guarantying easy integration of new hardware and low-cost price per device.
Therefore, three hardware architectures are analysed having in consideration the
previously stated:

1. A COTS MCU is the traditional solution for WSN due to the homogeneity
of those networks. Several COTS examples can be found in [91–98] however,
they fail in provide flexibility, customization or in enabling easy integration
with new hardware;

2. A graphics processing unit (GPU) can be used to increase performance
due to the natural parallelism features of these platforms. Although, due to
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the common power consumption constraints, solutions such as GPU are not
suitable for endpoint devices [25];

3. An ASIC, a custom platform, provides high performance with reduced
power-consumption, but presents drawbacks, being the high cost to volume
ratio, high time-to-market, and lack of flexibility (once fabricated cannot
be changed). Thus, the application of an ASIC on customized edge-devices
with a small production may not be viable, due to the high NRE value,
manufacturing cost and long time-to-market;

None of the presented solutions fulfil the common requirements for an IoT platform
and neither the proposed in Section 2.2. Therefore, a new hardware architecture is
required to improve the wireless motes, were in the current state of the artFPGA
technology is being used to overtake these challenges. However, FPGA was not
a choice in the past to develop wireless motes, mainly due to their high power
consumption and associated costs.

Although, in recent years FPGA suppliers addressed the energy consumption
problems, and are turning their platforms SoC-oriented (FPSoC). Xilinx and In-
tel (former Altera) are the main supplier of FPGAs, with Microsemi providing
the latest security technology innovations. In the last years, these suppliers have
released FPSoC platforms with several of them including Arm CPU’s [99]. In
Figure 2.5 is presented the evolution of FPSoC in the market, regarding the num-
ber of processor cores used. The difference of heterogeneous and homogeneous
architecture, in this case, refer to the use of different CPUs in the same SoC.

Nevertheless, usually FPGA chip unit price is higher than ASIC, the develop-
ment period is much shorter due to the unnecessary manufacturing process, and
the NRE cost reduced due to the incorporation of on-board facilities that enable
a fast development such as an ILA. FPSoC are of special interest to deploy CPU
accelerators, enabling the implementation of protocols and hardware blocks de-
signed by users, integrating new functionalities with widely deployed hardware and
software with minor changes. Therefore, these recent advances allow the usage of
FPGA enabled platforms, specially FPSoC for prototyping new functionalities or
develop heterogeneous endpoint devices. Some examples of FPGA applications,
are the improvement of hardware security [100–102], implementation of cryptog-
raphy algorithms [103–107] and compression/decompression mechanisms [108].

An emergent solution for wireless motes is the conjugation of a reconfigurable
computing unit (RCU) (built in FPGA fabric), with a hard-core MCU and an
802.15.4 compliant radio transceiver [109]. These heterogeneous wireless motes
enable the integration of compatible IP network stacks, allowing to endow the
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Figure 2.5: The evolution of FPSoCs [25].

devices with reconfigurability and customization capabilities. These architectures
including an RCU present already various applications in the IoT arena, being
the most relevant state-of-art research related with the core of this dissertation
the HaLoMote [110], the PowWow Mote [111], the CookiesWSN [112], and the
in-house project CUTE mote [113] that are discussed below.

In [110], aiming to address the challenges of computationally intensive dis-
tributed applications, with limited energy budgets is proposed the heterogeneous
Hardware-Accelerated Low-Power Mote (HaloMote) as a more energy-efficient ap-
proach to the common homogeneous node architectures. The mote is composed
by an MCU with integrated IEEE 802.15.4 radio transceiver and a Microsemi
Igloo M1AGL1000 FPGA used as RCU. The first version adopted a CC2538 ra-
dio frequency (RF)-SoC as MCU while, in the latest versions was used an AT-
mega256RFR2 RF-SoC. Aiming to reduce power consumption, the RCU hosts
dedicated hardware accelerators designed to perform dynamic power management
(DPM) mechanisms and efficient data compression algorithms. For the same
mote, a forward-adaptive differential pulse code modulation, with a Rice symbol
coder was used to compress vibration data from microelectromechanical systems
(MEMS) sensors in [114]. The first published version integrated in the RCU data
aggregation functionalities, for a structural health monitoring system, aiming to
reduce the data sent through the wireless interface [115].
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PowWow [111], a power optimized hardware and software framework for wire-
less motes, aiming to provide energy efficiency on the WSN motes. The het-
erogeneous solution is composed by a TI CC2420 IEEE 802.15.4 compliant RF
transceiver, a MSP430 SoC running Contiki-OS and an Igloo FPGA platform
from Microsemi as RCU. To achieve the energy efficiency, low-level network accel-
erators were deployed in the RCU, to assist Contiki-OS in link-layer tasks such as
error correction codes (ERCC). The goal of this layer is to manage the Automatic
Repeat Request (ARQ) and forward error coding (FEC), in order to guaranty a
reliable link between two nodes. These low-level accelerators allow to maintain
the MCU in sleep mode, waking-up only when an IEEE 802.15.4 frame need to
be forward to Contiki-OS. Even more, for energy saving proposes PowWoe adds
a Dynamic Voltage and Frequency Scaling (DVFS) mechanism, allowing to dy-
namically adapt the voltage and the frequency of the processor and consequently
minimize the power consumption.

CookiesWSN [112] mote uses the same COTS used in PowWow for the het-
erogeneous solution development. CookiesWSN uses an ultra low-power FPGA
to implement wake-up radio (WuR) and achieve ultra-low energy in WSN, taking
advantage of their speed, flexibility and low-power consumption. Other hardware
accelerators were developed in [116–118] to improve security functionalities.

Recently a novel architecture has been proposed in [113, 119], this in-house
work proposes a heterogeneous architecture for IoT edge devices, using a FPSoC
to offload critical features of the communication stack to hardware. The platform
selected was the SmartFusion2 Security kit from Microsemi, that includes a hard-
core processor (Arm Cortex-M3) and FPGA fabric in the same SoC. As OS was
used Contiki-OS and to provide communication capabilities integrated an IEEE
802.15.4 radio transceiver with a SPI interface.

In this architecture a hardware accelerator is deployed between the radio and
the MCU, allowing filter incoming frames are pre-process them in parallel with
the CPU execution. This allows to keep the processor free to execute another task
or keep it in low-power consumption modes, being only interrupted when a frame
needs to be forward to higher layers for further processing. Is proposed that the
filtering scheme can filter IEEE 802.15.4 fields such as, PAN_ID, SHORT_ADDR,
and EXT_ADDR.

In [120], a work in progress, is proposed a hardware-based Network Packet
Filtering (NPF) and an IPv6 Link-local address calculator which can filter IPv6
packets, offering nearly 18% overhead reduction. Aiming to obtain a SoC im-
plementation that can be deployed in future IEEE 802.15.4 radio modules, the
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NPF implements, in the presented state, (i) IP source address filtering, and (ii) IP
destination address filtering. Other features are proposed to add extra filtering
capabilities impacting the transport layer, by analyse the (i) UDP source and
destination port, and the (ii) UDP source or destination address field. According
the author, this allows to introduce a novel concept on packet filtering, by adding
IP addresses to a White List Address (WLA) or to a Black List Address (BLA).
The NPF will only interrupt the OS running on the MCU, when an IP packet
has been verified and accepted, increasing the availability of the OS to perform
other activities. The added value of the NPF is more important when applied to
a Network Router (NR), due to the higher amount of data processed.

Due to the large number of received packets in IP-based IoT-enabled networks,
a 6LoWPAN accelerator is proposed in [121]. This accelerator aims to process and
filter IPv6 packets received by an IEEE 802.15.4 radio transceiver, without a CPU
intervention. The 6LoWPAN packet filter is composed by a 6LoWPAN Internet
protocol header compression (IPHC) module that performs the compression and
decompression of the received packets, also, the accelerator verifies the local and
remote ports of valid packets. Even more, the 6LoWPAN accelerator incorpo-
rates three filters for the IEEE 802.15.4 MAC layer, (i) PAN, (ii) duplicate frame
detector (DFD), and (iii) source and destination address.

The results published in this work, shows an overhead reduction of 13.24% for
packet processing and address filtering. Furthermore, allows full OS availability
when an unwanted packet is received. In terms of resource utilization was used
6521 4lookup table (LUT) (7.57%) and 3974 D flip-flop (DFF) (4.61%). The
hardware packet processing may reach a reduction between 56.01% and 72.39%,
for packets to be accepted and discarded, respectively. Concerning the energy
consumption, was described a reduction from 16503µJ to nearly 22µJ, comparing
the software-based processing to hardware, when a packet is discarded.

An IEEE 802.15.4 accelerator was presented in [122] with the capability to
perform (i) third-level of filtering, as specified by the IEEE 802.15.4 standard,
(ii) packet handling, such as, detection of duplicated frames and (iii) control of
the MAC protocol.

The architecture used was the same described in [120], deploying on the RCU
(between the MCU and an IEEE 802.15.4 radio transceiver) an MLA, using an SPI
interface to establish communication between the MLA and the radio. Further-
more, to exchange information betwixt the MLA, the microcontroller subsystem
(MSS) and the SPI hardware blocks was used an AMBA - Advanced Peripheral
Bus v3 (APB3) bus interface.
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The MLA performs filtering and processing of incoming Mac Protocol Data
Unit (MPDU), aiming to discard unwanted MPDU before they reach the MCU.
Therefore, the MLA provides (i) runtime configuration of an addresses list for
comparison with incoming packets, (ii) runtime number definition of packets to be
held by the duplicate MPDU detector, (iii) reallocation of incoming MPDU from
the radio RX FIFO to its own RX FIFO (for further processing), (iv) acceptance or
rejection of MPDU according the defined addresses list, (v) dispose of duplicated
frames according the defined rule, (vi) OS notification of an available MPDU to
be forward to the network stack.

