63 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationRecent developments in magnetic resonance imaging (MRI) provide an in vivo and noninvasive tool for studying the human brain. In particular, the detection of anisotropic diffusion in biological tissues provides the foundation for diffusion-weighted imaging (DWI), an MRI modality. This modality opens new opportunities for discoveries of the brain's structural connections. Clinically, DWI is often used to analyze white matter tracts to understand neuropsychiatric disorders and the connectivity of the central nervous system. However, due to imaging time required, DWI used in clinical studies has a low angular resolution. In this dissertation, we aim to accurately track and segment the white matter tracts and estimate more representative models from low angular DWI. We first present a novel geodesic approach to segmentation of white matter tracts from diffusion tensor imaging (DTI), estimated from DWI. Geodesic approaches treat the geometry of brain white matter as a manifold, often using the inverse tensor field as a Riemannian metric. The white matter pathways are then inferred from the resulting geodesics. A serious drawback of current geodesic methods is that geodesics tend to deviate from the major eigenvectors in high-curvature areas in order to achieve the shortest path. We propose a method for learning an adaptive Riemannian metric from the DTI data, where the resulting geodesics more closely follow the principal eigenvector of the diffusion tensors even in high-curvature regions. Using the computed geodesics, we develop an automatic way to compute binary segmentations of the white matter tracts. We demonstrate that our method is robust to noise and results in improved geodesics and segmentations. Then, based on binary segmentations, we present a novel Bayesian approach for fractional segmentation of white matter tracts and simultaneous estimation of a multitensor diffusion model. By incorporating a prior that assumes the tensor fields inside each tract are spatially correlated, we are able to reliably estimate multiple tensor compartments in fiber crossing regions, even with low angular diffusion-weighted imaging. This reduces the effects of partial voluming and achieves a more reliable analysis of diffusion measurements

    Fast and Robust Shortest Paths on Manifolds Learned from Data

    Full text link
    We propose a fast, simple and robust algorithm for computing shortest paths and distances on Riemannian manifolds learned from data. This amounts to solving a system of ordinary differential equations (ODEs) subject to boundary conditions. Here standard solvers perform poorly because they require well-behaved Jacobians of the ODE, and usually, manifolds learned from data imply unstable and ill-conditioned Jacobians. Instead, we propose a fixed-point iteration scheme for solving the ODE that avoids Jacobians. This enhances the stability of the solver, while reduces the computational cost. In experiments involving both Riemannian metric learning and deep generative models we demonstrate significant improvements in speed and stability over both general-purpose state-of-the-art solvers as well as over specialized solvers.Comment: Accepted at Artificial Intelligence and Statistics (AISTATS) 201

