955 research outputs found

    Modeling a healthcare system as a queueing network:The case of a Belgian hospital.

    Get PDF
    The performance of health care systems in terms of patient flow times and utilization of critical resources can be assessed through queueing and simulation models. We model the orthopaedic department of the Middelheim hospital (Antwerpen, Belgium) focusing on the impact of outages (preemptive and nonpreemptive outages) on the effective utilization of resources and on the flowtime of patients. Several queueing network solution procedures are developed such as the decomposition and Brownian motion approaches. Simulation is used as a validation tool. We present new approaches to model outages. The model offers a valuable tool to study the trade-off between the capacity structure, sources of variability and patient flow times.Belgium; Brownian motion; Capacity management; Decomposition; Health care; Healthcare; Impact; Model; Models; Performance; Performance measurement; Queueing; Queueing theory; Simulation; Stochastic processes; Structure; Studies; Systems; Time; Tool; Validation; Variability;

    A Priority-based Fair Queuing (PFQ) Model for Wireless Healthcare System

    Get PDF
    Healthcare is a very active research area, primarily due to the increase in the elderly population that leads to increasing number of emergency situations that require urgent actions. In recent years some of wireless networked medical devices were equipped with different sensors to measure and report on vital signs of patient remotely. The most important sensors are Heart Beat Rate (ECG), Pressure and Glucose sensors. However, the strict requirements and real-time nature of medical applications dictate the extreme importance and need for appropriate Quality of Service (QoS), fast and accurate delivery of a patient’s measurements in reliable e-Health ecosystem. As the elderly age and older adult population is increasing (65 years and above) due to the advancement in medicine and medical care in the last two decades; high QoS and reliable e-health ecosystem has become a major challenge in Healthcare especially for patients who require continuous monitoring and attention. Nevertheless, predictions have indicated that elderly population will be approximately 2 billion in developing countries by 2050 where availability of medical staff shall be unable to cope with this growth and emergency cases that need immediate intervention. On the other side, limitations in communication networks capacity, congestions and the humongous increase of devices, applications and IOT using the available communication networks add extra layer of challenges on E-health ecosystem such as time constraints, quality of measurements and signals reaching healthcare centres. Hence this research has tackled the delay and jitter parameters in E-health M2M wireless communication and succeeded in reducing them in comparison to current available models. The novelty of this research has succeeded in developing a new Priority Queuing model ‘’Priority Based-Fair Queuing’’ (PFQ) where a new priority level and concept of ‘’Patient’s Health Record’’ (PHR) has been developed and integrated with the Priority Parameters (PP) values of each sensor to add a second level of priority. The results and data analysis performed on the PFQ model under different scenarios simulating real M2M E-health environment have revealed that the PFQ has outperformed the results obtained from simulating the widely used current models such as First in First Out (FIFO) and Weight Fair Queuing (WFQ). PFQ model has improved transmission of ECG sensor data by decreasing delay and jitter in emergency cases by 83.32% and 75.88% respectively in comparison to FIFO and 46.65% and 60.13% with respect to WFQ model. Similarly, in pressure sensor the improvements were 82.41% and 71.5% and 68.43% and 73.36% in comparison to FIFO and WFQ respectively. Data transmission were also improved in the Glucose sensor by 80.85% and 64.7% and 92.1% and 83.17% in comparison to FIFO and WFQ respectively. However, non-emergency cases data transmission using PFQ model was negatively impacted and scored higher rates than FIFO and WFQ since PFQ tends to give higher priority to emergency cases. Thus, a derivative from the PFQ model has been developed to create a new version namely “Priority Based-Fair Queuing-Tolerated Delay” (PFQ-TD) to balance the data transmission between emergency and non-emergency cases where tolerated delay in emergency cases has been considered. PFQ-TD has succeeded in balancing fairly this issue and reducing the total average delay and jitter of emergency and non-emergency cases in all sensors and keep them within the acceptable allowable standards. PFQ-TD has improved the overall average delay and jitter in emergency and non-emergency cases among all sensors by 41% and 84% respectively in comparison to PFQ model