The resulted obtains by the author shows that the implementation of hardware
filters can achieve 17% of overhead reduction on packets processing. With the
MLA accelerator integration is prevented the triggering of unnecessary wake-up
calls to the MCU and, consequently, interrupts to the OS achieving up to 59%
increased system availability.

More recently the CUTE mote has been presented in [113]. This heterogeneous
architecture proposes the integration of an RCU unit between an MCU and an
IEEE 802.15.4 radio transceiver, in the following of the work developed in [120].
This solution specially designed for low-end and resource constrained network edge
IoT devices, is described as a customizable and trustable solution targeting low-
power IoT applications. Due to the heterogeneous architecture, the CUTE mote
split functionalities between components. In the Arm Cortex-M3 MCU is deployed
the Contiki-OS, an event-driven OS that incorporates an IP compliant stack, being
responsible by handle low priority tasks. The TI CC2520 IEEE 802.15.4 radio
transceiver is responsible by handle the physical layer. By its side, the RCU
integrates: (i) a DPM system, responsible by performing power saving schemes;
(ii) an AMBA bus protocol to interconnect memories and peripherals deployed on
the FPGA; (iii) interfaces to access external devices, as the IEEE 802.15.4 radio
transceiver; (iv) a data aggregation accelerator, that gathers and compresses data
before providing it to the OS; (v) security-related hardware accelerators, enabling
encryption/decryption mechanisms applied to the CIA triad processes; (vi) IoT
network-related accelerators, specifically (i) a MAC sub-layer accelerator described
in [122], (ii) a 6LoWPAN accelerator described in [121], (iii) an IPv6/UDP port
filtering accelerator.

The CUTE mote configured with MAC, 6LoWPAN and IPv6/UDP port fil-
tering, presents a hardware utilization of 6521 (7.57%) 4-LUT and 3974 (4.61%)
DFF. The power consumption analysis revealed that in active mode the power
consumed, on average, is 56.52 mW while in Flash Freeze mode is 8.23 mW.
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Furthermore, the processing of an IPv6 packet exclusively in software, when is
accepted or rejected, uses respectively 14356 nJ and 16503 nJ, while with the
hardware accelerators the values drop to 12168 nJ and 22 nJ.

2.5 Conclusion

This Chapter described and discussed the tools and platforms needed for the
development and evaluation of the heterogeneous low-end IoT solution. The state
of the art in the development of heterogeneous architectures, with the integration
of hardware accelerators shows unequivocal advantages either in performance or
power consumption. Therefore, to develop a heterogeneous architecture for the
IoT edge will be combined the Microsemi SmartFusion2, that includes FPGA
fabric and the widely deployed low-end Arm Cortex-M3 CPU, with an IEEE
802.15.4 compliant radio. Next Chapters describe the deployment RIOT-OS and
the integration of the acceleration support provided by the mote. Moreover, it is
also compared the performance increase of using such platforms over traditional
COTS solutions.



Chapter 3

RIOT-OS Deployment on a
Reconfigurable IoT Mote

“Strive for perfection in everything you do. Take the best that exists and
make it better. When it does not exist, design it.”

—Sir Henry Royce

The transition from the traditional WSN to IoT is bringing new challenges
in developing low-end devices. The usage of IP network stacks and the increas-
ing number of devices exchanging information in the network is forcing the low-
end devices to perform heavy and complex tasks. Such condition demands for
increased processing capabilities, while maintaining the low-cost and low-power
requirements. Yet, increasing performance while accomplishing the remaining
constraints in low-end devices is not straightforward, requiring new architectural
solutions, both at the software and hardware levels.

This Chapter starts by introducing the heterogeneous architectures in Sec-
tion 3.1 together with an explanation of the in-house project CUTE mote. Sec-
tion 3.2 presents the structure of RIOT-OS and the integration issues at the com-
piler level to enable the usage of IAR Workbench. The development of the hetero-
geneous architecture is presented in Section 3.3, with the deployment of RIOT-OS
in such mote. Section 3.4 shows and discusses the results obtained from a perfor-
mance evaluation realized to the system, while Section 3.5 concludes this Chapter.

39
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3.1 Heterogeneous Architectures for IoT Low-
End Devices

The boundless deployment of IoT low-end devices is making the concept of
ubiquitous computing presented by Mark Weiser back in 1988 a reality. This
concept consists on the deployment of pervasive, invisible and enhanced computers
into the background of human activities, improving human performance in a non-
intrusive way. Furthermore, this new trend is favouring the integration of WSN
devices into the IoT ecosystem. Mainly, the WSN use the IEEE 802.15.4 standard
that was developed targeting low-power and low-cost wireless local area networks
(WLANs), addressing the energy consumption with its low-power transmissions
and low-data rate links [123]. The IEEE 802.15.4 was not conceived targeting IoT
networks and consequently is not able to handle the large amount of data required
by such a complex network, which difficulties the integration of traditional WSN
devices in IoT.

In resource constrained application scenarios, such as IoT, high traffic on the
network heavily decreases the overall energy consumption, system availability and
device’s lifetime. Traditional strategies to reduce the amount of data handled
by low-end devices include the reduction of packet size, compression mechanisms,
and cutback of transmissions. Known strategies to tackle the energy consumption
on the low-end devices may include the reduction of the node’s operation and
radio duty cycle, and the disabling of system components when not in use. On
the other hand, increasing the performance of low-end devices, while maintaining
the low-power and low-cost constraints, and aiming to fulfil the connectivity and
interoperability requirements stated in Section 1.5 from Chapter 1, can be a hard
task to achieve, requiring new solutions at different levels of the mote itself.

In recent years, FPGA manufacturers have addressed the high-power consump-
tion of such technology. Furthermore, turn their architectures SoC oriented, with
the inclusion in a single SoC of a hardcore MCU and FPGA fabric. These plat-
forms are known as FPSoC and due to their versatility, flexibility, high perfor-
mance, security, scalability, ease of design and short time to market, are expected
to play a key role in development of IoT technology [25,124].

Legacy FPGA-enabled devices were based in SRAM memories. Such memories
are volatile, thus its content is lost when they are powered off, which makes them
impossible to be used in low-power modes on the RCU deployed in this type
of FPGA. Recent flash-based FPGA solutions offer several advantages over its
predecessor, such as the reduced energy consumption and the ability to retain its
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content when the FPGA is turned off. Therefore, this enables the development of
energy aware architectures based on FPGA.

Heterogeneous solutions incorporating an RCU based on flash memory and a
wireless transceiver have already been proposed [125–127]. However, these solu-
tions do not suite the power consumption constraints of the IoT low-end devices.
In the solutions already proposed all the tasks are processed in the RCU, even
long-term and low-intensity computational tasks, and at least one of the devices
should be always awake [110]. Based on the recent state of art, the best solution
for the development of heterogeneous solutions for low-end IoT devices relies on
the usage of FPSoC platforms that include a low-power hard-core MCU with a
FPGA flash based RCU [110,113].
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Figure 3.1: CUTE mote architecture [113].

The in-house project CUTE mote [113] presents at the time of the development
of this dissertation, and for the best of author’s knowledge, the state-of-the-art in
low-power heterogeneous solutions for IoT low-end devices. Therefore, the CUTE
mote architecture presented in Figure 3.1 is used in this dissertation.

The selected platform to deploy CUTE mote was the Microsemi SmartFusion2
FPSoC, which includes a hardcore Arm Cortex-M3 MCU and FPGA fabric. In this
architecture the RCU is strategically positioned between the radio transceiver and
the MCU to intercept incoming data from the radio transceiver before it reaches
the MCU. This way, it is possible to process the streaming of data in hardware
accelerators and then make it available to the MCU through an AMBA protocol
only when needed.
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The design of the CUTE mote requires the integration of three fundamental
components, as stated in [113]: (i) an IEEE 802.15.4 radio transceiver, used to
fulfil the communication requirements; (ii) an RCU unit, responsible to enable the
integration of hardware accelerators; and (iii) an MCU, which is responsible to
host the OS and running software-only tasks.

In the CUTE mote architecture, the RCU is responsible to perform more in-
tensive and high priority tasks, while the low-power MCU handles less intensive
and low priority ones. Thus, to perform the intensive tasks the RCU integrates
diverse hardware blocks, namely: (i) a DPM hardware block to accomplish the
low-power requirements of the CUTE mote; (ii) an AMBA bus interface that al-
lows access peripherals and establish communication between the MCU and the
RCU; (iii) a module that allows access to external devices such as sensors or the
radio transceiver; (iv) a data aggregation accelerator to compress/aggregate data
before being dispatch to the OS; (v) an IoT network accelerator to handle the
data exchanged by nodes on the network; and (vi) security-related accelerators
that perform encryption/decryption algorithms as well as security protocols [113].

Figure 3.2: CUTE mote hardware prototype [113].

The communication between blocks in this architecture benefits from the usage
of AMBA buses in such a way that the hardware accelerators, that are memory
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mapped, can be accessed by the MCU as common peripheral devices. The inte-
gration of such soft-peripherals in an OS is also facilitated, by only requiring the
development of a device driver.

Figure 3.2 the prototype used to develop the CUTE mote [113]. The prototype
integrates a CC2520 IEEE 802.15.4 radio transceiver that solution the platform
with the required connectivity requirements, as stated in Section 1.5 from Chap-
ter 1.

3.2 RIOT-OS on a COTS Solution

As stated in Section 1.7 from Chapter 1, an OS suitable for IoT should, in
brief, provide a small memory footprint, energy efficiency, real-time capabilities,
network connectivity, security and support heterogeneous architectures.

