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Abstract

Designing cost-effective service processes in hospitals presents tremendous challenges, and due to tight-
ening budgets this topic is very much alive. We introduce a new queueing model that can be used for
dimensioning both the number of beds and the number of nurses in an Emergency Department. We
scale this system in the Quality-and-Efficiency-Driven regime which can achieve both server efficiency
and timely service delivery for patients. Our model accommodates patients who return to service several
times during their sojourn, with an additional restriction on the total number of patients that can reside
in the system simultaneously. Moreover, we translate our staffing policy into time-varying square-root
staffing policies based on the modified offered-load approximation and show that this leads to stable
performance.
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Chapter 1

Introduction

We develop a mathematical framework based on stochastic models for queueing systems that can be used
in hospital settings to study the trade-off between server efficiency and timely service delivery. Inspired
by the situation in a large top clinical hospital in the Netherlands, we introduce a new model that can be
used for dimensioning the Emergency Department in terms of both the number of beds and the number
of nurses in the Quality-and-Efficiency-Driven (QED) regime.

1.1 Topic orientation

Queueing models are used by many organizations to help determine the capacity levels needed to respond
to offered demands in a timely fashion. Delays arise when demand for a service and available capacity
differ. For example, patients can encounter delay when no bed is available in the Emergency Department,
a surgery cannot be performed yet due to a lack of available operation rooms or follow-up examinations
need to be postponed until some diagnostic test results return from the lab. Delay is a crucial aspect for
hospitals in terms of having an effective and efficient process and is identified as one of the six key aims
for improvement of the quality of healthcare by the Institute of Medicine (IOM) in 2001 [17].

This idea of balancing quality and efficiency complies with the so-called QED regime, a widely used
scaling regime in the area of asymptotic optimization of queueing systems. A suitable staffing level,
i.e. the number of servers, can be determined by choosing the minimal staffing level such that certain
performance levels are met. Alternatively, one can consider some optimization problem that trades
off server costs with service quality, where service quality can be quantified in terms of waiting costs,
blocking rates or the number of patients in queue. These optimal staffing levels can be approximated by
considering the system’s asymptotic behavior, i.e. the behavior of the system as the offered traffic and
the size of the service system grow large.

Many scenarios in the hospitals are often modeled by classical queueing models, such as the Erlang-C,
Erlang-B and the Erlang-A model or more advanced models. The asymptotic behavior of these systems
in the QED regime has already been analyzed [20, 26, 27, 14, 6], which gives rise to approximations for
the staffing levels in case of a finite number of servers. These staffing levels are often of the so so-called
square root staffing form

s = R + β
√
R, (1.1)

where s is the number of servers, R the offered load and β a tunable parameter. This theory has already
been successfully applied to telecommunication systems [6, 14, 28], and more recently also to more
complex environments such as hospitals [27, 7, 1, 33].

1.2 Literature overview

Capacity planning in order to reduce delays in healthcare systems has been studied extensively; several
papers on this topic can be found in [22]. In particular, [16] explains how basic queueing analysis
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CHAPTER 1. INTRODUCTION

in healthcare systems can help to determine more effective policies for bed allocation and staffing and
moreover, that it can serve as a key tool in estimating capacity requirements for possible future scenarios.

There exist two recent handbooks on System Scheduling and Operations Management [21, 11]. Both
include chapters on capacity planning, nurse scheduling, bed assignment and management and queueing
perspectives on healthcare delivery. Most natural and commonly used queueing models involve the
Erlang-C, Erlang-B and the Erlang-A model. These relatively simple models can often capture complex
realities [14], and serve as a basis of more complex models for healthcare operations.

An extended version of the Erlang-B model is for example considered in [7]. This model can be
used to evaluate the current size of a nursing unit and incorporates time-varying arrival rates and non-
exponentially distributed service times, based on the work of [4]. Bekker et al. [7] consider the advantages
of merging clinical wards as it can result in economies of scales. However, merging can have undesired side
effects such as higher waiting times for prioritized patients and the necessity of multi skilled medical staff.
Alternatives of merging, such as earmarking, threshold policies and optimization policies are considered
in [5].

In addition, Bekker et al. [7] determined the impact of a time dependent arrival pattern on the
required number of beds and fraction of refused admissions. They found that the daily pattern, where
most patient arrive during office hours, has a limited effect on the average number of occupied beds in
the clinical wards, whereas the effect of the week/weekend pattern is much more significant. On the
other hand, the daily pattern is crucial for capacity planning in the Emergency Department, since the
average length of stay is typically much shorter than the length of stay in a clinical ward.

The Erlang-C model often serves as a basis for queueing analysis in healthcare settings, particularly
for modeling purposes in the Emergency Department [17]. The considered delays comprise for example
delays for being first seen by a physician in the Emergency Department, delays for a bed in the Emergency
department, delays for a medical appointment and delays for nursing care. The main goal of these studies
is to find a suitable staffing schedule with a high resource utilization while preserving acceptable waiting
times for the patients. A particular method that is used for this is the Lag SIPP method [18], which is
based on the Erlang-C model in the QED regime.

In this thesis we will focus on recommendations for staffing levels that are determined by queueing
models in the QED regime. This regime balances patients’ need for timely service against the economical
preference to operate at high efficiency. The queueing models adhere to some form of the square-root
staffing rule and it originates from the work of Erlang in 1923 [13].

The square-root staffing rule was first analyzed in the pioneering work of Halfin and Whitt [20] and
therefore also referred to as the Halfin-Whitt regime. A first result is shown for the Erlang-C model,
indicating that the probability of waiting has a nondegenerate limit as the offered load R grows to
infinity under a certain constraint. This constraint gives rise to the square root staffing rule (1.1). In [6],
they show that by normalizing the stationary distribution of the queue length, this process converges in
distribution to a diffusion process. The Erlang-C formula is replaced by a simpler function that coincides
with the Erlang-C formula as R grows large. This yields an approximation of the optimal staffing level
for a linear cost function in the QED regime and they show that this procedure yields costs that are
optimal to a level of o(

√
R). Moreover, they also provide staffing recommendations for the Efficiency-

Driven (ED) and the Quality-Driven (QD) regime. In the Efficiency-Driven regime the staffing costs
dominate the waiting costs, whereas the staffing costs are negligible compared to the waiting costs in the
Quality-Driven Regime.

The fundamental findings of Halfin and Whitt can be extended to accommodate abandonments,
described by the Erlang-A model [14]. Abandonments are an important concept to determine the quality
of care in an Emergency Department, since it prescribes the rate at which patients leave without being
seen (LWBS) [17]. Garnett et al. provide an extensive list of approximations of possible performance
measures and following [6], they provide approximations of optimal staffing levels for the QED, the QD
and the ED regimes.

A different approach is taken in [1]. From a data-based queueing science perspective, Armony et
al. [1] determine what regimes are relevant for modeling the patient flow in the Emergency Department,
patients’ length of stay (LOS) in internal wards, and the transfer of the Emergency Department to the
Internal Wards. They validate their models by use of data from an Israeli Hospital. Many theoretical
and practical research questions are raised, also in order to motivate the reader to perform their own
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CHAPTER 1. INTRODUCTION

(exploratory) data analysis. They emphasize the need for carefully setting assumptions on service times
and interdependences.

For example, a feature that the commonly used queueing models does not account for is the concept of
returns, i.e. patients can return for service after a certain amount of time. This is accommodated in the
Erlang-R model, introduced in [33]. The return-to-service phenomenon was first considered by Jennings
and De Véricourt in [27]. They used a closed queueing model in order to provide recommendations on
nurse-to-patient ratios. These two models will play an important role in our research and we will study
them in Chapter 4.

1.3 Problem description

Although delay is a commonly encountered phenomenon in many different settings in healthcare opera-
tion, the focus has traditionally been on clinical innovation and not timely delivery of service to improve
service quality [17]. More recently, with increasing cuts in healthcare, the need for suitable capacity
levels that secure timely service delivery is growing.

Arrivals

ED
Medical
Units

ICU

LWBS

OR

Discharge

Services:
Lab,

Pharmacy,
Radiology,

Other

Figure 1.1: General overview of the patient flow within the hospital.

1.3.1 Patient flow in hospitals

Hospitals can be considered as a large complex stochastic network with many processes and many
interdependencies. Figure 1.1 provides a general overview of the patient flow between units within a
hospital [22, p.16], and particularly maps the dependencies between the Emergency Department (ED),
the Operation Rooms (OR), the Intensive Care Unit (ICU) and the other medical units. Interestingly,
the patient flow entering the Emergency Department only originates from an external environment. That
is, patients from other medical units will never (re)enter the Emergency Department and therefore we
can isolate the Emergency Department for our analysis.

The patient flow through an Emergency Department is typically modeled based on a work flow dia-
gram similar to Figure 1.2 [11, p.53] and note that patients can encounter delay at each node. There
are roughly two types of patients that enter the Emergency Department. The majority of the arriving
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Walk-in

Registration

Triage

Examination

Leave

Tests

Ambulance

Figure 1.2: Basic work flow through the Emergency Department.

patients walk into to the Emergency Department or are referred by their General Practitioner. After
registration, the severity of their condition is established during triage, indicating the urgency of treat-
ment. The other type of patients arrive by ambulance, where the patient’s condition is established by
the ambulance personnel.

When the urgency of treatment is established, patients need to be assigned to a bed and receive
service from the medical staff. This is seen as a major bottleneck where patients experience most
delay. Patients assigned to a bed are frequently visited by a doctor or a nurse who take tests, conduct
physical examinations, consider medical histories and possibly provide additional care. After a diagnosis
is established, patients can be discharged or referred for further medical treatment. The main goal in an
Emergency Department is to diagnose patients, which entails determining possible further treatment or
help in case only minor treatment is needed.

1.3.2 Research challenges

Queueing analysis based on the Erlang-C model is often used for modeling purposes in the Emergency
Department. However, the Erlang-C model does not account for the essential feature that patients
return for service several times before leaving the system. The Erlang-R model [33] is the first model
that incorporates this crucial phenomenon in hospital settings. This model provides an analysis to
determine the number of nurses needed to achieve a predetermined service level, which typically comprises
predetermines values for the waiting probabilities, waiting times or nurse utilization levels.

In collaboration with a top clinical hospital in the Netherlands, we found that the number of beds
creates an additional bottleneck on the service levels. When all beds are occupied, the other patients
wait in a holding room before entering the examination phase. Therefore, we introduce an extension of
the Erlang-R model with the essential feature that restricts the total number of patients that can reside
in the Emergency Department simultaneously and call it the Semi-Open Erlang-R Model with Waiting
(SERW).

The model is a three-station open queueing network, with a restriction on the number of present
patients in two of the three stations, see Figure 1.3. More explicitly, we consider a model where patients
require service from a nurse. When all beds are occupied upon arrival, patients wait in a holding room
till another patient leaves the system and a bed becomes available. Once a bed becomes available, the
first patient holding will be assigned to this bed and moves for service. After a service completion, with
probability 1−p they exit the system and with probability p they return for further service after a random
delay time.

We are interested in the stationary distribution of the number of patients at each station. While
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Figure 1.3: The Semi-Open Erlang-R Model with Waiting.

the Erlang-R model is a two-station Jackson network with a product-form solution for the stationary
distribution, our model presents more mathematical difficulties due to the restriction on the number of
simultaneously treated patients. We will study how this system can be modeled as a quasi-birth-death
process and how the stationary distribution can be obtained using matrix-geometric methods.

We seek capacity management policies in terms of the number of beds n and the number of servers
s in the QED regime. Interestingly, our model requires the simultaneous scaling of both n and s in
order to obtain QED behavior. Since the stationary distribution cannot be written in a closed-form
expression, we make stochastic comparisons with the Erlang-R model and the closed ward model by
Jennings and De Véricourt [26]. Using these results, we identify a two-fold scaling policy that can be
used for dimensioning the Emergency Department in the QED regime.

We also apply time-varying diffusion approximations, and translate the two-fold scaling into time-
varying square-root staffing policies based on the modified offered-load (MOL) approximation. We will
study whether this will lead to stable performance via simulations.

Our main objective is to provide a staffing policy for the Semi-Open Erlang-R Model with Waiting,
and provide a corresponding dimensioning scheme in terms of the number of nurses and the number of
beds in an Emergency Department.

1.4 Readers’ guide

This thesis is divided in three parts. Part I considers the classical models and how they can be applied in
hospital settings. In particular, in Chapter 2 we explain basic queueing theory and describe the classical
queueing models in detail, and consider specific applications of the classical queueing models in hospitals.
Chapter 3 describes the philosophy of the QED regime. Moreover, we will see how to dimension the
classical models in the QED regime, including concrete examples in hospital settings.

Part II describes the more advanced queueing models motivated by healthcare systems. Chapter 4
provides an overview of existing models, such as the closed ward model [26], the Erlang-R model [33]
and the Semi-Open Erlang-R Model with Blocking [32], whereas Chapter 5 introduces our new SERW
model. It is illustrated how this model can be modeled as a quasi-birth-death process, and how matrix-
geometric methods can be used for solving the stationary distribution. Chapter 5 is concluded by
proposing a staffing policy based on an underlying intuition. In Chapter 6 we compare our new SERW
model with the other models presented in Chapter 4.

Part III validates our proposed staffing algorithm by means of simulations. Chapter 7 shows that
performance stabilizes and provides an overview of managerial insights in the stationary case. Moreover,
we apply time-varying diffusion approximations, and translate the two-fold scaling into time-varying
square-root staffing policies based on the modified offered-load (MOL) approximation. We compare it to
the Pointwise Stationary Approximation (PSA) and show that only the MOL staffing procedure stabilizes
the probability of waiting. We conclude this thesis in Chapter 8 by providing a dimensioning scheme
that can be used for the SERW model. This practical algorithm determines the number of nurses needed
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such that a predetermined value for the probability of waiting is achieved.

This thesis is written for a varied audience with different backgrounds. Here we will provide a short
readers’ guide for different readers, and leave it to the reader to identify the profile best fitted for her.

Students:
For students that are interested in how queueing theory can be applied in hospital settings and/or di-
mensioning purposes the complete thesis is of interest. If the student is unfamiliar with probability
theory or queueing theory we suggest to read Appendix A first. Chapters 2 till 5 will suffice in order to
obtain a general overview of this area, and proofs are included for the readers’ interest. If the student
is interested in the practical aspects of our model, Part III is of more interest and in Appendix B we
provide a simulation program.

Researchers:
Fellow researchers familiar with the area of asymptotic optimization of queueing systems, particularly in
hospital settings, can skip Chapters 2-4.

Engineers:
We think that examples of dimensioning systems in hospitals throughout this thesis can be of interest,
and particularly, the example provided in Section 8.5. Our conclusions in Chapter 9 will highlight
the most important findings of this thesis, and future research suggests some natural extensions of our
model.

6 Dimensioning large-scale service systems with returning patients
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Classical patient flow models
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Chapter 2

Classical queueing models

To determine appropriate capacity levels in hospitals, many studies rely on classical queueing models
such as the Erlang-C, the Erlang-B and the Erlang-A model. In this chapter, we will describe these
queueing models and consider how they can be used in a hospital setting. We refer to Appendix A for a
short overview of some relevant basic concepts of probability theory and queueing theory that are used
in this thesis.

2.1 Queueing models

In a basic queueing model, customers arrive at a service facility that provides service for a certain amount
of time, after which customers leave the system. The service facility can consist of a single, multiple or
even a network of servers. In healthcare delivery systems, patients are typically seen as the customers
of the system. The beds in an internal ward, the Emergency Department or the Intensive Care Unit
(ICU) can be viewed as the service facility for example. However, many atypical examples of patients
and service facilities can be named as well, e.g. [11, p.19].

Arrival process

Waiting room

Service process

Departure process

Figure 2.1: Representation of a basic queueing model.

Figure 2.1 illustrates a basic queue. In general, a queueing model is characterized by several features.

� The arrival process. This process describes when patients arrive over time. Typically this process
is considered stochastic with a Poisson process as the traditional example.

� The behavior of patients. Arriving patients may be impatient and leave before service. On the
other hand, they can also be very patient and wait indefinitely. The latter is for example a more
realistic setting for patients that arrive for surgery.

� The service times. This process describes the service durations of a patient.

� The service discipline. This feature describes the way in which patients are served. Patients can
be served one by one or in batches. Also, the order in which patients are served can be specified.
That is, patients can be served in order of arrival (first come first served), randomly, last come first
served, or with certain priorities (emergency arrivals first).

� Service capacity. The maximum number of servers available for serving the patients.

Dimensioning large-scale service systems with returning patients 9
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� The waiting room. This describes the number of patients that are allowed to wait. The capacity of
the waiting room can be infinite, but sometimes there are limitations with respect to the number
of patients in the queue.

A queueing model is often described using the so-called Kendall notation A/B/c. It is a shorthand
notation to characterize a range of queueing models. The first letter A specifies the interarrival time
distribution, the second letter B represents the service time distribution and the third letter c represents
the number of servers. The three letters M, G and D are mostly used to describe the distribution of the
interarrival times and the service times. The M represents the exponential distribution, G stands for a
general distribution and D stands for a deterministic distribution. Sometimes the notation is extended
by a fourth letter, representing a limitation on the number of patients in the waiting room. In the most
basic queueing model, patients arrive one by one and are always allowed to enter the system (i.e. infinite
waiting room), there are no priority rules and patients are served in order of arrival.

Queueing models are often used to analyze certain performance measures, such as waiting times and
utilization levels. In this chapter, we will consider three typical queueing models and consider their
properties.

2.2 Birth-death processes

The birth-death process serves as a building block of the Erlang-C, the Erlang-B and the Erlang-A
model.

Definition 2.2.1. A birth-death process is a continuous-time Markov process with state space S =
{0,1, ..., I}, where I can be infinite, and all transitions only occur between two adjacent states. That
is, the only transitions from state i are to state i − 1 (death) and to state i + 1 (birth).

An illustration of the birth-death process is given in Figure 2.2.

0 1 2 k − 1 k k + 1

λ0 λ1 λk−1 λk

µ1 µ2 µk µk+1

Figure 2.2: Transition diagram of a birth-death process.

We are interested in the stationary distribution of the birth-death process being in a certain state (when
the stationary distribution exists). In other words, we want to find the probability πi that the process is
in state i. Let λi and µi represent the transition rate from state i to i + 1 (birth) and i to i − 1 (death)
respectively.

Proposition 2.2.2. If
I

∑
i=0

i

∑
j=1

λj−1

µj
<∞,

then the stationary distribution exists and is given by

πi = π0

i

∏
j=1

λj−1

µj
(2.1)

with

π0 =
⎡⎢⎢⎢⎣

I

∑
i=0

i

∑
j=1

λj−1

µj

⎤⎥⎥⎥⎦

−1

. (2.2)

The proof of Proposition 2.2.2 can be found for example in [10, p.74] and for completeness we included it
in Appendix C. In the next sections, we will see how this process can be used to determine the stationary
distributions of some classical queueing models.

10 Dimensioning large-scale service systems with returning patients



CHAPTER 2. CLASSICAL QUEUEING MODELS

2.3 Erlang-C model

This model is also referred to as the M/M/s model. The first M refers to the arrival process, which is
Poisson with rate λ, where λ is the expected number of arrivals in one time unit.

The second M refers to the service distribution, that is exponentially distributed service with rate
µ. Moreover, there are s servers available and each server can help one patient at a time. If an arriving
patient finds all servers occupied, he will wait till one is available. Patients are served in accordance with
the FCFS (First Come First Served) discipline. An illustration of this model is given in Figure 2.3.

Denote the load intensity by ρ = λ/(µs), which is equal to the fraction of time that a server is busy.
Thus for stability we must have ρ < 1.

s

Exp(µ)

Poisson(λ)

Figure 2.3: The Erlang-C model.

0 1 2 s − 1 s s + 1

λ λ λ λ λ λ λ

µ 2µ 3µ (s − 1)µ sµ sµ sµ

Figure 2.4: Transition diagram of the Erlang-C model.

2.3.1 Properties

We are interested in the number of patients in the system, which we refer to as the queue length. So if
the process is in state i, then there are i patients in the system, either waiting or being served. Let πi
denote the stationary probability of the queue length.

Proposition 2.3.1. The stationary distribution of the queue length in the Erlang-C model is given by

πi =
⎧⎪⎪⎨⎪⎪⎩

π0
(ρs)i

i!
for 0 ≤ i ≤ s − 1,

π0
ρiss

s!
for i ≥ s

(2.3)

with

π0 =
⎡⎢⎢⎢⎣

s−1

∑
j=0

(ρs)j

j!
+ (ρs)s

(1 − ρ)s!

