832 research outputs found

    A Novel SAT-Based Approach to the Task Graph Cost-Optimal Scheduling Problem

    Get PDF
    The Task Graph Cost-Optimal Scheduling Problem consists in scheduling a certain number of interdependent tasks onto a set of heterogeneous processors (characterized by idle and running rates per time unit), minimizing the cost of the entire process. This paper provides a novel formulation for this scheduling puzzle, in which an optimal solution is computed through a sequence of Binate Covering Problems, hinged within a Bounded Model Checking paradigm. In this approach, each covering instance, providing a min-cost trace for a given schedule depth, can be solved with several strategies, resorting to Minimum-Cost Satisfiability solvers or Pseudo-Boolean Optimization tools. Unfortunately, all direct resolution methods show very low efficiency and scalability. As a consequence, we introduce a specialized method to solve the same sequence of problems, based on a traditional all-solution SAT solver. This approach follows the "circuit cofactoring" strategy, as it exploits a powerful technique to capture a large set of solutions for any new SAT counter-example. The overall method is completed with a branch-and-bound heuristic which evaluates lower and upper bounds of the schedule length, to reduce the state space that has to be visited. Our results show that the proposed strategy significantly improves the blind binate covering schema, and it outperforms general purpose state-of-the-art tool

    Rapid Recovery for Systems with Scarce Faults

    Full text link
    Our goal is to achieve a high degree of fault tolerance through the control of a safety critical systems. This reduces to solving a game between a malicious environment that injects failures and a controller who tries to establish a correct behavior. We suggest a new control objective for such systems that offers a better balance between complexity and precision: we seek systems that are k-resilient. In order to be k-resilient, a system needs to be able to rapidly recover from a small number, up to k, of local faults infinitely many times, provided that blocks of up to k faults are separated by short recovery periods in which no fault occurs. k-resilience is a simple but powerful abstraction from the precise distribution of local faults, but much more refined than the traditional objective to maximize the number of local faults. We argue why we believe this to be the right level of abstraction for safety critical systems when local faults are few and far between. We show that the computational complexity of constructing optimal control with respect to resilience is low and demonstrate the feasibility through an implementation and experimental results.Comment: In Proceedings GandALF 2012, arXiv:1210.202

    Time and Cost Optimization of Cyber-Physical Systems by Distributed Reachability Analysis

    Get PDF

    Model-based design of correct controllers for dynamically reconfigurable architectures

    Get PDF
    International audienceDynamically reconfigurable hardware has been identified as a promising solution for the design of energy efficient embedded systems. However, its adoption is limited by the costly design effort including verification and validation, which is even more complex than for non dynamically reconfigurable systems. In this paper, we propose a tool-supported formal method to automatically design a correct-by-construction control of the reconfiguration. By representing system behaviors with automata, we exploit automated algorithms to synthesize controllers that safely enforce reconfiguration strategies formulated as properties to be satisfied by control. We design generic modeling patterns for a class of reconfigurable architectures, taking into account both hardware architecture and applications, as well as relevant control objectives. We validate our approach on two case studies implemented on FPGAs

    Efficient Model Checking of Hardware Using Conditioned Slicing

    Get PDF
    AbstractIn this work, we present an abstraction based property verification technique for hardware using conditioned slicing. We handle safety property specifications of the form G(antecedent⇒consequent). We use the antecedent of the properties to create our abstractions, Antecedent Conditioned Slices. We extend conditioned slicing to Hardware Description Languages (HDLs). We provide a theoretical foundation for our conditioned slicing based verification technique. We also present experimental results on the Verilog RTL implementation of the USB 2.0. We demonstrate very high performance gains achieved by our technique when compared to static program slicing, using state-of-the-art model checkers

    On Minimum-time Control of Continuous Petri nets: Centralized and Decentralized Perspectives

    Get PDF
    Muchos sistemas artificiales, como los sistemas de manufactura, de logística, de telecomunicaciones o de tráfico, pueden ser vistos "de manera natural" como Sistemas Dinámicos de Eventos Discretos (DEDS). Desafortunadamente, cuando tienen grandes poblaciones, estos sistemas pueden sufrir del clásico problema de la explosión de estados. Con la intención de evitar este problema, se pueden aplicar técnicas de fluidificación, obteniendo una relajación fluida del modelo original discreto. Las redes de Petri continuas (CPNs) son una aproximación fluida de las redes de Petri discretas, un conocido formalismo para los DEDS. Una ventaja clave del empleo de las CPNs es que, a menudo, llevan a una substancial reducción del coste computacional. Esta tesis se centra en el control de Redes de Petri continuas temporizadas (TCPNs), donde las transiciones tienen una interpretación temporal asociada. Se asume que los sistemas siguen una semántica de servidores infinitos (velocidad variable) y que las acciones de control aplicables son la disminución de la velocidad del disparo de las transiciones. Se consideran dos interesantes problemas de control en esta tesis: 1) control del marcado objetivo, donde el objetivo es conducir el sistema (tan rápido como sea posible) desde un estado inicial a un estado final deseado, y es similar al problema de control set-point para cualquier sistema de estado continuo; 2) control del flujo óptimo, donde el objetivo es conducir el sistema a un flujo óptimo sin conocimiento a priori del estado final. En particular, estamos interesados en alcanzar el flujo máximo tan rápido como sea posible, lo cual suele ser deseable en la mayoría de sistemas prácticos. El problema de control del marcado objetivo se considera desde las perspectivas centralizada y descentralizada. Proponemos varios controladores centralizados en tiempo mínimo, y todos ellos están basados en una estrategia ON/OFF. Para algunas subclases, como las redes Choice-Free (CF), se garantiza la evolución en tiempo mínimo; mientras que para redes generales, los controladores propuestos son heurísticos. Respecto del problema de control descentralizado, proponemos en primer lugar un controlador descentralizado en tiempo mínimo para redes CF. Para redes generales, proponemos una aproximación distribuida del método Model Predictive Control (MPC); sin embargo en este método no se considera evolución en tiempo mínimo. El problema de control de flujo óptimo (en nuestro caso, flujo máximo) en tiempo mínimo se considera para redes CF. Proponemos un algoritmo heurístico en el que calculamos los "mejores" firing count vectors que llevan al sistema al flujo máximo, y aplicamos una estrategia de disparo ON/OFF. También demostramos que, debido a que las redes CF son persistentes, podemos reducir el tiempo que tarda en alcanzar el flujo máximo con algunos disparos adicionales. Los métodos de control propuestos se han implementado e integrado en una herramienta para Redes de Petri híbridas basada en Matlab, llamada SimHPN
    corecore