
Controller Synthesis for Dynamic Hierarchical
Real-Time Plants Using Timed Automata

Md Tawhid Bin Waez1, Andrzej W ↪asowski2, Juergen Dingel3, and Karen Rudie3

1 Ford Motor Company, USA mwaez@ford.com
2 IT University of Copenhagen, Denmark wasowski@itu.dk

3 Queen’s University, Canada {dingel@cs,karen.rudie@}.queensu.ca

Abstract. We use timed I/O automata based timed games to synthe-
size task-level reconfiguration services for cost-effective fault tolerance
in a case study. The case study shows that state-space explosion is a
severe problem for timed games. By applying suitable abstractions, we
dramatically improve the scalability. However, timed I/O automata do
not facilitate algorithmic abstraction generation techniques. The case
study motivates the development of timed process automata to improve
modeling and analysis for controller synthesis of time-critical plants which
can be hierarchical and dynamic. The model offers two essential features
for industrial systems: (i) compositional modeling with reusable designs
for different contexts, and (ii) state-space reduction technique. Timed
process automata model dynamic networks of continuous-time communi-
cating plant processes which can activate other plant processes. We show
how to establish safety and reachability properties of timed process au-
tomata by reduction to solving timed games. To mitigate the state-space
explosion problem, an algorithmic state-space reduction technique using
compositional reasoning and aggressive abstractions is also proposed. In
this article, we demonstrate the theoretical framework of timed process
automata and the effectiveness of the proposed state-space reduction
technique by extending the case study.

1 Introduction

Technology giants and new automotive manufacturing companies have imposed
pressure on major automotive manufacturers to be utmost cost- and time-
competitive while delivering new levels of autonomous vehicles, such as driver-
in-the-loop autonomous cars, or fully autonomous cars. Autonomous vehicles
development has brought several system-level real-time control problems that
need to be solved with formal guarantees. The new autonomous features—such as
adaptive cruise control, lane keeping, and super cruise—make automotive systems
too complex to manually synthesize correct controllers. In practice, MIL, SIL,
PIL, HIL and vehicle-level testings are performed to test these manual synthesized
controllers, which is an extremely time-consuming and expensive verification
process but still cannot make formal guarantees with respect to the require-
ments. We present a reconfiguration controller synthesis problem: to synthesize a

system-level real-time controller with formal guarantees [1]. Many autonomous
car related logic-level control problems (or controller synthesis problems) could
be reduced to this presented problem. Classical control theory is not a natural
solution for system-level (or logic-level) control problems, which put automotive
manufacturers in an unfamiliar situation because (almost) all of their control en-
gineers are only familiar with classical control. Correct-by-construction controller
synthesis for hybrid plants can be applied to solve these control problems. Hybrid
controller synthesis is performed in three major steps: i) converting continuous
dynamics of the plant into an abstract discrete model, ii) synthesizing a controller
for the discrete model, and iii) converting the controller of the discrete model into
the controller for the actual model. The third step is the lowest computational
step while the second step is too expensive to apply for industrial problems.
Unfortunately, the first step is computationally the most expensive, and suffers
state-space explosion even for toy problems. For these reasons, in this paper, we
consider a timed automata (TA)-based [2,3,4] controller synthesis as TA are the
simplest kind of hybrid automata with a continuous time domain [4,5].

An open(-loop) plant continuously interacts with an unpredictable environ-
ment. A hierarchical plant is a hierarchical composition of smaller plants. A
dynamic hierarchical plant is a hierarchical plant whose components may change
over time. Dynamic hierarchical behaviors are an important feature when re-
source constraints (such as limited memory) do not allow one to keep all the
components active at the same time. Sometimes dynamic behaviors are inherent
to the system. For example, we applied timed game theory in a case study to
construct a fault-tolerant framework for a hierarchical open plant that has a
scheduler, a set of tasks, and a set of subtasks; only the scheduler is active in
the initial system-state; subtasks are activated by their parent tasks, and the
top level tasks are activated by their scheduler; thus the scheduler controls tasks,
and a task controls its subtasks; due to the termination or the initialization of
tasks (or subtasks) the structures of the processes may change; thus the plant
exhibits dynamic hierarchical plant behaviors [1]. Models of industrial dynamic
hierarchical open plants can be very detailed because of the hierarchical composi-
tion. These details may introduce errors in the design and make modeling and
analysis challenging.

Automata are a prominent group of models in model-based development
because they facilitate many important types of formal analyses. Finite automata
can be considered as the most popular, studied, and applied automata because
of their rich theoretical properties and practicability. Properties of some systems,
however, do not depend only on the exact sequence of actions but also on the
exact time of execution. Finite automata, implicitly, can model time information
using sample timed data. For example, an action a that executes n seconds after
the previous action b can be modeled as n special time tick symbols followed by
a. Such implicit modeling of time can result in an exponential blowup of both
input data and the size of the model. To avoid this problem, this paper uses
TA, which can be viewed as finite automata with continuous clocks to record
time. Real-time reachability and some other important analytical properties

of real-time formal models (such as TA, timed Petri nets [6], timed transition
systems [7], and Modecharts [8]) were first solved using symbolic semantics region
graph of TA and after that other models adopted that approach.

Timed automata are desirable for the modeling of open real-time plants since
TA can capture both discrete-time controllable behaviors of the system and
dense-time uncontrollable behaviors of the environment. Timed automata have
no explicit structured support for modeling dynamic hierarchical open plants.
This absence may lead to cumbersome design details in a large-scale plant having
several control hierarchies. Timed game automata [9,10,11]—a variant of TA—are
a well-known model in the research community for the controller synthesis of dense-
time plants. Dense-time formal methods of TA may provide the most accurate
analysis, however TA, currently, are not suited for open plants in practice mainly
because of poor scalability. We propose timed process automata (TPA), a variant
of TA, together with a state-space reduction technique for the compositional
hierarchical modeling and controller synthesis of dynamic hierarchical open real-
time plants [12]. The case study of the task-level reconfiguration technique of [1]
could be considered as the main motivation for the development of TPA [12].
With a case study of TPA, this paper demonstrates (i) the theoretical framework
of [12] and (ii) the effectiveness of the proposed state-space reduction technique
of [12]. The case study of this paper is reproduced from the case study of [1] by
applying TPA along with timed I/O automata (TIOA) [13,14,11,3].

1.1 Goals

The first goal of this paper is to develop a synthesis technique for reconfiguration
services for cost-effective fault tolerance. The next goal is to develop a TA-based
modeling paradigm for dynamic hierarchical open plants, where a designer will
not need to readjust a design for different compositions. However, the main
motivation is to develop a state-space reduction technique for TA-based controller
synthesis of dynamic hierarchical open plants.

Reconfiguration Service Synthesis Multi-core systems may use additional pro-
cessing cores to provide fault-tolerance. Task-level reconfiguration techniques
reduce the number of these additional processing cores—thus reducing costs—by
reallocating the loads of the failed cores to the non-additional operational cores.
The main challenge for developing a reconfiguration technique is to provide a
formal guarantee that the developed technique can handle all fault scenarios.
Automated formal synthesis of such reconfiguration frameworks is highly desirable
for industrial use.

Compositional Modeling with Reuse Figure 1 presents an abstract Brake-by-Wire
system modeled using TIOA. The model has seven automata representing different
copies of only three elements: one copy of the main thread of Brake-by-Wire (the
top automaton), two copies of the main thread of Position (the two automata
in the middle), and four copies of Actuator system (the four automata in the
bottom). Each Position system contains two children (Actuator systems) and its

Fig. 1. An abstract Brake-by-Wire system modeled using standard TIOA, where one
copy of the main thread of Brake-by-Wire (in the top), two copies of the main thread of
Position (in the middle), and four copies of Actuator system (in the bottom)

main thread that schedules the children, communicates with its parent (the main
thread of Brake-by-Wire), and performs some other functions, which cannot be
performed by the children. Similarly, this Brake-by-Wire system contains two
children (Position systems) and its main thread that schedules the children and
performs some other functions, which cannot be performed by the children. These
automata communicate among themselves by exchanging inputs and outputs. For
example, the main thread of Brake-by-Wire receives inputs (signal1 and signal2)
from the environment, receives inputs (finishFront and finishRear) from its children,
and sends outputs (startFront and startRear) to its children. In this model, the
main thread of Brake-by-Wire is the root, which does not have a parent. However,
in the future a car manufacturer may include this Brake-by-Wire system in a car
and then the main thread of Brake-by-Wire will no longer be the root. Then a
central control system may be able to start the main thread of Brake-by-Wire.
To analyze the new complex system, a designer would need to manually alter
the model again by including start and finish actions (in the top automaton of
Figure 1). Let us assume a complex system contains N Break-by-Wire systems;
to analyze this complex system, a designer will need to manually construct at
least N × 7 automata with a proportionally growing alphabet! Existing TA-based
modeling techniques do not support compositional modeling with reusable designs
for different contexts; that is, a design may need to be altered manually in every

composition. All these ad hoc alterations may make a large industrial design
incomprehensible and error-prone. The same Brake-by-Wire system is modeled in
Section 3.1 by using only three TPA, which are equivalent to the seven automata
of Figure 1. Moreover, the number of copies and the root status of Break-by-Wire
system has no impact on the new design.

State-Space Reduction Technique No algorithmic state-space reduction technique
has been developed for the controller synthesis of dynamic hierarchical open dense-
time plants. During our two case studies, we noticed that even a (practically)
very small real-time plant may have a state space too large for automated formal
controller synthesis because of hierarchy, dynamic behaviors, and time calculations
[12]. We overcame the scalability problem in one of the projects—construction of
a fault-tolerance framework in Section 2 and in [1]—by developing a manual state-
space reduction technique that applies aggressive abstractions and uses fewer
synchronizations. Applying this manual technique to a design of an industrial
plant is infeasible. A generalized algorithmic reduction technique, therefore, is
needed for controller synthesis of dynamic hierarchical open time-critical plants,
which is provided by presenting a reduction technique for TPA.

1.2 Problem

The problem we address is to develop a synthesis technique for reconfiguration ser-
vices using TA, to develop a theoretical foundation for TA to allow compositional
modeling with reuse for dynamic hierarchical open plants, and to allow timed
games-based controller synthesis for larger dynamic hierarchical open plants.

Challenges The main challenge to develop service-based solution for task-level
reconfigurations to achieve fault tolerance for mixed-criticality multi-core systems
is to provide a formal guarantee. This paper synthesizes these services with
formal assurance by reducing the problem into a safety game of TIOA. Analyses
of timed games have extremely poor scalability, and no efficient state-space
reduction technique is known for TIOA. Moreover, for hierarchical compositional
systems, the size of the composition in the monolithic analysis is exponential
in the depth of the hierarchy of the system due to the product construction of
the state space. Furthermore, the state space in the analysis is also linear in the
product of the sizes of all included components of the system. The components
of industrial hierarchical plants, unfortunately, typically are very detailed. For
reuse in compositional modeling, we need algorithmic techniques 1) to convert
an independent system into a component of a larger system and 2) to construct
n copies of component C of system system1 (such as C1,C2, · · ·Cn) in a way that
these new copies can communicate with the other components of system1 and
the environment.