Contiki-OS is the embedded OS used in CUTE mote because it offers support
for Arm Cortex-M3 that is present in Microsemi SmartFusion2, presents a small
footprint IoT-enabled network stack, good on-line support and a broad develop-
ment community [113]. However, Contiki-OS presents an event-driven program-
ming model, and even with the partial multithreading support, the OS does not
offer real-time capabilities, failing in fulfiling all the desired requirements when
conceiving an IoT-enabled OS.

Table 3.1: Embedded OSes features comparison.

Name Architecture Programming
Model

Scheduling
Strategy Real-Time 6LoWPAN

Contiki-OS Modular Event-driven 7 7 3

TinyOS Monolithic Event-driven EDF 7 3

RIOT-OS Microkernel Multi-threading Preemptive 3 3

FreeRTOS Library Multi-threading Preemptive 3 7

Section 2.1 from Chapter 2 presents, besides Contiki-OS, three prominent
state-of-the-art OS suitable for low-end devices. In Table 3.1 is presented a re-
sume of the key features of those OSes. From the analysed, TinyOS fails in provide
real-time capabilities and consequently is not suitable. FreeRTOS one of the most
deployed OS in industrial applications offers a large support and documentation, a
predictive and low-latency real-time scheduler and one of the smallest OS memory
footprint. However, this OS fails in provide a native network stack that fulfil the
connectivity requirements stated in Section 1.5 from Chapter 1 and for this reason
is not used in this dissertation.



44 RIOT-OS DEPLOYMENT ON A RECONFIGURABLE IOT MOTE

RIOT-OS follows a microkernel architecture with high granularity that allows
the customization of memory footprint through the selection of specific software
blocks for each application. To achieve energy efficiency, it adopts a tickless sched-
uler with soft-real time characteristics. The network connectivity is provided with
a full modular communication stack, supporting a variety of standard protocols
such as IPv6, RPL, 6LoWPAN, UDP, CoAP, etc. RIOT-OS provides security
by design due to the microkernel architecture that avoids the propagation of er-
rors or attacks. Moreover, it provides memory isolation where each thread has its
own address space. Offers rich documentation, scientific publications, and a large
community of contributors that increase continuously the number of supported
architectures and platforms. RIOT-OS fulfils the requirements for an OS suitable
for IoT low-end devices and for this reason, it was selected to be used in this
dissertation, in order to increase the OS support on the CUTE mote.

The microkernel architecture of RIOT-OS and its high granularity allows to
divide all the OS components in small blocks called modules. The granularity
of RIOT-OS achieved such a condition that each of these modules represent a
functionality, protocol or hardware interface that can be added or removed at
during compile time, according to the application requirements.

Figure 3.3: RIOT-OS structure [128].

The RIOT-OS organization is described in [128], at a top-level, it can be
divided in two layers with one hardware-dependent layer that incorporate modules
dedicated to the low-level implementation of hardware interfaces, and a hardware-
independent layer that aggregates OS and application related modules. In general
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the RIOT-OS architecture can be categorized in five groups:

1. Core: It is the kernel of RIOT-OS, containing the kernel OS functionalities
such as the scheduler, threading, synchronization (mutexes, mailboxes and
messaging/IPC), IRQ-handling, startup and configuration code, support for
kernel data-structures, type definitions, etc.;

2. Platform specific code: It can be divided in two submodules, CPU and
board, maintaining a 1-to-n relationship where a board has exactly one CPU
while a CPU can be part of many boards, they can be described as:

• CPU: Contain all CPU specific configurations, such as implementa-
tions of power management, interrupt handling vectors, startup code,
clock initialization and thread handling (e.g. context switching) code.
Each CPU contains its own peripheral drivers implementation such as
I2C, GPIO, SPI, UART, etc. Due to the common features of some pro-
cessor families, e.g. Arm Cortex-M, low-level code like task switching
and interrupt handling is shared among different CPUs, being these
files denoted with a "common" suffix;

• Boards: Present specific configurations for the CPU on each board,
including pin-mapping, peripherals, on-board devices and CPU’s clock
configuration. On top of this, it can be included configuration files
needed to interface the board, typically custom flash/debug scripts.
Generally, a board consist of a fixed configuration of a controller and
some external devices such as sensors or radios. Some configurations
could be shared among vendors, e.g. stm32, with the notation of the
"common" suffix;

3. Device drivers or drivers: Provide interface for external devices such as
network interfaces, sensors, actuators, memories, etc. With the usage of a
peripheral driver API and other RIOT-OS modules like xtimer, the OS is
made completely platform agnostic, eliminating CPU or board dependencies;

4. Libraries and network code: Contain external, network and system li-
braries providing the tools and utilities that turn RIOT-OS into a full-fledged
OS, this layer cam be divided in three sections:

• sys: System library modules that provide tools and utilities, including
data structures (e.g.color), crypto libraries (e.g. hashes, AES), high-
level APIs (e.g. Posix), memory management (e.g. malloc), RIOT-OS
shell, among others;
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• svs/net: Provide the network stack implementations (e.g. GNRC
stack) or agnostic network stack code as header definitions or network
types;

• pkg: External libraries and applications supported by RIOT-OS (e.g.
ccn-lite, microcoap). Such libraries are included through a custom
Makefile that downloads the library and, if required, applies patches
to enable their full integration with RIOT-OS;

5. Application: It is where the code for a specific application can be found.
It runs in user-space, isolated from the RIOT-OS kernel.

To have a comparison platform with the work developed around CUTE mote,
firstly, it was used the TI CC2538 Radio-Frequency System-on-a-Chip (RFSoC)
device, previously described in Section 2.2 from Chapter 2 and that is considered
one of the best devices in the market that can include on the same SoC an MCU
and a radio transceiver. Furthermore, the CC2538 includes a low-end Arm Cortex-
M3, which is the same MCU present in the Microsemi SmartFusion2. Despite
being micro architecturally different, this can help in making closer comparisons
between both systems.

RIOT-OS is a free distribution built around the open-source GNU toolchain
without specifying any IDE or compliant framework. The development of a hetero-
geneous solution is more likely to contain errors, thus powerful software debugging
tools are required to empower the development cycle. For these reasons, an IDE
was adopted to develop the software code, being selected one of the most popular
IDE specially targeting embedded devices, the IARWorkbench, which is described
in Section 2.3 of Chapter 2.

The TI CC2538 SoC is already supported by RIOT-OS and due to the us-
age of GNU compiler, the compilation process is based on Makefiles. The usage
of such Makefiles is not possible in IAR, thus this Makefiles were analysed and
determined the specific modules that are necessary to run the full kernel in this
platform with the inclusion of communication capabilities through the generic net-
work (GNRC) stack with the protocols UDP, RPL, IPv6, Internet control message
protocol (ICMP), 6LoWPAN and the IEEE 802.15.4 MAC layer.

To allow the usage o IAR Workbench over RIOT-OS some code was adapted
to be compliant with the compiler and assembler, and some files were added as
workaround to the Makefiles. In summary the modifications were:

• irq_arch.c: In this file were modified GNU compiler directives that are not
compliant with IAR. For instance, Listening 3.1 shows where the attribute of
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the function irq_enable used was modified to __root, avoiding the linker
to remove this function on optimizations;

Listing 3.1: irq_enable function of RIOT-OS’s irq_arch file

1 /**
2 * @brief Enable all maskable interrupts
3 */
4 __root unsigned int irq_enable(void)
5 {
6 __enable_irq();
7 return __get_PRIMASK();
8 }

• thread_arch.c: It was necessary the inclusion of IAR pragmas to allow
calls to functions from the assembly code. Also, due to the differences be-
tween the IAR and GNU assembler, it was necessary to modify some in-
structions and function attributes. Listening 3.2 illustrates the use of the
pragma required ensuring that a needed symbol can be found in the linked
output. The __noreturn directive was also modified to be IAR compliant,
indicating that this function will not return once is executed;

Listing 3.2: cpu_switch_context_exit function of RIOT-OS’s
thread_arch file

1 #pragma required=irq_enable
2 __attribute__((naked)) __noreturn void cpu_switch_context_exit(void)
3 {
4 __asm volatile (
5 "bl irq_enable \n" /* enable IRQs to make the SVC
6 * interrupt is reachable */
7 "svc #1 \n" /* trigger the SVC interrupt */
8 "unreachable: \n" /* this loop is unreachable */
9 "b unreachable \n" /* loop indefinitely */

10 :::);
11 }

• spi.c: Contains the SPI implementation for the TI CC2538 SPI peripheral,
however, a bug that caused the malfunction of this peripheral was detected,
and therefore, the source final was modified;

• riotbuild.h: Was added a header file to the OS specifying the modules that
should be integrated in the OS during the compilation process;

• types.h and unistd.h: Such GNU libraries were modified with the corre-
spondent definitions to be used with IAR toolchain;
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• startup_m2sxxx.s: This file is typically generated by IAR and contains
the low-level CPU and board configurations, such as clock frequency, and
startup initialization. However, this file is created by IAR having in mind
to run a bare-metal application and not an OS. One of the function imple-
mentations present in this file is the reset handler interrupt service routine
(ISR) executed once the MCU is powered-up. To perform the RIOT-OS
configurations for the TI CC2538, the reset handler was modified to call
the board initialization routine and later, the execution jumps to the kernel
initialization routine. This behaviour can be found in Listening 3.3.

Listing 3.3: Reset_Handler function of CMSIS’s startup_m2sxxx
file

1 ;-----------------------------------------------------------------------
2 ; Call SystemInit() to perform Libero specified configuration.
3 ;
4 call_system_init
5 LDR R0,=SystemInit
6 BLX R0
7
8 LDR R0,=__low_level_init
9 BLX R0

10
11 LDR R0,=__iar_data_init3
12 BLX R0
13
14 LDR R0,=board_init
15 BLX R0
16
17 ;-----------------------------------------------------------------------
18 ; Call kernel_init() startup the kernel
19 ;
20 LDR R0,=kernel_init
21 BX R0

In order to verify the correct execution of RIOT, several examples were exe-
cuted and tested over the CC2538EM along with the SmartRF06EB evaluation
boards. These examples include tests to the hardware peripherals, OS functional-
ities, network interfaces and communication stack.