⎤⎥⎥⎥⎦

−1

. (2.4)

This and the following results can be found in [10, pp.90-92] and we rederive Proposition 2.3.1 in Ap-
pendix C. An important quantity is the Erlang-C formula that defines the probability that an arriving
patient finds all servers occupied, which we dote by C(s, ρ). Since the PASTA property holds for patients
arriving according to a Poisson process, we have

C(s, ρ) =
∞

∑
i=s

πi =
(ρs)s

(1 − ρ)s!
π0. (2.5)

Equivalently, denoting the offered load by R = ρs = λ/µ, we obtain

C(s,R) = s

s −R
Rs

s!
π0
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with

π0 =
⎡⎢⎢⎢⎣

s−1

∑
j=0

Rj

j!
+ s

s −R
Rs

s!

⎤⎥⎥⎥⎦

−1

.

Lemma 2.3.2. The following recursion holds for the Erlang-C formula:

C(s + 1,R) = (s −R)RC(s,R)
s(s + 1 −R) −RC(s,R)

(2.6)

with C(0,R) = 1.

Recursion (2.6) proves to be very useful for numerical computations.

2.3.2 The Emergency Department

Providing timely service is important in order for the patient’s condition not to worsen. To reach this
goal for the Emergency Department, typically the Erlang-C model is used.

It has been shown that patient arrivals to the Emergency Department are well approximated by a
time-homogeneous Poisson process [22, 21, 18, 4]. Moreover, it is reasonable to assume patients originate
from a large population, arrive one at a time and independently of one another.

In [18], the Erlang-C model is used with arrival rates dependent on the hour of the day and delay
measured from the moment of admission/registration until the first moment a provider (physician, or
other) is available to see the patient. Therefore, the waiting time of the queueing model does not
equal the actual waiting time experienced by the patient since the triage process is included in the delay.
Nevertheless, by using certain properties of this model one can provide a high-level approach to determine
an appropriate staffing level with respect to the number of care providers.

In addition, delays can arise due to an insufficient number of beds. This is named as the single biggest
cause of Emergency Department overcrowding according to the American Hospital Association [2, 17].
An insufficient number of beds interferes with the ability of physicians and nurses to take care of their
patients and even worse, it can cause the condition of patients to worsen throughout this delay. In this
context, the beds are considered as the servers of the system and delay arises when there is no bed
available after the patient is triaged.

2.4 Erlang-B model

This model is also referred to as the M/M/s/s model, or the Erlang loss model. Again, patients arrive
according to a Poisson process with rate λ and require exponential service time with rate µ. However,
in this case when patients find all servers occupied upon arrival, they will leave the system immediately
without being served, see Figure 2.5. Therefore we do not have a stability condition in this setting.
Again, let ρ = λ/(µs) denote the load intensity and R = λ/µ the offered load.

s

Exp(µ)

Poisson(λ)

Figure 2.5: The Erlang-B model.

2.4.1 Properties

We are interested in the number of patients in the system. Let πi denote the stationary probability of
the queue length.
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0 1 2 s − 1 s

λ λ λ λ λ

µ 2µ 3µ (s − 1)µ sµ

Figure 2.6: Transition diagram of the Erlang-B model.

Proposition 2.4.1. The stationary distribution of the queue length in the Erlang-B model is given by

πi = π0
(ρs)i

i!
for 0 ≤ i ≤ s (2.7)

with

π0 =
⎡⎢⎢⎢⎣

s

∑
j=0

(ρs)j

j!

⎤⎥⎥⎥⎦

−1

. (2.8)

Contrary to the Erlang-C model, we do not have patients waiting. Instead, an important quantity
is the probability that an arriving patient finds all servers occupied and will be blocked, denoted by
B(C,ρ). By the PASTA property this equals

B(s, ρ) = πC = π0
(ρs)s

s!
.

This can also be expressed in terms of R. Then

B(s,R) = π0
Rs

s!
(2.9)

with

π0 =
⎡⎢⎢⎢⎣

s

∑
j=0

Rj

j!

⎤⎥⎥⎥⎦

−1

.

Lemma 2.4.2. The following recursion holds for the Erlang-B formula:

B(s + 1,R) = RB(s,R)
RB(s,R) + s + 1

(2.10)

with B(0,R) = 1

Recursion (2.10) will be very useful for numerical computations. We will also provide an expression
for the relation between the Erlang-B and Erlang-C formula.

Lemma 2.4.3. The following identity holds:

C(s,R)−1 = ρ + (1 − ρ)B(s,R)−1. (2.11)

The proofs of the Proposition 2.4.1 and the two lemmas can be found in [10, pp.79-81], and we
included them in Appendix C.

2.4.2 Bed capacity in clinical wards

One way to measure the capacity within a clinical ward is in terms of the number of operational beds.
This is mostly done via a staffing ratio per operational bed [7], which is generally fixed and evaluated
on a yearly basis.

A structural model of the patient flow through a clinical ward is shown in Figure 2.7. A patient
arrives to a clinical ward and if the ward is fully occupied, the patient is refused and redirected to a less
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Figure 2.7: Structural model of patient flow through a clinical ward.

preferable ward or another hospital. If there is a bed available for the patient, she will be treated here
for a certain amount of time, after whish the patient will leave the ward (discharged, redirected, etc.).
The amount of time the patient is in the ward is referred to as the patient’s Length of Stay (LOS).

When we assume a Poisson arrival process, an exponentially distributed LOS with a fixed rate and
a FCFS service discipline, this corresponds to an Erlang-B model. A patient refused due to unavailable
beds can be considered ‘lost’ or ‘blocked’. This undesired result can be taken as a performance measure of
the system. In practice, refused patients are diverted to another hospital or diverted to a non-preferable
ward. This number is hard to approximate in practice [7].

However, for some clinical wards modeling the arrival process by a Poisson process is not appropriate.
For instance, wards with a high percentage of scheduled admissions, such as Hematology and Ophthal-
mology cannot be modeled with a Poisson arrival process. Moreover, the Erlang-B model also makes the
assumption of an exponentially distributed service time. This is an invalid choice in practice, since LOS
distributions are often characterized by heavy tails and high variability [8]. For example, the coefficient
of variation is often larger than one, while for the exponential distribution the coefficient equals one.
This effect is even more significant when there are many patients ready to be transferred but no available
beds, and thus remain at the current ward waiting for a free bed. An Erlang loss model can still be used
for this scenario, but requires a more elegant treatment of the service distribution. This is for example
done in [7].

2.5 Erlang-A model

Suppose an arriving patient finds all servers occupied. In the Erlang-C model the patient will wait until
a server is available, while in the Erlang-B model the patient leaves immediately. In practice, the patient
might wait for a certain amount of time and if no server becomes available during this time, the patient
abandons the system. This model is referred to as the M/M/s +M model, or the Erlang-A model.
Observe that the number of servers is given by s+M in Kendall’s notation. That is, the capacity of the
system is given by s servers plus an additional exponentially distributed time that patients are willing
to wait for service.

A structural representation is given in Figure 2.8. Again, patients arrive according to a Poisson
process with rate λ and require exponential service times with parameter µ. In this case, arriving
patients finding all servers occupied will wait for an exponentially distributed time with rate θ. If no
server becomes available during this period, the patient abandons the system. Note that there is no
stability condition in this setting. Again, let ρ = λ/(µs) and R = λ/µ. An illustration of the transition
rates is given in Figure 2.9.

2.5.1 Properties

We are interested in the number of patients in the system. Let πi denote the stationary probability of
the queue length.
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Poisson(λ)

Exp(θ)

Figure 2.8: The Erlang-A model.

0 1 2 s − 1 s s + 1
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Figure 2.9: Transition diagram of the Erlang-A model.

Proposition 2.5.1. The stationary distribution of the queue length in the Erlang-A model is given by

πi =
⎧⎪⎪⎨⎪⎪⎩

π0
(ρs)i

i!
for 0 ≤ i ≤ s,

π0
(ρs)s

s! ∏
i
j=s+1

λ
sµ+(j−s)θ

for i ≥ s
(2.12)

with

π0 =
⎡⎢⎢⎢⎣

s

∑
j=0

(ρs)j

j!
+

∞

∑
j=s+1

(ρs)s

s!

i

∏
j=s+1

λ

sµ + (j − s)θ

⎤⎥⎥⎥⎦

−1

. (2.13)

Observe that this distribution is not of a closed form, since it includes an infinite sum that can cause
numerical problems. In [28] an alternative way to express the stationary distribution is deduced, which
can be used for numerical computations. Recall that the Erlang-B formula B(s,R) denotes the blocking
probability in the Erlang-B model with s servers and load intensity ρ.

Lemma 2.5.2. Let
A(x, y) = 1 +∑∞j=1

yj

∏
j
k=1(x+k)

, x > 0, y ≥ 0.

The following holds for the Erlang-A formula:

πi =
⎧⎪⎪⎨⎪⎪⎩

πs ⋅ s!
i!(ρs)s−i for 0 ≤ i ≤ s,

πs ⋅ (λ/θ)i−s

∏
i−s
j=1(

sµ
θ +j)

for i ≥ s (2.14)

with

πs =
B(s, ρ)

1 + [A ( sµ
θ
, λ
θ
)] ⋅B(s, ρ)

. (2.15)

2.5.2 LWBS patients

Studies show that there exists a strong link between long waiting times and the fraction of patients that
leave without being seen (LWBS), particularly in case of the Emergency Department [17]. Those patients
can still be in need of care and it is not uncommon they return to be hospitalized within a short period,
resulting in an overall decreasing quality of care.

Under the assumption that patients do not leave once they are in service, the Erlang-A model can be
used to account for the fraction of LWBS patients. Although both the Erlang-C model and the Erlang-A
model cannot capture all characteristics of an actual operational setting, many studies demonstrated the
usefulness of these models in providing decision support that can greatly improve performance, e.g. [18].
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Chapter 3

The QED regime

Hospitals would like to be both efficient in view of budgets and offer good quality of service to their
patients. In this chapter we discuss the mathematical theory of the Quality-and-Efficiency-Driven (QED)
regime, which can achieve this dual goal.

A main question in this area involves matching capacity and demand of the queueing model according
to a certain rule of thumb. More concretely, we want to find a suitable number of servers when the
system operates in a certain regime. In this chapter we will provide some results for the classical models
introduced in Chapter 2 and consider them in hospital settings.

3.1 Introduction

Recall that in a basic queueing model patients arrive to a service facility that provides service for a
certain amount of time, after which the patient leaves the system. The number of servers, which we refer
to as the staffing level, directly influences the level of efficiency and the level of quality of the system. To
provide an intuitive feeling of this concept, we consider the Erlang-B model with R = 10. More servers
will result in a smaller fraction of patients that are blocked for service, i.e. a higher quality of service.
However, this is at the expense of the efficiency since the utilization level of the servers decreases as the
number of servers grows, see Figure 3.1.
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s
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0.8
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B(s,10)

(a) Blocking probability as a function of s.
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0.6

0.8
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Server Utilization

(b) Utilization level as a function of s.

Figure 3.1: Effects of s for the Erlang-B model.

This raises the question of how many servers are needed such that a predetermined performance is
achieved. It seems reasonable that the capacity should at least exceed the offered load in order to manage
the demand, but in what way do we choose this slack?

Within asymptotic optimization of queueing systems, usually three different regimes are distinguished.
The first regime is called the Quality-Driven (QD) regime, where the capacity exceeds the mean demand
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considerably. For many queueing systems the staffing rule can be written in the form s = R+βR = (1+β)R,
where s is the number of servers and R the offered load. In other words, the capacity exceeds the offered
load by a fixed percentage β. Then, the number of servers is an increasing function of β and both the
probability of blocking and the utilization level are decreasing functions of β. In general, an important
characteristic of this regime is that the probability of blocking or waiting converges to zero as the offered
load R (and thus the staffing level) grows to infinity. On the other hand, the utilization level does not
converge to one.
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(a) Blocking probability as a function of β in the
QD regime.
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(b) Utilization level as a function of β in the QD
regime.
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(c) Blocking probability as a function of β in the
ED regime.
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(d) Utilization level as a function of β in the ED
regime.
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(e) Blocking probability as a function of β in the
QED regime.
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(f) Utilization level as a function of β in the QED
regime.

Figure 3.2: Effects of β for the Erlang-B model.

The second regime is called the ED-regime (Efficiency-Driven), where a high utilization of the servers
is of greater importance than the probability of waiting or blocking. In some queueing models the
capacity even falls short of the offered load by some percentage. For the Erlang-B model, the staffing
rule can be written as s = R−βR = (1−β)R. Then s is a decreasing function of β and both the probability
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of blocking and the utilization level are increasing functions of β. In general, the typical characteristic of
this regime is that the utilization level converges to one as well as the probability of blocking or waiting
as R grows to infinity.

In our situation we would like to balance the efficiency and the quality of the system. In other
words, we would like to have a high occupation rate, while the probability of waiting or blocking remains
reasonable. This can be achieved with the QED-regime (Quality-and-Efficiency-Driven). In this regime,
for many queueing models the staffing rule is some form of the so-called square root formula, given by

s = R + β
√
R.

We find that s equals the offered load R plus some hedge β
√
R. The constant β can be seen as a

quality parameter that determines how high the quality, and at the same time, how costly the system
is. Characteristic of the QED regime is that the probability of blocking converges to zero as R →∞ at
a rate such that the utilization level converges to one.

For the Erlang-B model, Figure 3.2 illustrates the effect of β on the probability of blocking and the
utilization level for the three regimes. Moreover, Table 3.1 summarizes the performance characteristics
for the three different regimes, where ρ is the utilization level. This concept is very powerful when

Regime Staffing Level Quality Efficiency

QED s = R + β
√
R P (Block)→ 0 ρ→ 1

QD s = R + βR P (Block)→ 0 ρ→ 1/(1 + β)
ED s = R − βR P (Block)→ β ρ→ 1

Table 3.1: System Performance for three regimes for the Erlang-B model.

used for determining suitable staffing levels in a queueing system. We will demonstrate this in the next
sections for the classical queueing models described in Chapter 2.

3.2 Erlang-C model

The Erlang-C model is often used for modeling the Emergency Department of a hospital [17]. The goal
is to provide a staffing level in the QED-regime.

3.2.1 QED behavior

First we construct a framework in which we can consider the asymptotic behavior of this queueing system.
We consider a sequence of M/M/s queues indexed by some integer n. We will adopt the notation used in
Section 2.3, subscribed with index n. In our framework we have that the arrival rate λn →∞ as n→∞.
Moreover, let µn = µ, sn = n and ρn = λn/(nµ). Note that for stability we must have ρn < 1 for all n ∈ N.

Within this framework, it turns out that the probability of delay has a nondegenerate limit as ρn → 1
with a certain rate. Next we will formalize this notion, from which the square root staffing rule can be
obtained.

Let Φ and φ denote the standard normal cumulative distribution and density respectively. Let Qn
denote the number of patients in the n’th system (in its stationary state). The following theorem will
formally state under what condition the probability of delay has a nondegenerate limit.

Theorem 3.2.1 (Halfin & Whitt [20]). The probability of delay has a nondegenerate limit, i.e. a limit
strictly between zero and one, if and only if

limn→∞(1 − ρn)
√
n = β, β > 0.

In this case we have

f(β) ∶= lim
n→∞

P (Qn ≥ n) = [1 + βΦ(β)
φ(β)

]
−1

= φ(β)
φ(β) + βΦ(β)

. (3.1)
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The proof provided in [20] makes use of the CLT (Central Limit Theorem) and Stirling’s approximation
and can be found in Appendix D.

The limiting result in (3.1) gives rise to a simple approximation for the probability of delay of a finite
M/M/s queue. Note that from limn→∞(1−ρn)

√
n = β it follows that ρn → 1 as n→∞. Moreover n = sn,

thus fix β by setting

β = 1 − ρ
√
ρ

√
s.

Equivalently, we derive the staffing rule
s = R + β

√
R. (3.2)

In conclusion, Theorem 3.2.1 states that the probability of delay will converge to a probability strictly
between zero and one when the square root staffing rule (3.2) is chosen.

3.2.2 Dimensioning scheme

To illustrate the power of Theorem 3.2.1 we consider two possibilities how one can dimension this system,
i.e. determine the number of servers, in the QED regime. First, this can be done via a constraint based
problem. For example, suppose that the fraction of patients that must wait for service cannot exceed
α ∈ (0,1). Then what is the minimal number of servers to meet this performance level?

We can determine the parameter β by inverting the equation

α = [1 + βΦ(β)
φ(β)

]
−1

.

This equation is given in Figure 3.3. Then from the square root staffing rule (3.2) follows how many
servers are needed to meet the desired performance level.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
β

0.2

0.4

0.6

0.8

1.0
P(W>0)

Figure 3.3: The function f(β) defined in (3.1).

Secondly, we can dimension via a cost optimization problem, where a trade-off is made between server
costs and waiting costs. The goal is to minimize the long term average costs. For example, suppose a
server costs c1 per time unit and a patient waiting costs c2 per time unit. Let W be the stationary
waiting time of an arriving patient and let E(QW ) be the expected number of patients that wait for
service. Denote

f(β) ∶= [1 + βΦ(β)
φ(β)

]
−1

≈ P (W > 0).

Then the total cost is given by the function c1s + c2E(QW ). By Little’s law E(QW ) = λE(W ) and
moreover, it can be shown (see e.g. [10, pp. 96-97]) that

P (W > t∣W > 0) = e(1−ρ)sµt.
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Then,

E(W ) = E(W ∣W > 0)P (W > 0) = P (W > 0)∫
∞

0
P (W > t∣W > 0)dt

= P (W > 0)∫
∞

0
e(1−ρ)sµt dt ≈ f(β) ⋅ 1

(1 − ρ)sµ

= f(β)
(s −R)µ

= f(β)
β
√
Rµ

,

and therefore

c1s + c2E(QW ) = c1(R + β
√
R) + c2λf(β)

β
√
Rµ

= c1(R + β
√
R) + c2

√
Rf(β)
β

= c1R +
√
R(c1β +

c2
β
f(β)) .

Thus, to minimize the total cost we need to find

arg min
β>0

{c1β +
c2
β
f(β)} .

This provides the asymptotically optimal β and from the square root staffing rule (3.2) we obtain the
asymptotic optimal number of servers that minimizes the costs.

We note that the asymptotic probability of waiting is an approximation of the true value in a finite
system. Using the analytic results of Chapter 2, we can also these address staffing problems via exact
optimization. However, this lacks insight in the dependencies between the parameters and particularly
how the number of servers relates to the offered load.

Summarizing, for the Erlang-C model to operate in the QED regime, Theorem 3.2.1 states that we
need to apply the square root staffing rule. From this, we can determine the staffing level to meet a
certain performance measure. In addition, it can be used to solve asymptotic optimization problems in
order to find the corresponding optimal staffing level.

3.2.3 Dimensioning examination rooms

To provide a concrete example, we will consider how one can determine the number of examination
rooms in an Emergency Department such that a predetermined value for the waiting time is achieved.
We consider an average arrival stream on the number of patients in the Emergency Department of a large
top clinical hospital in the Netherlands during the first half year of 2014, see Table 3.2. This particular
hospital assigns examination rooms to two different types of patients, namely patients with low acuity
conditions (Fast-Track) and patients whose diagnosis is often less evident upon arrival (High-Care). The
service time corresponds to the time that the patient is in the examination room.

Parameters Total Fast-Track High-Care

#Patients 4381 226 4155
#LWBS 172 20 152
λ 3.458 0.178 3.279
µ 0.403 0.632 0.395
λLWBS 3.322 0.163 3.159
θ 0.214 0.483 0.200

Table 3.2: Parameters from data and observations.

Suppose we want to know how many examination rooms are needed such that the expected waiting
time is below a certain threshold. Then by the techniques described in the previous section we know that
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E(W ) ≈ f(β)/(β
√
Rµ), where f is the asymptotic probability of waiting. This gives rise to parameter

β and hence the recommended staffing levels, which are displayed in Table 3.3.