Methodology Timed I/O automata model and analyze a hierarchical open real-time
plant by using a parallel composition of all components. Parallel composition
increases the state space exponentially thus leading to state-space explosion

very quickly. We present the case study—service-based solution for task-level
reconfigurations—in Section 2 to show this phenomenon. Experimental results
of this case study hint that reducing the number of components in parallel
composition and increasing abstraction of the components reduces the state
space. However, there is no algorithmic way to reduce the number of components
and increase the abstractions of the components in TIOA. Section 3 presents
TPA to improve the scalability of TIOA for analyzing hierarchical open real-time
plants by utilizing the lessons learned from the case study of the previous section.
Theoretically, TPA are not more expressive than timed game automata. For
instance, on the semantic level TPA use timed games for the analysis. However,
TPA allow algorithmic analysis of larger dynamic hierarchical open plants. Timed
process automata allow algorithmic controller synthesis for safety and reachability
properties of arbitrary number of processes; but there is an implicit bound on
the maximal number of active processes at a time. Timed process automata also
model and analyze using parallel composition. However, the analyzer may avoid
parallel composition of all components during analysis of the plant by creating
multiple parallel compositions of smaller number components, where most of the
components are coarse abstractions of the original components: the analyzer may
perform analysis in multiple bottom-up steps by first analyzing leaf components
one by one, then using coarse abstractions of the analyzed components to analyze
the next level components, and repeating the second step until the whole plant
is analyzed. The paper is organized as follows:

Section 2 A synthesis technique for reconfiguration services that assures fault
tolerance of mixed-criticality multi-core systems.

Section 2.5 Results of experiments provide evidence of the usefulness of aggres-
sive abstractions for state-space reduction.

Section 3.1 A TA variant called timed process automata that provides compo-
sitionality with reuse feature to model dynamic hierarchical open plants.

Section 3.2 A controllability analysis technique for the developed model.
Section 3.3 A state-space reduction technique to analyze larger dynamic hier-

archical open plants.
Section 3.4 Results of experiments to determine effectiveness of the developed

state-space reduction technique. The result provides evidence of the usefulness
of the technique.

Section 4 Concludes the paper, classifies TPA, and suggests future work.

1.3 Background

A ground hierarchical open plant is a hierarchical (open) plant that does not have
a component. A non-ground hierarchical open plant is a compound hierarchical
open plant. A ground hierarchical open plant has a control hierarchy of depth 0. A
compound hierarchical open plant system1 has a control hierarchy of depth n + 1,
where n is the maximum of depths of the control hierarchies of the components
contained in system1.

A timed automaton is a finite state automaton with a set of asynchronous
nonnegative real valued clocks and a set of clock constraints. If a timed automaton

is considered as a directed graph, locations represent the vertices of the graph, and
locations are connected by edges. Locations of a timed automaton are graphically
represented as circles. A clock valuation over the set of clocks is a mapping
which assigns to each clock a nonnegative real value. An initial clock valuation
maps each clock of a timed automaton to zero. The clock constraint which is
associated with a location is called the local invariant of that location. To be in
a location, the clock valuation has to satisfy the local invariant of that location.
Local invariants are used to ensure the progress of the model [15], that is, control
can stay in a location until its local invariant is satisfied. An edge in a timed
automaton is associated with a clock constraint, a subset of the clocks, and a
label. The clock constraint which is associated with an edge is called the guard
of that edge. An edge can be traversed only if the clock valuation satisfies the
guard of that edge. Clock constraints are used to restrict the timing behaviors
of the automaton. Each associated clock of an edge is reset to 0 when the edge
traverses. At any instant, the value of a clock equals the time elapsed since the
last time it was reset. While edges are instantaneous, time can elapse in a location.
The semantic construction of TA is expressed using semantics objects called
timed transition systems [16,11,3]. A timed I/O automaton [13,14,11] is a timed
automaton which has an input alphabet along with a regular output alphabet.
The controller plays controllable output transitions and the environment plays
uncontrollable input transitions; thus timed I/O automata (TIOA) are a natural
model for timed games. Two TIOA are composable with each other if they do
not have a common output action.

Definition 1 [16,11,3] A timed transition system (with only one initial location
but without final location and ε-transition) is a tuple T = (St, s0, Σ,d), where St is
a set of states, s0 ∈ St is the initial state, Σ is an alphabet, andd: St×(Σ∪R≥0)×St
is a transition relation.

We use d ∈ R≥0 to denote delay. A timed transition system satisfies time de-

terminism (i.e., whenever s
d
d s′ and s

d
d s′′ then s′ = s′′ for all s ∈ S), time

reflexivity (i.e., s
0
d s for all s ∈ S), and time additivity (i.e., for all s, s′′ ∈ S

and all d1, d2 ∈ R≥0 we have s
d1+d2
d s′′ iff there exists an s′ such that s

d1
d s′

and s′
d2
d s′′). A run ρ of a timed transition system T from a state s1 ∈ St is

a sequence s1
a1
d s2

a2
d s3 · · ·

an
d sn+1 such that for all 1 ≤ m ≤ n : sm

am
d sm+1

with am ∈ Σ ∪ R≥0. A state s is reachable in a transition system T if and only

if there is a run s0
a0
d s1

a1
d s2 · · ·

an−1
d sn, where s = sn. Timed I/O transition

systems are timed transition system with input and output modalities on tran-
sitions. Timed I/O transition systems are used to define semantics of TIOA.
A constraint δ ∈ C(X,V) over a set of clocks X and over a set counters, non-
negative finitely bounded integer variables, V is generated by the grammar
δF xm ≺ q | k ≺ α | xm − xn ≺ q | true | Φ∧Φ, where q ∈ Q≥0, α ∈ Z≥0, {xm, xn} ⊆ X,
k ∈ V and ≺∈ {<,≤, >,≥}. Consequently, the set of clock constraints C(X) is the
set of constraints C(X,V), where V = ∅. Let Ψ (V) be the set of assignments over
the set of variables V.

Definition 2 [13,14,11,3] A timed I/O automaton is a tupleA = (L, l0, X,V, A, E, I),
where L is a finite set of locations, l0 ∈ L is the initial location, X is a finite set of
clocks, V is a finite set of counters, A = Ai⊕Ao is a finite set of actions, partitioned
into input actions Ai and output actions Ao, E ⊆ L×A×Φ(X,V)×Ψ (V)×2X × L is
a set of edges, and I : L→ C(X) is a total mapping from locations to invariants.

A clock valuation over X is a mapping RX
≥0 : X → R≥0 and a counter valuation

over V is a mapping ZV
≥0 : V → Z≥0. Given a clock valuation v ∈ RX

≥0 and d ∈ R≥0,
we write v + d for the clock valuation in which for each clock x ∈ X we have
(v+ d)(x) = v(x)+ d. For λ ⊆ X, we write v[x 7→ 0]x∈λ for a clock valuation agreeing
with v on clocks in X \λ, and giving 0 for clocks in λ. For φ ∈ Φ(X,V), v ∈ RX

≥0, and
n ∈ ZV

≥0, we write v, n |= φ if v and n satisfy φ. Let e = (l, a, φ, θ, λ, l′) be an edge,
then l is the source location, a is the action label, and l′ is the target location of
e; the constraint φ has to be satisfied during the traversal of e; the set of clocks
λ ∈ 2X are reset to 0 and the set of counters are updated to θ whenever e is
traversed.

Definition 3 [14,11] Two TIOA Am = (Lm, lm0 , X
m,Vm, Am, Em, Im) and An =

(Ln, ln0, X
n,Vn, An, En, In) are composable with each other when Am

o ∩ An
o = ∅, Xm ∩

Xn = ∅, and Vm ∩ Vn = ∅; when composable, their composition is a TIOA
A = Am||An = (Lm × Ln, (lm0 , l

n
0), Xm ∪ Xn,Vm ∪ Vn, A, E, I), where A = Ai ∪ Ao with

Ao = Am
o ∪ An

o and Ai = (Am
i ∪ An

i) \ Ao. The set of edges E contains:

– ((lm, ln), a, φm ∧ φn, λm ∪ λn, θm ∪ θn, (l′m, l′n)) ∈ E for each (lm, a, φm, θm, λm, l′m) ∈
Em and (ln, a, φn, θn, λn, l′n) ∈ En if a ∈ {Am

i ∩ An
o} ∪ {A

m
o ∩ An

i }

– ((lm, ln), a, φm, λm, θm, (l′m, ln)) ∈ E for each (lm, a, φm, λm, θm, l′m) ∈ Em if a < An

– ((lm, ln), a, φn, λn, θn, (lm, l′n)) ∈ E for each (ln, a, φn, λn, θn, l′n) ∈ En if a < Am

and the set of invariants I is constructed as follows: I(lm, ln) = Im(lm) ∧ In(ln)

A real-time control problem can be viewed as a two-player timed game [9,17,18]
between the controller and the environment, where the controller aims to find a
strategy to guarantee that the plant will satisfy a given property, no matter what
the environment does [19]. An example of such reformulation is to find a strategy
for the controller (or a reconfiguration service) to prevent the plant from becoming
unstable in the presence of the faults of the fault model. The game reachability
problem is whether the plant has a strategy or controller to reach a target state
regardless of how the environment behaves. The game minimum-time reachability
problem in timed game automata is finding the minimum time required by the
system to reach a target state regardless of how the environment behaves. Uppaal
Tiga [20], a TIOA-based tool, is a tool for solving games based on timed game
automata with respect to reachability and safety properties. Synthia [21] performs
verification and controller synthesis for timed games.

2 Synthesis of a Reconfiguration Service

We synthesize task-level reconfiguration services to ensure fault-tolerance of a
mixed-criticality automotive system that consists of an asymmetric multi-core

processor (AMP) [1]. The system has a fault-intolerant AMP scheduler. We
augment the existing scheduler with supplementary reconfiguration services,
which we synthesize. The services assure the periodic executions of all the critical
tasks in the presence of faults from a fault model.

We use timed games at synthesis-time and lookup tables at runtime to
provide task-level reconfiguration, a cost-effective fault-tolerance technique, for
mixed-criticality multi-core systems. System-level requirements for embedded,
real-time software in many domains (such as automotive) have enough flexibility to
reallocate tasks from one processing core to another. A task-level reconfiguration
technique reduces the number of redundant cores that are used only to provide
fault-tolerance by reallocating the loads of the failed cores to the non-redundant
operational cores. Reduction in the amount of expensive hardware gives task-
level reconfiguration a hope to be a dominant fault-tolerance technique in the
automotive industry, where cost-efficiency and fault-tolerance are both crucial
issues. Our timed games-based approach guarantees fault-tolerance up to a certain
maximal number of concurrent faults after inserting the services into the plant.
Such reliable and accurate information is helpful to build mixed-criticality systems
cost effectively. We demonstrate the synthesis process using a small plant, which
is complex enough to show the essence of the problem and our approach, yet
simple enough to allow a compact and comprehensible presentation.

2.1 Systems

We consider a class of multi-core systems having asymmetric processing cores.
Different asymmetric cores may exhibit different performance for the same task.
The plants under consideration are mixed-criticality systems, because they execute
both critical tasks and non-critical tasks with two different priorities.

Definition 4 A mixed-criticality system, of our consideration, consists of

– N asymmetric processing cores: core1, core2, · · · , coreN

– M tasks: task1, task2, · · · , taskM

– P critical tasks, where P < M
– A fault-intolerant criticality-unaware AMP scheduler with a static allocation

of tasks

– load(taski, core j) is a function mapping each task-core pair to the worst-
case load that the task generates on the core, represented as a number
{0, 1, · · · , 100} ∪ {+∞}, where +∞ represents incompatibility between the core
and the task.

– Function primary(taski) maps taski to the core on which the task runs in the
initial system-state

– Predicate critical(taski) holds only for critical tasks

– Each task is executed periodically. Tasks always terminate within the pre-
scribed periods. Each task is described as a TIOA. These automata do not

communicate4. Every task can be killed (and resumed) in any of its states by
a reconfiguration technique.