    Modeling the Emergency Care Delivery System Using a Queueing Approach

    Get PDF
    This thesis considers a regional emergency care delivery system that has a common emergency medical service (EMS) provider and two hospitals, each with a single emergency department (ED) and an inpatient department (ID). Patients arrive at one of the hospital EDs either by ambulance or self-transportation, and we assume that an ambulance patient has preemptive priority over a walk-in patient. Both types of patients can potentially be admitted into the ID or discharged directly from the ED. An admitted patient who cannot access the ID due to the lack of available inpatient beds becomes a boarding patient and blocks an ED server. An ED goes on diversion, e.g., requests the EMS provider to divert incoming ambulances to the neighboring facility, if the total number of its ambulance patients and boarding patients exceeds its capacity (the total number of its servers). The EMS provider will accept the diversion request if the neighboring ED is not on diversion. Both EDs choose its capacity as its diversion threshold and never change the threshold value strategically, and hence they never game. Although the network could be an idealized model of an actual operation, it can be thought of as the simplest network model that is rich enough to reproduce the variety of interactions among different system components. In particular, we aim to highlight the bottleneck effect of inpatient units on ED overcrowding and the network effects resulting from ED diversions. A continuous time Markov chain is introduced for the network model. We show that the chain is irreversible and hence its stationary distribution is difficult to characterize analytically. We identify an alternative solution that builds on queueing decomposition and matrix-analytic methods. We demonstrate through discrete-event simulations the effectiveness of this solution on deriving various performance measures of the original network model. Moreover, by conducting extensive numerical experiments, we provide potential explanations for the overcrowding and delays in a network of hospitals. We suggest remedies from a queueing perspective for the operational challenges facing emergency care delivery systems

    Modeling and analysis to improve the quality of healthcare services

    Get PDF
    For many healthcare services or medical procedures, patients have extensive risk of complication or face death when treatment is delayed. When a queue is formed in such a situation, it is very important to assess the suffering and risk faced by patients in queue and plan sufficient medical capabilities in advance to address the concerns. As the diversity of care settings increases, congestion in facilities causes many patients to unnecessarily spend extra days in intensive care facilities. Performance evaluation of current healthcare service systems using queueing theory gains more and more importance because of patient flows and systems complexity. Queueing models have been used in handsome number of healthcare studies, but the incorporation of blocking is still limited. In this research work, we study an efficient two-stage multi-class queueing network system with blocking and phase-type service time distribution to analyze such congestion processes. We also consider parallel servers at each station and first-come-first-serve non-preemptive service discipline are used to improve the performance of healthcare service systems

    Proactive Coordination In Healthcare Service Systems Through Near Real-Time Analytics

    Get PDF
    The United States (U.S.) healthcare system is the most expensive in the world. To improve the quality and safety of care, health information technology (HIT) is broadly adopted in hospitals. While EHR systems form a critical data backbone for the facility, we need improved \u27work-flow\u27 coordination tools and platforms that can enhance real-time situational awareness and facilitate effective management of resources for enhanced and efficient care. Especially, these IT systems are mostly applied for reactive management of care services and are lacking when they come to improving the real-time operational intelligence of service networks that promote efficiency and quality of operations in a proactive manner. In particular, we leverage operations research and predictive analytics techniques to develop proactive coordination mechanisms and decision methods to improve the operational efficiency of bed management service in the network spanning the emergency department (ED) to inpatient units (IUs) in a hospital, a key component of healthcare in most hospitals. The purpose of this study is to deepen our knowledge on proactive coordination empowered by predictive analytics in dynamic healthcare environments populated by clinically heterogeneous patients with individual information changing throughout ED caregiving processes. To enable proactive coordination for improved resource allocation and patient flow in the ED-IU network, we address two components of modeling/analysis tasks, i.e., the design of coordination mechanisms and the generation of future state information for ED patients. First, we explore the benefits of early task initiation for the service network spanning the emergency department (ED) and inpatient units (IUs) within a hospital. In particular, we investigate the value of proactive inpatient bed request signals from the ED to reduce ED patient boarding. Using data from a major healthcare system, we show that the EDs suffer from severe crowding and boarding not necessarily due to high IU bed occupancy but due to poor coordination of IU bed management activity. The proposed proactive IU bed allocation scheme addresses this coordination requirement without requiring additional staff resources. While the modeling framework is designed based on the inclusion of two analytical requirements, i.e., ED disposition decision prediction and remaining ED length of stay (LoS) estimation, the framework also accounts for imperfect patient disposition predictions and multiple patient sources (besides ED) to IUs. The ED-IU network setting is modeled as a fork-join queueing system. Unlike typical fork-join queue structures that respond identically to a transition, the proposed system exhibits state-dependent transition behaviors as a function of the types of entities being processed in servers. We characterize the state sets and sequences to facilitate analytical tractability. The proposed proactive bed allocation strategy can lead to significant reductions in bed allocation delay for ED patients (up to ~50%), while not increasing delays for other IU admission sources. We also demonstrate that benefits of proactive coordination can be attained even in the absence of highly accurate models for predicting ED patient dispositions. The insights from our models should give confidence to hospital managers in embracing proactive coordination and adaptive work flow technologies enabled by modern health IT systems. Second, we investigate the quantitative modeling that analyzes the patterns of decreasing uncertainty in ED patient disposition decision making throughout the course of ED caregiving processes. The classification task of ED disposition decision prediction can be evaluated as a hierarchical classification problem, while dealing with temporal evolution and buildup of clinical information throughout the ED caregiving processes. Four different time stages within the ED course (registration, triage, first lab/imaging orders, and first lab/imaging results) are identified as the main milestone care stages. The study took place at an academic urban level 1 trauma center with an annual census of 100,000. Data for the modeling was extracted from all ED visits between May 2014 and April 2016. Both a hierarchical disposition class structure and a progressive prediction modeling approach are introduced and combined to fully facilitate the operationalization of prediction results. Multinomial logistic regression models are built for carrying out the predictions under three different classification group structures: (1) discharge vs. admission, (2) discharge vs. observation unit vs. inpatient unit, and (3) discharge vs. observation unit vs. general practice unit vs. telemetry unit vs. intensive care unit. We characterize how the accumulation of clinical information for ED patients throughout the ED caregiving processes can help improve prediction results for the three-different class groups. Each class group can enable and contribute to unique proactive coordination strategies according to the obtained future state information and prediction quality, to enhance the quality of care and operational efficiency around the ED. We also reveal that for different disposition classes, the prediction quality evolution behaves in its own unique way according to the gain of relevant information. Therefore, prediction and resource allocation and task assignment strategies can be tailored to suit the unique behavior of the progressive information accumulation for the different classes of patients as a function of their destination beyond the ED