3.3 RIOT-OS on a Heterogeneous Mote

The Microsemi SmartFusion2, described in Section 2.2 from Chapter 2, is the
selected platform to deploy RIOT-OS over a heterogeneous architecture provided
by the CUTE mote project. This FPSoC platform offers on the same SoC a
hard-core MCU (Arm Cortex-M3) and FPGA fabric accessible through standard
AMBA protocols. To endow the CUTE mote with the connectivity features stated
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in Section 1.5 of Chapter 1, it used the same radio transceiver as initially used in
CUTE mote. This radio is the CC2520 from TI and is described in Section 2.2
from Chapter 2.
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Figure 3.4: Architecture of the heterogeneous solution.

RIOT-OS offers support for a variety of platforms and architectures, support-
ing the Arm Cortex-M3 present in the SmartFusion2, however, does not offer
support for this SoC. Consequently, a porting was made to provide full support of
RIOT-OS over such hardware platform. Due to the characteristics of the platform,
the process started with the development of the hardware, enabling in the Smart-
Fusion2 the necessary facilities to deploy RIOT-OS and to enable the integration
of the TI CC2520 radio transceiver. To configure and develop the hardware, it was
used the Microsemi Libero described in Section 2.3 of Chapter 2. Therefore, be-
sides the memory, clocks and pin-out configurations of the SmartFusion2, it were
integrated two more hardware blocks, as depicted by Figure 3.4. These hardware
blocks are described as follows:

• Timer: RIOT-OS requires at least a timer to be integrated in the OS timer
subsystem (xtimer). However, the MSS does not provide a timer with the
characteristics needed by RIOT-OS, thus it was necessary to integrate a
hardware timer in the RCU. Libero’s hardware catalog already provides
hardware timers, yet, they also do not have the necessary features. Further-
more, it works with the same clock of the APB3 bus, in this case 88MHz,
that is not a power of two and consequently makes difficult the usage of
a prescaler and the counting of specific periods of time without additional
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processing. A real-time clock (RTC) with the resolution of one second is
available by the MSS, but still, it is not suitable to be used by RIOT-OS.
For these reasons, a hardware timer was developed in Verilog and deployed
in the RCU, according to RIOT-OS needs.

• CoreSPI: The integration of the CC2520 radio transceiver in the heteroge-
neous architecture requires an SPI controller for the communication tasks.
Despite the MSS providing an integrated SPI peripheral, it is deployed a
hardware SPI IP core in order to make it possible to intercept the received/-
transmitted IEEE 802.15.4 frames. The controller was selected from the
Libero catalog that includes a core SPI capable of provide full communica-
tion with the CC2520 radio transceiver. To interface the core SPI deployed
in the RCU with the external radio transceiver, it was also necessary to con-
figure GPIO pins, required to read and write the radio input/output (I/O)
pins as shown in Figure 3.5.

Figure 3.5: Heterogeneous architecture layout.

Due to the microkernel and consequent modular design fashion of RIOT-OS,
the porting to SmartFusion2 was at this stage, after the resolution of compiler
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and assembler related issues in Section 3.2, made exclusively at the hardware
dependent level, which includes CPU, board and peripheral drivers related files.

Microsemi provides their own software development environment, the SoftCon-
sole. However, it still can generate and export firmware for well-known IDEs such
as IAR. The Microsemi’s Libero toll allows the generation of firmware to the core
available on the catalog, therefore, this firmware is used to develop the peripheral
drivers needed to deploy RIOT-OS in the heterogeneous platform, integrating the
firmware in the RIOT-OS’s API. The drivers developed were: (i) the GPIO driver
used to access to the GPIO ports of the platform; (ii) the timer driver that inter-
faces the hardware timer deployed in the RCU with the OS; (iii) the SPI driver
that remaps the functions provided by the Libero firmware to the SPI driver of
the OS; and (iv) the CC2520 peripheral driver that enables the usage of such radio
transceiver in the RIOT-OS. Because the CC2520 radio was not initially supported
by RIOT-OS, it was necessary to develop and integrate its corresponding driver
with the GNRC communication interface.

To provide support for SmartFusion2 on RIOT-OS were created hardware de-
pendent files that are mainly related with the initialization process of the hardware
platform, these files are: (i) the periph_conf.h which that discriminates the speci-
fications of the timer; (ii) the board.h and board.c, that contains the specifications
of the xtimer implementation to this architecture and does the board initializa-
tion; and (iii) the init.h and init.c that is responsible for peripheral initialization
before the OS boot stage.

In order to ensure that RIOT-OS was properly running, the software examples
provided by RIOT-OS were run and retrieved the expected results.

3.4 Evaluation

The performance of a RTOS is sensitive to several parameters, such as platform,
processor, clock-speed, compiler, application design, etc., thus the measuring of
performance is not straightforward and can arise several questions around the
methods used. Therefore, to avoid ambiguity and give confidence to the obtained
results, the Thread-Metric is also used in the heterogeneous solution. Each test
was ported to be compliant with RIOT-OS’s API and OS services.
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3.4.1 Thread-Metric Benchmark Suite on RIOT-OS

Thread-Metric was designed to the ThreadX RTOS but is adaptable to others
RTOS through a porting abstraction layer. This benchmark measures the avail-
ability of the OS by performing specific OS services at the application layer and
measuring the number of times those services are performed during the test. Ev-
ery test procedure starts with the initialization of the hardware and the kernel,
once it reaches the main thread in user space, it makes the needed configurations
as well as creates the needed OS threads to perform the desired measurements.
Each test is summarized below:

• Calibration Test: Establishes a base line for further measurements;

• Cooperative Context Switch: Measures the time consumed by the thread
switching in a cooperative thread environment. It is composed by five
threads running to completion and releasing control in a round-robin fashion.
The behaviour of each simple thread comprises the increment of a counter
and a thread relinquish to pass execution;

• Preemptive Context Switch: Evaluates the time consumed by the switch
of threads in a preemptive environment. This test is composed by five
threads with different priorities. The test starts will all the threads in sus-
pended mode, except the thread with the lowest priority that is never sus-
pended. The behaviour of each thread includes the increment of a counter,
the resume of the next thread with higher priority, and finalizes with the
thread suspending itself. Once the highest priority thread runs, it suspends
itself and the lowest priority thread automatically resumes;

• Interrupt Handling: Measures the time consumed by an interrupt since
it is generated until a new thread is scheduled. This test is composed by a
thread enforcing the generation of an interrupt, and an ISR incrementing a
counter and posting a semaphore. This semaphore is taken by the thread
that generates the interrupt, guarantying the synchronization between the
generation and the response to the interrupt. The generation of the interrupt
is performed through GPIO pins;

• Interrupt Preemption: Measures the time consumed when a thread is
preempted by an ISR. This test is similar to the previous one, but instead of
post a semaphore, a high priority thread is resumed on the ISR. The thread
with higher priority, consists of incrementing a counter and next going to
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the suspend state, resuming the execution flow to the thread that triggered
the interrupt;

• Message Processing: Aims to measure the overhead caused by the task of
reading and writing a message from a message queue. To do so, is used the
IPC message queue provided by RIOT-OS. This test is composed by a single
thread that sends a message to the messaging queue and waits until the same
message is retrieved. For each send/receive cycle the thread increments a
counter;

• Semaphore Processing: Measures the time consumed by the usage of
semaphores. To perform this test, it was used a lightweight library provided
by RIOT-OS that implements semaphores, the sema library. This test con-
sists of a thread that gets and release a semaphore, incrementing a counter
each time the cycle is completed;

• Memory allocation: Aims to measure the time consumed by the dynamic
allocation of memory. This test consists of acquiring and releasing memory,
incrementing a counter on each successful cycle. To perform this test was
used the functions malloc and free from the C standard library.

To transmit the results of the benchmarks to the user is provided in Thread-
Metrics a thread that reports, in defined periods of time, the value of the variable
used to count the number of cycles completed. For this thread is associated the
high priority possible in RIOT-OS. This thread is let to sleep for a fixed period,
in this case 30 seconds, with the usage of xtimer functionalities. Every 30 seconds
the thread resumes, saves and resets the counter variable value. After 5 cycles,
the test stops, and the results are printed through the UART interface.

3.4.2 Thread-Metric Evaluation

The results obtained from the Thread-Metric Benchmark Suite allow to eval-
uate the system performance without the interference of networks related tasks,
and later evaluate how much the OS performance is affected when it must pre-
form network tasks. Such results can be used as an indicator of OS availability to
perform other tasks, rather than network-related ones. Being the Thread-Metric
results proportional to the system availability, high scores denote a high system
availability while a low score indicates that the system has less availability. In
order to evaluate the both solutions under the desired conditions, i.e., at the IoT
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network edge with packets from the surrounding nodes, it was implemented the
topology presented in Figure 3.6.

ED

Cloud

ED

R BR GW

ED - end device; R - router; BR - border router; GW - gateway

UDP Server 1
TI CC2538

UDP Server 2
SmartFusion2

UDP Client
TI CC2538

Figure 3.6: Evaluation network topology.

To perform the evaluation was created a network with IPv6 support, provided
by 6LoWPAN, with three nodes exchanging UDP packets. In this topology two
nodes run a UDP Server and one node hosts the Client. All the nodes are in the
range of each other, not happening packet loss due to their distance. Furthermore,
the Client exchanges data with booth servers at his maximum packet sending rate
(PSR), in this case, it was achieved 250 packets per second. The UDP Server
1 and the Client run on a TI CC2538 SoC while the UDP Server 2 is hosted
by the CUTE mote. All nodes run RIOT-OS, with their respective applications,
emphasizing that booth servers run the same application. All Thread-Metrics tests
were executed in both servers under three conditions: (i) the network is idle and
there are no packets being exchanged over the network; (ii) Client 1 exchanges
data with Server 1 at its maximum rate; and (iii) Client exchanges data with
Server 2 at its maximum rate.