– Fault Model: The system is fault-free in its initial system-state. In the other
system-states, the system might suffer three types of faults: safety violations by
tasks, permanent core failures, and temporary core failures. Critical tasks are
assumed not to breach any safety constraints. Non-critical tasks may violate
safety constraints. Every core of the system may fail. However, all cores of a
system cannot simultaneously be in their failed states. The maximal number of
cores that can fail concurrently is restricted by CFL, concurrent-failures–limit.
No limit is imposed on the total number of fault occurrences in a run.

Given a mixed-criticality system of Definition 4, we want to obtain a task
allocation policy that is able to cope with the failures admitted by the fault model.
We will synthesize distributed reconfiguration services that assure uninterrupted
executions of all the critical tasks. Section 2.2 explains how the reconfiguration
technique is expected to work using an example.

2.2 Task-Level Reconfiguration Service

We propose a service-based reconfiguration technique for the fault-tolerance
of mixed-criticality systems, where the system has a task-level reconfiguration
service for each core. The services manage critical tasks differently from non-
critical tasks. Consider, for instance, a simple mixed-criticality AMP system
system1, one of the systems that are described in Section 2.1. System system1
executes six periodic tasks S, W, D, N1, N2, and N3. Only three tasks S, W, and D

are the critical tasks, where in an execution S records exactly one update of a
speedometer, and W (respectively, D) records at most one update of a wiper (resp.,
door). The system has three cores core1, core2, and core3, which are asymmetric
but each core is able to execute all six tasks.

Figure 2 presents a trace of a desirable behavior of system1 in the presence
of different faults after inserting the reconfiguration services; the figure omits
suspended non-critical tasks to avoid clutter. At any given time, the periodic
execution of a task can be assigned to at most one operational core. A task is
assigned to its primary core in the initial system-state, where a core is responsible
to execute only its primary tasks. For instance, core1 is the primary core of task
S, and S is a primary task of core1 in Figure 2. We call a non-primary core a
backup core of a critical task when that core can execute that task; similarly,
a task is a backup task of its backup core. Whenever a core fails, the services
assign the critical tasks that were previously assigned to that failed core to the
operational cores. The services may kill and suspend temporarily one or more
non-critical tasks on the operational cores during a reallocation process to ensure
enough processing capacity for the reallocated critical tasks. In Figure 2, core

4 More generally, the communication can be abstracted by suitable understanding of
worst and best case execution times, and terminations are independent of communi-
cation

Fig. 2. Sample trace of system1 with reconfiguration

core2 fails in system-state s2; in the next system-state, the periodic execution of
critical task W is assigned to a backup core core3 and the periodic execution of
non-critical task N3 is suspended temporarily on core3 to have enough processing
capacity for W. A critical task is allowed to execute further on a backup core
only if the primary core is in a failed state. The services kill a critical task on a
backup core (if that task is initialized or released) and cancels the assignment
of that task on that backup core, whenever the primary core recovers from a
temporary failure. As an example, core core2 recovers from a temporary failure
in system-state s6, and after that only core2 is assigned to perform critical task W.
The services reinstate a suspended non-critical task as soon as enough processing
capacity for that task is regained due to the recovery of a core from a temporary
failure; for example, the periodic execution of non-critical task N3 is reinstated in
system-state s7. The services permanently suspend a non-critical task when it
performs some harmful activities, such as illegal memory access. For instance,
non-critical task N1 performs some harmful activities in system-state s4, and the
task is permanently suspended in system-state s5.

Problem Statement Given a mixed-criticality system as specified in Definition 4,
the problem is to synthesize a reconfiguration service servicei for each core corei

such that servicei: (i) reacts whenever any other core fails or a core recovers
(including corei), or a non-critical task violates a safety constraint on corei; (ii) at
that time servicei may kill, resume, and suspend any task running on corei; and
(iii) as long as corei is in a failure state, none of its tasks nor servicei executes. All

Fig. 3. Architecture of system1 after adapting abstractions of Section 2.3

reconfiguration services of a system together satisfy a property that at all times
critical tasks are allocated to operating cores as long as the CFL limit is observed,
and any non-critical task that has violated a safety constraint is suspended from
execution indefinitely.

2.3 Modeling

We construct a timed game model of the plant in a way that an unsafe location
becomes reachable when a core exceeds its processing capacity. The model
explicitly or implicitly captures the behaviors of the scheduler, the reconfiguration
services, the cores, and the tasks.

To reduce complexity: (i) we model only a single (central) reconfiguration
service for the whole system, instead of one service per core; (ii) we assume that
every non-idle state of a task requires the worst-case core load of the task on the
current core; and (iii) we abstract away the non-critical tasks. Assumptions (i)
and (iii) do not prevent synthesis of a distributed reconfiguration service per core,
which will be shown in Section 2.4. Assumption (ii) considers the worst-case core
load by which no possible total core load can force the synthesized controller to
fail. Our model depends on four system parameters: (i) the release period of each
task (constants pS, pW, pD); (ii) the worst-case load of each task on each core,
in percent of the processing capacity of that core (constants lS1, lW1, lD1, lS2,
lW2, lD2, lS3, lW3, lD3); (iii) the worst-case execution time (WCET) of each
task on all cores (constants wS, wW, wD); and (iv) the best-case execution time
(BCET) of each task on all cores (constants bS, bW, bD).

First we construct a concrete model of mixed-criticality AMP system system1.
The main design principle behind this model is to describe each component of the
system in detail as a TIOA then obtain an intuitive concrete model by composing
all the components using parallel composition [11]. The concrete model has 13
TIOA, which follow five different templates. In general, the concrete model has
at most (N × K) + N + 1 TIOA and K + 2 templates, where N is the number of
total cores, K is the number of total critical tasks, constant 1 automaton for the
central service, constant 1 template for cores, and constant 1 template for the
central service.

Each automaton of the concrete model represents exactly one rectangle of
Figure 3. The automata synchronize using both actions and global variables.
The model does not have any local variables and constants. A task automaton
models initialization, killing, resumption, termination, and state information of
a task on a specific core; for example, task automaton core1.S represents the

Fig. 4. Architecture of system1 at runtime

activities of task S on core1. A core may fail only if the fault model allows it
to fail. A core automaton models initializations and terminations of tasks on
a core along with failures of the core and safety violations; for instance, core
automaton core1 represents the activities of core core1. The service automaton
models reallocations of the critical tasks when a core fails or recovers. In the
model a failed core may recover at any time. All automata of the model are
presented in a technical report [22].

2.4 Synthesis

We synthesize reconfiguration services in three sequential steps: 1) generate
a central controller for critical tasks, 2) construct a distributed controller for
each core by exclusively distributing the central controller, and 3) synthesize a
reconfiguration service for each core by adding its distributed controller with a
constructed monitor to broadcast its health messages and a constructed switch
to suspend and reinstate its non-critical tasks. A reconfiguration service runs
on a core, which can fail. Hence, fault tolerance cannot be achieved using only
one central reconfiguration service. We propose for each core to execute its own
reconfiguration service that has three components: a distributed controller to
reallocate critical tasks, a monitoring system to observe the system’s conditions,
and a edge to cancel and reinstate the periodic execution of non-critical tasks.
All the distributed controllers of a plant differ from each other—but complement
each other in a way that they all together work similarly with a central controller,
which is synthesized by analyzing the timed game model of Section 2.3. Figure 4
presents the architecture of system1 with the reconfiguration services at runtime.

Central Controller Synthesis We perform a controller synthesis for the
monolithic model of Section 2.3 against a safety objective which states that
there is a strategy to always avoid unsafe locations. If the property holds, the
strategy—which is our central controller—is synthesized by a timed game solver.

In order to obtain the most fault-tolerant controller possible, we synthesize it
for the maximal concurrent-failures–limit (MCFL), the maximal value of CFL
for which such a controller still exists. We use binary search to find MCFL. If
MCFL is zero, no safe controller exists. The higher MCFL implies the better fault-
tolerance by the reconfiguration services. The value of MCFL is strictly bounded
by the total number of processing cores. Consider, for instance, configuration C1

in Table 15 where the release period, the WCET, the BCET of every task is 10,
5, and 4 time units, respectively; the worst-case load of tasks S, W, and D on core1
(resp., core2, core3) are 60% (resp., 10%, 10%), 45% (resp., 80%, 5%), and 5%
(resp., 5%, 85%), respectively. Configuration C1 does not have a controller for
CFL 2. However, there is a controller for CFL 1. Maximal concurrent-failures–
limit for system1 for configuration C1 is 1 because 1 is the maximal value of CFL
for which a controller exists.

Service Synthesis We synthesize the distributed reconfiguration service of a
core by combining its distributed controller with an embedded monitor and an
embedded switch.

Distributed Controller The functions of the central controller are completely
and exclusively distributed into separate controllers for each core. A distributed
controller is responsible for killing, reassignment, and resumption of critical tasks
only on its core. A timed game represents all the possible transitions of the
controller. As a result, a timed game may have non-deterministic choices for
the controller. For example, in Figure 2 the controller has non-deterministic
choices at system-state s4 when only core2 fails and the other two cores are
operational. A strategy removes non-determinism for the controller. By directing
the controller to take the correct paths, a strategy plays a crucial role when
in the model some paths guarantee satisfaction of a property (say reallocating
task W to core3 at system-state s5 in Figure 2) and some paths do not (say
reallocating W to core1). For example, when core2 fails a strategy (or the cen-
tral controller) may say, “if the system-state fulfills condition X then

reallocate task W to core3, otherwise to core1”; then the distributed con-
troller of this portion for core3 is “if the system-state fulfills condition

X then reallocate task W to core3”; and the distributed controller of this
portion for core1 is “if the system-state does not fulfill condition X
then reallocate task W to core1”. Thus, deriving the distributed controllers
from the central controller is a mechanical process and cannot fail.

Monitor The monitor of a reconfiguration service periodically broadcasts health
messages of the corresponding core. A health message has three parts: (a) name
of its core, (b) currently assigned critical tasks to its core, and (c) currently
initialized critical tasks on its core. A monitor periodically also receives health
messages—from the other reconfiguration services—and manipulates received
messages. It marks a core as a failed core if two consecutive health messages of
that core are not received. The monitor identifies a core recovery when it receives
a message from a previously failed core. In the same way, the monitor detects
when the scheduler releases a task and when a task terminates on a core.

5 To show clearer impacts of different modeling aspects on the analysis, we picked some
imaginary system configurations instead of some actual system configurations.

Switch A reconfiguration service has a static lookup table and a dynamic lookup
table. The static lookup table lists the worst-case core load of every critical task
(of the system) on this core and of every non-critical task assigned to this core.
The dynamic lookup table keeps updated list of the assigned tasks, temporarily
suspended non-critical tasks, and permanently suspended non-critical tasks. The
controllers reallocate critical tasks from a failed or to a recovered core without
considering the existence of non-critical tasks. The switch of a reconfiguration
service (of the targeted core) suspends a set of non-critical tasks on its core using
the lookup tables when the residual capacity on the core is insufficient to run
the newly reallocated task safely. The distributed controllers first take necessary
steps related to primary tasks of the recovered core whenever a core recovers.
After that the switches reinstate the periodic executions of a set of suspended
non-critical tasks on each source core where free processing capacity is revived
due to the recovery. The switch permanently suspends a non-critical task when
it breaches safety constraints.

2.5 Manual State-Space Reduction

The scalability of our service synthesis process mostly depends on the central
controller synthesis as the remaining steps are mechanical and cannot fail. The
concrete model has very large state space. For example, configuration C1 in
Table 1 generates a strategy of size 290,663 KB in 94.20 seconds for this model
when CFL is 1, presented in Table 2. Moreover, for many configurations the
solver runs out of memory during analysis, such as, C3–C5 in Table 2. Detailed
and monolithic models like the concrete model are easy to construct, understand,
and present. However, large state spaces make them a poor choice for analysis.