E(W ) (in min) βTotal nTotal βFT nFT βHC nHC

5 1.2987 13 1.7493 2 1.3120 13
10 1.0460 12 1.5033 2 1.0592 12
15 0.9006 12 1.3565 2 0.9135 11
20 0.8002 11 1.2515 1 0.8127 11
25 0.7245 11 1.1700 1 0.7367 11
30 0.6644 11 1.1036 1 0.6763 11
35 0.6152 11 1.0476 1 0.6267 11
40 0.5738 11 0.9994 1 0.5849 10
45 0.5383 11 0.9571 1 0.5491 10
50 0.5074 11 0.9195 1 0.5180 10
55 0.4803 10 0.8858 1 0.4906 10
60 0.4562 10 0.8552 1 0.4662 10

Table 3.3: Recommended number of examination rooms based on observational
data.

Observe that the number of examination rooms for the Fast-Track patients is very low. For such
small systems the asymptotic analysis provides poor approximations for the true expected waiting times.
However, we observe that the recommended number of examination rooms for the High-Care patients is
close to reality.

3.3 Erlang-B model

In this section we will consider the QED staffing rule for the Erlang-B model. Consider a sequence of
M/M/s/s queues indexed by integer n with arrival rate λn, service rate µn = µ and traffic intensity ρn.
Let Qn denote the number of patients in the n’th system (in its stationary state).

Theorem 3.3.1. The following holds for the Erlang-B model:

lim
n→∞

√
nP (Qn ≥ n) =

φ(β)
Φ(β)

∈ (0,1),

if and only if
limn→∞(1 − ρn)

√
n = β, β > 0.

The proof of this classical result (see e.g [24]) is included in Appendix D. Again, this gives rise to the
square root staffing rule s = R + β

√
R, where the parameter β is found by solving

√
sP (Block) = φ(β)

Φ(β)
. (3.3)

This relation is visualized in Figure 3.4. Consequently, in the QED-regime the probability of blocking
will converge to zero as the offered load grows.

We will provide an example in a cost optimization setting for this model. Suppose that a server costs
c1 per time unit, and blocking a patient costs c2 per time unit. We want to minimize the average total
cost per time unit, which is given by

c1s + λP (Blocked) ≈ c1R +
⎛
⎝
c1β

√
R + c2λφ(β)√

R + β
√
RΦ(β)

⎞
⎠
.
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Figure 3.4: The relation given in (3.3).

Since R is large and we want to minimize the total cost, we are interested in

arg min
β

{c1β +
c2µφ(β)

Φ(β)
} .
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Figure 3.5: Total cost approximation example for the Erlang-B model.

This equation is illustrated in Figure 3.5 for c1 = 1, c2 = 5, λ = 10 and µ = 1. We find that a minimum is
obtained for β = −1.51454. Note that a negative value of β is possible, since we do not have the stability
condition for the Erlang-B model. Thus the optimal staffing level in this example is s = 6.

3.4 Erlang-A model

The Erlang-C model does not take into account the fact that patients can leave the system when they
do not want to wait any longer. For the Emergency Department, the percentage of patients that leaves
without being seen is considered as an important performance measure for the quality of care. To
incorporate this abandonment phenomenon, we will consider the Erlang-A model. This section will
provide a result on the relation between waiting, abandonment and the number of servers in the QED
regime.

In the framework of asymptotic optimization of this queueing system, we consider a sequence of
M/M/s +M queues, indexed by integer n. We have that λn → ∞ as n → ∞. Moreover, in this setting
µn = µ, sn = n, ρn = λn/(nµ) and the rate of abandonment θn = θ ∈ (0,∞). Note that we do not have a
stability condition in this system.

The results are derived in [14]. In order to present the results, we first introduce the hazard function

Dimensioning large-scale service systems with returning patients 23



CHAPTER 3. THE QED REGIME

h and the function w, given by

h(x) = φ(x)
1 −Φ(x)

,

and

w(x, y) = [1 + h(−xy)
yh(x)

]
−1

.

Let Wn denote the stationary waiting time distribution of the n’th system and Abn the event of a
patient abandoning the system before service in the n’th system.

Proposition 3.4.1. The probability of delay has a nondegenerate limit

lim
n→∞

P (Qn > 0) = w(−β,
√
µ/θ) ∈ (0,1),

if and only if

lim
n→∞

√
nP (Abn) = [

√
θ/µ ⋅ h(β

√
µ/θ) − β] ⋅w(−β,

√
µ/θ)

if and only if
lim
n→∞

(1 − ρn)
√
n = β, −∞ < β <∞.

The proof of Proposition 3.4.1 can be found in [14].

From Proposition 3.4.1 follows again the square root staffing rule s = R + β
√
R, where β can be

considered as the service grade. Figure 3.6 illustrates the approximations for the probability of waiting
and abandonment as a function of the number of servers s for λ = 10, µ = 1 and θ ∈ {1/10,1,10}. The
different abandonment rates can be interpreted as patients that on average are willing to wait for 10
minutes, one minute and 6 seconds on average respectively.
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(a) Approximation for the probability of waiting.
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(b) Approximation for probability of abandonment.

Figure 3.6: Performance approximations for the Erlang-A model.

The Erlang-A model can be used to account for the LWBS patients, i.e. the patient that leave
the Emergency Department if they have to wait excessively long for an available examination room.
Unfortunately, this number is generally very hard to approximate in practice [18]. Nevertheless, when
an indication of this number is known we can use the dimensioning scheme of the Erlang-A model.

To provide a concrete example, we reconsider the example of Section 3.2.3. By Little’s law we can
approximate the parameter θ by P (Ab)/E(W ). We assume that once a patient is in the examination
room, she does not abandon until her service is completed. We would like to determine the number of
examination rooms needed such that no more than 1% leaves without being seen. By the techniques
explained in the previous section, we find β = 0.5834, β = 1.1371 and β = 0.6991 in case we consider all
patients, only the Fast-Track or only the High-Care patients respectively. This yields a recommended
number of examination rooms of ten in total, or one for the Fast-Track patients and ten for the High-Care
patients.

However, the classical patient flow models miss the prevalent feature of patients reentering for service.
Instead we will propose a new model in Part II, and find a staffing policy in the QED regime for this
system.
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Advanced patient flow models
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Chapter 4

Advanced models in the literature

Currently, the most commonly used queueing models to support workforce management are the classical
models introduced in Part I. However, more recent work in the literature proposes other models designed
specifically for modeling purposes in hospital settings. We will consider these models in this chapter.

4.1 The closed ward model

A typical feature of the classical models is that they are open in the sense that the patient arrivals
originate from an external (infinite) source. In contrast, Jennings and De Véricourt propose a closed
queueing model to determine an efficient nurse staffing policy within a nursing unit [26, 27]. In addition,
this model will prove to be of interest in Chapter 5 when we consider the overloaded regime of the
Semi-Open Erlang-R model with Waiting (SERW).

Jennings and De Véricourt were interested in suggesting a staffing policy subject to a constraint on
the probability of (excessive) delay for a service-requesting patient under the QED regime. We are also
interested in the workload of the nurses under the proposed QED staffing rule and therefore we extend
their results by considering the utilization level of the nurses.

4.1.1 Model description

Suppose that there are n patients in the medical ward with s nurses. Patients can reside in two possible
states: content and needy. Stable patients become needy after an exponentially distributed activation
time with rate δ. Needy patients are served by the nurses in accordance with a FCFS service discipline,
and require an exponentially distributed service time with rate µ. Then the patient returns to her stable
state until she needs other care procedures. A structural representation of the closed ward model is given
in Figure 4.1. This model corresponds to a closed M/M/s//n queue and to exclude trivial situations,
we assume s < n.

4.1.2 Stationary distribution

Before we consider any performance measures of the closed ward model, we first look at the stationary
distribution of the number of patients in the service queue. Since there are n patients in the ward, there
are n + 1 possible states. Figure 4.2 illustrates the transition rates between the different states.

Let ρ = δ/(µs) denote the load intensity and R = δ/µ the offered load. Let πi denote the stationary
probability of the queue length being equal to i, i.e. the number of patients in need of service. Then the
stationary distribution of the queue length is given by the following proposition [15]

Proposition 4.1.1. The stationary distribution of the queue length of the closed ward model is given by

πi = { π0(ni)ρ
isi for 0 ≤ i ≤ s,

π0(ni)
i!
s!
ρiss for s + 1 ≤ i ≤ n (4.1)
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Figure 4.1: The closed ward model.
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Figure 4.2: Transition diagram of the queue length in the closed ward model.

with

π0 = [
s

∑
i=0

(n
i
)ρisi +

n

∑
i=s+1

(n
i
) i!
s!
ρiss]

−1

. (4.2)

We included the proof of Proposition 4.1.1 in Appendix C.

4.1.3 Performance measures

A needy patient must wait for service when it finds all s nurses occupied upon activation. Hence, the
performance of this system can be measured by the probability of excessive delay. This is defined as
the probability that an arriving patient has a waiting time that exceeds a certain threshold t ≥ 0. In
particular, if t = 0, it coincides with the probability that an arriving patient must wait. In addition, we
are interested in the expected waiting time and the utilization level of the nurses.

Proposition 4.1.2. Let ρJ denote the utilization level of the closed ward model and let π(n) denote the
stationary probability distribution of the number of needy patients in a ward of size n. The following
properties hold:

P (W > 0) =
n−1

∑
k=s

π
(n−1)
k ,

P (W > t) =
n−1

∑
k=s

π
(n−1)
k

k−s

∑
j=0

(µst)j

j!
e−µst,

E(W ) = 1

µs

n−1

∑
k=s

π
(n−1)
k (k − s + 1),

ρJ =
s−1

∑
k=0

k

s
π
(n)
k +

n

∑
k=s

π
(n)
k .
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4.1.4 QED behavior

Normally, we consider the stationary probability that all nurses are occupied to determine the probability
of delay. However, in this case the activation process is not Poisson and therefore the standard PASTA
argument cannot be used. Nevertheless, Jennings and De Véricourt prove that the PASTA property
holds asymptotically as n→∞. In other words, in the limit the probability that all nurses are occupied
and the probability of waiting upon activation coincide. Therefore, to derive heavy-traffic approximations
for the probability of delay we focus on the stationary probability that all nurses are occupied instead.

We introduce the quantity r = δ/(δ + µ), representing the long-run fraction of time that a patient
would spend in service if her service requirement would always be addressed immediately. Moreover,
a subscript is inserted for the number of servers sn, emphasizing the dependency on the number of
patients n.

Proposition 4.1.3. The probability that all servers are occupied has a nondegenerate limit

f(β) ∶= lim
n→∞

P (Qn ≥ sn) =
⎛
⎜
⎝

1 + e−β
2
/(2r2

)
√
r

Φ (β/
√
r(1 − r))

Φ (−β/(r
√

1 − r))

⎞
⎟
⎠

−1

(4.3)

if and only if
βn = ( sn

n
− r)

√
n→ β as n→∞

for some β ∈ R.

Jennings and De Véricourt provide a proof of this proposition [26], which we included in Appendix D.
Then Proposition 4.1.3 gives rise to the staffing rule

s = rn + β
√
n. (4.4)

Jennings and De Véricourt extended their analysis when they considered the probability of excessive
delay [27].

Proposition 4.1.4. For any given t > 0, the probability of excessive delay has a nondegenerate limit

ft(β) ∶= Φ(− β
r̂t

√
1 + rµt

(1 − r) + rµt
) , (4.5)

if and only if
(sn − r̂t)

√
n→ β, as n→∞,

where
r̂t =

r

1 + rµt
,

for some β ∈ (−∞,∞).

The proof of Proposition 4.1.4 can be found in [27]. Say one wants to design the system such that the
probability of excessive delay does not exceed α. Then Proposition 4.1.4 gives rise to a staffing rule for
all t > 0, namely

sn = r̂tn + βt
√
n,

where βt is found by (4.5). Equivalently,

βt = −r̂tΦ−1(α)
√

(1 − r) + rµt
1 + rµt

.

Analogously to the classical patient flow models, these staffing rules provide a powerful tool in capacity
management within a nursing unit. We will demonstrate this in Section 4.1.5.

The results in [27] take the patients waiting probability as the main performance criterion. This
model will prove to be of interest when we introduce the Semi-Open Erlang-R model with Waiting, for
which we are also interested in the utilization level of the nurses under the QED-scaling (4.4). Therefore
we extend the results in [27] by providing the asymptotic utilization level in the QED regime.
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Proposition 4.1.5. Under the QED staffing rule (4.4), the utilization level ρJ converges to one for any
β ∈ R as s→∞.

Proof. By Proposition 4.1.3 we know that ∑nk=s πk Ð→ f(β) under (4.4). What is left to show is

s−1

∑
k=0

k

s
πk Ð→ 1 − f(β).

We adopt the notation used in the proof of Propostion 4.1.3 (see Appendix D). Note that

π0 =
1

An +Bn
= 1

Bn

Bn
An +Bn

with

Bn =
(1 +R)n

Cn
P (Yn ≤ n − s).

Hence
1

Bn
∼ g(β)

(1 +R)n
,

where

g(β) =
√
re

−β2

2r2

Φ (−β/(r
√

1 − r))
.

We have

s−1

∑
k=0

k

s
πk =

π0

s

s−1

∑
k=1

k(n
k
)Rk

= π0nR

s

s−2

∑
k=0

(n − 1

k
)Rk

= π0nR

s
(1 +R)n−1

s−2

∑
k=0

(n − 1

k
)rk(1 − r)n−1−k

= π0nR

s
(1 +R)n−1P (Zn ≤ s − 2),

where Zn is a binomially distributed random variable with parameters n−1 and r. By the CLT we have

that P (Zn ≤ s − 2)→ Φ (β/(
√
r(1 − r))), since

s − 2 − (n − 1)r√
(n − 1)r(1 − r)

= β + (r − 2)/
√
n√

(1 − 1/n)r(1 − r)
→ β√

r(1 − r)
,

as n→∞.

Since n/s→ 1/r, we obtain

s−1

∑
k=0

k

s
πk ∼

1

r

R

1 +R
g(β)f(β)Φ (β/(

√
r(1 − r)))

= g(β)f(β)Φ (β/(
√
r(1 − r)))

= 1 − f(β).

In conclusion, under the QED regime we find that ρJ → 1.

Summarizing, under the QED staffing rule (4.4), the approximate probability of waiting converges to
a number strictly between zero and one. In contrast, the fraction of occupied servers converges to one.
Remarkably, the fraction of time that some servers are busy while other servers are idle is not negligible,
but tends to 1 − f(β). In practical terms, the probability for a patient to wait for a nurse converges to
f(β) as the number of examination rooms n grows large, while at the same time the fraction of time a
nurse spends with a patient tends to one.
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4.1.5 Dimensioning a nursing unit

To illustrate how to use the results in Section 4.1.4 for dimensioning a nursing unit, we will give a
constraint satisfaction example next. Consider a nursing unit with n = 15 patients, on average requiring
service every ten minutes each, with an expected service time of five minutes. Suppose a patient is
considered to wait excessively if she has to wait for more than five minutes. Let one time unit correspond
to five minutes, then we obtain the parameters δ = 1/2, µ = 1, r = 1/3, t = 1 and n = 15. Suppose we want
that no more than 15% of the patients have to wait more than five minutes for service. The approximation
for the probability of excessive delay is displayed in Figure 4.3a. We find that for βt = 0.2244 the
approximation for the probability of excessive delay intersects the performance level 0.15. Then the
recommended staffing level is s = ⌈r̂tn+βt

√
n⌉ = 5 servers in order to meet the desired performance level.
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(a) Case t = 1.
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(b) Case t = 0.

Figure 4.3: Excessive probability approximation for δ = 1/2 and µ = 1 for the
closed ward model.

Similarly, we can find the required number of nurses when no more than 15% of the patients should
wait at all for service. Figure 4.3b displays the probability of waiting as a function of β. We find that
for β = 0.3013 the performance level is met, yielding a recommended staffing level of s = 7.

4.2 The Erlang-R model

In this section we consider the Erlang-R model, where the R stands for re-entering or returning, intro-
duced by Yom-Tov and Mandelbaum [33]. Classical patient flow models do not accommodate for patients
that return for service, a prevalent feature when considering healthcare environments and particularly
the Emergency Department. Moreover, we will see in Chapter 5 that the Erlang-R model corresponds
to the Semi-Open Erlang-R model with Waiting when we relax the constraint on the number of patients
that can be served simultaneously.

4.2.1 Model description

Patients arrive to an Emergency Department according to a Poisson process with rate λ. Patients are
served by s nurses with exponentially distributed service times with rate µ. After service completion,
they leave the Emergency Department with probability 1−p and with probability p they return to service
after an exponentially distributed delay time with rate δ. See Figure 4.4 for an illustration of this process.
Following Jennings and de Véricourt [27], a patient in the Emergency Department can be in two possible
states: the needy state when she is in need of service and the content state when she is in the delay
phase.
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Figure 4.4: The Erlang-R model.

4.2.2 Stability

For stability in the Erlang-R model it is necessary and sufficient that the number of patients in the service
station does not explode. We note that the Erlang-R model is an open two-station Jackson network with
a product-form stationary distribution, see Proposition 4.2.2. Then we find that the marginal distribution
on the number of needy patients is the same as the stationary distribution of an Erlang-C model with an
adapted offered load. That is, there are two naturally corresponding Erlang-C models for the Erlang-R
model in stationarity: either the arrival rate or the service rate can be modified to account for the
returning patients, see Figure 4.5. From this observation, the stability condition follows directly.

Poisson( λ
1−p
)

Exp(µ)

s

(a) Case 1.

Poisson(λ)

Exp(µ(1 − p))

s

(b) Case 2.

Figure 4.5: Corresponding Erlang-C models for an Erlang-R model.

Lemma 4.2.1. The Erlang-R model is stable if and only

λ

(1 − p)µs
< 1.

4.2.3 Stationary distribution

Consider the two-dimensional Markov process QR(t) = (QR1 (t),QR2 (t)), where QR1 (t) represents the
number of patients in need of service at time t and QR2 (t) represents the number of patients in the
content state at time t. Define the offered loads R and R2 of the service queue and the content queue
respectively. We note that R = λ/µ + R2δ/µ and R2 = pRµ/δ. Hence, the offered loads are given by
R = λ/((1 − p)µ) and R2 = pλ/((1 − p)δ). The Erlang-R model is an open Jackson network, with the
following stationary distribution.

Proposition 4.2.2. The stationary distribution of the queue length in the Erlang-R model is given by

πij ∶= P (Q1(∞) = i,Q2(∞) = j) =
⎧⎪⎪⎨⎪⎪⎩

(R)i

i!
c1
(R2)

j

j!
c2 if i ≤ s,

Ri

s!si−s c1
(R2)

j

j!
c2 if i ≥ s,

where

c1 = [ Rs

s!(1 −R/s)
+
s−1

∑
i=0

Ri

i!
]
−1
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and

c2 =
⎡⎢⎢⎢⎣

∞

∑
j=0

Rj2
j!

⎤⎥⎥⎥⎦

−1

= e−R2 .

The distribution is a direct result of the Erlang-R model being an open (product-form) Jackson network
with offered loads R and R2 for the two stations.

4.2.4 Performance measures

The next results can be found in [33].

Proposition 4.2.3. Let ρR = R/s. The following properties hold for the Erlang-R model:

P (W > 0) = Rs

s!(1 −R/s)
c1,

W ∣W > 0
d= Exp(µs(1 − ρR)),

P (W > t) = P (W > 0)e−µs(1−ρR)t,

E(W ) = P (W > 0)
µs(1 − ρR)

,

ρR = R
s
= λ

(1 − p)µs
.

We included the proof in Appendix C.

4.2.5 QED behavior

Observe that the stationary distribution of the Erlang-R model for the nurse station is the same as that
of the Erlang-C model with offered load λ/((1−p)µ). Therefore, the QED results for the Erlang-C model
apply directly when using the QED staffing rule

s = R + β
√
R. (4.6)

Proposition 4.2.4. Under QED staffing (4.6) we have the following asymptotic behavior of the per-
formance measures:

lim
R→∞

P (W > 0) = (1 + βΦ(β)
φ(β)

)
−1

, (4.7)

lim
R→∞

√
sE(W ) = 1

βµ
(1 + βΦ(β)

φ(β)
)
−1

, (4.8)

lim
R→∞

ρR = 1. (4.9)

4.3 The Semi-Open Erlang-R model with Blocking

As an extension of the Erlang-R model, Yom-Tov [32] considered a semi-closed model that is illustrated in
Figure 4.6 in her thesis [32]. We will refer to this model as the Semi-Open Erlang-R model with Blocking
(SERB), and include the main results here. This model describes the referral from the Emergency
Department to another medical unit. When all beds in the internal ward are occupied, the patient is
directed to another hospital or another medical unit. Once the patient is in the nursing unit, she requires
a nurse’s service (possibly) multiple times until she leaves the Emergency Department.
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Figure 4.6: The Semi-Open Erlang-R model with Blocking.