    The restricted Erlang-R queue:finite-size effects in service systems with returning customers

    Get PDF
    Motivated by health care systems with repeated services that have both personnel (nurse and physician) and space (beds) constraints, we study a restricted version of the Erlang-R model. The space restriction policies we consider are blocking or holding in a pre-entrant queue. We develop many-server approximations for the system performance measures when either policy applies, and explore the connection between them. We show that capacity allocation of both resources should be determined simultaneously, and derive the methodology to determine it explicitly. We show that the system dynamics is captured by the fraction of needy time in the network, and that returning customers should be accounted for both in steady-state and time-varying conditions. We demonstrate the application of our policies in two case studies of resource allocation in hospitals

    Patient admission planning using Approximate Dynamic Programming

    Get PDF
    Tactical planning in hospitals involves elective patient admission planning and the allocation of hospital resource capacities. We propose a method to develop a tactical resource allocation and patient admission plan that takes stochastic elements into consideration, thereby providing robust plans. Our method is developed in an Approximate Dynamic Programming (ADP) framework and copes with multiple resources, multiple time periods and multiple patient groups with uncertain treatment paths and an uncertain number of arrivals in each time period. As such, the method enables integrated decision making for a network of hospital departments and resources. Computational results indicate that the ADP approach provides an accurate approximation of the value functions, and that it is suitable for large problem instances at hospitals, in which the ADP approach performs significantly better than two other heuristic approaches. Our ADP algorithm is generic, as various cost functions and basis functions can be used in various hospital setting

    Developing service supply chains by using agent based simulation

    Get PDF
    The Master thesis present a novel approach to model a service supply chain with agent based simulation. Also, the case study of thesis is related to healthcare services and research problem includes facility location of healthcare centers in Vaasa region by considering the demand, resource units and service quality. Geographical information system is utilized for locating population, agent based simulation for patients and their illness status probability, and discrete event simulation for healthcare services modelling. Health centers are located on predefined sites based on managers’ preference, then each patient based on the distance to health centers, move to the nearest point for receiving the healthcare services. For evaluating cost and services condition, various key performance indicators have defined in the modelling such as Number of patient in queue, patients waiting time, resource utilization, and number of patients ratio yielded by different of inflow and outflow. Healthcare managers would be able to experiment different scenarios based on changing number of resource units or location of healthcare centers, and subsequently evaluate the results without necessity of implementation in real life.fi=OpinnĂ€ytetyö kokotekstinĂ€ PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=LĂ€rdomsprov tillgĂ€ngligt som fulltext i PDF-format
    • 

    corecore