The main purpose of the strategy is to resolve non-determinism among
enabled controllable transitions in a way that guarantees satisfaction of the
desired property. Hence, one can abstract away every detail from a timed game
model that does not contribute to the non-determinism (or to the property).
For instance, task specific activities and their non-deterministic updates of the
tasks, which do not have any impact on our property, can be removed from a
timed game model of system1. Using such aggressive abstractions we construct
the abstract model of system1. The abstract model has only one automaton, which
is presented in [22].

For the control problem described in this section, we constructed four different
models: the concrete model as described in Section 2.3, the abstract model as
described in this section, the monolithic model, and the compositional model.
The last two models are presented in Section 3. We analyze these models with
many configurations. This section discusses behaviors of the concrete and abstract
models for 20 configurations of Table 1. All the analyses and controller syntheses
of this paper were performed by Uppaal Tiga-0.17 on a PC with an Intel Core i3
CPU at 2.4 GHz, 4 GB of RAM, and running 64-bit Windows 7. We compare
the concrete and abstract models with respect to controller synthesis time and
the strategy size. Uppaal Tiga(-0.17) generates the same (size of) strategy for
the same configuration on the same machine. Controller synthesis time, on the

Configuration Period WCET BCET Load on Load on Load on

of of of core1 of core2 of core3 of

task task task task task task

S W D S W D S W D S W D S W D S W D

C1 10 10 10 5 5 5 4 4 4 60 45 5 10 80 5 10 5 85

C2 10 10 10 5 5 5 0 0 0 60 45 5 10 80 5 10 5 85

C3 10 15 20 5 5 5 0 0 0 60 45 5 10 80 5 10 5 85

C4 10 15 20 5 5 5 0 0 0 60 35 5 10 80 5 10 5 85

C5 10 15 20 5 5 5 0 0 0 43 37 7 11 67 19 23 13 59

C6 10 15 20 5 5 5 0 0 0 43 37 59 11 67 39 23 13 59

C7 10 15 20 5 5 5 0 0 0 33 33 33 33 33 33 33 33 33

C8 10 15 30 5 5 5 0 0 0 33 33 33 33 33 33 33 33 33

C9 10 20 30 5 5 5 0 0 0 33 33 33 33 33 33 33 33 33

C10 11 19 31 5 5 5 0 0 0 33 33 33 33 33 33 33 33 33

C11 5 7 11 5 5 5 0 0 0 33 33 33 33 33 33 33 33 33

C12 5 7 11 5 3 2 0 0 0 33 33 33 33 33 33 33 33 33

C13 5 7 11 5 3 2 5 3 2 33 33 33 33 33 33 33 33 33

C14 10 15 20 5 5 5 5 5 5 33 33 33 33 33 33 33 33 33

C15 10 15 20 5 7 11 5 7 11 33 33 33 33 33 33 33 33 33

C16 10 15 20 5 7 11 0 0 0 33 33 33 33 33 33 33 33 33

C17 10 15 20 7 7 7 7 7 7 33 33 33 33 33 33 33 33 33

C18 10 15 20 5 7 7 5 7 7 33 33 33 33 33 33 33 33 33

C19 10 15 20 7 7 11 7 7 11 33 33 33 33 33 33 33 33 33

C20 10 15 20 9 13 19 9 13 19 33 33 33 33 33 33 33 33 33

Table 1. Different configurations: combinations of release period, WCET, and BCET
have abstract time units; and loads are in % of the respective core

contrary, varies a little for the same configuration on the same machine. Therefore,
we synthesize a strategy for every configuration multiple times, and then take
the average synthesis time for each configuration.

Experimental results of the concrete and abstract models are presented in
Table 2. We have the following six observations from this table: OB1A) The
abstract model improves the scalability dramatically for every configuration of
Table 1. Other than aggressive abstraction, it encodes the whole model into
only one automaton to avoid parallel composition, because parallel composition
typically increases the size of the state space rapidly. OB2A) The larger the
difference between WCET and BCET the longer the analysis time, and the sparser
the strategy. Consider, for example, configuration C1 versus configuration C2, C7
versus C14, C12 versus C13, and C15 versus C16. OB3A) The smaller the least
common multiples of release periods the smaller state space, the shorter analysis
time, and the more compact strategy. Consider, for example, C2 versus C3, C8
versus C9, C9 versus C10, C10 versus C11, and so forth. For configurations C10

and C11, we use three different prime numbers as release times to get large least
common multiples of the release times. As a result, for these configurations, we
have sparse strategies along with long synthesis times even for the abstract model.
One should check the least common multiples of the release times of a system
before trying to (model and) synthesize controller for it using timed games.
Unfortunately, timed games-based analytical tools are currently not mature
enough to synthesize scheduler for practical systems having large least common
multiples of the release times. OB4A) On the other hand, the least common
multiples of the execution times have no visible impact on the analysis time or
the size of the strategy; (for instance, C14 versus C15, C15 versus C17, C17
versus C18, C18 versus C19, C19 versus C20, and so forth). OB5A) Variations
in the least common denominator of non-clock variables, such as different loads,
do not have any significant impact on the analysis; (for example, C4 versus C5
and C5 versus C7). OB6A) Uppaal Tiga takes less time and generates a smaller
strategy for a higher value for CFL; (for instance, configurations C4, C5, C7, C8,
C9, C10, C11, C12, C13, C14, C15, C16, C17, C18, C19, and C20.)

Probably, the first observation OB1A is the most important one, which
states that the scalability improves in the abstract model. Table 2 in Section 3
shows that the above observations are also true for the monolithic model and the
compositional model. The MCFL of system system1 depends on its configuration
and model. For the concrete model, the MCFL is unknown for configurations
C3, C4, C5, C7, C8, C9, C10, C11, C12, C13, C14, C15, C16, C17, C18, C19,
and C20; 1 for configurations C1 and C2; and 0 for configurations C6. For the
abstract model the MCFL is 2 for configurations C4, C5, C7, C8, C9, C10, C11,
C12, C13, C14, C15, C16, C17, C18, C19, and C20; 1 for configurations C1, C2,
and C3; and 0 for configurations C6.

3 Timed Process Automata

We propose timed process automata (TPA), a variant of TA, for the synthesis
of controllers for safety and reachability properties in time-critical plants [12].
To fulfill industrial requirements, we consider time-critical plants that are open
(communicate with external components without a controller), hierarchical (can
be decomposed and recomposed into smaller plants), and dynamic (the decom-
position can change over time). The proposed variant provides compositional
modeling with reuse for three different contexts and algorithmic analysis—a plant
needs to be modeled and analyzed using TPA only once when copies of it are used
as independent systems or multiple components of a larger plant or components
of different larger plants or a combination of all previous scenarios.

3.1 Processes

This section presents the syntax and the semantics: i) TPA model processes in
a way that each process is a dynamic hierarchical open time-critical plant, ii)
every process hierarchically contains its active callee processes—thus the control

of a process is hierarchically shared with its active callee processes, iii) the main
thread of a process can activate callee processes via communication channels, iv)
an active process can receive any input in any state, v) an active callee process
can deactivate itself in any state of the main thread of its caller process, and vi)
an activated callee process terminates within its worst-case execution time.

Timed Process Automata Timed process automata are a variant of TIOA.
Unlike a TIOA, a timed process automaton has a finite set of start actions As, a
finite set of finish actions Af , a final location lf , and a finite set of channels C.

The set of actions A = Ai ⊕ Ao ⊕ As ⊕ Af of a timed process automaton is a
disjoint union of finite sets of input actions Ai, output actions Ao, start actions As,
and finish actions Af . For every set of actions A, there exists a bijective mapping
between its start actions As and finish actions Af in such a way that for each start
action sN ∈ As there is exactly one finish action fN ∈ Af, and vice versa. These
actions can be used for starting and finishing processes associated with N. We
use s and f with the name N (of another timed process automaton) as a subscript
index (e.g., sN and fN) to denote a start action and a finish action, respectively.
We use the same subscript to indicate paired actions. We write a to denote an
action in general. Processes synchronize via instantaneous channels. Each timed
process automaton uses the same designated symbols for its public channel (∗)
and caller channel (4). We use c to denote a channel in general.

Definition 5 A timed process automaton is a tuple T = (L, l0, X, A,C, E, I, lf),
where L is a finite set of locations, l0 ∈ L is the initial location, X is a finite set
of clocks, A = Ai ⊕ Ao ⊕ As ⊕ Af is a finite set of actions as described above, C is a
finite set of channels, E ⊆ (L × A × C \ {4, ∗} × Φ(X) × 2X × L) ∪ (L × (Ai ∪ Ao) ×
{4, ∗} × Φ(X) × 2X × L) is a set of edges, I : L → Φ(X) is a total mapping from
locations to invariants, and lf ∈ L is a designated final location which does not
have any outgoing edges to other locations and has the invariant I(lf) = true.

Figure 5 presents TPA Brake-by-Wire, Position, and Actuator. They represent
the same Brake-by-Wire system of Figure 1. In Figure 5, each initial location

Fig. 5. The same Brake-by-Wire system of Figure 1 is modeled using TPA

has a dangling incoming edge, final locations are filled with black, and TPA
names are underlined. The final location lf of a timed process automaton may be
unreachable from the initial location (and then lf is not shown in the figure).

Process Executions Every instance of a timed process automaton is a process.
Two processes of the same timed process automaton represent two different copies
of the same system. Every process has a unique process identifier. A process
is a tuple P = (id(P), tpa(P), channel(P)), where id(P)6 is the process identifier,
timed process automaton tpa(P) defines the execution logic, and caller channel
channel(P) is the private channel to communicate with the caller and the other
processes which are started via the same channel. The public channel, the only
non-private channel, is used to communicate with the environment. A process
Q is a callee of P if P is the caller of Q. We use ⊥ to denote the caller channel
of the root process. Every process P of tpa(P) = (L, l0, X, A,C, E, I, lf) has its own
copy P.c of channel c∈C. We write P.c.a meaning that action a is performed via
channel P.c.

At the same time, no two processes of the same timed process automaton can
have the same caller channel. A process P, therefore, may have at most |C | × |As |

active callee processes. For example, an instance of automaton Brake-by-Wire of
Figure 5 can activate at most two instances of automaton Position of Figure 5 at
the same time via two different channels front and rear, where the instance of
Brake-by-Wire is the caller process of the two instances of Position, which are the
callee processes of the instance of Brake-by-Wire. A subprocess is a callee or a
callee of a subprocess, recursively. For example, every instance of Brake-by-Wire
has six subprocesses: two instances of Position and four instances of automaton
Actuator of Figure 5. Every process hierarchically contains all of its subprocesses.
Two processes are siblings if they have the same caller channel. The caller can
use separate channels to differentiate control over different callees, even if they
are processes of the same automaton.

A process P starts a process Q of an automaton tpa(Q) via channel P.c by
traversing an edge e1 = (, stpa(Q), c, , ,) labeled by a start action stpa(Q) if there
exists no active process of tpa(Q) with caller channel P.c; dually, P traverses an
edge e2 = (, ftpa(Q), c, , ,) labeled by the paired finish action ftpa(Q) whenever Q
reaches its final state. No edge labeled by ftpa(Q) will ever be traversed if tpa(Q)
is a non-terminating timed process automaton. Correspondingly, note that exist-
ing processes may start different processes of tpa(Q)—but always with different
process identifiers. However, only P listens to finish action ftpa(Q) via channel
channel(Q). Process P traverses an edge e = (, a, c, , ,) when P receives (respec-
tively, sends) an input (resp., output) a in channel P.c. Process P communicates
with its callee Q via channel(Q) and with the environment via channel P.∗.