4.3.1 Model description

Patients arrive to the service facility according to a Poisson process with rate λ. An arriving patient
finding n patients being served in the service facility is blocked. Once a patient is in the service facility,
the patient is served by one of the s nurses with an exponentially distributed service time with rate µ.
After service completion, the patient leaves the system with probability 1 − p. With probability p the
patient returns for service after an exponentially distributed time with mean 1/δ. Yom-Tov [32] includes
a third station to represent a cleaning phase. For our research purposes, we excluded this cleaning
station, which yields some simplified expressions for the distribution and performance measures.

4.3.2 Stationary distribution

The analysis of the SERB model can be reduced to a closed Jackson network consisting of three nodes.
Two nodes correspond to the service station and the ‘content’ station of the SERB model. The patients
that arrive when the system is full are blocked, hence these patients will not contribute to the number
of patients within the system. Therefore, let the third node represent the number of available positions
in the system. Once positions are available, the patients that arrive according a Poisson process with
rate λ are accepted. In other words, as long as the third queue is nonempty, patients arrive successively
following a Poisson process with rate λ. By the memoryless property, the third station can therefore
be modeled as a single server queue with exponentially distributed service times with mean 1/λ. An
illustration of this closed network is shown in Figure 4.7.

n

Exp(µ)

Exp(δ)

∞

s

p

Exp(λ)
1

1 − p

Figure 4.7: The corresponding closed Jackson of the SERB model.

Let Q = {QB(t), t ≥ 0} be a two-dimensional stochastic process with QB(t) = (QB1 (t),QB2 (t)), where
QB1 represents the number of patients in need of service and QB2 represents the number of patients in the
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content state. Let R and R2 be the offered loads when there is no constraint on the number of patients,
i.e. R = λ/((1 − p)µ) and R2 = pλ/((1 − p)µ).

The corresponding closed Jackson network yields the following result on the distribution of the queue
length in the SERB model [32] and the proof can be found in Appendix C.

Proposition 4.3.1. The stationary distribution of the queue length in the SERB model is given by

πij ∶= P (QB1 (∞) = i,QB2 (∞) = j) =
⎧⎪⎪⎨⎪⎪⎩

π0
(R)i

i!
(R2)

j

j!
if i ≤ s,0 ≤ i + j ≤ n,

π0
Ri

s!si−s
(R2)

j

j!
if i ≥ s, ,0 ≤ i + j ≤ n,

where

π−1
0 =

n

∑
l=0

(R +R2)l

l!
+

n

∑
l=s+1

l

∑
i=s+1

( 1

s!
ss−i − 1

i!
) 1

(l − i)!
(R)i(R2)l−i.

From this, we can determine the distribution of the total number of patients in the system.

Corollary 4.3.2. The distribution of the total number of patients in the SERB model is given by

πl ∶= P (Q1(∞) +Q2(∞) = l) =
⎧⎪⎪⎨⎪⎪⎩

π0
(R+R2)

l

l!
if 0 ≤ l ≤ s,

π0 ( (R+R2)
l

l!
+∑li=s+1 ( 1

s!
ss−i − 1

i!
) 1
(l−i)!

(R)i(R2)l−i) if s < l ≤ n.
,

The proof follows directly from the joint distribution, conditioned on the number of patients at the nurse
station.

4.3.3 Performance measures

Performance measures of interest are the waiting time, blocking probability and the utilization level of
the nurses. We summarize the results in Proposition 4.3.3.

Proposition 4.3.3. Let ρB denote the utilization level of the SERB model and let π(n) denote the
probability distribution of a system that can handle n patients simultaneously. The following properties
hold for the SERB model:

P (Block) = π0 ((R +R2)n

n!
+

n

∑
i=s+1

( 1

s!
ss−i − 1

i!
) 1

(n − i)!
(R)i(R2)n−i) , (4.10)

P (W > 0) =
n−1

∑
l=s

l

∑
i=s

π
(n−1)
i,l−i , (4.11)

P (W > t) =
n−1

∑
l=s

l

∑
i=s

π
(n−1)
i,l−i

i−s

∑
k=0

(µst)k

k!
e−µst, (4.12)

E(W ) = 1

µs

n−1

∑
l=s

l

∑
i=s

π
(n−1)
i,l−i (i − s + 1), (4.13)

ρB =
n

∑
l=0

l

∑
i=0

iπ
(n)
i,l−i. (4.14)

4.3.4 QED behavior

The proposed QED staffing rules for this model read

n = R
r
+ γ

√
R

r
, (4.15)

s = R + β
√
R, (4.16)
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where γ = β
√
r+η

√
1 − r for some β, η ∈ R. Equivalently, we can formulate the conditions (4.15) and (4.16)

as

{
limR→∞

n−s−R2√
R2

= η, −∞ < η <∞,
limR→∞

√
s (1 − R

s
) = β, −∞ < β <∞.

When we consider the Semi-Open Erlang-R model with Waiting in Chapter 5, we will explain heur-
istically how these staffing rules are established.

Proposition 4.3.4. For the QED staffing rules in (4.15) and (4.16), we find the following asymptotic
behavior on the performance measures:

lim
R→∞

P (W > 0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝

1 + ∫
β
−∞ Φ(η+(β−t)

√
r

1−r )dΦ(t)

φ(β)Φ(η)
β −

φ(
√
η2+β2)
β eη

2
1
/2Φ(η1)

⎞
⎠

−1

, β ≠ 0

(1 + ∫
0
−∞ Φ(η−t

√
r

1−r )dΦ(t)

1√
2π

√
1−r
r (ηΦ(η)+φ(η))

)
−1

, β = 0,

(4.17)

lim
R→∞

√
sP (Block) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

√
rφ(γ

√
r)Φ(β

√
1−r−η

√
r)+φ(

√
η2+β2)eη

2
1/2Φ(η1)

∫
β
−∞ Φ(η+(β−t)

√
r

1−r )dΦ(t)+
φ(β)Φ(η)

β −
φ(
√
η2+β2)
β eη

2
1
/2Φ(η1)

, β ≠ 0,

√
rφ(γ

√
r)Φ(β

√
1−r−η

√
r)+ 1√

2π
Φ(η)

∫
0
−∞ Φ(η−t

√
r

1−r )dΦ(t)+ 1√
2π

√
1−r
r (ηΦ(η)+φ(η))

, β = 0,
(4.18)

lim
R→∞

√
sE(W ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

φ(β)Φ(η)+φ(
√
η2+β2)eη

2
1/2Φ(η1)(

1−r
r β2

−ηβ
√

1−r
r −1)

µβ2(∫
β
−∞ Φ(η+(β−t)

√
r

1−r )dΦ(t)+
φ(β)Φ(η)

β −
φ(
√
η2+β2)
β eη

2
1
/2Φ(η1))

, β ≠ 0,

1−r
r
((η2

+1)Φ(η)+ηφ(η))

2µ
√

2π(∫
0
−∞ Φ(η−t

√
r

1−r )dΦ(t)+ 1√
2π

√
1−r
r (ηΦ(η)+φ(η)))

, β = 0,

(4.19)

(4.20)

where η1 = η − β
√

1−r
r

.

The proofs of these results can be found in [32], where we exclude the extra cleaning station in this
case.
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Chapter 5

The Semi-Open Erlang-R model
with Waiting

In this chapter we return to our original problem of modeling an Emergency Department of a hospital.
We introduce a new queueing model that is an extension of the Erlang-R model introduced by Yom-Tov
and Mandelbaum [33] with the following essential feature: The total number of patients that can reside
simultaneously in the Emergency Department is bounded by n, and all other patients wait for admission
in a holding room. In practice, the parameter n can be interpreted as the number of beds. When this
constraint is relaxed, i.e. n =∞, we obtain the Erlang-R model again.

The model is a three-station open queueing network, with the additional requirement of maximally n
patients present simultaneously in two of the three stations. While the Erlang-R model is a two-station
Jackson network with a product-form solution, our model presents more mathematical difficulties due
to a maximum of n patients. We therefore use matrix-geometric methods to solve a system of equations
to obtain the stationary distribution.

Since is not easy to derive results for the (limit) behavior of this new model, we make stochastic
comparisons with the Erlang-R model and the closed ward model by Jennings and De Véricourt [26].
We show that in order to obtain QED behavior, one needs to not only dimension the number of nurses
according to square-root staffing rule, but also to scale the number of beds. We propose a two-fold
scaling and show that nurses can work effectively, even in prevalent scenarios where the patient resides
in the content state most of the time. The remedy for inefficient usage of nurses turns out to allow for
an increase of n in a certain way. Indeed, letting more patients enter the Emergency Department creates
more work for nurses, and we identify the exact way in which this expansion of operations should be
designed in order to preserve the advantages of the QED regime.

5.1 Model description

In this section we will give a formal description of our model, which we call the Semi-Open Erlang-R
model with Waiting (SERW), see Figure 5.1.

Patients arrive at the Emergency Department according to a Poisson process with rate λ. There
are n beds, and in case these are all occupied, the arriving patient needs to wait until a bed becomes
available. We assume that the service discipline is First Come First Served (FCFS). Once the patient is
assigned to an available bed, she will be served by a nurse for a duration that is exponentially distributed
with parameter µ. With probability p the patient remains in the Emergency Department and will return
for service after an exponentially distributed delay time with rate δ. With probability 1 − p the patient
leaves the Emergency Department. In this case, the patient can be in three possible states, namely the
holding state when she is waiting for an available bed, in the needy state when she is in need of service
(or being served), or in the content state when she is in the delay phase.

This process can be modelled as a quasi-birth-death (QBD) process, from which we can derive the
stability condition and the stationary distribution. A quasi-birth-death (QBD) process is a generalization
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Figure 5.1: The Semi-Open Erlang-R Model with Waiting.

of the standard birth-death process.

Definition 5.1.1. A quasi-birth-death (QBD) process is a continuous-time Markov process with a two-
dimensional state space that consists of two parts: A finite number of boundary states and a semi-infinite
strip. A level i consists of all (finite) states (i, j) of the two-dimensional state space. The only possible
transitions in a QBD-process are within the same level or between two adjacent levels.

For an illustration of the state space of a QBD-process, see Figure 5.2. The states within the grey
box are the (finite number of) boundary states.

i

j

0

Figure 5.2: Illustration of a QBD-Process.

Note that there is a countable infinite number of states that can be ordered by ascending level.
Moreover, the state space can be partitioned according to these levels. This gives rise to an infinite-sized
transition matrix with a tridiagonal block structure, where each block is a square matrix of a finite size.

For the SERW model, we want to describe the process {Q(t), t ≥ 0} with Q(t) = (Q1(t),Q2(t),Q3(t))
and Qi(t), i ∈ {1,2,3} is the number of patients at queue i at time t. Queue 1 corresponds to the number
of needy patients, queue 2 corresponds to the number of content patients and queue 3 corresponds to
the number of patients that are holding for an available bed.

Note that this process can be completely described by the two processes Q1 and N = Q1 +Q2 +Q3,
the total number of patients in the Emergency Department. For example, suppose there are n = 15 beds
and s = 8 nurses. If at time t there are in total N(t) = i patients in the Emergency Department and
Q1(t) = j ≤ min{i, n} in need of service, then Q(t) = (j,min{n, i} − j, (i − n)+), where (x)+ = max{0, x}.

Therefore, we will look at the QBD-process {N(t),Q1(t)}. Observe that Q1(t) is bounded by
min{n,N(t)} and in total there can be an infinite number of patients in the Emergency Department.
So level k of the QBD-process corresponds to the situation that there are k patients in the Emergency
Department in total.

Define ν(i) = min{i, s}µ. To determine the (outgoing) transition rates we distinguish between the
following cases:
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� Transitions from (0,0): In this case there are no patients in the Emergency Department. The only
possible occurrence is when a new patient arrives, resulting in a transition to (1,1), which occurs
with rate λ.

� Transitions from (i,0),1 ≤ i < n: There are exactly i patients assigned to a bed of which none are
seen by a nurse. Then either one of those patients becomes needy, or a new patient arrives at the
Emergency Department that can immediately be seen by a nurse. The first occurrence results in a
transition to (i,1) which happens at rate iδ, and the second occurrence results in a transition to
(i + 1,1) which happens with rate λ.

� Transitions from (i,0), i ≥ n: Again the only possible transitions come from a newly arrived patient
and a patient assigned to a bed becoming needy. However, a newly arrived patient finds all beds
occupied and needs to wait. Thus, this event only increases N by one and Q1 remains zero. So
with rate λ we have a transition to (i + 1,0) and with rate nδ a transition to (i,1).

� Transitions from (i, i), i < n: In this case all patients assigned to a bed are in need of service. With
rate λ a new patient arrives at the Emergency Department. She joins the (possible) queue to be
seen by a nurse immediately, so this results in a transition to (i + 1, i + 1). Moreover, since there
are only s < n nurses, a service completion occurs with rate ν(i). With probability p the patient
turns to queue 3, so in total we still have i patients with one patient less in queue for a nurse.
With probability 1 − p the patient leaves the Emergency Department, decreasing both N and Q1

by one. In other words, with rate pν(i) we have a transition to (i, i − 1) and with rate (1 − p)ν(i)
we have a transition to (i − 1, i − 1).

� Transitions from (n,n): Similar to the previous case, we have a transition to (n,n − 1) with rate
psµ and with rate (1 − p)sµ we have a transition to (n − 1, n − 1). In this case however, a newly
arrived patient finds all beds occupied. So this results in a transition to (n + 1, n) with rate λ.

� Transitions from (i, n), i > n: Similar to the previous case we have a transition to (i + 1, n) with
rate λ and a transition to (i, n − 1) with rate psµ. However, in case that the patient leaves the
Emergency Department (after service completion) there are i − n > 0 patients in the holding room
waiting for an available bed. Thus after service completion, one of the i−n patients in the holding
room is assigned to the available bed, in need of service. That is, with rate (1 − p)sµ we have a
transition to (i − 1, n).

� Transitions from (i, j),1 ≤ j < i < n: There are four possible transitions. Firstly, with rate λ there
is a new arrival, which results in a transition to (i+ 1, j + 1). Secondly, with rate (i− j)δ a patient
in one of the beds becomes needy, which results in a transition to (i, j + 1). Thirdly, with rate
pν(j) a patient turns to the content state after service completion, which results in a transition to
(i, j − 1). Lastly, with rate (1 − p)ν(j) a patient leaves the Emergency Department after service
completion, which results in a transition to (i − 1, j − 1).

� Transitions from (n, j),1 ≤ j < n: This case is similar to the previous case. The only difference
arises when a new patient arrives, since all n beds are already occupied. Thus, with rate λ we have
a transition to (n + 1, j).

� Transitions from (i, j), i > n,1 ≤ j ≤ n: This case is similar to the previous case, except that a
patient leaves the Emergency Department after service completion. Then one of the (i−n) patients
in the holding room will be assigned to a bed in need of service. This results in a transition to
(i − 1, j) with rate (1 − p)ν(j).

The state space and transition rates of the SERW Model are displayed in Figure 5.3.

Recall that the state space can be partitioned according to its levels. In this case, level i corresponds
to the states {(i,0), ..., (i,min{i, n})}, the states with in total i patients in the Emergency Department.
This results in an infinite-sized matrix consisting of blocks, where each block corresponds to the transition
flow from one level to another. Since the only transitions allowed are within the same level or between
two adjacent levels in a QBD-process, we obtain a tridiagonal block structure. Each block consists of
elements representing the transition rate of one state to another, and therefore each block is a matrix of
size at most (n + 1) × (n + 1).
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Figure 5.3: QBD-Process states space and transitions of the SERW model.

For the SERW model this gives the following result. Let P denote the transition matrix of the process
{N(t),Q1(t)}. We have the boundary levels {1,2, ..., n} and P is of the form

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

B00 B01

B10 B11 B12

B21 B22 B23

⋱ ⋱ ⋱
Bnn−1

Bn−1n Bnn A0

A2 A1 A0

A2 A1 A0

⋱ ⋱ ⋱

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

where Bii ∈ R(i+1)×(i+1), Bi i−1 ∈ R(i+1)×i, Bi−1 i ∈ Ri×(i+1), and A0,A1,A2 ∈ R(n+1)×(n+1). The matrices of
transition rates for the boundary states are given by

B00 = (−λ), Bi−1 i =
⎛
⎜⎜⎜
⎝

0 λ
⋱ λ

⋱ ⋱
0 λ

⎞
⎟⎟⎟
⎠
, Bi i−1 =

⎛
⎜⎜⎜⎜⎜
⎝

0
(1 − p)µ 0

(1 − p)ν(2) ⋱
⋱ 0

(1 − p)ν(i)

⎞
⎟⎟⎟⎟⎟
⎠

,

and

Bii =

⎛
⎜⎜⎜⎜⎜
⎝

−(λ + iδ) iδ
pµ −(λ + µ + (i − 1)δ) (i − 1)δ

⋱ ⋱ ⋱
pν(i − 1) −(λ + ν(i − 1) + δ) δ

pν(i) −(λ + ν(i))

⎞
⎟⎟⎟⎟⎟
⎠

.
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Moreover, the transition rates for the semi-infinite strip are given by

A0 =
⎛
⎜⎜⎜
⎝

λ
λ

⋱
λ

⎞
⎟⎟⎟
⎠
, A2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
(1 − p)µ

2(1 − p)µ
⋱

s(1 − p)µ
⋱

s(1 − p)µ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

and

A1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−(λ + nδ) nδ
pµ −(λ + µ + (n − 1)δ)(n − 1)δ

⋱ ⋱ ⋱
spµ −(λ + sµ + (n − s)δ)(n − s)δ

⋱ ⋱ ⋱
spµ −(λ + sµ + δ) δ

spµ −(λ + sµ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

5.2 Stability

From the general theory of QBD-processes, we have the following result [29].

Lemma 5.2.1. The Markov process {N(t),Q1(t)} is ergodic (stable) if and only if

πA0e < πA2e, (5.1)

where e is the all one column vector and π = (π0, ..., πn) is the equilibrium distribution of the Markov
process with generator A0 +A1 +A2. In other words, π is such that

π(A0 +A1 +A2) = 0, πe = 1. (5.2)

Hence, when the stability condition (5.1) is satisfied, the Markov process {N(t),Q1(t)} has a unique
stationary distribution. Before presenting an algorithm to calculate this stationary distribution, we first
take a closer look at the stability condition.

We have that

A0+A1+A2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−nδ nδ
pµ −(pµ + (n − 1)δ) (n − 1)δ

⋱ ⋱ ⋱
spµ −(psµ + (n − s)δ) (n − s)δ

⋱ ⋱ ⋱
psµ −(psµ + δ) δ

psµ −psµ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Lemma 5.2.2. Let π be defined as in (5.2). Then,

πi =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

π0(ni) (
δ
pµ

)
i

for 0 ≤ i ≤ s,

π0(ni)
i!
s!
ss−i ( δ

pµ
)
i

for s + 1 ≤ i ≤ n
(5.3)

with

π0 = (
s

∑
i=0

(n
i
)( δ

pµ
)
i

+
n

∑
i=s+1

(n
i
) i!
s!
ss−i ( δ

pµ
)
i

)
−1

.
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Proof of Lemma 5.2.2. We have the balance equations

−nδπ0 + pµπ1 = 0,

(n − j + 1)δπj−1 − (pν(j) + (n − j)δ)πj + pν(j + 1)πj+1 = 0,

δπn−1 − psµπn = 0,

where ν(j) = min{j, s}µ, and the normalization condition

n

∑
i=0

πi = 1.

It is readily verified that the solution in (5.3) satisfies the balance equations and the normalization
condition.

Corollary 5.2.3. The stability condition (5.1) of the SERW model can alternatively be expressed as
R < sρJ , where ρJ is the occupation rate in a closed M/M/s//n system with load intensity ρ = δ/(pµs).

Proof. It follows from Lemma 5.2.1 that the system is stable if and only if πA0e < πA2e. That is,

πA0e < πA2e,

λ
n

∑
i=0

πi <
n

∑
i=0

(1 − p)µmin{i, s}πk,

λ < (1 − p)µsπ0 (
s−1

∑
i=0

i

s
(n
i
)( δ

pµ
)
i

+
n

∑
k=s

(n
k
) i!
s!
ss−i ( δ

pµ
)
i

) ,

λ < (1 − p)µsρJ ,

where ρJ is the utilization level of a closed M/M/s//n model with load intensity δ/(pµ).