The Server that receives data intended for him, for each received packet, pro-
cesses and accepts at the MAC layer the packet, forwarding it to upper layers, until
delivered in the application where is discarded. By other side, the Server which
data is not intended for him, processes and discards all packets at the MAC layer.
Thread-Metric results will translate in how much overhead is caused to RIOT-OS
when the network is highly saturated, and the received packets intended to be ac-
cepted and discarded. Furthermore, with the achieved results it will be possible to
evaluate if the heterogeneous solutions can create advantages over the COTS solu-
tion. This experiment, despite using a simple topology, represents a real network
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scenario where all nodes exchange data between them.

Figure 3.7: TI CC2538 Thread-Metric results.

Figure 3.7 presents the results obtained from the UDP Server 1, that is hosted
by the TI CC2538 platform, for the three test case scenarios. The Thread-Metrics
results show that the overhead caused by the network tasks decreases the system
availability by 18.62%, on average, when all the received packets are meant to
be accepted by the node. Furthermore, the system availability decreases 15.08%,
when all the packets in the medium are received and discarded at layer 2 of the
network stack. The system availability ratio between accept and discard packets
is 4.18%, which means that the task of rejecting a packet, which can be considered
unnecessary processing still causes deep impact on RIOT-OS execution.

Figure 3.8: SmartFusion2 Thread-Metric results.

The Thread-Metric results obtained on UDP Server 2, which is hosted by
RIOT-OS running over the CUTE mote, is presented in Figure 3.8. Similarly,
to the previous results, the performance decrease is 21.33%, on average, when
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the received packets are meant to be accepted and 19.56%, on average, when
the packets are processed and discarded at the MAC layer of the network stack.
The ratio between accept and discard packets in the system availability is 2.19%,
which also detonates that the needless processing of rejecting a packet still impacts
largely the normal system execution.

Figure 3.9: SmartFusion2 and TI CC2538 Thread-Metric results.

Figure 3.9 present the results obtained from both solutions side-by-side. Still,
the solutions use different hardware platforms, a COTS and an FPSoC, the CUTE
mote presents more 37% performance than the TI CC2538 when no packets are
present in the medium. Furthermore, has 35% higher performance when the pack-
ets are processed and accepted, and 33.56% when the packets are rejected and
discarded at the MAC layer. These results reflect the different micro architectures
and hardware platforms, such as, memory subsystem, data buses, clock speed, it
is 36% higher on the SmartFusion2, access to the radio interface, etc.

3.5 Conclusion

This Chapter analysed the advantages of FPGA-enabled devices in the IoT
ecosystem. It was presented the CUTEmote project, which uses a radio transceiver
and an FPSoC device to deploy custom accelerators. Then, was justified the choice
of RIOT-OS to endow the CUTE mote with extended features and described the
changes needed to use the IAR compiler. Furthermore, was exposed the heteroge-
neous architecture that allow the deployment of RIOT-OS in in the CUTE mote,
supported by the Microsemi’s SmartFusion2, and the drivers developed to allow
the integration of the OS. Finally, it was presented the Thread-Metrics results on
two platforms, the TI CC2538, used for validation and as a basis of comparison,
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and CUTE mote, supported by the Microsemi’s SoC. The results point that CUTE
mote provide better results, suggesting better performance. However, this happen
due to the microarchitectural differences and different hardware of the platforms.
Nevertheless, it is important to have a characterization of both systems since the
CUTE mote suggests the deployment of hardware accelerators for network-related
tasks and allow the further deployment of application-related tasks.

Next Chapter will present the MLA, an accelerator designed to support tasks
related to the MAC layer of the standard IoT stack. Such accelerator was already
provided in CUTE mote, however, several points of improvement were detected
and implemented.





Chapter 4

Accelerators Integration

“Scientists study the world as it is; engineers create the world that has never
been.”

—Theodore von Kármán

The 6LoWPAN adaptation layer enables the integration of WSN-based de-
vices with an IoT network, allowing their communication trough IPv6 and, con-
sequently, their seamlessly connection to the Internet. Furthermore, allows the
WSN-enabled devices to achieve the connectivity requirements stated in Sec-
tion 1.5 of Chapter 1. However, the connection of such resource-constrained
devices, due to the nature of the IEEE 802.15.4 specifications, low bandwidth
and low data rates transmissions, in dense or highly active networks the device’s
performance tends to decrease, as seen in Chapter 3. As previously seen, CUTE
mote [113] tackles such issues by allowing the deployment of network-related accel-
erators for the MAC [122] and the network layers [121] on the RCU. This Chapter
aims to integrate RIOT-OS, which support to CUTE mote was explained in Chap-
ter 3, with the accelerators already provided by the solution [121,122], mainly the
MAC layer accelerator, which its functionality was deeply extended and improved
on the development of this dissertation.

Section 4.1 starts this Chapter with an introduction of the work developed in
the in-house project CUTE mote [113], followed in Section 4.2 by the presenta-
tion of the refactoring process made over the hardware accelerator. Section 4.3
presents the work developed to integrate the XIoT in RIOT-OS while Section 4.4
presents and discusses the results obtained from the integration of the MAC layer
accelerator with RIOT-OS. Finally, Section 4.5 Finally, concludes this Chapter.

59
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4.1 Acceleration on Low-End IoT Devices

The connection of LLN and WSN-based devices to the Internet requires an
IoT-enabled communication stack, allowing to fulfil the connectivity requirements
presented in Section 1.5 of Chapter 1. To integrate these devices seamlessly on the
Internet, it is required to endow the motes with enough processing capabilities to
support overheads caused by the IPv6-compliant network stack. However, provide
such processing capabilities in low-cost and low-power devices is not straightfor-
ward, since the increase of performance consequently increases power-consumption
and unit cost.

The wireless low-end devices use mainly IEEE 802.15.4-complaint radios that
due to their characteristics, all the communication enabled devices receive and de-
code all the packages transmitted in the network that use the same communication
standard, channel and are inside the communication range, along with receiving
interference present on the network. For every frame received by the radio in-
terface, the low-end device must allocate resources that allow to accommodate
the packet and process through all networks layers until it reaches its destination
layer. Such processing includes, among other tasks, the verification of network
addresses in order to accept or discard the packet according to system rules.

Previously, in Chapter 3 were analysed the benefits of heterogeneous solu-
tions in IoT low-end devices and specified that an RCU unit plays a key role in
the development of heterogeneous architectures that aim to integrate customized
accelerators. The application of hardware accelerators in WSN is not new and
has been done before, however, the application of such accelerators traditionally
was applied to interface sensors, security related functionalities, data aggregation,
compression/decompression and power control mechanisms. The solutions devel-
oped targeted a specific application or scenario, which restricts a wide deployment.
However, the implementation of hardware-based network accelerators and filters
bring portability advantages and allow their widely deployment and integration
in new radios because the protocols used in these radios are standard and widely
deployed in WSN and IoT networks. The implementation MAC-related features,
such as frame filtering and error correction mechanisms, have already been per-
formed by recent RF transceivers. However, features related to the network layer,
such as IP header compression/decompression IP address filtering, UDP port ver-
ification, etc., are still not supported by any device.

Due to the standardized communication protocols, the hardware accelerators
deployed in CUTE mote [113], in the form of soft-peripherals, can integrate any
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system that follows the same network stack. These systems can include hetero-
geneous architectures or the deployment on silicon integrating future ASIC radio
transceivers with MAC or network filtering capabilities.

4.2 XIoT Hardware Accelerator

The CUTE mote presented in [113] follows a heterogeneous architecture that
targets the low-end and resource constrained IoT devices at the network edge,
deploying a hardware-based accelerator endowed with network filters and other
network-related functionalities in an RCU unit. The usage of such architecture
and accelerators as proved to be able to achieve up to 42% of system availability
increase in the worst-case scenario and when the packets are not intended to be
delivered to the mote performing the evaluation. However, before the integration
of the MAC accelerator with RIOT-OS, various modifications were performed to
solve problems previously identified, provide extra functionalities, better portabil-
ity and usability.

The XIoT hardware-based accelerator is an improved version of the MAC layer
accelerator developed in CUTE mote and aims to provide:

• An agnostic implementation of the hardware accelerator empowering not
only the portability of the network filters, but also the portability of the
hardware accelerator;

• Full-duplex communication to the radio interface through the hardware ac-
celerator, allowing the exchange of network frames and commands with the
radio peripheral;

• A hardware implementation of the SPI software driver, aiming to decrease
the integration complexity in an OS or bare-metal application and reducing
the overhead caused by the SPI communication;

• Amemory mapped hardware peripheral, accessible through a standard AMBA
communication interface, the APB3 protocol;

• A portable and well documented API allowing fast and easy integration of
the hardware accelerator in new systems;

• Prepare the accelerator to allow easy integration with upper layer function-
alities, e.g., network, transport and application layers.
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The development of XIoT required a new finite state machine (FSM) to ac-
commodate all the previously proposed functionalities. In Figure 4.1 is presented
the FSM of the hardware accelerator that is composed of seven finite states, with
each of them being described below:

IDLE Comm
Interface Init

XIoT 
to 

Radio 

MSS 
to 

XIoT 

Radio 
to 

XIoT 

w_Rx_readed &&  
b_buffer_Tx_empty

XIoT 
to 
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Apply 
Filter 

fifoP 
&& 

b_init_check 
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&& 
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b_filter

!b_filter
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b_init_comm

!b_radio_command

!b_mss_to_xiot 
|| 

b_buffer_Rx_full 

b_radio_command

b_mss_to_xiot && 
b_init_check && 
!b_buffer_Rx_full 

Figure 4.1: XIoT main FSM.