We formalize the above mechanics of execution by first giving the semantics of
the main thread of the process, ignoring its subprocesses in Definition 6 and then
giving the semantics of the entire process in Definition 7. The standalone semantics
of a process are essentially the same semantics as a standard TIOA [3,13,14,11].

6 To avoid clutter, we abuse notation by writing P instead of id(P).

The main difference is that states are decorated with process identifiers and edges
with channel names to distinguish different instances of the same timed process
automaton in Definition 7. Also the caller channel 4 is instantiated for an actual
parent process. The technical reason for this will become apparent in Definition 7.

Definition 6 The standalone semantics S~P� of a process P = (P, tpa(P), channel
(P)) is a timed I/O transition system S~P� = (L×RX

≥0×{P}, (l0, 0, P), AP,−�)7, where
tpa(P) = (L, l0, X, A,C, E, I, lf), 0 is a function mapping every clock to zero and
−�⊆ (L×RX

≥0 × {P})× (AP ∪R≥0)× (L×RX
≥0 × {P}) is the transition relation generated

by the following rules:

Action For each clock valuation v ∈ RX
≥0 and each edge (l, a, c, φ, λ, l′) ∈ E such

that v |= φ, v′ = v[x 7→ 0]x∈λ, and v′ |= I(l′) we have (l, v, P)
P.c.a
−−� (l′, v′, P) if

c , 4, otherwise (l, v, P)
channel(P).a
−−−−−−−−−−� (l′, v′, P)

Delay For each clock valuation v ∈ RX
≥0 and for each delay d ∈ R≥0 such that

(v + d) |= I(l) we have (l, v, P)
d
−� (l, v + d, P).

A standalone state of a process P is (l, v, P), where l is a location and v is a
clock valuation.

Theorem 1 The transition system induced by the standalone semantics of a
process is time deterministic, time reflexive, and time additive

Proof. The Action transition rule does not allow hidden or internal transition.
All non-action and delay related state changes, thus, occur according to the Delay
transition rule. From this rule we can derive:

– The only standalone state that can be reached from standalone state (l, v, P)
after delaying d∈R time units is (l, v + d, P),

– The only standalone state that can be reached from standalone state (l, v, P)
after delaying 0 time unit is (l, v, P), and

– For any two delays d1 ∈R and d2 ∈R, the only standalone state that can be
reached from standalone state (l, v, P) after delaying d1 and d2 time units is
(l, v + d, P) when d1 + d2 = d.

Therefore, the transition system induced by the standalone semantics of a process
is time deterministic, time reflexive, and time additive.

Ground TPA are TPA that cannot perform a start or finish action (As ∪ Af =

∅). Automaton Actuator in Figure 5, for instance, is a ground timed process
automaton. Compound TPA are TPA that can perform a start or finish action
(As ∪ Af , ∅). For example, Brake-by-Wire and Position in Figure 5 are compound
TPA. A well-formed channel cannot be used by two processes sharing an output
action. Processes of a well-formed timed process automaton have only well-formed

7 AP is the set of actions where action names are constructed using regular expression
(P“.”C | channel(P))“.”A.

channels. Non-recursive TPA are defined inductively using the following rules:
1) every ground timed process automaton is a non-recursive timed process
automaton, and 2) a compound timed process automaton which performs only
those start and finish actions whose subscripts are the names of some other
existing non-recursive TPA is a non-recursive timed process automaton. All
three automata in Figure 5, for example, are non-recursive TPA. A process of
a non-recursive timed process automaton hierarchically contains only a finite
number of subprocesses. The caller may activate an idle process, iteratively. Thus
a process may activate a subprocess an arbitrary number of times. In this section,
we are only concerned with non-recursive well-formed TPA.

A standalone final state of a process P is (lf , v, P), where v is any clock valuation.
We use stP, stP

0, cP, and stP
f to denote a standalone state, the standalone initial

state, the set of channels, and a standalone final state of process P, respectively.
We say that a process P is A′-enabled for a channel P.c if for every reachable

standalone state stP we have stP P.c.a
−−� st′P for some standalone state st′P for each

action a ∈ A′. We require that each process P is Ai-enabled (input enabled) for
all channels of P, and Af -enabled (finish enabled) for all channels of P other than
channels P.4 and P.∗ to reflect the phenomenon that inputs from the environment
and the deaths of callees are independent events, beyond the control of a process.
We present the semantics of a process in the following:

Definition 7 The global operational semantics G~P� (semantics ~P� for short)
of a process P = (P, tpa(P),⊥) are a timed I/O transition system G~P� = (2s, s0,P×
C×A,→), where s is the set of all the standalone states of all the processes in the
universe, tpa(P) = (L, l0, X, A, E, I, lf), s0 = {stP

0 } is the initial state, P is the set of
all the processes in the universe, C is the set of all the channels in the universe,
A is the set of all the actions in the universe, and →⊆ 2s × (P × C ×A ∪ R≥0) × 2s

is the transition relation generated by the following rules:

stQ Q.c.sT
−−−−� st′Q and c < {4, ∗} {stW ∈ s | channel(W) = Q.c and tpa(W) = T } = ∅

stQ ∈ s (R,T,Q.c) is a freshly started process

s
Q.c.sT
−−−−→ {s \ {stQ}} ∪ {stR

0 , st′Q}
Start

stR
f , stQ ∈ s and channel(R) = Q.c

{stU ∈ s | channel(U) ∈ CR} = ∅ stQ
Q.c.ftpa(R)
−−−−−−−−� st′Q

s
Q.c.ftpa(R)
−−−−−−−→ {s \ {stR

f , stQ}} ∪ {st′Q}
Finish

s′ = {st′Q | stQ d
−� st′Q and stQ ∈ s and (stQ , stQ

f
or |s| = 1)} |s| = |s′|

s
d
−→ s′

Delay

a <
⋃

stQ∈s Atpa(Q)
o s′ = {stQ ∈ s | stQ Q.∗.a

−−−� st′Q}

s
a
−→ {s \ s′} ∪ {st′Q | stQ Q.∗.a

−−−� st′Q and stQ ∈ s}
Input

stQ W.c.a
−−−� st′Q and a ∈ AQ

o and stQ ∈ s

s′ = {stR ∈ s | stR W.c.a
−−−� st′R and W.c is a channel}

s
Q.c.a
−−−→ {s \ s′} ∪ {st′R | stR W.c.a

−−−� st′R and stR ∈ s}
Output

A global state (s) is a set which holds standalone states of all active processes.
The Start rule states that the initial standalone state (stR

0) of a freshly started
callee (R) is added to the global state whenever the corresponding start action
(Q.c.sT) is performed by its caller (Q). The rule also states that no two active
processes can have the same timed process automaton (tpa(W) = T) and the
same caller channel (channel(W) = Q.c). The Finish rule prescribes that the
standalone-final state (stR

f) of a callee (R) is removed from the global state and
the caller executes the corresponding finish action (Q.c.ftpa(R)) whenever that callee
is in the standalone-final state and no standalone state (stU) of its subprocesses
is in global state. Thus the rule defines global-final state (final state for short)
of a process: a process is in its the final state when the process is in its final
location and the process has no active subprocess. The Delay rule declares that
globally a process can delay if that process and all of its active subprocesses can
delay in their respective standalone semantics. Every subprocess is a part of the
root process and thus if a subprocess is performing an action (or not idle) then
the root process is also not idle. The rule also says that a process cannot delay if
that process or any of its subprocess is in its global final state. That means a
process finishes as soon as it reaches its final state. The Input rule states that a
process (Q) receives an input (a) from the environment via channel id.∗ (Q.∗).
Rule Output declares a process (Q) send an output (a) via channel id.c (W.c)to
others who share id.c.

Theorem 2 The transition system induced by the global semantics is time de-
terministic, time reflexive, and time additive.

Proof. The global semantics of a process of a ground timed process automaton is
its standalone semantics. Therefore, the transition system induced by Definition 7
for that process is time deterministic, time reflexive, and time additive.

Standalone states of a subprocess can be part of global states only after
that subprocess is started. Whenever a subprocess reaches its terminal state, its
standalone states can never be part of the global state because of the Delay rule
and the Finish rule. Therefore, a nonactive subprocess has no impact on the
transition system. None of the action transition rules allows hidden or internal
transition. All non-action and delay related state changes, thus, occur according
to the Delay transition rule. From this rule we can derive for a process P having
n active subprocesses P1, P2, · · · , Pn:

– The only global state that can be reached from global state {(l, v, P), (l1, v, P1),
(l2, v, P2), · · · , (ln, v, Pn)} after delaying d ∈R time units is {(l, v + d, P), (l1, v +
d, P1), (l2, v + d, P2), · · · , (ln, v + d, Pn)},

– The only global state that can be reached from global state {(l, v, P), (l1, v, P1),
(l2, v, P2), · · · , (ln, v, Pn)} after delaying 0 time units is {(l, v, P), (l1, v, P1), (l2, v, P2),
· · · , (ln, v, Pn)}, and

– For any two delays d1 ∈R and d2 ∈R, the only global state that can be reached
from global state {(l, v, P), (l1, v, P1), (l2, v, P2), · · · , (ln, v, Pn)} after delaying d1
and d2 time units is is {(l, v+d, P), (l1, v+d, P1), (l2, v+d, P2), · · · , (ln, v+d, Pn)}.

Therefore, the transition system induced by Definition 7 is time deterministic,
time reflexive, and time additive.

The process semantics, hence, defines a well-formed timed I/O transition system.
This allows us to use TA as a basis for analyzing TPA.

A local run of the main thread of a process P is a standalone run of P for
which there exists a global run of P such that every transition of that standalone
run occurs in that global run. The local behavior of the main thread of P consists
of all of its local runs.

3.2 Analysis

We are interested in controller synthesis of safety and reachability properties of
TPA. This section explains how such analyses can be performed using the theory
of timed games. A standard TIOA can be viewed as a concurrent two-player
timed game, in which the players decide both which action to play, and when
to play it. The input player represents the environment, and the output player
represents the system itself. Similarly, the main thread of a process acts as a
concurrent two-player timed game: the environment plays input transitions and
finish transitions, and the main thread of the process plays output transitions and
start transitions. Let’s consider interactions of a process defined in the previous
section. A process controls its output and start transitions. After starting a callee,
the main thread of the caller knows that the paired finish action will arrive within
the worst-case execution time of the associated callee. However, the main thread
does not have any control on the exact arrival time of a finish action. Finish
transitions along with input transitions are uncontrollable. The environment of
the main thread of a process consists of all the connected processes (such as
caller, siblings, and subprocesses) and all unconnected entities.

A global state of a process is safe if and only if all of the standalone states
which it holds contain no unsafe location. A safety property asserts that the
plant remains inside a set of global-safe states regardless of what the environment
does. We are interested in Safety Property I: Given a process P and a set of
unsafe locations LU of P, can the controller avoid LU in P regardless of what
the environment does? A global state of a process is a target state if and only
if at least one of its standalone states contains a target location. A reachability
property asserts that the plant reaches any of the global-target states regardless of
what the environment does. We are interested in Reachability Property I: Given a
process P and a set of target locations LT of P, can the controller reach a location
of LT in P regardless of what the environment does?

The monolithic analysis constructs a static network of automata to represent
all possible global executions by mimicking the hierarchical call tree of the
analyzed process. It simulates a process execution by changing states of pre-
allocated TIOA which fall into two groups: a root automaton to simulate the local

Fig. 6. A generalized view of the standalone automata construction

behaviors of the main thread of the root process and a finite set of standalone
automata to simulate the local behaviors of the main threads of the subprocesses.