Corollary 5.2.3 can be understood as follows. For stability we need that the ‘effective’ arrival rate
should not exceed the total amount of work per time unit that can be done in the inner box when
there are always the maximal number of patients present. In this case, the inner box has two naturally
corresponding closed M/M/s//n queues, which are illustrated in Figure 5.4. We will elaborate on this
notion in Section 5.6. The effective arrival rate corresponds to the actual arrival rate adapted with the
rate of patients leaving the system. That is, the rate of patients leaving the system is (1 − p)µs and the
arrival rate is λ, which yields an effective arrival rate of λ/((1 − p)µs). Indeed, the stability condition is
λ < (1 − p)µs ⋅ ρJ .

n

Exp(pµ)

Exp(δ)

∞

s

(a) Case 1.

n

Exp(µ)

Exp(δ/p)

∞

s

(b) Case 2.

Figure 5.4: Corresponding M/M/s//n models for inner box (when it is always
fully occupied).

5.3 Stationary distribution

To obtain the distribution of the QBD-process, we use the matrix-geometric method [29]. Let πi ∈
Rmin{i,n}+1 denote the stationary probability vector of level i, i.e.

πi = (π(i,0), ...., π(i,min{i, n})),
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where π(i, j) denotes the stationary probability of being in state (i, j). Assuming that the stability
condition is satisfied, we know from the general theory of QBD-processes that the vector πi can be
written as πn+i = πnGi−n for i = 0,1, ..., where G is the minimal nonnegative solution of the non-linear
matrix equation

A0 +GA1 +G2A2 = 0. (5.4)

The balance equations can be written as

πi−1A0 + πiA1 + πi+1A2 = 0, i = n + 1, n + 2, ...

and when using πn+i = πnGi−n for i = 0,1, ..., this gives

πnG
i−n−1 (A0 +GA1 +GA2) = 0, i = n + 1, n + 2, ....

Moreover, we have the boundary equations

π0B00 + π1B10 = 0

π0B01 + π1B11 + π2B21 = 0

π1B12 + π1B22 + π2B32 = 0

⋮
πn−2Bn−2n−1 + πn−1Bn−1n−1 + πnBnn−1 = 0

πn−1Bn−1n + πnBnn + πn+1A2 = 0,

along with the normalization equation

1 =
∞

∑
i=0

πie =
n−1

∑
i=0

πie + πn(I −G)−1e,

where we slightly abuse notation by using e as the all ones vector of appropriate size. We note that the
matrix G has a spectral radius less than one and therefore (I −G) is invertible.

These equations provide the tools for finding the equilibrium probabilities. Although it is hard to
solve G analytically from Equation (5.4), it is easy to solve numerically by using the following algorithm.
Rewriting (5.4) gives

G = −(A0 +G2A2)A−1
1 ,

where A1 is invertible, since A1 is a transient generator matrix. We can use this equation to solve for G.
Let

Gk+1 = −(A0 +G2
kA2)A−1

1 ,

starting with Gk = 0. It can be shown that Gk ↑ G as k → ∞. Once ∣∣Gk+1 −Gk ∣∣2 is below a certain
preset threshold, we approximate G by Gk+1.

A concrete method to obtain G is the following. Rewriting (5.4) gives

G = −(A0 +G2A2)A−1
1 ,

where A1 is invertible since A1 is a transient generator matrix. Using this equation we can use this
equation to solve for G. Let

Gk+1 = −(A0 +G2
kA2)A−1

1 ,

starting with Gk = 0. It can be shown that Gk ↑ 0 as k →∞. Once ∣∣Gk+1−Gk ∣∣2 is below a certain preset
threshold, set G = Gk+1. This algorithm is referred to as the matrix-geometric method.

5.4 Non-waiting distribution

To determine the patient’s LOS there are three components of interest: the holding time in the holding
room if all beds are occupied upon arrival, the waiting times for service if all nurses are occupied and
the time that a patient is not waiting. That is, patients are not waiting when they are being served by
a nurse or in the content state.
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Lemma 5.4.1. Let B denote the time of a patient’s LOS she is not waiting. The probability density
function of B is given by

fB(t) = (1 − p)µe−
1
2 (µ+δ)t (cosh(1

2

√
at) − µ − δ√

a
sinh(1

2

√
at)) (5.5)

for t ≥ 0, where

a = (µ − δ)2 + 4pµδ = (µ + δ)2 − 4(1 − p)µδ.

Proof. Let K denote the number of times that the patient reenters for service. That is, the patient
needs service K + 1 times and is K times in the content state. Then K is geometrically distributed with
parameter p. Hence,

B =X0 +
K

∑
i=1

(Xi + Yi),

where Xi, i = 0,1,2, ...and Yj , j = 1,2, ... are (independent) exponentially distributed with rates µ and δ
respectively. Observe that X0 represents the first time the patient needs service. Conditioning on K
gives

B̃(x) =
∞

∑
k=0

(1 − p)pn ( µ

µ + x
)
n+1

( δ

δ + x
)
n

=
(1 − p) ( µ

µ+x
)

1 − p ( µ
µ+x

) ( δ
δ+x

)
. (5.6)

Next we will show that a random variable Z with probability density function given in (5.5) has
Laplace Stieltjes transform (5.6), which concludes our proof. After some rewriting we find

Z̃(x) = E (e−Zx) = ∫
∞

0
e−xtfB(t)dt

= 1

2
(1 − p)µ(∫

∞

0
e−(x+

1
2 (µ+δ)−

1
2

√
a)t + e−(x+

1
2 (µ+δ)+

1
2

√
a)tdt

−µ − δ√
a
∫

∞

0
e−(x+

1
2 (µ+δ)−

1
2

√
a)t − e−(x+

1
2 (µ+δ)+

1
2

√
a)tdt) .

Then,

∫
∞

0
e−(x+

1
2 (µ+δ)−

1
2

√
a)t + e−(x+

1
2 (µ+δ)+

1
2

√
a)tdt

= 1

x + 1
2
(µ + δ) − 1

2

√
a
+ 1

x + 1
2
(µ + δ) + 1

2

√
a

= 2x + µ + δ
(x + 1

2
(µ + δ))2 − 1

4
a
,

and similarly

∫
∞

0
e−(x+

1
2 (µ+δ)−

1
2

√
a)t − e−(x+

1
2 (µ+δ)+

1
2

√
a)tdt =

√
a

(x + 1
2
(µ + δ))2 − 1

4
a
.

Hence,

Z̃(x) = 1

2
(1 − p)µ 2x + µ + δ − µ + δ

(x + 1
2
(µ + δ))2 − 1

4
a
= (1 − p)µ x + δ

x2 + (µ + δ)x + (1 − p)µδ

= (1 − p)µ x + δ
(x + µ)(x + δ) − pµδ

= (1 − p)µ
x + µ − p ( δ

x+δ
)µ

.

which equals (5.6).
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i

j

0 s n

1 2 3

4 5

Figure 5.5: Partitioned state space of the SERW model.

5.5 Performance measures

Denote by Q1,Q2,Q3 and N the stationary counterparts of Q1(t),Q2(t),Q3(t) and N(t) respectively.
The probability of waiting upon arrival is due to the PASTA property equal to P (N ≥ n).

Proposition 5.5.1. The probability of waiting upon arrival is given by

P (N ≥ n) = πn(I −G)−1.

Proof. The event {N ≥ n} corresponds to area 3 and 5 displayed in Figure 5.5. Then,

∞

∑
i=n

n

∑
j=0

π(i, j) =
n

∑
j=0

∞

∑
i=n

π(i, j) = πn(I +G +G2 + ...) = πn(I −G)−1.

Denote the stationary waiting time for the nurse station by W . For random variable W we cannot
make a standard PASTA argument, since the activation rate is not Poisson. Nevertheless, we approximate
the probability of delay for service under the conjecture that PASTA holds asymptotically as n → ∞.
Then it corresponds to the stationary probability that all s nurses are occupied.

Proposition 5.5.2. The stationary probability that all s nurses are occupied is given by

P (Q1 ≥ s) =
n−1

∑
i=s

i

∑
j=s

π(i, j) +
n

∑
j=s

(πn(I −G)−1)
j
.

Proof. Observe that

P (Q1 ≥ s) =
n−1

∑
i=s

i

∑
j=s

π(i, j) +
∞

∑
i=n

n

∑
j=s

π(i, j) =
n−1

∑
i=s

i

∑
j=s

π(i, j) +
n

∑
j=s

(πn(I −G)−1)
j
.

Finally, we consider the utilization level of the servers.

Proposition 5.5.3. The utilization level, i.e. the fraction of time the nurse is with a patient, is equal
to

s−1

∑
i=1

i

∑
j=1

j

s
π(i, j) +

n−1

∑
i=s

s−1

∑
j=1

j

s
π(i, j) +

s−1

∑
j=1

j

s
(πn(I −G)−1)

j
+
n−1

∑
i=s

i

∑
j=s

π(i, j) +
n

∑
j=s

(πn(I −G)−1)
j
,

where (πn(I −G)−1)
j

corresponds to the j’th coordinate of the vector (πn(I −G)−1).

Proof. This is a direct result of computing the utilization level. We sum over five terms, that corresponds
to partitioning the state space into five parts; see Figure 5.5.
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There are finitely many states in areas 1, 2 and 4, which correspond to the terms with two summations
over finitely many states in the expression. For the third area we have

∞

∑
i=n

s−1

∑
j=1

j

s
π(i, j) =

s−1

∑
j=1

j

s

∞

∑
i=n

π(i, j) =
s−1

∑
j=1

j

s
(πn(I +G +G2 + ...)) =

s−1

∑
j=1

j

s
(πn(I −G)−1) ,

and similarly for the fifth term,

∞

∑
i=n

n

∑
j=s

π(i, j) =
n

∑
j=s

∞

∑
i=n

π(i, j) =
n

∑
j=s

(πn(I −G)−1)
j
.

Adding all terms concludes the proof.

5.6 The overloaded regime

In this section we consider the behavior of the SERW model when the system is in the overloaded regime,
i.e. there is always some patient waiting for a bed. In other words, we consider the situation when the
stability condition is violated, so that there will be infinitely many patients in the holding room and all
n beds are occupied, see Figure 5.6a.

n

∞
Exp(µ)

Exp(δ)

∞

s
1 − p

p

(a) The overloaded SERW model.

n

Exp(µ)

Exp(δ)

∞

s

1 − p

p

(b) The corresponding closed Jackson network.

Figure 5.6: The SERW model in the overloaded regime.

After service completion the patient turns to the content state with probability p. If the patient
leaves the Emergency Department, which occurs with probability 1 − p, a new patient joins the service
queue immediately. This corresponds to the closed two-node Jackson network in Figure 5.6b.

To determine the distribution of this closed Jackson network, we solve the balance equations. This
leads to the following result.

Proposition 5.6.1. The distribution of the closed two-node Jackson network illustrated in Figure 5.6b,
is given by

πi =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

π0(ni) (
δ
pµ

)
i

for 0 ≤ i ≤ s,

π0(ni)
i!
s!
ss−i ( δ

pµ
)
i

for s + 1 ≤ i ≤ n
(5.7)

with

π0 = [
s

∑
i=0

(n
i
)( δ

pµ
)
i

+
n

∑
i=s+1

(n
i
) i!
s!
ss−i ( δ

pµ
)
i

]
−1

.
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Proof. We adopt the notation used in the proof of Proposition 4.3.1. We have a two-node closed Jackson
network, with probability transition matrix

P = ( 1 − p p
1 0

) .

Moreover, we have service parameters µ and δ, with rates r1(m) = min{m,s} and r2(m) =m respectively.
Let πi denote the probability that there are i patients in need of service. The throughput must satisfy
pγ1 = γ2, and we choose γ = (p,1). Let κ = 1, then

g1(i) = {
1
i!µi

for 0 ≤ i ≤ s
1

s!si−sµi for s + 1 ≤ i ≤ n ,

g2(n − i) =
1

(n − i)!
(p
δ
)
n

(δ
p
)
i

.

We conclude that

πi =
⎧⎪⎪⎨⎪⎪⎩

R−1 (p
δ
)n 1

i!(n−i)!
for 0 ≤ i ≤ s,

R−1 (p
δ
)n 1

i!(n−i)!
i!
s!
ss−i for s + 1 ≤ i ≤ n.

,

which is equivalent to (5.7).

We note that the stationary distribution (5.7) is the same as the distribution of the corresponding
closed M/M/s//n models with an offered load of δ/(pµ). This confirms the intuitive explanation we
provided for the stability condition for the SERW model. Hence, we see that in distribution the model
of Figure 5.6b is equivalent to the models of Figure 5.4.

Remark 1. We obtained the stationary distribution of the model illustrated in Figure 5.6b by considering
it as a closed two-node Jackson network. An alternative way to determine this distribution is as follows.
Let B1 denote the total service time at the service queue during a patient’s LOS. In distribution, this is
a geometric sum of exponential random variable with rate µ. Recall that the Laplace Stieltjes transform
of an exponential random variable is given by ψ(s) ∶= µ/(µ + s). Then

E(e−sB1) =
∞

∑
k=0

p(1 − p)kψ(s)k+1 = pψ(s)
1 − (1 − p)ψ(s)

= pµ

µ + s − (1 − p)µ
= pµ

pµ + s
.

Hence, B1 is exponentially distributed with parameter pµ.

Remark 2. Another view on how one can determine the distribution is by a memorylessness argument.
After every possible service completion, one flips a coin. With probability p the service is actually done
and with probability 1−p the patient returns for service. Then the effective service rate of the exponential
is pµ.

5.7 QED behavior

The goal is to provide a two-fold scaling rule for the SERW model on both the number of beds and the
number of nurses, in order to design an efficient system in terms of a high utilization and short delays.
If we would fix the staffing rule s = R + β

√
R for the number of nurses and let both R and s become

large, then how should we scale the number of beds n as a function of R? If we scale n too modestly, it
will turn into a bottleneck as the number of patients in the holding room will grow with time and the
system will explode. On the other hand, if we scale n too aggressively, the system will behave as if the
constraint of n beds does not exist, i.e. it will behave as the Erlang-R model.

We will explain heuristically how to choose n in a balanced way, by determining the effective space
at the service station and the content station. The service station should be able to handle the offered
load, even when the effect of the constraint of n beds is negligible. Then the effective offered load at the
service station is R = λ/((1 − p)µ), which can then serve as the input for the square root staffing rule
s = R + β

√
R in the QED regime.
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Moreover, we need the system to be able to handle the offered load, even when there are always more
than n patients in the Emergency Department. In this case, there are s patients that can be handled at
the service station, and hence n − s patients reside at the content station. The effective offered load at
the content station is pλ/((1 − p)δ), which gives rise to

n − s = pλ

(1 − p)µδ
+ η

√
pλ

(1 − p)µδ

with −∞ < η <∞. Substituting the server staffing rule in the above expression yields

n = s + pλ

(1 − p)µδ
+ η

√
pλ

(1 − p)µδ
= R(1 + pµ

δ
) + (β + η

√
pµ

δ
)
√
R.

Then the given staffing rules are equivalent to

n = R
r
+ γ

√
R

r
, (5.8)

and
s = R + β

√
R, (5.9)

where β > 0 and γ > 0 and r = δ/(δ + pµ).
We are interested in the (asymptotic) behavior of the SERW model under the two-fold staffing

rule (5.8) and (5.9) and particularly, whether they lead to QED behavior. For the latter we use as a
benchmark that the limiting probability of waiting is strictly between zero and one. Next we will explain
heuristically why these staffing rules will result in a nondegenerate limit for the probability of waiting.

In the overloaded regime we assume that there is always a patient waiting in the holding room. In
other words, all beds will be constantly occupied. Hence, in distribution there are always more patients at
the service queue in the overloaded regime than in the original SERW model with the same parameters.
That is, the corresponding M/M/s//n model of the SERW model in the overloaded regime should provide
an upper bound on the probability of waiting.

On the other hand, the SERB model blocks arriving patients when the beds are all occupied. There-
fore, there are less patients in the inner box in the SERB model than in the SERW model with the same
parameter setting. Consequently, there are also less patients at the service queue in the SERB model
than in the SERW model (in distribution). Hence, the probability of waiting in the SERB model should
serve as a lower bound on the probability of waiting in the SERW model.

Although the staffing rules (5.8) and (5.9) are given in terms of the offered load, this implicitly yields
a dependency between n and s. Therefore, we can express the staffing level of the number of nurses in
terms of n. That is,

s = R + β
√
R = rn + (β

√
r − γr)

√
R

r

∼ rn + (β
√
r − γr)

√
n = rn + ξ

√
n,

with ξ = β
√
r−γr ∈ R. We observe that this is the QED staffing rule for the closed M/M/s//n model [26].

Since this scaling yields a nondegenerate limit for the probability of waiting, we find that the probability
of waiting in the SERW model cannot converge to one.

On the other hand, the SERB model also has a nondegenerate limit on the probability of waiting
under the staffing rules (5.8) and (5.9) and hence the probability of waiting in the SERW model cannot
converge to zero. More specifically, we find
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with γ = β
√
r + η

√
1 − r and η1 = η − β

√
1−r
r

.
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Figure 5.7: Probability of waiting for r = 0.2 and γ = 0.5.

This relation is illustrated in Figure 5.7, where the (asymptotic) probability of waiting for the SERW
model is approximated via a simulation experiment with R = 250 (fluctuations are due to rounding).

In conclusion, we expect that the chosen staffing policy will result in stabilizing behavior for the
probability of waiting. Although the matrix-geometric algorithm provides us the exact stationary distri-
bution, it takes too much computational power when n grows large. Therefore we will use a simulation
program to study the asymptotic behavior of the SERW model in Chapter 7. In the next chapter, we
will first compare the SERW model to other models with respect to the total number of patients in the
Emergency Department.
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Chapter 6

Comparison between models

In the previous chapters we introduced the Erlang-R model, the Semi-Open Erlang-R model with Block-
ing (SERB) and the Semi-Open Erlang-R model with Waiting (SERW). The SERB model blocks pa-
tients from the system when the total number of patients in the Emergency Department exceeds a certain
threshold n, while the SERW model lets these patients wait before entering the service loop. The Erlang-
R model does not have such a constraint. But how do these systems relate to one another with respect
to the total number of patients in the Emergency Department?

Since the SERW model assumes a maximum of n patients in the service loop, and hence limits the
usage of resources, we expect that there are less patients in the Emergency Department in the Erlang-R
model than the SERW model at any point in time. Moreover, we also expect that the SERB model
contains less patients than the Erlang-R model, since the blocked patients will not receive service. As a
reference model, we also consider the SERW model where we set the number of beds and the number of
nurses equal to one another.

To formalize this idea, let NB ,NR,NW and NW
n=s denote the total number of patients in the system

in stationarity in respectively the SERB model, the Erlang-R model, the SERW model and the SERW
model with n = s. In this chapter we will study whether we can find the following stochastic ordering of
these four models:

NB ⪯st N
R ⪯st N

W ⪯st N
W
n=s. (6.1)

6.1 Stochastic dominance

In probability theory, there exist several orders in which we say that a random variable stochastically
dominates some other random variable.

Definition 6.1.1. Let A and B be random variables. Random variable A is statewise stochastically
dominated, or statewise stochastically less, by B if A ≤ B for every possible outcome. This is denoted as
A ⪯(0) B.

Definition 6.1.1 is stochastic dominance in the strongest sense. A typical example for which A ⪯(0) B
holds is A = B − 1. Usual stochastic dominance is defined in terms of its distributions.

Definition 6.1.2. Let A and B be random variables. Random variable A is stochastically dominated in
the usual sense, or stochastically less, by B if

P (A > x) ≤ P (B > x), ∀x ∈ R. (6.2)

This is denoted as A ⪯st B.

Lemma 6.1.3. Let A and B be random variables. Then A ⪯st B if and only if

E(f(A)) ≤ E(f(B)) (6.3)

for all non-decreasing functions f .
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Statewise dominance is also referred to as dominance of the zeroth order, and dominance in the usual
sense as dominance of the first order. Moreover, a random variable A is second order stochastically
dominated by random variable B if ∫

x
−∞

FB(t) − FA(t)dt ≥ 0 for all x ∈ R, where FA and FB denote the
probability distribution function of A and B respectively, and A is third order stochastically dominated
by B if ∫

x
−∞ ∫

z
−∞

FB(t) − FA(t)dt dz ≥ 0 for all x ∈ R. This iterative procedure results in the definitions
of higher order stochastic dominance.