• Idle: In this state the hardware will be waiting an event that creates the
conditions to switch state. After a reset, this state can only switch to the
Comm Interface Init;

• Comm Interface Init: Initializes the SPI interface to communicate with
the IEEE 802.15.4 radio transceiver. This state is executed when by soft-
ware the bit INIT_INTERFACE from the CTRL1_REG register is set. Once the
initialization is done, the bit FSM_INIT is set by the hardware and the FSM
changes to idle state;

• Radio to XIoT: This state is triggered by a rising edge of FIFOP signal,
a physical output from the radio transceiver that signalizes the reception of
a frame. Therefore, this state performs the needed actions to read a frame
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from the radio’s FIFO and make it available for further processing by the
FSM. If the filtering functionalities are enabled, as defined by the IEEE
802.15.4 standard, this state changes to apply filter state, otherwise it goes
to the XIoT to MSS state;

• Apply Filter: Analyses a frame received by the radio to apply the filters
according the IEEE 802.15.4 standard until the third level of filtering. If the
received frame passes the defined criteria, the FSM switches to the XIoT
to MSS state to make the received frame available to the MSS. Otherwise,
switches immediately to the idle state, discarding the received frame without
interrupting the MSS;

• XIoT to MSS: This state makes data available in a FIFO to be read by the
MSS. When a frame is made available to the MSS an interrupt is generated
in the APB3 bus to notify the OS. In case that a command request has been
made, only the RX bit from the DATACR_REG register will be set indicating
the availability of data in the RXDATA_REG register. The FSM only exits
this state when the MSS executes the reading operation, avoiding this way
unnecessary calls to the MSS;

• MSS to XIoT: Responsible to receive data coming from the MSS. To
enter this state the MSS should enable the communication by setting the
MSS_TO_XIOT bit in the CTRL2_REG register and specifying how many bytes
will be written in the TXDATA_REG through the TX_SIZE_REG. The FSM exits
the state when the MSS clears the MSS_TO_XIOT bit, disabling this way the
communication;

• XIoT to Radio: In this state, data previously received in a FIFO is trans-
mitted to the radio through the SPI interface. After the transmission, if the
bit RADIO_COMMAND in the register CTRL2_REG is enabled, a radio command
was transmitted and a response may be required to the MSS. Consequently,
the FSM switches the XIoT to MSS state. However, if the same bit was not
enabled, the FSM switches to idle state.

The XIoT soft-peripheral is a memory mapped AMBA compliant peripheral,
being provided several registers to perform its access. Figure 4.2 presents the
peripheral registers alongside with their addresses and functionality. The registers
RX_SIZE_REG, TX_SIZE_REG, RXDATA_REG and TXDATA_REG are not bit oriented and
are related with the transfer of bytes between the MSS and the XIoT. The data
handling registers include the RX_SIZE_REG that indicates how many bytes are
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going to be transfer to the XIoT through the RXDATA_REG register, being written
by the MSS before start sending data to the XIoT. The TX_SIZE_REG is written
by the XIoT to indicate to the MSS how many bytes should be read from the
TXDATA_REG.

0x50002030 RX_SIZE_REG

0x5000202C TX_SIZE_REG

0x50002028 TXDATA_REG

0x50002024 RXDATA_REG

0x50002020 DATACR_REG


Data Handling Registers

0x5000201C UNUSED

0x50002018 UNUSED

}
Unused

0x50002014 STT2_REG

0x50002010 STT1_REG

}
Status Registers

0x5000200C UNUSED

0x50002008 UNUSED

}
Unused

0x50002004 CTRL2_REG

0x50002000 CTRL1_REG

}
Control Registers

Figure 4.2: XIoT peripheral memory address space.

The bit-fields of CTRL1_REG illustrated in Figure 4.3 are used to configure
the XIoT. The RESET bit-field allows, as the name indicates, to reset the hardware
accelerator. By its side, the ENABLE bit-field allows enable or disable the XIoT. The
INIT_INTERFACE bit-field is set to launch the SPI interface initialization, whereas,
the INIT_INTERRUPT bit-field configures the XIoT interrupt. Furthermore, the
FILTERS_EN enables the usage of filtering functionalities when it is set and the
CLEAR_INT bit allows to clear the interrupt generated by the XIoT when a frame
is available. For last, the bit CCA_EN enables the verification of the Clear Channel
Assessment (CCA) pin by hardware.
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Figure 4.3: CTRL1_REG register field.
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The CTRL2_REG register, presented in Figure 4.4, is composed by five enabled
bits that indicate the flow of information in the XIoT. The bit-field RADIO_COMMAND
is used to indicate when data written in the RXDATA_REG by the MSS is to be
sent to the radio as a command. The hardware accelerator will set the bit-field
RADIO_TO_XIOT when performing a read operation from the radio FIFO in re-
sponse to a positive-edge on the fifop GPIO pin. In the opposite direction, the
XIOT_TO_RADIO bit-field signals a flow of data from the XIoT to the radio through
the SPI interface, e.g., making a frame available to the radio to be sent through
the wireless interface. The XIOT_TO_MSS should be set by the MSS when the last
wants to read data made available by the first. Finally, the MSS_TO_XIOT is set by
the MSS to start transferring data to the XIoT through the REG_BYTE_RX.
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Figure 4.4: CTRL2_REG register field.

The bit-fields of STT1_REG, as shown in Figure 4.5, provide information about
the internal state of XIoT. The FSM_INIT bit-field indicates when the initialization
of the XIoT is completed. By its side, the FSM_MAIN bits allow to acquire the
state of the FSM. Finally, the bit BUSY is cleared when the FSM is in idle state,
indicating to the MSS that the state of the FSM can be changed.
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Figure 4.5: STT1_REG register field.

The STT2_REG register, presented in Figure 4.6, indicates the state of XIoT
buffers. It is composed by two bits the BUFFER_RX_FULL and the BUFFER_TX_EMPTY.
The BUFFER_RX_FULL is set when the FIFO that receives data from the MSS and is
accessible through the RXDATA_REG is full. By the other hand, the BUFFER_TX_EMPTY
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is set when no more data is available in the FIFO to be read through the TXDATA_REG.
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Figure 4.6: STT2_REG register field.

From the bit-fields of DATACR_REG, presented in Figure 4.7, only one bit is used.
The RX bit is set when a response from a command requiring a read operation
over the wireless radio is complete and the data made available to the MSS in the
RX_DATA_REG.
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Figure 4.7: DATACR_REG register field.

4.3 XIoT deployment in CUTE mote

The integration of XIoT with RIOT-OS requires both the modification of the
hardware presented in Chapter 3, and the development of a device driver to inte-
grate XIoT seamlessly with RIOT-OS. Architecturally, XIoT is accommodated in
CUTE mote by replacing its previous version as described in [113] and integrating
all the processing and filtering features previously supported.

To integrate XIoT in the heterogeneous architecture previously presented in
Figure 3.4 from Chapter 3, it was necessary to deploy XIoT between the MSS and
the CoreSPI, keeping the SPI bus to interface the radio transceiver and to connect
other signals used by this device. Due to the full emulation of the SPI driver in
hardware, no direct interaction happens between the MSS and the radio, simpli-
fying this way the firmware development, enabling easy portability and increasing
performance through the offloading of software tasks to hardware. Furthermore,
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Figure 4.8: Architecture of the heterogeneous solution with XIoT.

to notify the OS about a frame to be forward to upper layers of the network stack,
it was configured the APB3 interrupt port available in the MSS subsystem.

Figure 4.9: Heterogeneous architecture with XIoT integration layout.

The architecture developed, present in Figure 4.8, is built in such a way that
the MSS can be let to sleep whenever no actions need to be performed by the OS,
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being only interrupted by the RCU when a frame is intended to be forward to the
network stack.

The filters integrated in the XIoT include the PAN, destination and source
address, verification, and a duplicate frame detection mechanism. These filters
were previously developed in the work presented in [113] and were integrated
in XIoT without modifications, proving the stated by the author, that due to the
standard network communication protocols the network filters could be integrated
in other systems without changes.

4.3.1 XIoT API

To allow the integration of XIoT accelerator into RIOT-OS, a well-documented
and easy portable device driver was developed. The XIoT hardware accelerator is
a memory mapped peripheral, consequently, the development of an API required
the access to low-level registers.

Listing 4.1: Microsemi’s HAL set 8-bit register macro.

1 /***************************************************************************//**
2 * The macro HAL_set_8bit_reg() allows writing a 8 bits wide register.
3 *
4 * BASE_ADDR: A variable of type addr_t specifying the base address of the
5 * peripheral containing the register.
6 * REG_NAME: A string identifying the register to write. These strings are
7 * specified in a header file associated with the peripheral.
8 * VALUE: A variable of type uint_fast8_t containing the value to write.
9 */

10 #define HAL_set_8bit_reg(BASE_ADDR, REG_NAME, VALUE) \
11 (HW_set_8bit_reg( ((BASE_ADDR) + (REG_NAME##_REG_OFFSET)), (VALUE) ))

The access to those registers is done using the macro library provided by the
Microsemi’s hardware abstraction layer (HAL). Listening 4.1 presents an example
of the macro that allows to modify all the bit-fields of an 8-bit register. As it
is possible to identify, the REG_NAME##_REG_OFFSET should be provided with a
specific format, compliant with the macro library. All the bit-fields of the XIoT
registers are defined in the file xiot_regs.h. Listening 4.2 presents a code snippet
of that file, which is the file that contains the definitions for the register CTRL1_REG
according to the Microsemi’s low-level HAL format.