Standalone Automata We construct a standalone automaton for each subprocess
to simulate the main thread of that process. To construct a standalone automaton,
we prefix the timed process automaton with a simulated start action and suffix
it with a simulated finish action. We use non-negative finitely bounded integer
variables8 in standalone automata to count the number of active callees, in order
to detect termination. We rename actions (e.g., a) of processes uniformly to encode
channel names (e.g., P.c) in action names (e.g., P.c.a) of standalone automata;
because standard TIOA do not support private channels. A standalone automaton
includes all the locations and slightly altered edges of the corresponding timed
process automaton. Moreover, each standalone automaton has two additional
locations: a new initial location lid0 to receive (resp., send) a start (resp., finish)
message from (resp., to) the caller, and a new unsafe location BAD to prevent
the automaton from waiting in final states instead of finishing. Every start
(resp., finish) increments (resp., decrements) a counter variable n. The automaton
represents finishing of the process in the final location when n = 0.

Definition 8 The standalone automaton of process P is standalone(P) = (L ∪
{lP0 , BAD}, lP0 , X∪{x

P}, {n}, AP, EP, IP), where tpa(P) = (L, l0, X, A,C, E, I, lf), lP0 and
BAD are two newly added locations, xP is a newly added clock, n is a non-
negative finitely bounded integer variable with the initial value 0, AP

o = A′o ∪
A′s ∪ {channel(P).ftpa(P)} and AP

i = A′i ∪ A′f ∪ {channel(P). stpa(P), P.∗ .u} such that
A′m = {channel(P).a | a ∈ Am} ∪ {P.c.a | a ∈ Am and c ∈ C \ {4}} where m ∈ {o, s, i, f}
and newly added actions are channel(P).stpa(P), channel(P).ftpa(P), and P.∗.u. The
set of edges EP contains

– Converted edges that do not communicate via caller channel 4:
• An edge (l, P.c.a, φ, ξ, λ ∪ λ′, l′) ∈ EP for each edge (l, a, c, φ, λ, l′) ∈ E,

where c ∈ C \ {4}, the integer assignment is empty ξ = ∅ when a ∈ Ao ∪ Ai,
ξ = {n − −} when a ∈ Af , and ξ = {n + +} when a ∈ As

– Converted edges that communicate via caller channel 4:

8 The use of non-negative finitely bounded integer variables can be avoided if a more
cumbersome encoding is used.

Fig. 7. A generalized view of the root automata construction

• An edge (l, channel(P).a, φ, ∅, λ∪λ′, l′) ∈ EP for each edge (l, a,4, φ, λ, l′) ∈ E
– Additional new edges that simulate activation and deactivation:
• Three more edges (lP0 , channel(P).stpa(P), ∅, ∅, X, l0), (lf , channel(P).ftpa(P), n =

0 ∧ xP = 0, ∅, ∅, lP0), (lf , P.∗.u, n = 0 ∧ xP > 0, ∅, ∅, BAD) are in EP

λ′ = ∅ when l′ , lf , otherwise λ′ = {xP}. The invariant function IP maps each
location l ∈ L to I(l) and maps each location l ∈ {lP0 , BAD} to true.

The standalone semantics of automaton tpa(P) and the semantics of standalone
automaton standalone(P) are essentially the same in a way that both have the
same safety and reachability properties (that we consider) of the corresponding
process.

Root Automata We construct a root automaton to simulate the main thread of
the analyzed process.

Definition 9 To analyze a timed process automaton tpa(P) = (L, l0, X, A,C, E, I, lf),
we construct the root automaton root(P) of process P. Standalone automaton
standalone(P) is slightly different from root(P). The differences are:

– The caller channel is always ⊥,
– The initial location of root automaton root(P) is the location l0, which is also

the initial location of tpa(P), and
– Root automaton does not have edge (lP0 ,⊥.stpa(P), ∅, ∅, X, l0), which simulates

activation of P.

Monolithic Analysis Model Monolithic analysis models can be constructed in an
algorithmic process.

Definition 10 The monolithic analysis model of a ground timed processes au-
tomaton (such as Actuator) is its root automaton. We construct the monolithic
analysis model of automaton tpa(P) in the following iterative manner:

First Step: We construct the root automaton root(P).
Iterative Step: We construct a standalone automaton for each triple (Q, sT , c),

where Q is process for which we have constructed a standalone automaton or
the root automaton, tpa(Q) = (L, l0, X, A,C, E, I, lf), c ∈ C \ {4, ∗}, sT ∈ As, and
(, sT , c, , ,) ∈ E.

Fig. 8. A compositional (sound) analysis model on the left and a monolithic (sound
and complete) analysis model on the right of automaton Brake-by-Wire, where P is a
process of the automaton, R1 is the root automaton, S2–S7 are standalone automata,
and D2–D3 are duration automata

Figures 6–7 present a generalized view of the standalone and root automata
constructions ([22] presents monolithic analysis models of processes of automata
Actuator, Position, and Brake-by-Wire). The monolithic analysis model constructs
a parallel composition of all the TIOA constructed above. The construction is
finite, and the composition is a TIOA, because we consider only non-recursive
well-formed TPA.

We add avoiding BAD locations to our safety and reachability properties
analyses. We convert Safety Property I to Safety Property II: Given a process P
and a set of unsafe locations LU of P, can the controller avoid LU and all the BAD
locations in the analysis model regardless of what the environment does? We also
convert Reachability Property I to Reachability Property II: Given a process P and
a set of target locations LT of P, can the controller reach a location of LT in the
analysis model avoiding all the BAD locations regardless of what the environment
does? Special actions are added with TPA to construct corresponding root and
standalone automata to simulate starts and finishes of processes. Avoiding all the
newly added BAD locations in the analysis model ensures that each caller process
performs the corresponding finish action as soon as the callee finishes—exactly as
described in the global semantics. Executions (of the analysis model) that avoid
all the newly added BAD locations, when projected on the original alphabet, are
identical to the executions of the global semantics. Thus, if a Safety Property I
(resp., Reachability Property I) holds for a process then its corresponding Safety
Property II (resp., Reachability Property II) also holds in the analysis model, and
vice versa. Definitions 8, 9, and 10 provide techniques to construct standalone
automata, root automata, and monolithic analysis models, respectively. Thus
one can remove manual alterations—such as manual renaming—by making these
constructions automatic.

3.3 Algorithmic State-Space Reduction

We introduce a state-space reduction technique for TPA to counteract state-
space explosion. The technique relies on compositional reasoning, aggressive
abstractions, and reducing process synchronizations. In the monolithic analysis
of Section 3.2, a callee can be represented by an arbitrary number of stan-
dalone automata, and each of these automata can be arbitrarily large. The

compositional reasoning technique described in this section replaces hierarchical
trees of standalone automata representing subprocesses with simple abstractions
(Figure 8)—so called duration automata.

Duration Automata A duration automaton (Figure 9) is TIOA with only two loca-
tions: the initial location (lP

0) and the active location (lP
1). A duration automaton

of an analyzed process abstracts all the information of global executions of the
process other than its worst-case execution time (WCET). It can capture safety
and reachability properties of interest. The minimal-time safe reachability of a
target location is the minimal-time reachability [23,24] for which the controller
has a winning strategy to reach that target location by avoiding unsafe states.
Like [25,26], we assume that the WCET W of a process P is the minimal-time
safe reachability time to reach location lP0 of automaton root(P) in the analysis
model of P. The WCET of P is unknown (W =∞) when there is no winning
strategy for the minimal-time safe reachability to reach location lP0 of root(P).

Definition 11 The duration automaton of process P is duration(P) = ({lP0 , l
P
1 }, l

P
0 ,

{xP}, ∅, AP, EP, IP), where tpa(P) = (L, l0, X, A,C, E, I, lf), AP
i = {channel(P).stpa(P)},

AP
o = {channel(P).ftpa(P)}, the set of edges EP = {(lP0 , channel(P).stpa(P), ∅, ∅, {xP}, lP1),

(lP1 , channel(P).ftpa(P), ∅, ∅, ∅, lP0)}, invariant IP maps location lP0 to true, and IP

maps location lP1 to xP ≤W.

Compositional Analysis Model We construct the compositional analysis model
in a bottom-up manner: analysis of a compound process is performed only after
analyzing all its callees. Like the monolithic analysis, the compositional analysis
model of a ground timed process automaton tpa(Q) (such as Actuator) is a
root automaton of process Q. That TIOA is analyzed to construct a duration
automaton of Q. For a compound process P, we analyze automaton root(P) in the
context of the duration automata of its callees (instead of the entire hierarchical
structure of subprocesses).

Definition 12 We construct the compositional analysis model of a timed process
automaton tpa(P) in the following manner:

First Step: We construct the root automaton root(P).
Second Step: We construct a duration automaton for each triple (P, sT , c), where

tpa(P) = (L, l0, X, A,C, E, I, lf), c ∈ C \ {4, ∗}, sT ∈ As, and (, sT , c, , ,) ∈ E.

Figure 10 presents the compositional analysis procedure of Brake-by-Wire (the
detailed models are presented in [22]). The compositional model construction

Fig. 9. A generalized view of duration automata construction

Fig. 10. Steps of the compositional analysis of automaton Brake-by-Wire: root(P0),
tpa(P0) = Actuator means root automaton of process P0, where P0 is an instance of
Actuator, and similar interpretations apply for others.

procedure terminates, and the composition of all the above TIOA is a TIOA,
because we consider only non-recursive well-formed TPA.

The duration automaton of a process can capture safety properties: if a
process has a winning strategy for a safety game, then both locations of its
duration automaton are considered safe; otherwise, the active location (lid1) of the
duration automaton is added to the set of unsafe locations LU . Now this duration
automaton can be used as a sound context to analyze the caller automaton for
safety. A safety property holds for a compound process when the main thread
of the process satisfies the property locally and allows the activation of a callee
only if that callee also satisfies the property. Duration automata can also capture
reachability properties: if a process has a winning strategy for a reachability
game then the active location (lid1) of the duration automaton is added to the set
of target locations LT ; otherwise, no target location is specified for this callee.
This duration automaton can be used as a sound context to analyze the caller
automaton for reachability. A reachability property holds for a compound process
when the main thread of the process can reach the target locally or can activate
a callee where the property holds. Like the monolithic analysis, the compositional
analysis is performed for Safety Property II and Reachability Property II.

The compositional analysis is sound. A duration automaton does not contain
any input and output actions of its process. Hence, the root automaton in a
compositional model does not synchronize with the input and output actions
of its callees—instead the automaton synchronizes for those actions with the
environment. The duration automaton was created under the assumption that
inputs are uncontrollable, so ignoring synchronization with inputs is sound.
Similarly, it is sound to open the inputs of the root automaton from a callee,
as they will be treated as uncontrollable and unpredictable actions, so will be
analyzed in a more“hostile” environment than before the abstraction. Therefore, if

a property holds in the compositional analysis then it also holds for the monolithic
analysis. In other words, if a safety or reachability property holds in compositional
analysis then it holds in the global semantics.

Our compositional analysis is not complete because it is based on potentially
quite coarse abstractions. In compositional analysis, abstracting from the input
and output actions of callees and subprocesses causes the process to be analyzed in
a more “hostile” environment (i.e., an environment in which no assumptions what-
soever are made about the timing and relative order of these actions. Therefore,
the process might have a winning strategy in its actual operating environment,
when our compositional analysis produces the opposite result. Definitions 9,
11, and 12 provide algorithmic techniques to construct root automata, dura-
tion automata, and compositional analysis models, respectively. Thus one can
automatically reduce state space by implementing our constructions.