    Probabilistic Ordinary Differential Equation Solvers - Theory and Applications

    Get PDF
    Ordinary differential equations are ubiquitous in science and engineering, as they provide mathematical models for many physical processes. However, most practical purposes require the temporal evolution of a particular solution. Many relevant ordinary differential equations are known to lack closed-form solutions in terms of simple analytic functions. Thus, users rely on numerical algorithms to compute discrete approximations. Numerical methods replace the intractable, and thus inaccessible, solution by an approximating model with known computational strategies. This is akin to a process in statistics where an unknown true relationship is modeled with access to instances of said relationship. One branch of statistics, Bayesian modeling, expresses degrees of uncertainty with probability distributions. In recent years, this idea has gained traction for the design and study of numerical algorithms which established probabilistic numerics as a research field in its own right. The theory part of this thesis is concerned with bridging the gap between classical numerical methods for ordinary differential equations and probabilistic numerics. To this end, an algorithm is presented based on Gaussian processes, a general and versatile model for Bayesian regression. This algorithm is compared to two standard frameworks for the solution of initial value problems. It is shown that the maximum a-posteriori estimator of certain Gaussian process regressors coincide with certain multistep formulae. Furthermore, a particular initialization scheme based on an improper prior model coincides with a Runge-Kutta method for the first discretization step. This analysis provides a higher-order probabilistic numerical algorithm for initial value problems. Based on the probabilistic description, an estimator of the local integration error is presented, which is used in a step size adaptation scheme. The completed algorithm is evaluated on a benchmark on initial value problems, confirming empirically the theoretically predicted error rates and displaying particularly efficient performance on domains with low accuracy requirements. To establish the practical benefit of the probabilistic solution, a probabilistic boundary value problem solver is applied to a medical imaging problem. In tractography, diffusion-weighted magnetic resonance imaging data is used to infer connectivity of neural fibers. The first application of the probabilistic solver shows how the quantification of the discretization error can be used in subsequent estimation of fiber density. The second application additionally incorporates the measurement noise of the imaging data into the tract estimation model. These two extensions of the shortest-path tractography method give more faithful data, modeling and algorithmic uncertainty representations in neural connectivity studies.Gewöhnliche Differentialgleichungen sind allgegenwärtig in Wissenschaft und Technik, da sie die mathematische Beschreibung vieler physikalischen Vorgänge sind. Jedoch benötigt ein Großteil der praktischen Anwendungen die zeitliche Entwicklung einer bestimmten Lösung. Es ist bekannt, dass viele relevante gewöhnliche Differentialgleichungen keine geschlossene Lösung als Ausdrücke einfacher analytischer Funktion besitzen. Daher verlassen sich Anwender auf numerische Algorithmen, um diskrete Annäherungen zu berechnen. Numerische Methoden ersetzen die unauswertbare, und daher unzugängliche, Lösung durch eine Annäherung mit bekannten Rechenverfahren. Dies ähnelt einem Vorgang in der Statistik, wobei ein unbekanntes wahres Verhältnis mittels Zugang zu Beispielen modeliert wird. Eine Unterdisziplin der Statistik, Bayes’sche Modellierung, stellt graduelle Unsicherheit mittels Wahrscheinlichkeitsverteilungen dar. In den letzten Jahren hat diese Idee an Zugkraft für die Konstruktion und Analyse von numerischen Algorithmen gewonnen, was zur Etablierung von probabilistischer Numerik als eigenständiges Forschungsgebiet führte. Der Theorieteil dieser Dissertation schlägt eine Brücke zwischen herkömmlichen numerischen Verfahren zur Lösung gewöhnlicher Differentialgleichungen und probabilistischer Numerik. Ein auf Gauß’schen Prozessen basierender Algorithmus wird vorgestellt, welche ein generelles und vielseitiges Modell der Bayesschen Regression sind. Dieser Algorithmus wird verglichen mit zwei Standardansätzen für die Lösung von Anfangswertproblemen. Es wird gezeigt, dass der Maximum-a-posteriori-Schätzer bestimmter Gaußprozess-Regressoren übereinstimmt mit bestimmten Mehrschrittverfahren. Weiterhin stimmt ein besonderes Initialisierungsverfahren basierend auf einer uneigentlichen A-priori-Wahrscheinlichkeit überein mit einer Runge-Kutta Methode im ersten Rechenschritt. Diese Analyse führt zu einer probabilistisch-numerischen Methode höherer Ordnung zur Lösung von Anfangswertproblemen. Basierend auf der probabilistischen Beschreibung wird ein Schätzer des lokalen Integrationfehlers präsentiert, welcher in einem Schrittweitensteuerungsverfahren verwendet wird. Der vollständige Algorithmus wird auf einem Satz standardisierter Anfangswertprobleme ausgewertet, um empirisch den von der Theorie vorhergesagten Fehler zu bestätigen. Der Test weist dem Verfahren einen besonders effizienten Rechenaufwand im Bereich der niedrigen Genauigkeitsanforderungen aus. Um den praktischen Nutzen der probabilistischen Lösung nachzuweisen, wird ein probabilistischer Löser für Randwertprobleme auf eine Fragestellung der medizinischen Bildgebung angewandt. In der Traktografie werden die Daten der diffusionsgewichteten Magnetresonanzbildgebung verwendet, um die Konnektivität neuronaler Fasern zu bestimmen. Die erste Anwendung des probabilistische Lösers demonstriert, wie die Quantifizierung des Diskretisierungsfehlers in einer nachgeschalteten Schätzung der Faserdichte verwendet werden kann. Die zweite Anwendung integriert zusätzlich das Messrauschen der Bildgebungsdaten in das Strangschätzungsmodell. Diese beiden Erweiterungen der Kürzesten-Pfad-Traktografie repräsentieren die Daten-, Modellierungs- und algorithmische Unsicherheit abbildungstreuer in neuronalen Konnektivitätsstudien

    Characterising population variability in brain structure through models of whole-brain structural connectivity

    No full text
    Models of whole-brain connectivity are valuable for understanding neurological function. This thesis seeks to develop an optimal framework for extracting models of whole-brain connectivity from clinically acquired diffusion data. We propose new approaches for studying these models. The aim is to develop techniques which can take models of brain connectivity and use them to identify biomarkers or phenotypes of disease. The models of connectivity are extracted using a standard probabilistic tractography algorithm, modified to assess the structural integrity of tracts, through estimates of white matter anisotropy. Connections are traced between 77 regions of interest, automatically extracted by label propagation from multiple brain atlases followed by classifier fusion. The estimates of tissue integrity for each tract are input as indices in 77x77 ”connectivity” matrices, extracted for large populations of clinical data. These are compared in subsequent studies. To date, most whole-brain connectivity studies have characterised population differences using graph theory techniques. However these can be limited in their ability to pinpoint the locations of differences in the underlying neural anatomy. Therefore, this thesis proposes new techniques. These include a spectral clustering approach for comparing population differences in the clustering properties of weighted brain networks. In addition, machine learning approaches are suggested for the first time. These are particularly advantageous as they allow classification of subjects and extraction of features which best represent the differences between groups. One limitation of the proposed approach is that errors propagate from segmentation and registration steps prior to tractography. This can cumulate in the assignment of false positive connections, where the contribution of these factors may vary across populations, causing the appearance of population differences where there are none. The final contribution of this thesis is therefore to develop a common co-ordinate space approach. This combines probabilistic models of voxel-wise diffusion for each subject into a single probabilistic model of diffusion for the population. This allows tractography to be performed only once, ensuring that there is one model of connectivity. Cross-subject differences can then be identified by mapping individual subjects’ anisotropy data to this model. The approach is used to compare populations separated by age and gender
    • …
    corecore