The XIoT’s API implements several functions to access the peripheral, and
two extra functions to guaranty exclusive access to a XIoT device, avoiding con-
currency issues. A function for debug proposes is also provided in the XIoT driver
for RIOT-OS. All the API functions and the extra ones needed to integrate in
RIOT-OS are presented above:
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Listing 4.2: Register definition of CTRL1_REG required to use Mi-
crosemi’s HAL.

1 /*******************************************************************************
2 * Control register 1:
3 *------------------------------------------------------------------------------
4 */
5 #define CTRL1_REG_OFFSET 0x00u
6 /* Reset the state machine */
7 #define CTRL1_RESET_OFFSET 0x00u
8 #define CTRL1_RESET_MASK 0x01u
9 #define CTRL1_RESET_SHIFT 0x00

10 /* Enable state machine */
11 #define CTRL1_ENABLE_OFFSET 0x00u
12 #define CTRL1_ENABLE_MASK 0x02u
13 #define CTRL1_ENABLE_SHIFT 0x01
14 /* Init the Communication Interface */
15 #define CTRL1_INIT_INTERFACE_OFFSET 0x00u
16 #define CTRL1_INIT_INTERFACE_MASK 0x04u
17 #define CTRL1_INIT_INTERFACE_SHIFT 0x02
18 /* Transfer message from XIOT to MSS*/
19 #define CTRL1_INIT_INTERRUPT_OFFSET 0x00u
20 #define CTRL1_INIT_INTERRUPT_MASK 0x08u
21 #define CTRL1_INIT_INTERRUPT_SHIFT 0x03
22 /* Enable the application of network filters*/
23 #define CTRL1_FILTERS_EN_OFFSET 0x00u
24 #define CTRL1_FILTERS_EN_MASK 0x10u
25 #define CTRL1_FILTERS_EN_RADIO_SHIFT 0x04
26 /* Clear the fifop interrupt */
27 #define CTRL1_CLEAR_INT_OFFSET 0x00u
28 #define CTRL1_CLEAR_INT_MASK 0x20u
29 #define CTRL1_CLEAR_INT_SHIFT 0x05
30 /* Enable the usage of CCA */
31 #define CTRL1_ENABLE_CCA_OFFSET 0x00u
32 #define CTRL1_ENABLE_CCA_MASK 0x20u
33 #define CTRL1_ENABLE_CCA_SHIFT 0x05

• xiot_init: Performs the initialization of the XIoT accelerator, and this
function should be called once by each XIoT instance before its first utiliza-
tion. This function receives a variable of type xiot_t, that corresponds to
a position in an array containing the addresses of the XIoT hardware accel-
erators. In this case, it will be only used a XIoT accelerator but the driver
is prepared to accommodate various instances;

• xiot_init_int: Configures an interrupt in the vector table and enables the
generation of interrupts by the XIoT. The interrupt is generated once a valid
frame is ready to be read by the MSS;

• xiot_irq_enable and xiot_irq_disable: Allows to enable or disable
the generation of interrupts from a specific XIoT instance, by passing as
argument the xiot_t identifier of the instance;
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• xiot_enable_filtering and xiot_disable_filtering: These functions
allow enabling and disabling the filtering functionalities in the XIoT accel-
erator, used to filter a packet received in the XIoT before being forwarded
to the MSS;

• xiot_write: Allows transfer a single or multiple bytes to the XIoT that
are intended to be transmitted through the network interface. This function
receives a variable of type xiot_t to identify the XIoT instance, the address
of the buffer that holds the bytes to be transmitted and the number of bytes
to be sent;

• xiot_write_command: Enables the transfer of commands from the MSS to
the XIoT, allowing the configuration or reading of registers from the radio
interface. The parameters received by this function are the xiot_t identifier,
two addresses of buffers to send and receive the bytes exchanged, and the
respective sizes to be transmitted;

• xiot_read: This function is intended to be used in response to an interrupt
generated by the XIoT, informing the availability of network packet to be
read by the MSS. This function receives as parameters the identifier of the
respective XIoT instance and the address of a buffer to store the received
information. The value returned by this function indicates the number of
bytes stored in the buffer;

• xiot_enable_cca: Enables the verification of the CCA pin by the hardware
accelerator. This pin is used to verify the availability of the channel to
perform transmissions;

• xiot_fsm_state: Allows to verify the state of the main FSM presented in
Figure 4.1, by providing the identifier of the type xiot_t to the instance.
Can be used to debug proposes, to handle errors or exceptions;

• xiot_acquire and xiot_release: This pair of functions are used to guar-
antee the exclusive access to the XIoT, and they should be called always as
a pair, being called the XIoT_acquire before any action and xiot_release
in the end of the operation. To avoid the exclusive access to the device a
software mutex was created to guaranty the exclusive access to the hardware
resources, thus these functions allows the access to that mutex.
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4.3.2 XIoT Integration in RIOT-OS

Using the API previously presented, a device driver was developed to allow
the usage of the XIoT hardware accelerator in RIOT-OS. This driver initializes
an instance of the XIoT structure for each device incorporated, allowing this way
incorporate several XIoT accelerators with the same driver.

Listing 4.3: XIoT device driver arrays.

1 /*Mutex instantiation for the XIOT Mutex*/
2 static mutex_t locks[XIOT_NUMOF];
3
4 /*Array of XIOT intances*/
5 static xiot_instance_t * intances[XIOT_NUMOF];
6
7 /*Array of hardware addresses*/
8 static uint32_t xiot_addr[XIOT_NUMOF] = {XIOT_ADDR};

Three arrays where include in the driver, comprehending an array of mutexes to
guaranty mutual exclusion on access to a XIoT peripheral, an array to accommo-
date pointers to the instances of the hardware accelerators and finally an array
containing the base addresses of the peripherals. These arrays are presented in
the Listening 4.3. With the usage of such arrays, each XIoT device can be iden-
tified through an order of integration number, for example when only a device is
integrated in the system is identified through the number zero.

Due to the granularity and well-defined interfaces of RIOT-OS, the work devel-
oped to integrate the XIoT driver was only performed at the hardware dependent
level, focusing in the CC2520 peripheral driver previously developed. To establish
a new software module that corresponds to the newly created interface, it was de-
fined the MODULE_XIOT. This definition allows to initiate the XIoT module trough
the auto_init functionality provided by RIOT-OS. Furthermore, to allow the ac-
tivation and deactivation of the filtering capabilities at layer 2 by hardware, it was
used the MODULE_L2FILTER which enabling the filtering capabilities by hardware
when it is not enabled by software. Listening 4.4 illustrates such functionality.

Listing 4.4: Code snippet from the function _init from the cc2520
peripheral driver.

1 #ifndef MODULE_L2FILTER
2 xiot_enable_filtering(XIOT_BUS);
3 #endif

From the driver developed for CC2520, it was only necessary to modify the
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cc2520_internal.c file in order to make it compliant with the XIoT accelera-
tor. The function’s implementation was changed to instead of call the SPI driver
functions call the ones from the XIoT driver, maintaining the API of the CC2520
driver.

Listing 4.5: cc2520_strobe function from the cc2520 peripheral driver.

1
2 uint8_t cc2520_strobe( cc2520_t *dev, const uint8_t command)
3 {
4 uint8_t send_buffer[1];
5 send_buffer[0] = command;
6 uint8_t receive_buffer[1];
7
8 xiot_acquire(XIOT_BUS);
9 xiot_write_command(XIOT_BUS, send_buffer, receive_buffer, 1, 1);

10 xiot_release(XIOT_BUS);
11
12 return receive_buffer[0];
13 }

In Listening 4.5 it is represented one of the function’s implementation of the
cc2520_internal.c, where can be seen the implementation of the cc2520_strobe
using the XIoT API.

Due to the packet send and receive being performed by XIOT, it was necessary
to change the packet transfer between RIOT-OS and XIoT. Those changes allow
read from the hardware peripheral when a frame is ready to be transferred to the
MSS, instead of reading the radio FIFO through the SPI interface. The reception is
made through a call to the xiot_read after an interruption generated by the fifop
signal. Once more, was used the definition of the XIoT module to distinguish
between the use of the SPI or XIoT interface. This implementation is presented
in the Listening 4.6

Listing 4.6: Code snippet from the function cc2520_rx from the cc2520
peripheral driver.

1 #ifdef MODULE_XIOT
2 else {
3
4 /* read fifo contents and length*/
5 len = xiot_read(XIOT_BUS, buf);
6
7 /* finally flush the FIFO */
8 cc2520_strobe(dev, CC2520_INS_SFLUSHRX);
9 cc2520_strobe(dev, CC2520_INS_SFLUSHRX);

10 }
11 #endif
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4.4 Evaluation

To evaluate the heterogeneous architecture with the integration of the XIoT
hardware accelerator, it was used the Tread-Metric Benchmark to evaluate how
RIOT-OS can benefit from the XIoT functionalities, and used the Libero tool to
perform a usage resource estimation.

4.4.1 Thread-Metrics Evaluation

The evaluation performed over the CUTE mote architecture empowered by
the XIoT hardware accelerator were the same used in Section 3.4 of Chapter 3.
The Thread-Metric Benchmark Suite was performed under the same conditions
and using the network topology of Figure 3.6, maintaining the same test scenario
to allow further comparisons.

Figure 4.10: SmartFusion2 Thread-Metric results with XIoT accelerator
and filter disabled.

Figure 4.10 presents the results from the benchmark performed with the XIoT
enabled and all the network related tasks still being performed by software. The
goal of this test is to evaluate how the integration of XIoT could affect the RIOT
performance. Consequently, the reception of packets from the radio is performed
by the XIoT, but the filtering process is performed by software in the MCU. The
obtained results are similar to the ones obtained with the CUTE mote archi-
tecture without acceleration and that are presented in Figure 3.8. However, is
noticed an increase of performance by 0.94% when receiving packets, induced by
the implementation of the SPI driver in hardware.