3.4 Experimental Results

In all the steps of Figure 10, the largest composition contains only three automata,
and except for the root automaton all are tiny duration automata. A monolithic
analysis model of Brake-by-Wire is a composition of seven automata presented in
[22]. A duration automaton always has a small constant size (modulo the size of
the WCET constant), and so its state space is very simple (actually the discrete
state space is independent of the input model).

All automata of this experiment are presented in [22]. First, we model the
central reconfiguration service and three tasks: S, W, and D using TPA. The service
automaton models task releases and terminations. An unsafe location in this
automaton is unreachable—a central reconfiguration service (or a controller)
exists that makes the plant fault tolerant—when the total load of no core can
exceed its load limit. Similar to the concrete model, TPA of the tasks keep all the
internal states of the corresponding tasks. Like the abstract model, the currently
assigned core information is encoded into the service automaton. These TPA
together model system system1 of Section 2 in a more abstract way than the
concrete model but in a less abstract way than the abstract model.

After that, according to the construction technique of Section 3.2, we construct
the standalone automata of the TPA representing tasks and the root automaton
of the timed process automaton representing the central reconfiguration service.
The composition of these four TIOA represents a monolithic analysis model
of system system1 of Section 2, and we simply call this model the monolithic
model. Configurations of system system1 of Section 2 are combinations of different
worst-case loads of tasks on different cores, different worst-case execution times
of tasks, different best-case execution times of tasks, and different release periods
of tasks. Existence of a central reconfiguration service (or controller) depends on
the current configuration. At the end, according to the construction technique of
Section 3.3, we construct the compositional model, which is a composition of the
root automaton of the previous step and three duration automata. We performed
the same experiments on the compositional model and the and the monolithic
model that we performed on the concrete model (in Section 2), and the abstract

model (in Section 2). Table 2 shows that the compositional model produces a
much smaller state space than the monolithic model.

The monolithic model produces large state spaces, and for many configurations
state-space explosion occurred, such as for configurations C3 (for CFL 1), C4, C5,
C7, C8 (for CFL 2), C9, C10, C11, C12, C13, C14 (for CFL 2), C15 (for CFL 2),
C16, C17 (for CFL 2), C18 (for CFL 2), and C19 (for CFL 2). Experimental results
of the monolithic and compositional models show: OB1B) Abstraction improves
the scalability dramatically for every configuration of Table 2. Experiments for
different configurations for the same system revealed that speed up of two orders of
magnitude is possible with the compositional technique, while maintaining enough
precision. The size of composition in the monolithic analysis is exponential in the
depth of the hierarchy, due to a product construction (and it is also linear in the
multiplication of sizes of all included standalone automata). In the compositional
analysis, the depth of the hierarchy is constant (only two layers) and we only take
a product of one root automaton with several constant size duration automata;
this explains why the obtained speed-ups are so dramatic. The efficiency gains
are primarily due to the coarse abstraction of safety and reachability properties
of an arbitrarily large callee into a tiny duration automaton. Abstraction and
compositional reasoning together might provide similar speed ups for TIOA in
Section 2; and the restrictions that TPA impose on models allow one to automate
the procedure. OB2B) For the monolithic models, the larger the difference
between WCET and BCET the longer the analysis time, and the sparser the
strategy, for example, configuration C1 versus configuration C2, C7 versus C14,
and C15 versus C16. Unlike the other models, differences between the WCET
and the corresponding BCET in the compositional model has no impact on the
controller synthesis time or on the strategy size—for example, C1 versus C2, C7
versus C14, C12 versus C13, and C15 versus C16—because duration automata
do not keep details regarding the best-case execution times. OB3B) The smaller
the least common multiples of release periods the smaller state space, the shorter
analysis time, and the more compact strategy, for instance, C2 versus C3, C8
versus C9, C9 versus C10, C10 versus C11, and so forth. OB4B) The least
common multiples of the execution times have no clear impact on the analysis
time or the size of the strategy, for example, C14 versus C15, C15 versus C17, C17
versus C18, C18 versus C19, C19 versus C20, and so forth. OB5B) Variations
in the least common denominator of non-clock variables, such as different loads,
do not have any significant impact on the analysis, for instance, C4 versus C5
and C5 versus C7. OB5B) Uppaal Tiga takes less time and generates a smaller
strategy for a higher value for CFL, for instance, configurations C4, C5, C7, C8,
C9, C10, C11, C12, C13, C14, C15, C16, C17, C18, C19, and C20.

Observations in the above match with the observations presented in Section 2.5.
The concrete model and the monolithic model could be constructed using different
abstractions or assumptions; consequently, a comparison between these two
models may convey misleading insights. Similarly, comparing the results of the
abstract model and the compositional model may not be useful. The main difference

Configurations CFL Comparison
of concrete abstract monolithic compositional

Table 1 model model model model
time size time size time size time size

C1
2 No controller exists
1 94.20 290663 0.08 73 39.08 72608 0.09 76

C2
2 No controller exists
1 115.71 296524 0.11 107 71.41 83971 0.09 76

C3
2 No controller exists
1 Out of memory 0.14 242 Out of Memory 0.12 136

C4
2

Out of memory
0.25 712

Out of memory
0.19 439

1 0.14 266 0.08 154

C5
2

Out of memory
0.25 712

Out of memory
0.19 439

1 0.14 266 0.08 154

C6
2

No controller exists
1

C7
2

Out of memory
0.25 712

Out of memory
0.20 439

1 0.14 266 0.11 154

C8
2

Out of memory
0.15 420 Out of memory 0.14 278

1 0.11 159 95.76 106960 0.09 101

C9
2

Out of memory
0.22 632

Out of memory
0.15 346

1 0.14 234 0.10 124

C10
2

Out of memory
178.54 40668

Out of memory
64.60 18321

1 73.32 14647 22.53 5868

C11
2

Out of memory
4.91 6274

Out of memory
5.05 5517

1 1.65 2277 1.87 1783

C12
2

Out of memory
4.07 6272

Out of memory
3.18 4124

1 1.65 2275 1.19 1338

C13
2

Out of memory
1.93 3639

Out of memory
3.18 4124

1 0.81 1332 1.19 1338

C14
2

Out of memory
0.20 539 Out of memory 0.20 439

1 0.14 204 78.12 118477 0.11 154

C15
2

Out of memory
0.15 431 Out of memory 0.21 530

1 0.11 164 47.30 77548 0.13 183

C16
2

Out of memory
0.24 718

Out of memory
0.21 530

1 0.14 270 0.13 183

C17
2

Out of memory
0.16 458 Out of memory 0.20 462

1 0.12 173 59.26 109982 0.13 161

C18
2

Out of memory
0.16 485 Out of memory 0.20 453

1 0.10 184 50.29 73914 0.12 158

C19
2

Out of memory
0.14 406 Out of memory 0.21 540

1 0.10 154 45.14 84370 0.13 186

C20
2

Out of memory
0.14 358 94.07 179479 0.26 633

1 0.09 135 34.14 63791 0.15 216

Table 2. Comparisons of the concrete, abstract, monolithic and compositional models
with respect to synthesis time (in seconds) and the strategy size (in kilobytes)

between these two models is the algorithmic construction (of the compositional
model), which is a key requirement for industrial usage.

4 Conclusions

In Section 2, we have presented the synthesis process using a mixed-criticality
AMP system having a fault-intolerant criticality-unaware scheduler with fixed
allocation. This includes two different design principles to model the problem
using timed games, based on a selection of simplifications and abstractions. We
compared the models for scalability, showing that solving the problem using strat-
egy synthesis for timed games is feasible. We have observed that reducing action
based synchronization, the state space, and especially shared states, improves
efficiency of algorithms. Our reconfiguration services are distributed, and the
synthesis process applies to mixed-criticality systems, both in symmetric and
asymmetric scenarios. We demonstrated this on a case study from the automo-
tive domain. This is the first case study applying timed games to the synthesis
reconfiguration services for fault-tolerance.

In Section 3, we have presented TPA that captures dynamic activation and
deactivation of continuous-time plant processes and private communication among
the active processes. We have provided a safety and reachability analysis technique
for non-recursive well-formed TPA. We have also designed an abstraction- and
compositional reasoning-based state-space reduction technique for automated
analysis of large systems. Our analysis techniques can be applied in practice using
any standard timed games solver such as Uppaal Tiga [20] and Synthia [21]. Timed
process automata can model private communication and open systems. Moreover,
TPA provide two important features for dynamic open time-critical systems
development: (i) compositional modeling with reusable designs for different
contexts and (ii) algorithmic state-space reduction technique.

Classification

Timed process automata fall in the class of TA with resources [4] because of their
ability to model dynamic behaviors, which is required when resource constraints do
not permit one to activate all the components at the same time. Task automata
[27,4] can model only two layers of hierarchy and only closed systems. Our
proposed variant can model any numbers of hierarchies and can model both
closed and open systems. Moreover, TPA can model private communication
among components. More precisely, the model is a direct generalization of task
automata [28], dynamic networks of TA [29], and callable TA [30]. These three
variants model only closed systems, while TPA can model both closed and
open systems. Task automata model only two layers (a scheduler and its tasks)
of hierarchy, while TPA, dynamic networks of TA [29], and callable TA are
able to model any numbers of hierarchies. Unlike TPA, none of them supports
private communication, provides compositional modeling with reusable designs
for different contexts, or algorithmic state-space reduction technique.

Dynamic networks of continuous-time automata have also been studied in the
context of hybrid automata [31,32]. These works model physical environments
using differential equations, which restrict the kinds of environments that can be
described. In practice, large differential equations make analyses unmanageable,
or can only give statistical guarantees [32]. These works focus on system dynamics,
and do not support private communication. Timed process automata can be
considered as a member of the class of TA with succinctness [4] because they hide
many design details from the designers to achieve succinctness (like TA variants
with urgency [33,34,4]). Timed process automata are also timed game automata
[9,18,14,11] because the new variant uses timed games for analysis.

Limitations and Future Work

Use of TA in industry will be widespread if researchers can triumph over TA’s
state-space explosion problem and TA’s realizability problem. Accurate TA
implementability is getting more attention every day. Usually robustness analysis
introduces larger state-spaces for example, Figure 3 of [35]. A study on the
comparison and relation between these two problems—state-space explosion and
robust analysis—of TA would be an interesting work for the research community.
Our strong involvement with (automotive) industry and long experience in TA
helped us to understand that state-space explosion is the biggest obstacle for TA:
to improve computational efficiency of symbolic semantics and data structures
in a way that their computational complexity should be almost as expensive as
their discrete-time counterpart.

Timed process automata allow compositional modeling with reuse by using
channel-based dynamic renaming. One may explore this renaming process for other
types of timed or hybrid or untimed auotmata to develop compositional modeling
with reuse for the respective automata. One limitations for our compositional
modeling with reuse is it handles only three representations [22]. We, however, do
not know other design aspects for which manual design alterations can be replaced
by algorithmic techniques. Investigating numerous large industrial models and
surveying modeling experts might help one to find other design aspects that
can be automated. Such type of investigation may also provide evidence that
compositional modeling with reuse of TPA reduces modeling errors in practice.
Findings of these investigations may encourage researchers to extend (timed
process or other) automata’s capability for compositional modeling with reuse.