We note that stochastic dominance of some order implies stochastic dominance of higher orders.
Therefore, we will first consider whether statewise stochastic dominance holds, since this implies the
relation (6.1).

6.2 The SERB model vs the Erlang-R model

The SERB model behaves as the Erlang-R model, except that it refuses patients when the total number
of patients in the Emergency Department exceeds a certain threshold n. This suggests that the total
number of patients in the system is smaller in the SERB model than in the Erlang-R model. We will
first show that NB(t) ⪯ NR(t) can not be implied by statewise stochastic dominance.

We provide an example of arriving patients, with fixed arrival times, number of loops (number of
times the patient returns for service), service times and delay times and show that at some point in time
NR(t) ≤ NB(t). Let n = 2 and s = 1 and consider the arrival stream of Table 6.1. Initially, the system is
empty.

Customer Arrival Time Number of Loops Service time(s) Content time(s)

1 t = 0 0 (3) -
2 t = 1 0 (1) -
3 t = 2 0 (6) -
4 t = 5 1 (1,3) (5)
5 t = 12 0 (1) -

Table 6.1: Example of five arriving patients.

Note that for this example customer 3 will be blocked from the system in the SERB model. This
leads to the sample paths displayed in Figure 6.1.
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t
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N
B(t)

N
R(t)

Figure 6.1: Total number of patients for the arrival stream in Table 6.1.

Observe that for t ∈ [13,14) we find NB(t) > NR(t), and hence there is a time span where there are
more patients in the Emergency Department in the SERB model than in the Erlang-R model.

Although this event can occur for some point in time, via simulations we observed that this is a rare
event. Still, we are interested whether NB ⪯st N

R holds. The total number of patients in the SERB
model can never exceed threshold n, hence for k > n we certainly have that P (NB ≤ k) ≤ P (NR ≤ k).
Moreover, when n grows large the two models will coincide.
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Recall that the stationary distribution are known for these models, which yields the probability distri-
bution for the total number of patients in the Emergency Department. We considered these probability
distributions via numerical experiments, where we chose our parameters such that threshold n has a con-
siderable effect. We observed in all cases that NB ⪯st N

R and we display two outcomes of our numerical
experiments with parameters µ = 10, δ = 2 and p = 0.8 in Figure 6.2. This supports our intuition that
indeed there are more patients in the Erlang-R model than in the SERB model.

10 20 30 40
k

0.2

0.4

0.6

0.8

1.0

P(N≤k)

SERB

Erlang-R
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(b) Case n = 25, s = 7 and λ = 9.

Figure 6.2: Probability distributions for the total number of patients SERB
vs. Erlang-R.

6.3 The SERW model vs the Erlang-R model

The SERW model behaves as the Erlang-R model, except that patients need to wait for an available bed
when the total number of patients in the Emergency Department exceeds a certain threshold n. Again,
we will first show that NR ⪯st N

W cannot be implied by statewise dominance.

Let n = 2 and s = 1 and consider the arrival stream of Table 6.2. The total number of patients in the
Emergency Department is given in Figure 6.3.

Customer Arrival Time Number of Loops Service time(s) Content time(s)

1 t = 0 1 (2,1) (3)
2 t = 1 1 (1,2) (4)
3 t = 4 0 (4) -

Table 6.2: Example of three arriving patients.
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Figure 6.3: Total number of patients for arrival stream in Table 6.2.

We observe that for t ∈ [6,8) the policy of the Erlang-R model leads to more patients in the Emergency
Department than the policy of the SERW model. In other words, the relation NR(t) ⪯(0) NW (t) does
not hold.

Dimensioning large-scale service systems with returning patients 53



CHAPTER 6. COMPARISON BETWEEN MODELS

Nevertheless, intuitively NR ⪯st N
W seems a reasonable relation, since nurses can already serve

patients in the Erlang-R model that are waiting in the holding room in the SERW model. Hence, we
expect that there are more patients in the Emergency Department than in the Erlang-R model. Our
numerical experiments support this intuition, e.g. Figure 6.4, but the relation remains a conjecture.
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Figure 6.4: Probability distributions for the total number of patients SERW
vs. Erlang-R

6.4 The SERW model vs the rescaled SERW model

As a reference model, we also consider the SERW model where we adapt the scaling. There are two ways
to rescale the SERW model on a service level, namely modifying the number of beds or modifying the
number of servers. That is, we will consider the relation

NW
s=n ⪯st N

W ⪯st N
W
n=s, (6.4)

where NW
s=n represents the total number of patients in a rescaled SERW model with an increased number

of servers, and NW
n=s represents the total number of patients in a rescaled SERW model with a decreased

number of beds.

First, we consider the case where the number of servers is increased. We will refer to this system as
the Increased SERW model.

Proposition 6.4.1. The Increased SERW model is statewise stochastically dominant over the SERW
model, i.e.

NW
s=n(t) ⪯(0) NW (t) (6.5)

for each point in time t.

Proof. Without loss of generality we can assume we have an empty system at t = 0. Let LOS and LOS′

denote the patient’s length of stay in the SERW model and the Increased SERW model respectively. Let
customer k be the first customer for which LOS(k) < LOS′(k). In addition, let A and A′ represent the
time the patient is in the holding state.

Observe that a patient’s length of stay in the SERW model consists of the time in the holding queue,
the time(s) being served, the time(s) that the patient is in the content state and the time(s) that a patient
needs to wait for service. In the Increased SERW model there is always a server available to serve the
patient in a bed, and hence a patient will never need to wait for service. Thus the patient’s LOS boils
down to the time in the holding queue, the time(s) being served and the time(s) that the patient is in
the content state. Hence, patient k is the first patient for which the time in the holding queue and the
time(s) waiting for service in the SERW model is strictly less than the time in the holding queue for the
Increased SERW model. In particular, we have that A(k) < A′(k).

Then there is a time t such that NW (t) < NW
s=n(t), in particular when patient k is assigned to a

bed in the SERW model and not yet in the Increased SERW model. Hence, there must be at least one
patient that left the Emergency Department before t in the SERW model than in the Increased SERW
model. This contradicts that customer k is the first patient for which LOS(k) < LOS′(k).
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In conclusion, for every patient we have LOS(k) ≥ LOS′(k) and hence NW
s=n(t) ≤ NW (t) for each

t ≥ 0.

Particularly, Proposition 6.4.1 implies that NW
s=n ⪯st N

W holds.

Alternatively, we can decrease the number of beds to the number of servers. We will refer to this
model as the Decreased SERW model. Note that the stability condition of the Decreased SERW model
is more restrictive than for the original SERW model. That is, if the Decreased SERW model is stable,
then so is the original SERW model, but the converse does not necessarily hold.

In this case, NW ⪯st N
W
n=s can also not be shown via a higher stochastic ordering. Let n = 2 and s = 1

and consider the arrival stream of Table 6.3. Initially, we start with an empty system.

Customer Arrival Time Number of Loops Service time(s) Content time(s)

1 t = 0 1 (1,2) (3)
2 t = 2 1 (1,1) (4)
3 t = 5 0 (7) -

Table 6.3: Example of three arriving patients.

This example results to the sample paths displayed in Figure 6.5.
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Figure 6.5: Total number of patients for arrival stream in Table 6.3.

Then, for t ∈ [12,13) we have NW (t) > NW
n=s(t). Nevertheless, in this case our numerical results also

support our intuition that stochastic dominance holds in the usual sense, see Figure 6.6, but a formal
proof is still required.
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Figure 6.6: Probability distributions for the total number of patients in SERW
vs. Decreased SERW model.

Summarizing, we have shown that (6.1) can not be implied by statewise stochastic ordering. Never-
theless, our numerical experiments support that this relation does hold. To prove this formally provides
a nice mathematical challenge for further research!
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Part III

Data-driven staffing procedures in
the Emergency Department
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Chapter 7

System behavior of the SERW model

In this chapter we will use our simulation program for the Semi-Open Erlang-R model with Waiting
(SERW) to obtain insights in various performance measures under the staffing rules (5.8) and (5.9). We
will verify that these staffing rules indeed prescribe a QED policy. That is, the probability of waiting
for a nurse and also the probability of holding for a bed have nondegenerate limits and the utilization
levels will converge to one. In addition, we will see that compared to the Erlang-R model the constraint
on the number of beds has a significant effect on the performance measures.

Although so far we considered all models in stationarity, in Emergency Departments the arrival rates
are typically not stationary. We will propose a method to modify our staffing policy for the SERW
model to account for time-varying arrival rates. Since the arrival stream in an Emergency Department
typically resembles somewhat of a sinusoidal shape, and moreover, any periodic time-varying arrival rate
can be approximated by a finite linear combination of sine functions, we will test the performance of this
staffing policy for a sinusoidal arrival rate.

7.1 Stationary behavior

We simulated scenarios for many different parameters to support our findings we pose in this chapter.
When not specified otherwise, we display the results of the parameter setting µ = 10, δ = 2 and p = 0.8, and
hence r = 0.2. This parameter setting is motivated by data and based on experience of experts working
in our cooperating Emergency Department. In our experiments we let R grow till R = 250, yielding
systems with large numbers of nurses and beds such that we can consider the asymptotic behavior of the
SERW model. In the time-varying arrival setting we will also consider smaller system sizes that might
represent an Emergency Department better. We observe some irregular fluctuations in all figures, which
are due to the rounding effect.

7.1.1 Performance measures

Next, we will consider the behavior of all performance measures of interest separately under the staffing
rules (5.8) and (5.9). The behavior of different performance measures is displayed in Figure 7.1.

Probability of Holding:
We observe stabilizing behavior for the probability of holding. This probability is determined by r, β
and γ and as these values grow, the probability of holding will tend to zero. Naturally, the parameter γ
has the most impact on this performance measure, but we find that β has a significant effect as well. In
other words, increasing the number of nurses will ensure that patients need to wait less for service, and
therefore the beds will be occupied for a shorter amount of time.

Probability of Waiting:
For a QED policy the probability of waiting must have a nondegenerate limit. Our numerical experiments
show that this probability indeed stabilizes to a value strictly between zero and one, e.g. Figure 7.1b.
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The probability of waiting for a nurse depends on r, β and γ. As β grows to a value such that s ≥ n,
the probability of waiting is zero and moreover, as β and γ grow simultaneously, this probability will
tend to zero as well. Moreover, it seems that the impact of γ is rather insignificant compared to β in
the QED regime. Naturally, in a QED regime where the utilization rate of beds is high, the probability
of waiting is most influenced by the number of nurses itself. However, for small values of γ the number
of beds might prove a bottleneck and impact this performance measure considerably. We believe more
research is needed to have a deep understanding of the interplay between these parameters.
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(d) Expected waiting time.
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Figure 7.1: Various performance measures of the SERW model for r = 0.2.

Expected Holding Time for a Bed:
When we consider Figure 7.1c and Figure 7.1e, we see that the expected holding time for a bed will
converge to zero with rate 1/

√
n. However, this performance measure behaves rather capricious due to

the rounding effect.
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Expected Waiting Time for a Nurse:
We expect that the expected waiting time for a nurse will converge to zero at rate 1/

√
s, which is the

same order of magnitude as the rate of convergence for the expected holding time for a bed. Our sim-
ulation results seem to support this notion, see Figure 7.1d and Figure 7.1f. However, we find rather
capricious behavior due to the rounding effect and therefore our simulation results do not provide con-
clusive support for our intuition.

Expected Length of Stay:
Since the LOS consists of a sum of service times, content times, holding times and waiting times, this
performance measure will obviously not stabilize. However, as we let R grow to infinity the expected
waiting time and the expected holding time tend to zero with rate 1/

√
R, which is of the same order as

1/
√
s and 1/

√
n. Therefore, the expected LOS will tend to p/((1 − p)δ) + 1/((1 − p)µ) with rate 1/

√
R.

Utilization levels:
Under the staffing policy (5.8) and (5.9) we see that the bed utilization is very high and tends to one as R
grows large, e.g. Figure 7.1g. Both β and γ have a significant impact on this performance measure. Our
simulation results also support that the nurse utilization level grows to one as the offered load increases,
see Figure 7.1h.

7.1.2 Comparison with the Erlang-R model

Figure 7.2 demonstrates that the constraint on the number of beds has a significant impact on the
performance measures with respect to the Erlang-R model. Intuitively, we expect that this impact will
decrease as β and particularly γ increase, and our simulation results support this intuition.
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Figure 7.2: Comparison performance measures SERW model vs. Erlang-R
model for γ = 0.5.

Note that the expected waiting time for a nurse converges to zero with the same rate as in the Erlang-
R model. Moreover, when we compare the nurse utilization level in the SERW model to the Erlang-R
model, we observe that these measures coincide in our simulation results, see Figure 7.2d. This can
be expected, since the amount of work for the nurses is equal in both. Hence the expected amount of
work each nurse executes per time unit is the same in both systems. Therefore this measure should only
depend on the choice of r and β, and not on the choice of γ.

Dimensioning large-scale service systems with returning patients 59



CHAPTER 7. SYSTEM BEHAVIOR OF THE SERW MODEL

7.1.3 Influence of r

Recall that r corresponds to the fraction of the time patients in beds would be served when there is always
a nurse available. It is a measure that determines the intensity of service requirement of a patient. In the
Emergency Department this value is typically rather low, since the time a patient waits for lab results to
return is much longer compared to the service times. To obtain a general understanding of the influence
of r on the performance measures, we fixed λ = 10, µ = 1, p = 0.8, β = 1, γ = 1 and varied δ between 0.1
and 3. Note that this setting yields a fixed number of nurses of s = 58, an increasing r as a function of δ
and and hence decreasing number of beds as a function of δ.

As the (average) expected time patients are in the content state decreases, the total duration the
patient spends in a bed will also decrease. As long as the expected holding time does not increase too
fast, the LOS will decrease as well as δ increases. However, this measure cannot be captured by r itself,
since it depends heavily on the magnitude of µ and δ.

In our simulation results we observed that the waiting probability for a nurse and the expected
waiting time are increasing function with respect to δ, e.g. Figure 7.3b and Figure 7.3d. This suggests
that these performance measures decrease as r increases. This seems counterintuitive, since we increase
the ratio between the time a patient spends in a bed in the needy state and the content state. However,
we simultaneously decrease the number of beds by order 1/r due to staffing rule (5.8). Consequently,
there are less patients per nurse per time unit and hence the probability of waiting and also the expected
waiting time decrease.

Thus, for larger values of r we staff fewer beds in (5.8). Although the time patients spend in a bed
decreases, our simulation results suggest this is not proportional to the decrease of beds. Therefore the
probability of holding and the expected holding time will increase, see Figure 7.3a and Figure 7.3c.
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Figure 7.3: Influence of r.
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7.2 Time-varying environment

As Figure 7.4 illustrates, the arrival rate differs every hour where most patients arrive during office hours.
Therefore we need a staffing procedure for a non-stationary system such that every patient encounters the
same service level at each moment in time. This has typically been addressed via two approaches. The
first approach concerns stationary approximations, as in the PSA (Pointwise Stationary Approximation),
SIPP (Stationary Independent Period by Period) or the lag-SIPP method. In the PSA method one fixes
the arrival rate at the start of each time interval and uses this in a stationary model. In the SIPP-method
the arrival rate is first averaged over each staffing interval before using it in a stationary model [19]. This
method has been improved by the lag-SIPP method, where one slacks the arrival rate by the mean service
time before applying the stationary-model method. As a result, systems with longer service times might
be handled as well, yet it still requires that the steady state is quickly reached. The second approach
approximates the time-varying offered load via a corresponding system with ample servers, and uses
the time-varying adaption of the square root staffing rule. This method is referred to as MOL staffing
method [19].

5 10 15 20
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300

400

500

600

# Patients

Figure 7.4: Number of arrivals in six months for an Emergency Department
in the Netherlands.

Following Yom-Tov and Mandelbaum [33], we will consider the performance of the PSA and the MOL
staffing method for a sinusoidal arrival rate:

λ(t) = λ̄ + λ̄κ sin(2πt/f) = λ̄ + λ̄κ sin(ωt), (7.1)

where λ̄ is the average arrival rate, κ is the relative amplitude, f is the period and ω the frequency.

7.2.1 The PSA staffing procedure

The Pointwise Stationary Approximation (PSA) is a standard way to cope with time-dependent ar-
rivals [19]. At the start of each time interval, the distribution of the number of patients is approximated
by a stationary model with the same parameters and a fixed arrival rate set to λ = λ(t), where t is the
start time of the time interval.

The SIPP-method differs from the PSA method in the sense that the arrival rate is first averaged over
each staffing interval before using it in a stationary model. In other words, for each time interval [t1, t2]
the arrival rate is set to λ = 1/(t2 − t1) ∫

t2
t1
λ(t)dt before applying it to the corresponding stationary

model. In the lag-SIPP method, the arrival rate is additionally slacked by the mean service time.

7.2.2 The MOL staffing procedure

The approach in the MOL staffing method is based on staffing for a time-varying offered load in a related
infinite server system where all patients can be served immediately. We will approximate the offered load
of the service station by the offered load in a related system where the number of beds and the number
of nurses are set to infinity. Therefore, the modified offered load coincides with the modified offered load
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in case of an Erlang-R model, for which the results are already established in [33]. For the SERB model,
which also deals with an additional constraint of n, Yom-Tov already showed that this works well for the
probability of waiting and blocking (only) in the QED regime [32].

Introduce the time-varying offered load {R(t),R2(t)}, where R(t) and R2(t) are the offered loads
in the related Erlang-R model with an infinite number of servers and beds. In other words, R(t) is the
least number of servers required so no arriving patient needs to wait for service.

Since the Erlang-R model has exponentially distributed service times with rate µ and exponentially
distributed content times with rate δ, the modified offered loads are given by the unique solution of the
following ordinary differential equation [33]:

d

dt
R(t) = λ(t) + δR2(t) − µR(t), (7.2)

d

dt
R2(t) = pµR(t) − δR2(t), (7.3)

for t ≥ 0 and initial condition R(0) = 0 and R2(0) = 0.

This system of equations can be understood as follows. At time t the service station finds an offered
load from arriving patients and patients from the content station. With rate λ(t) patients arrive to
the service station and the content station processes a load of R2(t) with rate δ. Moreover, the service
station processes a load of R(t) with rate µ, and hence the change of offered load is captured by (7.2).
Similarly, the service station processes with rate µ and turns to the content station with probability
p. On the other hand, the content station processes load with rate δ, which yields (7.3). The formal
proof of this system of differential equations is given in [32]. Moreover, Yom-Tov shows that this can be
extended for general arrival times and general service times.

For the sinusoidal arrival rate in (7.1) the system of differential equations (7.2) and (7.3) can be
solved explicitly [33].

Lemma 7.2.1. The solution of (7.2) for the sinusoidal arrival rate (7.1) is given by

R(t) = λ̄

(1 − p)µ
+ λ̄κ ⋅ cos(ωt + π + tan−1(θ))

⋅
√

δ − iω
(µ − iω)(δ − iω) − pµδ

⋅ δ + iω
(µ + iω)(δ + iω) − pµδ

, (7.4)

where θ = µ(δ2 − pδ2 + ω2)/(ω(δ2 + ω2 + pµδ)).

Using the modified offered load of (7.4), we dimension the SERW model by

n(t) = R(t)
r

+ γ
√

R(t)
r

, (7.5)

s(t) = R(t) + β
√
R(t). (7.6)

7.2.3 Performance

We are interested in whether the staffing procedure (7.5) and (7.6) via the MOL staffing method works
well for a sinusoidal arrival stream. Moreover, we will compare its performance with the PSA staffing
method and consider the influence of r.

7.2.3.1 Moderate system

First, we reconstruct the experiment of case study 1 in [32], thus we have the parameter setting λ̄ = 30,
κ = 0.2, µ = 1, δ = 0.5, p = 2/3, η = 1, γ = β

√
r + η

√
1 − r and vary β ∈ {0.1,0.3,0.5,0.7,1,1.5}. We will

describe the behavior of all performance measures, and particularly consider the probability of holding
and the probability of waiting, see Figure 7.6.
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Figure 7.5: Arrival rate and offered loads.
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(b) Probability of waiting.

Figure 7.6: Performance of the PSA method for a sinusoidal arrival rate (mod-
erate system).