Figure 4.11 presents the results obtained with the XIoT instantiated and the
hardware network filters enabled. In this scenario is possible to achieve an increase
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of performance of 1.28% when receiving packets, in comparison with the architec-
ture based in the SmartFusion2 and presented in Figure 3.5. Furthermore, allows

Figure 4.11: SmartFusion2 Thread-Metric results with XIoT accelerator
and filter enabled.

to achieve a 19.56% increase of performance when the packets in the medium are
not intended to the mote achieving the same performance results as when the
medium is free.

Figure 4.12: SmartFusion2 with XIoT and TI CC2538 Thread-Metric
results.

Having now in consideration the COTS platform selected for this dissertation,
the results presented in Figure 4.12 shows that the SmartFusion2 endowed with
the XIoT and the filtering capabilities enabled achieved a 35,75% performance
increase when accepting packets. Furthermore, is achieved the main goal of the
XIoT accelerator, by enabling full OS availability when the packets present in
the medium are not intended to be delivered to the mote under test, allowing
to let the MCU in a low-power mode or performing other activities, while the
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XIoT handles the reception and filtering of the packets being transmitted over the
wireless network.

4.4.2 RCU Resources Utilization

The estimation of resources utilization was made with resource to the Libero
pos-synthesis report, that specifies the resources needed to implement the logic
developed in Verilog. As can be seen in Table 4.1 the XIoT is the most resource

Table 4.1: Synthesis results for the M2S090TS SoC.

Module 4LUT DFF
XIoT_0 2551 3418
CORE_SPI_0 401 208
Timer_0 108 102
RIOT_sb_0 143 132
Total (out of 86184) 3204 (3.80%) 3860 (4.56%)

consuming hardware block requiring nearly 80% of the 4LUT and 89% of the
DFF used. However, the implementation of this heterogeneous architecture just
consumed 3.80% of the 4LUT and 4.56% of the DFF available in the FPGA
fabric of the SmartFusion2 platform, leaving resources for the implementation of
other soft-peripherals such as cryptographic accelerators, DPM modules or even
to implement more filtering capabilities.

4.5 Conclusion

This Chapter described the combination of the XIoT and RIOT-OS, a hard-
ware peripheral deployed in the RCU component of the CUTE mote that is in-
tended to process and filter incoming network packets on low-end IoT devices,
beginning with an introduction of such subject. Then, was exposed the XIoT that
resulted from the upgrading of the hardware accelerator deployed in the CUTE
mote architecture. Additionally, it was explained the developed API that was
used to integrate the hardware accelerator in RIOT-OS. Finally, this Chapter pre-
sented the evaluation of the heterogeneous architecture with an RCU resources
estimation and the OS evaluation using Thread-Metric Benchmark Suite. From
the results obtained is possible to conclude that the usage of such hardware ac-
celerators in low-end IoT devices allow managing more efficiently the network
communication and provides greater benefit of the low-power modes through the
avoiding of unnecessary calls to the MSS.





Chapter 5

Conclusion and Future Work

“I have no special talent. I am only passionately curious.”
—Albert Einstein

The ubiquitous deployment of low-end IoT devices at the network edge brings
new challenges in the development of connected devices up to the architectural
level of the motes. Thus, this dissertation proposed the deployment of an OS
with real time capabilities into a reconfigurable platform endowed with XIoT, an
improved version of the previous accelerator supported by the CUTE mote.

This chapter presents the conclusions of this work in Section 5.1 and the future
work in Section 5.2 finalizes this dissertation.

77



78 CONCLUSION AND FUTURE WORK

5.1 Conclusion

The widely and continuous deployment of embedded devices in the IoT net-
work edge is making real the concept of ubiquitous computing presented by Mark
Weiser. The devices used in the network edge are mainly the traditional low-end
devices used in WSN, however, this new paradigm presents several challenges at
the connectivity and interoperability levels. The connection of these devices to the
Internet requires the incorporation of an IPv6 compliant network stack, however,
the deployment of a such stack in these devices is not straightforward due to the
complexity of the network stack and the scarce resources of the low-end devices.
Thus, it raises the necessity of the implementation of a OS suitable for IoT, allow-
ing to support a proper network stack in these devices and manage their inherent
complexity.

Solutions like ASIC or COTS devices available in the market are not well suited
for the IoT arena where a variety of scenarios impose different requirements and
is not possible to develop a one-fit-all solution. However, the newest FPSoC solu-
tions present the possibility to use well-established and supported hardware and
software with the opportunity of integrating customized hardware blocks. These
platforms provide the necessary flexibility to develop customized solutions for IoT
and for this reason, was selected a FPSoC platform to develop this dissertation.

The acceleration on low-end devices is not new, as seen through this disserta-
tion, however, the inclusion of an OS is not transversal to all the known solutions,
and at the current state of the art, it was never presented a heterogeneous archi-
tecture with the inclusion of an RTOS. Furthermore, only CUTE mote presents
a hardware soft-peripheral that permits is portability among platforms and appli-
cations, not being designed for a specific target. With the inclusion of network
related accelerators, this architecture targets the low-end IoT devices improving
their communication capabilities and power consumption.

In order to evaluate the behaviour of RIOT-OS in a COTS platform, it was
deployed the OS in an already supported platform, the TI CC2538 with the usage
of IAR Workbench. Furthermore, was adapted the Thread-Metrics Benchmark
Suite to RIOT-OS and evaluated the OS performance in this platform. To perform
this evaluation was created a network topology, with the platform under test
running a UDP server application that receives all packets in the medium, this
way was possible to establish a base line for further comparisons and understand
how the OS availability is affected in the presence of an overloaded medium.

Then, it was used the Microsemi’s SmartFusion2 to develop the heterogeneous
architecture, composed by the MCU Arm Cortex-M3, the RCU present in the
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platform and attaching an 802.15.4 radio transceiver that is interfaced with the
board through an SPI interface. The porting of RIOT-OS for this platform re-
quired the hardware configuration of the board and the development of a new
hardware timer. On the software side, it was necessary to develop the peripheral
layer for this board, including the development of a new GPIO, timer, CC2520
and SPI drivers. At this stage, the RCU only included the timer and the CoreSPI.
Applying the same benchmark suite that was used to evaluate the COTS platform,
it was verified a big performance improvement in the OS, mainly by the higher
clock source provided by the SmartFusion2.

In the following, was presented the CUTE mote architecture and described the
upgrade done over the network accelerator presented in such architecture, giving
origin to the XIoT. The integration of XIoT in the heterogeneous architecture
was also described and after that presented the API that allows the usage of the
hardware peripheral by software. The integration of XIoT in RIOT-OS was also
exposed in this dissertation, emphasizing, that the main changes to integrate the
accelerator were only performed at the hardware dependent level in the CC2520
peripheral driver.

The evaluation procedure over the heterogeneous architecture was performed
as previously using the same benchmark suite and the same network topology,
and analysed the results from the SmartFusion2 endowed with the XIoT and the
filtering capabilities enabled. This evaluation showed full OS availability when
the packets present in the medium do not have as destination address the mote
under test. Furthermore, the deployment of the heterogeneous architecture in the
SmartFusion2 just required 3.80% of the 4LUT and 4.56% of the DFF resources
available in the FPGA fabric.

With this dissertation, it was possible to conclude that the development of
heterogeneous architectures with the inclusion of network related hardware accel-
erators contributes to an increase in performance availability of the OS in IoT
low-end devices and allows full availability when the packets in the medium are
not intended to be delivered to the mote. This way is possible to achieve longer
periods of inactivity by the MCU contributing for a lower energy consumption by
the main component of the architecture, or in performance demanding applica-
tions leave the MCU free to perform other activities while the XIoT handles the
reception and filtering of network traffic. Furthermore, the resource utilization
was in total below 5% of the available resources in the SmartFusion2, what allows
to implement such capabilities in even constrained platforms, or just by adding
a small device with FPGA fabric to legacy hardware. For last, the amount of
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resource used allows to implement such capabilities in silicon and provide in new
radios these features while maintaining the low-end characteristics.

5.2 Future Work

Despite all the work developed during this dissertation some limitations still
persist in the heterogeneous architecture. For this reason, and due to the proven
potential of such architectures, further upgrades could be done and new function-
alities integrated, such as:

• The integration of FIFOs in the XIoT to buffer filtered frames, allowing
this way asynchronous communication between the OS and the hardware
accelerator, enabling the store of multiple packets to be delivered to the
MSS;

• Evaluate the usage of memories instead of DFF to accommodate the received
packets, reducing this way the DFF usage that a big part is due to the
accommodation the packets that the size can be up to 128 bits;

• The partitioning of the XIoT and the SPI soft-peripheral driver in two dif-
ferent hardware blocks increasing the agnostic implementation of the accel-
erator by extinguish the dependence on the communication interface used
by the radio transceiver;

• Implementation of extra filtering capabilities such as IP, UDP ports, and
application protocols. In the same line, implement in hardware the concept
of black and/or white lists to allow in hardware reject the packets by its
source address;

• Enable in the XIoT the modification by software of the filtering parameters
and implement such functionalities in the XIoT API. At the moment of
conclusion of this dissertation was only possible to enable and disable the
filtering capabilities;

• Despite security being out of the scope of this dissertation, future work could
include the usage of Arm’s TrustZone technology providing a TEE for the
mote, by protecting processor cores, peripherals and communication buses;

• Being the energy consumption out of scope of this dissertation, future work
could include the incorporation of WuR in the heterogeneous architecture,
allowing the implementation of sleep modes in the RCU;
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• Study the application of this heterogeneous architecture in middle or high-
end devices.
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