Timed process automata facilitate algorithmic state-space reduction technique
for timed games-based controller synthesis of dynamic hierarchical plants. Theo-
retically manual state-space reduction may achieve similar or smaller state-spaces
than algorithmic state-space reduction. Even practically it is usually true for
smaller systems for example, the comparisons in Table 2. However, efficiency of
algorithmic state-space reduction increases with depth of the control hierarchies
in practice. Dynamic hierarchical systems with deep control hierarchies make
up a small portion of all types of systems. Therefore, algorithmic state-space
reduction techniques for standard TIOA are much more important and desir-
able than algorithmic state-space reduction techniques for TPA. We strongly

encourage researchers to develop an algorithmic state-space reduction technique
for standard TIOA. A similar but larger challenge is to develop a state-space
reduction technique for all types of TA.

This paper considers only location-based safety and location-based reachability
properties of TPA. Investigation of other types of properties—including more
general safety and reachability properties—may produce interesting outcomes.
We use simple abstract model duration automata for our state-space reduction
technique. Others may prefer to use different kinds of abstract models for this
purpose. Even for some scenarios or properties our duration automata might be too
abstract to analyze. One may consider other state-space reduction techniques for
TPA. For example, compositional model reduction of discrete time systems (DES)
has been done by generalizing observers for deterministic DES to nondeterministic
DES and characterizing using the join semilattice of compatible partitions of a
transition system to achieve efficient algorithms [36,37].

It would be interesting to consider a model transformation from a subset
of the real-time π-calculus [38,39] to TPA. This transformation might enable
controllability analysis of π-calculus for open systems. The converse reduction from
TPA to real-time π-calculus could also give several advantages: understanding
TPA semantics in terms of the well-established π-calculus formalism, access to
tools developed for real-time π-calculus [38], which might permit the analysis of
recursive processes; it would also give a familiar automata-like syntax to π-calculus
formalisms. It would also be relevant to minimize the number of subprocesses
in controller synthesis. One may consider synthesis under this objective in the
future, possibly by reduction to priced/weighted TA [40,41].

References

1. Waez, M.T.B., W ↪asowski, A., Dingel, J., Rudie, K.: Synthesis of a reconfiguration
service for mixed-criticality multi-core systems: An experience report. In Lanese,
I., Madelaine, E., eds.: Formal Aspects of Component Software. Lecture Notes in
Computer Science. Springer International Publishing (2015) 162–180

2. Alur, R., Dill, D.L.: Automata for modeling real-time systems. In: Proceedings of the
Seventeenth International Colloquium on Automata, Languages and Programming,
New York, NY, USA, Springer-Verlag New York, Inc. (1990) 322–335

3. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science
126 (April 1994) 183–235

4. Waez, M.T.B., Dingel, J., Rudie, K.: A survey of timed automata for the development
of real-time systems. Computer Science Review 9(0) (2013) 1–26

5. Alur, R., Dill, D.L.: Automata-theoretic verification of real-time systems. In: Formal
Methods for Real-Time Computing. Trends in Software Series. John Wiley & Sons
Publishers (1996) 55–82

6. Ramchandani, C.: Analysis of asynchronous concurrent systems by timed Petri
nets. Technical report, Massachusetts Institute of Technology, Cambridge, MA,
USA (1974)

7. Ostroff, J.S.: Temporal Logic for Real Time Systems. John Wiley & Sons, Inc.,
New York, NY, USA (1989)

8. Jahanian, F., Mok, A.K.: Modechart: A specification language for real-time systems.
IEEE Transactions On Software Engineering 20(12) (December 1994) 933–947

9. Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete controllers for timed
systems (an extended abstract). In: Symposium on Theoretical Aspects of Computer
Science. (1995) 229–242

10. Henzinger, T.A., Kopke, P.W.: Discrete-time control for rectangular hybrid au-
tomata. Theoretical Computer Science 221 (June 1999) 369–392

11. David, A., Larsen, K.G., Legay, A., Nyman, U., W ↪asowski, A.: Timed I/O automata:
a complete specification theory for real-time systems. In: Proceedings of the 13th
ACM International Conference on Hybrid Systems: Computation and Control.
HSCC ’10, New York, NY, USA, ACM (2010) 91–100

12. Waez, M.T.B., W ↪asowski, A., Dingel, J., Rudie, K.: A model for industrial real-time
systems. In D’Souza, D., Lal, A., Larsen, K.G., eds.: Verification, Model Checking,
and Abstract Interpretation. Volume 8931 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg (2015) 153–171

13. Kaynar, D.K., Lynch, N.A., Segala, R., Vaandrager, F.W.: The Theory of Timed
I/O Automata. Synthesis Lectures on Computer Science. Morgan & Claypool
Publishers (2006)

14. Alfaro, L.d., Henzinger, T.A., Stoelinga, M.: Timed interfaces. In: Proceedings of
the Second International Conference on Embedded Software. EMSOFT ’02, London,
UK, Springer-Verlag (2002) 108–122

15. Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for
real-time systems. Information and Computation 111 (1994) 394–406

16. Henzinger, T.A., Manna, Z., Pnueli, A.: Timed transition systems. In de Bakker,
J.W., Huizing, C., de Roever, W.P., Rozenberg, G., eds.: Real-Time: Theory in
Practice. Volume 600 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg (1992) 226–251

17. Asarin, E., Maler, O., Pnueli, A., Sifakis, J.: Controller synthesis for timed automata.
In: Proceedings of the 5th IFAC Conference on System Structure and Control
(SSC’98), Elsevier Science (July 1998) 469–474

18. de Alfaro, L., Faella, M., Henzinger, T.A., Majumdar, R., Stoelinga, M.: The
element of surprise in timed games. In: CONCUR. Volume 2761 of Lecture Notes
in Computer Science., Springer Berlin Heidelberg (2003) 144–158

19. David, A., Grunnet, J.D., Jessen, J.J., Larsen, K.G., Rasmussen, J.I.: Application
of model-checking technology to controller synthesis. In Aichernig, B.K., de Boer,
F.S., Bonsangue, M.M., eds.: Formal Methods for Components and Objects. Volume
6957 of Lecture Notes in Computer Science. Springer Berlin Heidelberg (2012)
336–351

20. Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K.G., Didier, L.:
UPPAAL-Tiga: Time for playing games! In Damm, W., Hermanns, H., eds.:
Computer Aided Verification. Volume 4590 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg (2007) 121–125

21. Ehlers, R., Mattmüller, R., Peter, H.J.: Synthia: Verification and synthesis for timed
automata. In Gopalakrishnan, G., Qadeer, S., eds.: Computer Aided Verification.
Volume 6806 of Lecture Notes in Computer Science. Springer Berlin Heidelberg
(2011) 649–655

22. Waez, M.T.B., W ↪asowski, A., Dingel, J., Rudie, K.: Timed au-
tomata to synthesize controllers of dynamic hierarchical real-time plants.
Technical Report 2016-631, Queen’s University, ON (August 2016)
http://research.cs.queensu.ca/TechReports/Reports/2016-631.pdf.

23. Brihaye, T., Henzinger, T.A., Prabhu, V.S., Raskin, J.F.: Minimum-time reachability
in timed games. In Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A., eds.: Automata,
Languages and Programming. Volume 4596 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg (2007) 825–837

24. Jurdziński, M., Laroussinie, F., Sproston, J.: Model checking probabilistic timed
automata with one or two clocks. In: Proceedings of the 13th International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems.
TACAS’07, Berlin, Heidelberg, Springer-Verlag (2007) 170–184

25. Cassez, F.: Timed games for computing WCET for pipelined processors with caches.
In: Proceedings of the 2011 Eleventh International Conference on Application of
Concurrency to System Design. ACSD ’11, Washington, DC, USA, IEEE Computer
Society (2011) 195–204

26. Gustavsson, A., Ermedahl, A., Lisper, B., Pettersson, P.: Towards wcet analysis
of multicore architectures using UPPAAL. In Lisper, B., ed.: 10th International
Workshop on Worst-Case Execution Time Analysis. Volume 15 of OASIcs., Dagstuhl,
Germany, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2010) 101–112

27. Norström, C., Wall, A., Yi, W.: Timed automata as task models for event-driven
systems. In: Proceedings of the 6th International Conference on Real-Time Comput-
ing Systems and Applications. RTCSA ’99, Washington, DC, USA, IEEE Computer
Society (1999) 182–189

28. Fersman, E., Krčál, P., Pettersson, P., Yi, W.: Task automata: Schedulability, decid-
ability and undecidability. International Journal of Information and Computation
205 (August 2007) 1149–1172

29. Campana, S., Spalazzi, L., Spegni, F.: Dynamic networks of timed automata for
collaborative systems: A network monitoring case study. In: 2010 International
Symposium on Collaborative Technologies and Systems. (May 2010) 113–122

30. Boudjadar, A., Vaandrager, F., Bodeveix, J.P., Filali, M.: Extending UPPAAL for
the modeling and verification of dynamic real-time systems. In Arbab, F., Sirjani,
M., eds.: Fundamentals of Software Engineering. Lecture Notes in Computer Science.
Springer Berlin Heidelberg (2013) 111–132

31. Göllü, A., Varaiya, P.: A dynamic network of hybrid automata. In: 5th annual
conference on AI, simulation, and planning in high autonomy systems. (1994)
244–251

32. David, A., Larsen, K.G., Legay, A., Poulsen, D.B.: Statistical model checking of
dynamic networks of stochastic hybrid automata. In Schneider, S., Treharne, H.,
eds.: Proceedings of the 13th International Workshop on Automated Verification
of Critical Systems. Volume 10 of Electronic Communications of the EASST.,
Guildford, UK, EASST (2013)

33. Bornot, S., Sifakis, J., Tripakis, S.: Modeling urgency in timed systems. In de Roever,
W.P., Langmaack, H., Pnueli, A., eds.: Compositionality: The Significant Difference.
Volume 1536 of Lecture Notes in Computer Science. Springer Berlin Heidelberg
(1998) 103–129

34. Barbuti, R., Tesei, L.: Timed automata with urgent transitions. Acta Informatica
40 (March 2004) 317–347

35. Larsen, K.G., Legay, A., Traonouez, L.M., W ↪asowski, A.: Robust specification of real
time components. In: Proceedings of the 9th International Conference on Formal
Modeling and Analysis of Timed Systems. FORMATS ’11, Berlin, Heidelberg,
Springer-Verlag (2011) 129–144

36. Lawford, M.: Model Reduction of Discrete Real-Time Systems. PhD thesis,
Department of Electrical Computer Engineering, University of Toronto, Toronto,
ON, Canada (1997)

37. Lawford, M., Wonham, W.M., Ostroff, J.S.: State-event observers for labeled
transition systems. In: Proceedings of the 33rd IEEE Conference on Decision and
Control. Volume 4. (December 1994) 3642–3648

38. Posse, E., Dingel, J.: Theory and implementation of a real-time extension to the π-
calculus. In Hatcliff, J., Zucca, E., eds.: Formal Techniques for Distributed Systems.
Volume 6117 of Lecture Notes in Computer Science. Springer Berlin Heidelberg
(2010) 125–139

39. Barakat, K., Kowalewski, S., Noll, T.: A native approach to modeling timed behavior
in the Pi-calculus. In: 6th International Symposium on Theoretical Aspects of
Software Engineering. (July 2012) 253–256

40. Alur, R., Torre, S.L., Pappas, G.J.: Optimal paths in weighted timed automata. In:
Proceedings of the 4th International Workshop on Hybrid Systems: Computation
and Control. HSCC ’01, London, UK, Springer-Verlag (2001) 49–62

41. Behrmann, G., Fehnker, A., Hune, T., Larsen, K.G., Pettersson, P., Romijn, J.,
Vaandrager, F.W.: Minimum-cost reachability for priced timed automata. In:
Proceedings of the 4th International Workshop on Hybrid Systems: Computation
and Control. HSCC ’01, London, UK, Springer-Verlag (2001) 147–161