Our simulation results indicate that this staffing procedure has the desirable result of stabilizing the
probability of waiting, as well as the bed utilization level and the nurse utilization level. We do observe
a minor sinusoidal shape with respect to the probability of holding, which is asymmetric with respect
to the offered load in the MOL staffing, see Figure 7.5. We note that this phenomenon is present even
more clearly for the expected waiting time and the expected LOS. The expected length of stay at time t
corresponds to patients leaving the Emergency Department at hour t. Hence, patients that leave when
the system is highly congested experienced less waiting times during their stay on average. Thus, when
the offered load increases the provided MOL staffing procedure, it seems that we tend to overstaff the
number of nurses slightly, yielding a decrease in the expected waiting time. This can also indirectly
provide the slight decrease in the holding probability.

We also considered the performance of the PSA method and the lag-PSA with a lag of 1/((1−p)µ) = 3
and 1/µ = 1 hours. We displayed the results for the PSA method in 7.7. We observe that the MOL staffing
method stabilizes the waiting probabilities considerably more than the PSA. The lag-PSA method shows
similar results, and hence we did not include these figures here. Thus, we find that the MOL method is
the preferable staffing method for our model and therefore we will henceforth use this method for our
staffing policies.

7.2.3.2 Small system

Next we consider a smaller system with a more realistic parameter setting for an Emergency Department.
In this setting we have λ̄ = 2.5, κ = 0.6, µ = 1, δ = 0.2, p = 2/3, η = 1, γ = β

√
r + η

√
1 − r and vary

β ∈ {0.1,0.3,0.5,0.7,1,1.5}. This yields a system with r = 0.2 and 65 ≤ n ≤ 80 and 12 ≤ s ≤ 20.

The results for the probability of waiting and the probability of holding are included in Figure 7.8. In
this example we observe that the probability of holding does not stabilize under this staffing procedure.
Our MOL staffing rule (7.5) uses the modified offered load of the service station. We observe that the
probability of holding for a bed does not stabilize to a single level, this shows that we cannot simply
adopt the modified offered load for the service station to determine the number of beds. Further research
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Figure 7.7: Performance of the PSA method for a sinusoidal arrival rate (mod-
erate system).

is necessary to obtain a deeper understanding of this relation.

7.2.3.3 Influence of r

To study the influence of r we fixed the parameters λ = 2.5, κ = 0.6, f = 24, µ = 1, p = 0.8, and varied δ.
Observe that r is an increasing function of δ, s is fixed and n will decrease as δ grows. The results for
the probability of holding for a bed and waiting for a nurse for r ∈ {0.2,0.5,0.8} are given in Figure 7.8.

As r increases the probability of waiting will fluctuate a little more, but this effect is quite modest.
Interestingly, we find that the probability of holding for a bed displays more stabilizing behavior for
larger r. Note that here we increase r such that n decreases while s is fixed. Therefore n grows to s,
which yields improving results for the modified offered load approximation for the bed holding queue
and hence more stabilizing behavior for the probability of holding.

7.3 Rounding effect

Note that the rounding procedure of the number of nurses and the number of beds has a greater effect in
smaller systems and hence the probability of waiting can fluctuate more. In our simulations we observed
many fluctuations due to both rounding up the number of nurses and rounding up the number of beds
with respect to a chosen R in smaller systems. Moreover, these fluctuations are more due to rounding
up the number of nurses than the number of beds. In order to decrease these fluctuations, we can
alternatively scale the system with respect to s. That is, asymptotically the staffing rules (5.8) and (5.9)
are equivalent to

R = s − β
√
s (7.7)

n = s
r
+ (γ − β√

r

√
s

r
) . (7.8)

In the next Chapter we will take a closer look at the probability of waiting and its behavior. We
will approximate it by means of a heuristic, and to validate the approximation it is necessary to reduce
the impact of the rounding up. For the stationary case, we perform our experiments with the equivalent
staffing rules (7.7) and (7.8).
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(b) Probability of waiting for r = 0.2.
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(c) Probability of holding for r = 0.5.
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(d) Probability of waiting for r = 0.5.
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(e) Probability of holding for r = 0.8.
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(f) Probability of waiting for r = 0.8.

Figure 7.8: Performance of the MOL staffing method for a sinusoidal rate
(small system).





Chapter 8

Dimensioning scheme

In this chapter we will provide a heuristic that approximates the behavior of the Semi-Open Erlang-R
model with Waiting (SERW) with that of the Semi-Open Erlang-R Model with Blocking (SERB). Since
the stationary distribution of the SERB model does have a closed form representation, this heuristic
method makes available closed-form, yet approximative, expressions for performance measures like the
probability of waiting in the SERW model. These closed-form approximations will turn out to be useful
with the MOL staffing method.

8.1 Inspiration

Our heuristic method is inspired by the recent work on the Erlang-B model with slow retrials [3], where
slow refers to the feature that blocked arrivals will return to the system after a relatively long time
compared to the service time. Cohen [9] showed that for a (stable) Erlang-B model with retrials, with an
exponential retrial rate ξ, arrival rate λ and service rate µ, the steady state distribution of the number
of busy servers converges to the corresponding distribution of the standard Erlang-B model as ξ ↓ 0, but
with an increased arrival rate λ +Ω, where Ω is the unique positive root of the equation

Ω = (λ +Ω)B (s, λ +Ω

µ
) (8.1)

with B(⋅, ⋅) the Erlang-B formula in Equation (2.9). Equation (8.1) can be understood as follows. In case
of slow retrials, the retrial rate becomes roughly Poisson and hence the system converges to a standard
Erlang-B model with an increased arrival rate, namely the original arrival rate plus an additional arrival
rate due to retrials. Then the additional arrival rate Ω equals the blocked arrival rate in the corresponding
standard Erlang-B model.

The key difference between the SERW model and the SERB model is that patients finding all beds
occupied upon arrival, wait indefinitely till there is a bed available or are blocked respectively. Our goal
is to approximate the SERW model with an appropriate version of the SERB model. For this, we extend
the SERB with the feature of retrials: blocked patients in the SERB model will retry to enter the system
after some time. If we assume that this time until retrial is rather long (slow retrials), we find that the
retrial process becomes roughly Poisson again. Then we obtain a corresponding SERB model with an
increased offered arrival rate or equivalently, an increased offered load. The key question then is how to
determine the limiting retrial rate, i.e. the counterpart of Ω in (8.1) in this case.

8.2 A heuristic method to connect SERW and SERB

First we will intuitively explain how one comes up with a counterpart of the Cohen’s equation for the
SERB model. It follows from Proposition 4.3.4 that for a standard SERB model, when n and s are
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scaled according to the QED staffing rules (5.8) and (5.9),

lim
R→∞

√
RP (Block) = f(β, γ),

where β, γ > 0 and

f(β, γ) ∶=
√
rφ(γ

√
r)Φ(β

√
1 − r − η

√
r) + φ(

√
η2 + β2)eη

2
1/2Φ(η1)

∫
β
−∞

Φ(η + (β − t)
√

r
1−r

)dΦ(t) + φ(β)Φ(η)
β

− φ(
√
η2+β2)

β
eη

2
1/2Φ(η1)

(8.2)

and η = γ
√

1−r
− β

√
r

1−r
and η1 = η − β

√
1−r
r

. Thus the probability of blocking is of the order O(R−1/2),
yielding a rate of blocked load of roughly R⋅O(R−1/2) = O(

√
R) per time unit. Therefore, we approximate

the SERB model with retrials by a standard SERB model with an additional offered load of the order
O(

√
R).

We assume that the additional load takes the form a
√
R with a some positive constant that is yet

to be determined. This additional offered load should be equal to the the fraction of blocked total
offered load in the corresponding (standard) SERB model. Hence, we obtain the following counterpart
of Cohen’s equation in this case:

(R + a
√
R)P (Block) = a

√
R. (8.3)

Next we will explain heuristically how we can use this result to approximate the behavior of a SERW
model that is dimensioned according to (5.8) and (5.9). We relate this system with a SERB model with
retrials with the same parameters. When we assume that the additional load takes the form a

√
R with

a > 0, then

R + a
√
R = s − (β − a)

√
R ∼ s − (β − a)

√
R + a

√
R,

and similarly

R + a
√
R = rn − (γr − a

√
r)

√
R

r
∼ rn − (γr − a

√
r)

√
R + a

√
r

r
.

In other words, we find the staffing rules

s = R̂ + (β − a)
√
R̂ (8.4)

and

n = R̂
r
+ (γ − a√

r
)

√
R̂

r
. (8.5)

for the corresponding standard SERB model with an offered load of R̂ = R + a
√
R. Then it follows from

Proposition 4.3.4 and the counterpart of Cohen’s Equation (8.3) that

f (β − a, γ − a√
r
) =

√
R + a

√
RP (Block) = a

√
R√

R + a
√
R

∼ a

with f as in (8.2).

Let us now summarize the approximative scheme we have just constructed heuristically. We want
to approximate the SERW model dimensioned according to the QED staffing rules (5.8) and (5.9).
Therefore we approximate the behavior of the service station by a SERB model with an adapted offered
load R̂ = R + a

√
R and dimensioned according to (8.4) and (8.5), where a can be found by solving

f (β − a, γ − a√
r
) = a. (8.6)

with f as in (8.2). Then the probability of waiting is approximately g(β − a, γ − a
√
r
), where

g(β, γ) ∶=
⎛
⎜
⎝

1 + ∫
β
−∞

Φ(η + (β − t)
√

r
1−r

)dΦ(t)
φ(β)Φ(η)

β
− φ(

√
η2+β2)

β
eη

2
1/2Φ(η1)

⎞
⎟
⎠

−1

(8.7)

with η = γ
√

1−r
− β

√
r

1−r
and η1 = η − β

√
1−r
r

.
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8.3 Open technical problem

When applying the heuristic we implicitly assume that (8.6) has a unique positive solution a. Although
f defined in (8.2) looks rather complicated, this function is smooth, convex and strictly decreasing with
respect to β and γ for all r. Based on our numerical findings, we state the following conjecture.

Conjecture 1. Assume that 0 < β <
√
R and 0 < γ <

√
R
r

. Then f defined in (8.2) is continuous and

satisfies

f (β, γ) > 0, (8.8)

0 <
df (β − a, γ − a

√
r
)

da
< 1 (8.9)

and for a > 0 large enough

f (β − a, γ − a√
r
) < a. (8.10)

Under Conjecture 1, (8.6) has a unique positive solution for a by the following reasoning. From (8.8)
we have f(β − a, γ − a

√
r
) > 0 at a = 0. Combining this notion with (8.10) and the continuity of f , we

see that (8.6) has at least one solution, e.g. Figure 8.1. Moreover, this is uniquely determined since

0 < df(β−a,γ−a/
√
r)

da
< 1, see Figure 8.2.
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Figure 8.1: Function f(β − a, γ − a/
√
r) for r = 0.2.
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Figure 8.2: Derivative of f(β − a, γ − a/
√
r) w.r.t. a for r = 0.2.

8.4 Performance

We shall now apply the heuristic to approximate the probability of waiting in the SERW model in
terms of the SERB model with slow retrials. Moreover, we will consider the significance of the retrial
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feature with respect to the SERB model without retrials, i.e. the SERB model that is dimensioned as the
original SERW model. We fix γ = 1 and consider the staffing rules (7.7) and (7.8) to decrease the effect of
rounding in our analysis. For the shown results in this section we set µ = 1, p = 0.8 and δ ∈ {0.2,0.8,3.2},
which yields r ∈ {0.2,0.5,0.8}.

When patients wait for an available bed, this results in a higher bed utilization than in the case
that patients are blocked when all beds are occupied. Consequently, there will be more patients at the
service station on average in the SERW model and hence it is more likely that a patient waits for service.
Therefore, the probability of waiting in the SERW model is typically underestimated by the probability
of waiting in the standard SERB model without retrials. This effect can be quite severe for smaller
β, as is illustrated in Figure 8.3. Here the straight line is the probability of waiting derived from our
simulations for the SERW model, the dashed line is the heuristic approximation and the dotted line the
asymptotic probability of waiting in the SERB model without retrials. We observe that the heuristic
improves the approximation dramatically.
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Figure 8.3: Probability of waiting for r = 0.2.

Important to note is that the heuristic is an approximation for the asymptotic probability of waiting
of the SERW model. In other words, the probability of waiting in the SERW model will not converge to
the value provided by the heuristic. This effect is illustrated in Table 8.1.

r = 0.2 r = 0.5 r = 0.8

β Heuristic QED Gap Heuristic QED Error Heuristic QED Gap

0.1 0.8472 0.8391 0.0081 0.7971 0.8409 0.0439 0.6897 0.8644 0.1747
0.3 0.6243 0.6439 0.0197 0.5424 0.6288 0.0864 0.3759 0.6559 0.2800
0.5 0.4581 0.4804 0.0223 0.3761 0.4607 0.0846 0.2225 0.4711 0.2486
0.7 0.3322 0.3504 0.0182 0.2638 0.3226 0.0588 0.1487 0.3157 0.1670
1 0.1994 0.2020 0.0026 0.1579 0.1760 0.0181 0.1000 0.1498 0.0499

1.5 0.0775 0.0681 0.0094 0.0670 0.0505 0.0164 0.0567 0.0225 0.0343

Table 8.1: Performance of heuristic w.r.t. asymptotic P (W > 0) in SERW
model.

We observe that for small r the heuristic approximates the asymptotic probability of waiting rather
well. As r increases the gap between the asymptotic probability of waiting and the heuristic approxim-
ation increases as well. This error is modest enough for small r, but as r increases the gap can exceed
25%. From our simulation results we find that the heuristic can only be used for r < 0.5. Since the value
of r is typically low for an Emergency Department, we can use this machinery for dimensioning purposes
in this case.

From our simulation results we observed that the probability of waiting converges quickly to its
asymptotic value, and therefore the heuristic already approximates the true probability of waiting rather
well for small systems (in case of small r). This is illustrated for r = 0.2, β = 0.5 and γ = 1 in Table 8.2.
In theory, as s grows the gap between the probability of waiting and the QED value will converge to
zero and the error of the heuristic will converge to the gap between the asymptotic probability of waiting
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and the heuristic approximation (0.0233 in this case). Since the errors are very small in this case,
this convergence cannot be verified from this table. Nevertheless, it does show that the SERB model
without retrials would provide a poor approximation, as expected, and that the heuristic provides a good
approximation with a small error of around 2%.

s n P (W > 0) Gap QED Error Heuristic Error SERB

5 25 0.4841 0.0037 0.0260 0.2147
6 30 0.4816 0.0011 0.0234 0.2121
7 35 0.4856 0.0052 0.0275 0.2162
8 40 0.4871 0.0067 0.0290 0.2177
9 45 0.4877 0.0072 0.0296 0.2182
10 50 0.4835 0.0031 0.0254 0.2141
15 74 0.4750 0.0054 0.0169 0.2056
20 99 0.4807 0.0003 0.0226 0.2113
25 124 0.4833 0.0029 0.0252 0.2139
30 149 0.4828 0.0023 0.0246 0.2133
40 199 0.4766 0.0038 0.0185 0.2072
50 249 0.4901 0.0097 0.0320 0.2207

Table 8.2: Influence of s.

Summarizing, for sufficiently small r the heuristic provides good approximations for the probability
of waiting in the stationary case. Next, we will explain intuitively why larger values of r will yield poor
approximations.

Note that large values of δ with respect to µ correspond to high values of r. Moreover, the patient
returns faster to service as δ increases and thus the frequency that patients depart the Emergency
Department will increase. In the SERW model a holding patient will be immediately assigned to a bed.
However, we assume a slow retrial rate in our heuristic and consequently, it can take a relatively long
time for a patient to retry for a bed. That is, the retrial rate is too small to approximate the actual
behavior of the SERW model where the patient immediately moves to the service queue. This effect
will be more significant when the frequency of departures increases and hence the heuristic will provide
poorer estimations.
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Figure 8.4: Heuristic approximation on the probability of waiting for a sinus-
oidal arrival stream.

Lastly, we consider whether the heuristic works well for a sinusoidal arrival rate in case of small r. We
will illustrate our results for the case described in Section 7.2.3.2, where we scaled again by the staffing
rules (7.5) and (7.6) in this time-varying setting. Observe that in this case we have a large relative
amplitude and decreasing the relative amplitude will lead to more stationary behavior. In other words,
there will be less fluctuations as the relative amplitude decreases.

Even in this time-varying setting, it seems that the heuristic works quite well in case that the prob-
ability of waiting is not too high, which is illustrated in Figure 8.4 and Table 8.3. That is, in case that
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the probability of waiting for a nurse we want to achieve is not too high, the heuristic can be used for
dimensioning the Emergency Department. Nevertheless, more simulations and further research is needed
to obtain a deeper understanding on the performance of the heuristic approximation, particularly in a
time-varying setting.

t β = 0.1 β = 0.3 β = 0.5 β = 0.7 β = 1 β = 1.5

1 0.1025 0.0701 0.0248 0.0036 0.0159 0.0036
2 0.1160 0.0431 0.0304 0.0206 0.0052 0.0193
3 0.1206 0.0569 0.0019 0.0119 0.0056 0.0067
4 0.0981 0.0544 0.0158 0.0314 0.0138 0.0176
5 0.1072 0.0752 0.0086 0.0240 0.0004 0.0069
6 0.1086 0.0776 0.0301 0.0100 0.0301 0.0174
7 0.1291 0.0521 0.0305 0.0124 0.0084 0.0040
8 0.1466 0.0811 0.0136 0.0171 0.0067 0.0035
9 0.1434 0.1016 0.0015 0.0042 0.0152 0.0079
10 0.1451 0.1076 0.0075 0.0043 0.0160 0.0062
11 0.1541 0.1207 0.0049 0.0106 0.0096 0.0027
12 0.1669 0.0799 0.0077 0.0243 0.0014 0.0035
13 0.1384 0.0655 0.0306 0.0485 0.0201 0.0136
14 0.1289 0.0807 0.0605 0.0177 0.0074 0.0009
15 0.1422 0.0530 0.0380 0.0214 0.0010 0.0046
16 0.1223 0.0483 0.0421 0.0093 0.0285 0.0112
17 0.1149 0.0724 0.0152 0.0055 0.0203 0.0041
18 0.1307 0.0527 0.0173 0.0221 0.0044 0.0206
19 0.1154 0.0469 0.0415 0.0028 0.0186 0.0168
20 0.1037 0.0678 0.0111 0.0062 0.0177 0.0062
21 0.1112 0.0357 0.0026 0.0092 0.0041 0.0276
22 0.1183 0.0085 0.0015 0.0226 0.0045 0.0294
23 0.1221 0.0481 0.0013 0.0272 0.0078 0.0309
24 0.1161 0.0786 0.0104 0.0177 0.0001 0.0053

Table 8.3: Error values of heuristic.

8.5 Dimensioning of an Emergency Department

We now illustrate how this heuristic can help in dimensioning an Emergency Department using a con-
straint based example. When there is a fixed number of beds available, solve (5.8) for γ. In case that on
average no more than q% of the patients should wait for service, (numerically) solve

f (β − a, γ − a√
r
) = a,

g (β − a, γ − a√
r
) = q,

for the values of β and a, where f is as in (8.2) and g as in (8.7). Then set the number of nurses to
s = R + β

√
R.

We note that this dimensioning scheme can also be applied for a time-varying setting. Let t represent
the start of a time interval. At the start of each time interval we solve (5.8) for γt and the system of

equations for βt and at. Then we set the number of nurses to s = R(t) + β
√
R(t), where R(t) is the

modified offered load of the MOL staffing procedure.

Example 1. Suppose there are n = 30 beds available in the Emergency Department of a hospital with
µ = 5, δ = 2 and p = 0.8. How many nurses are needed such that no more than 30% of the patients need
to wait for service?
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When there are five patients arriving per hour, this yields an offered load of R = 5 and hence γ = 1.
Then numerically solving

f (β − a,1 − a√
0.2

) = a,

g (β − a,1 − a√
0.2

) = 0.4,

yields a ≈ 0.3 and β ≈ 0.75. Hence we would need s = ⌈5 + 0.75
√

5⌉ = 7 nurses.
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Chapter 9

Conclusions

In this thesis we introduced a large-scale service system facing patients returning for service in order to
determine dimensioning rules for the Emergency Department in the QED regime, in terms of both the
number of beds and the number of nurses.

9.1 Our contributions

The main research objective of this thesis was to analyze and improve the patient flow in Emergency
Departments. Our study was based on a new stochastic model that we called the Semi-Open Erlang-R
model with Waiting. This model builds on recently developed models and adds the essential restric-
tion that the total number of patients that can reside in the Emergency Department simultaneously is
bounded. Our study has led to three main contributions:

1. We explained how the classical queueing models in the QED regime can be used in hospital settings.
Moreover, we identified the prevalent features that need to be accounted for in order to dimension
an Emergency Department.

