316 research outputs found

    Parallel Architectures for Planetary Exploration Requirements (PAPER)

    Get PDF
    The Parallel Architectures for Planetary Exploration Requirements (PAPER) project is essentially research oriented towards technology insertion issues for NASA's unmanned planetary probes. It was initiated to complement and augment the long-term efforts for space exploration with particular reference to NASA/LaRC's (NASA Langley Research Center) research needs for planetary exploration missions of the mid and late 1990s. The requirements for space missions as given in the somewhat dated Advanced Information Processing Systems (AIPS) requirements document are contrasted with the new requirements from JPL/Caltech involving sensor data capture and scene analysis. It is shown that more stringent requirements have arisen as a result of technological advancements. Two possible architectures, the AIPS Proof of Concept (POC) configuration and the MAX Fault-tolerant dataflow multiprocessor, were evaluated. The main observation was that the AIPS design is biased towards fault tolerance and may not be an ideal architecture for planetary and deep space probes due to high cost and complexity. The MAX concepts appears to be a promising candidate, except that more detailed information is required. The feasibility for adding neural computation capability to this architecture needs to be studied. Key impact issues for architectural design of computing systems meant for planetary missions were also identified

    Center for Space Microelectronics Technology

    Get PDF
    The 1990 technical report of the Jet Propulsion Laboratory Center for Space Microelectronics Technology summarizes the technical accomplishments, publications, presentations, and patents of the center during 1990. The report lists 130 publications, 226 presentations, and 87 new technology reports and patents

    Evaluation of Design Tools for Rapid Prototyping of Parallel Signal Processing Algorithms

    Get PDF
    Digital signal processing (DSP) has become a popular method for handling not only signal processing, but communications, and control system applications. A DSP application of interest to the Air Force is high speed avionics processing. The real time computing requirements of avionics processing exceed the capabilities of current single chip DSP processors, and parallelization of multiple DSP processors is a solution to handle such requirements. Designing and implementing a parallel DSP algorithm has been a lengthy process often requiring different design tools and extensive programming experience. Through the use of integrated software development tools, rapid prototyping becomes possible by simulating algorithms, generating code for workstations or DSP microprocessors, and generating hardware description language code for hardware synthesis. This research examines the use of one such tool, the Signal Processing WorkSystem (SPW) by the Alta Group of Cadence Design Systems, Inc., and how SPW supports the rapid prototyping process from an avionics algorithm design through simulation and hardware implementation. Throughout this process, SPW is evaluated as an aid to the avionics designer to meet design objectives and evaluate tradeoffs to find the best blend of efficiency and effectiveness. By designing a two dimensional fast Fourier transform algorithm as a specific avionics algorithm and exploring implementation options, SPW is shown to be a viable rapid prototyping solution allowing an avionics designer to focus on design trade-offs instead of implementation details while using parallelization to meet real-time application requirements

    Activities of the Jet Propulsion Laboratory

    Get PDF
    Work accomplished by the Jet Propulsion Laboratory (JPL) under contract to NASA in 1985 is described. The work took place in the areas of flight projects, space science, geodynamics, materials science, advanced technology, defense and civil programs, telecommunications systems, and institutional activities

    NASA Tech Briefs, April 1990

    Get PDF
    Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences

    NASA Tech Briefs, January 1990

    Get PDF
    Topics include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, and Life Science

    Hillslope-scale soil moisture estimation with a physically-based ecohydrology model and L-band microwave remote sensing observations from space

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2009.Includes bibliographical references (p. 469-488).Soil moisture is a critical hydrosphere state variable that links the global water, energy, and carbon cycles. Knowledge of soil moisture at scales of individual hillslopes (10's to 100's of meters) is critical to advancing applications such as landslide prediction, rainfall-runoff modeling, and wildland fire fuel load assessment. This thesis develops a data assimilation framework that employs the ensemble Kalman Filter (EnKF) to estimate the spatial distribution of soil moisture at hillslope scales by combining uncertain model estimates with noisy active and passive L-band microwave observations. Uncertainty in the modeled soil moisture state is estimated through Monte Carlo simulations with an existing spatially distributed ecohydrology model. Application of the EnKF to estimate hillslope-scale soil moisture in a watershed critically depends on: (1) identification of factors contributing to uncertainty in soil moisture, (2) adequate representation of the sources of uncertainty in soil moisture, and (3) formulation of an observing system to estimate the geophysically observable quantities based on the modeled soil moisture. Uncertainty in the modeled soil moisture distribution arises principally from uncertainty in the hydrometeorological forcings and imperfect knowledge of the soil parameters required as input to the model. Three stochastic models are used in combination to simulate uncertain hourly hydrometeorological forcings for the model. Soil parameter sets are generated using a stochastic approach that samples low probability but potentially high consequence parameter values and preserves correlation among the parameters. The observing system recognizes the role of the model in organizing the factors effecting emission and reflection of L-band microwave energy and emphasizes the role of topography in determining the satellite viewing geometry at hillslope scales.(cont.) Experiments in which true soil moisture conditions were simulated by the model and used to produce synthetic observations at spatial scales significantly coarser than the model resolution reveal that sequential assimilation of observations improves the hillslope-scale near-surface moisture estimate. Results suggest that the data assimilation framework is an effective means of disaggregating coarse-scale observations according to the model physics represented by the ecohydrology model. The thesis concludes with a discussion of contributions, implications, and future directions of this work.by Alejandro Nicolas Flores.Ph.D

    Experimental Benchmarks and Initial Evaluation of the Performance of the PASM System Prototype

    Get PDF
    The work reported here represents experiences with the PASM parallel processing system prototype during its first operational year. Most of the experiments were performed by students in the Fall semester of 1987. The first programming, and the first timing measurements, were made during the summer of 1987 by Sam Fineberg. The goal of the collection of experiments presented here was to undertake an Application-driven Architecture Study of the PASM system as a paradigm for parallel architecture evaluation in general. PASM was an excellent vehicle for experimenting with this evaluation technique due to its unique architectural features. Among these are: 1. A reconfigurable, partitionable multistage circuit-switched network. 2. Support for both SIMD and MIMD programs. 3. Ability to execute hybrid SIMD/MIMD programs. 4. An instruction queue which allows overlap of control-flow and data manipulation between micro-control (MC) units and processing elements (PE). It had been hypothesized that superlinear speed-up over the number of PEs could be attained with this feature, and experimental results verified this. 5. Support for barrier synchronization of MIMD tasks. This feature was exploited in some non-standard ways to show the ability to decouple variant length SIMD instructions into multiple MIMD streams for an overall performance benefit. This type of study is expected to continue in the future on PASM and other parallel machines at Purdue. This report should serve as a guide for this future work as well

    Investigations carried out under the Director's Discretionary Fund

    Get PDF
    This annual report comprises a set of summaries, describing task objectives, progress and results or accomplishments, future outlook, and financial status for each director's discretionary fund (DDF) task that was active during fiscal year 1984. Publications and conference presentations related to the work are listed. The individual reports are categorized as interim or final according to whether the task efforts are ongoing or completed. A partial list of new tasks to be initiated with fiscal year 1985 funds and a glossary of abbreviations and acronyms, used by the task authors in their summaries are included. The table of contents lists the DDF reports in sequence by their task number, which is derived from the 13-digit code assigned to account for the fund awarded to the task project
    corecore