2. We introduced and analyzed the Semi-Open Erlang-R Model with Waiting (SERW) and

� Showed how the stationary distribution of the number of patients at each station can be
determined by matrix-geometric methods and identified the stability condition of this system;

� Made stochastic comparisons with other models to obtain insights in the behavior of the
SERW model;

� Proposed a two-fold scaling rule that leads to QED behavior in the SERW model.

3. Using simulations, we validated our proposed staffing policy for both stationary and time-varying
environments, and identified the conditions for which the proposed staffing policy stabilizes per-
formance. We provided a practical algorithm that can be used for dimensioning the Emergency
Department in real-life.

9.2 Our results

Most delays experienced in the Emergency Department are due to a lack of beds or nurses. Since these
two resources are highly interdependent, it is essential to find a suitable dimensioning rule for both
beds and nurses simultaneously. To include the important feature of patients returning multiple times
for service by a nurse we adopted the Erlang-R model, but extending it with the restriction that the
number of patients that can reside in the Emergency Department simultaneously is bounded. We called
our model the Semi-Open Erlang-R Model with Waiting and identified the staffing policy that stabilizes
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performance in the QED regime. In the stationary case, the number of beds n and the number of servers
s should be dimensioned by the following square-root staffing rules:

n = R
r
+ γ

√
R

r
,

s = R + β
√
R.

Via our simulations we verified that these staffing rules indeed lead to QED behavior, e.g. a limiting
probability of waiting strictly between zero and one. However, since the arrival process into an Emergency
Department is typically non-stationary, we translated our two-fold staffing rule into

n(t) = R(t)
r

+ γ
√

R(t)
r

,

s(t) = R(t) + β
√
R(t).

We use the MOL (Modified Offered Load) staffing method to approximate the time-varying offered
load R(t). That is, we approximate the offered load via a corresponding system with infinitely many
servers, which gives an explicit expression in case of a sinusoidal arrival rate. Our simulations indicated
that this staffing procedure again stabilizes the probability of waiting for a nurse in the QED regime.

Since the stationary distribution of the SERW model does not have a closed-form expression, we
designed a heuristic method to approximate the probability of waiting by a corresponding SERB model
with retrials. Using this heuristic method, we designed a practical algorithm that determines the number
of nurses for a predetermined number of beds and a target probability of waiting. Moreover, we verified
via simulations this heuristic works well in the QED regime.

9.3 Open problems

Naturally, our study gives rise to various extensions that might lead to a more realistic model for the
Emergency Department. Moreover, our mathematical model raises several open problems that are worth
investigation. We now present an overview of these extensions and open problems.

Multi-class patients:
Before patients are treated by any care provider, the severity of their condition is established during
triage. This process provides an urgency ordering and the patients are served accordingly. When as-
sumed that every class of patients has the same mean service time, this scenario corresponds to the
SERW model illustrated in Figure 9.1 for two types of patients. This can be extended for many types of
patients, or even with different service rates for each patient.

To be able to provide immediate care to the prioritized patients, it seems natural to reserve some
servers for these prioritized patients. In the queueing literature, this concept is also known as trunk
reservation. The main objective for this model is finding the number of beds and nurses that should be
reserved such that certain predetermined performance levels are achieved. Moreover, we are interested
in how this affects our original staffing policy.

For the Erlang-B model, the answers of these types of questions are already known (see e.g. [30, 31]).
An answer in this more complex queueing system provides important and relevant challenges for further
research. The simulation program we have created can be easily extended for example to investigate
these more complex situations.

Multi-type servers:
Patients are typically seen by both nurses and doctors during their stay. When assumed that service
of doctors and nurses are required separately and independently, we can include an additional service
station in the inner box of the SERW model representing the doctors. However, there is a cost difference
between nurses and doctors, and hence it can be preferable to staff the doctors in the Efficiency-Driven
regime with very high utilization and the nurses in the QED regime. Moreover, we note that the number
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Figure 9.1: The SERW model with two types of patients.

of doctors is typically low in an Emergency Department and hence heavy-traffic approximations might
not work well. It would be interesting to see if one can still find appropriate staffing policies in this case.

Bed staffing rule:
In our simulation results we observed that the probability of waiting for a bed does not stabilize by
staffing the number of beds in a time-varying environment. Note that in (7.5) we use the same offered
load approximation of the service queue to approximate the offered load for the bed queue, which might
cause the less stabilizing behavior for the probability of holding.

It would be interesting to find an alternative method to approximate the offered load for the bed
queue such that the probability of holding for a bed stabilizes. One possible method is by neglecting
the waiting time of a nurse, since this converges to zero as O (s−1/2) as the offered load and s grow to
infinity. Then, the inner box can be considered as an Mt/G/n queue with Poisson arrivals with rate λ(t)
and a service distribution given in (5.5). Following [12], the offered load of the bed queue can be ap-

proximated by Rbed(t) ∶= ∫
t
−∞

(1 − FB(t − u))λ(u)du, where FB is the probability distribution function

of B. Then set the number of beds to n(t) = Rbed(t)+ γ
√
Rbed(t) with γ > 0. We note that this staffing

rule is equivalent to (5.8) in the stationary case. Nevertheless, further research is needed to obtain an
appropriate time-varying diffusion approximation for the offered load of the bed queue and understand
why such an approximation would result in stabilizing behavior.

Rounding effect:
In our simulation results we found that the effect of rounding up the number of servers and the number
of beds is quite significant. In Section 7.3 we already proposed an equivalent scaling to reduce this effect
for our performance analysis. Nevertheless, in order to have a clean performance analysis, we would like
to design a method that can account for noninteger values of s and n. One way to do that would be
to perform the asymptotic analysis on ‘analytical continuations’ of the performance measures that hold
for non-integer n and s, in the same spirit as writing the Erlang-B formula as an incomplete gamma
function [23].

Proving stochastic ordering:
Rigorously proving the stochastic ordering we discovered in Chapter 6 provides a further mathematical
challenge. Moreover, how can these results be used to bound the performance measures of interest?
This will require delicate reasoning and a deep understanding of the relation in behavior of the systems.
Nevertheless, if it is possible to bound the performance measures, we might be able to rigorously prove
that the performance of SERW model stabilizes.

Moreover, in Section 5.7 we reasoned that the probability of waiting can be ‘sandwiched’, i.e. bounded
from below and above, by the probability of waiting of the corresponding SERB model and theM/M/s//n
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model, respectively. This reasoning is implicitly based on a stochastic ordering of these three models for
the number of patients at the service queue. Our simulations support this reasoning, but this relation
still requires a proof. Moreover, how tight are these bounds and can we improve them?

Prove that Equation (8.6) has a unique solution:
For the proposed dimensioning scheme based on the heuristic in Chapter 8 we conjectured that (8.6) has
a unique positive solution. To ensure that the heuristic provides a unique approximation, it needs to be
proven that this is indeed the case. Moreover, following the idea of the heuristic, the SERB models with
retrials should also provide an approximation for the expected waiting time in the SERW model or any
other stationary performance measure, but more simulations are needed to verify this.

Data analysis:
We believe that one of the most important challenges for future research is testing our model and staffing
algorithms to real hospital data. For instance, we assumed exponential service times and content times
in our models for mathematical tractability, which is typically not the case [1]. How robust are our
results when it is tested to detailed hospital data? What features arise from the data and how can we
account for this in our model?

Moreover, when real traces of arrival times at Emergency Departments are made available, our
time-varying staffing policy can be tested and hopefully leads to stabilized performance, just as for the
sinusoidal arrival rate. This would be a great avenue for further research.

In this thesis we introduced a simple model to capture a complex reality. Probably the most chal-
lenging opportunity for further research is to extend this model to account for essential features that
arise in an Emergency Department, such as multi-class patients and multi-type servers. However, there
are many more factors that should be accounted for and we believe that collaboration between the
different fields is essential to identify these features.
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Preliminaries

In this appendix several basic mathematical concepts will be explained that are used throughout this
thesis.

A.1 Basic concepts from probability theory

To describe the arrival and service process of a queueing model, we will use certain notions from prob-
ability theory. Therefore, we will provide some basic concepts in this section.

Within probability theory, we represent a quantity subject to variation due to chance by a random
variable X. For example, X can represent the number of patients within the ICU, but also the interarrival
time of two patients within the ICU. We denote its mean by E(X) and its variation by σ2(X), where
σ(X) is the standard deviation of X. A measure of the variability of X is the coefficient of variation,
defined as

cX = σ(X)
E(X)

. (A.1)

Alternatively, a continuous nonnegative random variables can be expressed by its Laplace-Stieltjes
transform. For a random variable X with distribution function F (⋅), this is defined as

X̃(s) = E(e−sX) = ∫
∞

0 e−sx dF (x), s ≥ 0.

Observe that ∣X̃(s)∣ ≤ 1 for all s ≥ 0 and

X̃(0) = 1 X̃ ′(0) = −E(X) X̃(k)(0) = (−1)kE(Xk).

Every random variable has a unique Laplace-Stieltjes transform and vice versa, and therefore it is a
characterization of the random variable. Often it is more convenient to work with the Laplace-Stieltjes
transform of a random variable instead of its distribution for its nice properties. For example, let X,Y
be two independent random variables. If Z = X + Y , then the Laplace-Stieltjes transform of Z is given
by Z̃(s) = X̃(s)Ỹ (s). Moreover, if Z is equal to X with probability p and equal to Y with probability
1 − p, then Z̃(s) = pX̃(s) + (1 − p)Ỹ (s).

Next, we will describe a few commonly used distributions.

A.1.1 Normal distribution

One of the most commonly encountered continuous probability distributions is the normal (or Gaussian)
distribution. It is fully described by its mean µ and and variance σ2 and is denoted by N(µ,σ). The
probability density function of a random variable X that is N(µ,σ) distributed, is given by

f(x) = 1

σ
√

2π
e−

(x−µ)2
2σ2 .
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Figure A.1: Probability density function of N(−1,2), N(0,1) and N(0,3).

In particular, we have the standard normal distribution with µ = 0 and σ = 1. Then the probability
density function is given by

φ(x) = 1√
2π
e−x

2
/2.

In this thesis, we will denote the density function of the standard normal distribution as φ and the
cumulative distribution function by Φ.

The normal distribution is among other things extremely relevant due to its key role in the central
limit theorem (CLT), which we will use multiple times in this thesis. Informally, this theorem states that
the arithmetic mean of a sufficiently large number of independent random variables will be approximately
normally distributed. Many formulations of the CLT exist, such as the following.

Theorem A.1.1 (Central Limit Theorem). Let X1,X2, ... be a sequence of independent, identically
distributed random variables with finite mean µ and finite standard deviation σ. Then

lim
n→∞

P (∑
n
k=1Xk − nµ
σ
√
n

≤ x) = Φ(x),

where Φ denotes the standard cumulative normal distribution function.

Equivalently, if Sn = ∑nk=1Xk, then the random variable

Sn − nµ
σ
√
n

converges in distribution to N(0,1) as n→∞.

A.1.2 Geometric distribution

A (discrete) random variable X with a geometric distribution with parameter p has probability distri-
bution

P (X = k) = (1 − p)pk k = 0,1,2, ...

Its mean, variance and coefficient of variance are given by

E(X) = p
1−p

σ2(X) = p
(1−p)2

c2X = 1
p
.

A.1.3 Exponential distribution

The exponential distribution is a continuous probability distribution often used to model the times
between two events, e.g. the interarrival times. If X denotes the exponentially distributed random
variable with rate λ, for example representing the time for a next patient to arrive, then the probability
that the patient arrives within t time units is given by

P (X ≤ t) = 1 − e−λt.
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We have

E(X) = 1
λ
, σ2(X) = 1

λ2 cx = 1,

and its Laplace-Stieltjes transform is given by

X̃(s) = λ
λ+s

, s ≥ 0.

A key property of an exponential distribution is the memoryless property. Informally, this property
states that the time spent in some state only depends on the state where it is presently. In other words,
the time that the process will remain in the state that it is currently at will not be prolonged or shortened
by anything that happened in the past. Mathematically, we can write this as

P (X > x + t∣X > t) = P (X > x) = e−λx,

for all x ≥ 0 and t ≥ 0, where X is an exponentially distributed random variable with rate λ. To be
concrete, let X represent the arrival time for a new patient to arrive at the Emergency Department. The
memoryless property states that the remaining interarrival time, given that the patient has not arrived
before time t, is again exponentially distributed with the same rate λ. That is, the remaining arrival
time is independent of the time past since the previous arrived patient.

If X1, ...,Xn are independent exponentially distributed random variables with parameters λ1, ..., λn,
then min{X1, ...,Xn} is again exponentially distributed with rate λ1 + .... + λn. The probability that Xi

is the smallest one is given by the fraction λi/(λ1 + ... + λn), i = 1, ..., n.

A.1.4 Erlang distribution

A random variable X has an Erlang-k distribution, k ∈ N, if X is the sum of k independent exponentials
with the same mean. That is, if X1, ...,Xn are all exponentially distributed random variables with rate
λ, then X =X1 + ...+Xk is Erlang-k distributed. A phase diagram of the Erlang-k distribution is shown
in Figure A.2.

1

λ

2

λ

k

λ

Figure A.2: Phase-independent diagram of the Erlang-k distribution.

The density is given by

f(t) = λ (λt)
k−1

(k−1)!
e−λt, t > 0,

and its distribution function equals

F (t) = 1 −∑k−1
j=0

(λt)j

j!
e−λt, t ≥ 0.

The distribution function shows strong similarities with the Poisson distribution, which we consider in
Section A.1.5. Its mean, variance and coefficient of variation are given by

E(X) = k
λ
, σ2(X) = k

λ2 , c2X = 1
k
.

Since X is the sum of k independent exponentially distributed random variables, its Laplace-Stieltjes
transform is given by

X̃(s) = ( λ
λ+s

)k , s ≥ 0.
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A.1.5 Poisson distribution

For now we will only give a formal description of the Poisson distribution and mention some properties.
In Section A.2 the Poisson process will be explained. A Poisson random variable X with parameter λ
has probability distribution

P (X = n) = λn

n!
e−λ, n = 0,1,2, ...

Its mean, variance and coefficient of variation are given by

E(X) = σ2(X) = λ, cX = 1
√
λ
.

A.2 Poisson process

The Poisson process is the most commonly used assumption to model the arrival process of patients to
the Emergency Department [21, p. 206]. Let Q(t) be a random variable, denoting the number of arrivals
in the interval [0, t], which is described by a Poisson process with rate λ. That is, the time between
successive arrivals is exponentially distributed with parameter λ. Then Q(t) has a Poisson distribution
with parameter λt, i.e.

P (Q(t) = n) = (λt)
n

n!
e−λt n = 0,1,2, ...

The rate λ represents the expected number of arrivals per unit of time. For example, if Q(t) describes
the number of arriving patients within the Emergency Department per hour, then rate λ = 3 corresponds
to an expected number of three arrivals per hour.

The Poisson process has the property that anywhere in time the occurrence of an arrival is equally
likely, which can be derived from the memoryless property of the exponential distribution. To provide a
concrete example, the likelihood that a new patient arrives to the Emergency Department is independent
of the number of patients that already arrived that day. Moreover, it is independent of the arrival times
of the preceding patients.

The following three properties define a Poisson process [22, p. 287]:

1. Patients arrive one at a time.

2. The probability that a patient arrives at any time is independent of when other patients arrived.

3. The probability that a patient arrives at a given time is independent of time.

To determine whether a Poisson process is reasonable for modeling purposes, it is useful to consider these
properties. For instance, the Poisson process does not incorporate events such as major accidents, since
such events trigger multiple simultaneous arrivals.

Next, we note two another important properties of the Poisson process.

(i) Merging: let Q1(t) and Q2(t) be two independent Poisson processes with respective rates λ1 and
λ2. Then the sum Q1(t) +Q2(t) is again a Poisson process with rate λ1 + λ2.

(ii) Splitting: Let Q(t) be a Poisson process with rate λ. With probability p the arrival is of type one
and with probability 1− p of type two. Let Q1(t) and Q2(t) denote the arrival process of type one
and type two patients respectively. Then Q1(t) and Q2(t) are independent Poisson processes with
respective rates λp and λ(1 − p).

To illustrate property (i), consider two clinical wards A en B within a hospital. Assume that the
arrival process of the wards can be modeled by a Poisson process with rates λ1 + λ2. If clinical wards A
en B would be merged to one big ward, according to property (i), its arrival process is described by a
Poisson process with rate λ1 and λ2. In contrast, let the arrival process of a clinical ward be described
by a Poisson process with rate λ. There are two types of patients in need of slightly different care. To
be able to provide directed care, it is considered to separate the ward in two more specialized wards.
Suppose patients of type one arrive with probability p, and so patients of type 2 arrive with probability
1 − p. Let Q1(t) and Q2(t) denote the arrival process of the two specialized wards. Then the arrival
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process of these specialized wards are described by independent Poisson processes with rates λp and
λ(1 − p).

Last, we will mention a special property that holds for queueing systems with Poisson arrivals, namely
the Poisson-Arrivals-See-Time-Averages (PASTA) property. This property states that on average an
arriving patient finds the system in the same state as an outside random observer at an arbitrary point
in time. More precisely, the fraction of patients finding the system in some state equals the fraction of
time that the system is in this state. To provide an illustrative example, consider again the example of
arriving patients to the Emergency Department. Then the PASTA property states that the probability
that an arriving patient finds twelve patients in the ED equals the fraction of time that there actually are
twelve patients in the ED. We emphasize that this property only holds for Poisson arrivals. To provide
a counterexample, consider the D/D/1 queue with deterministic (fixed) interarrival times of two time
units and a service time of one time unit. Then every arriving patient finds the system empty and can
be served immediately. However, half of the time the system contains one patient.

A.3 Little’s law

This principle in queueing theory provides an important relation between the mean number of patients
in the system and the mean time that a patient spends in the system. Let λ denote the average number
of patients entering the system per unit of time. We emphasize that the arrival process does not need
to be Poisson. Let Q denote the number of patients in the system and S the time spent in the system.
Then Little’s law states that

E(Q) = λE(S).

In words, the mean number of patients in the system equals the mean time spends in the system times
the average number of arrivals per time unit. Intuitively, this law might seem reasonable and even trivial.
However, it is a quite remarkable result, since it is not influenced by the arrival process distribution, the
service distribution or the service discipline.

An equivalent definition can be given to describe the relation between the mean waiting time E(W )
and the mean queue length E(Qw) (number of patients that must wait for service). This is given by

E(Qw) = λE(W ).

Let B denote the service time and ρ the occupation rate, i.e. the fraction of time the server is busy. In
terms of the server, Little’s law states

ρ = λE(B).
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Simulation

Since there is no analytical expression for the probability distribution of the Semi-Open Erlang-R model
with Waiting (SERW), we resort to simulations to obtain insight in the limit behavior and compare
these results with the Erlang-R model and the Semi-Open Erlang-R model with Blocking (SERB). In
this appendix we will consider how we these three models can be simulated.

B.1 General setup

For all three models we make use of a discrete-event simulation. In a discrete-event simulation, one
typically keeps track of the events and how these events affect the system state. In general, a number of
different events occurs, each yielding its own corresponding activities. We create an event list that keeps
track of the time points at which the events (of any type) are scheduled to occur. Then, the simulation
consists of (iteratively) finding the next event with the smallest time point. The current time is set to
this event time and the corresponding activities are executed. A typical construction of such a simulation
program is given in Algorithm 1.

Input : Parameters (e.g. arrival/service distribution and parameters) and runlength T .
Output : Desired statistical measures.

Initialize: Simulation time t = 0, system state, statistical counters and event list.

while t < T do

1. Determine next event type;

2. Update simulation time;

3. Update system state and statistical counters;

4. Generate future events and update event list;

end
return Desired statistical measures;

Algorithm 1: Typical construction of a discrete-event simulation.

In our patient flow models the changes in the system state are due to patient arrivals, service com-
pletions and the events that a patient assigned to a bed returns to service. We will refer to the latter
as a content completion event. Moreover, we will refer to the station with patients in the needy state
as the service queue, the station with patients in the content state as the content queue and the station
with patients waiting for a bed as the holding queue.

Instead of setting a (maximum) runlength in our simulation, we choose to set a threshold K on the
number of arriving patients. Each of these K arriving patients possesses some attributes, namely an
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arrival time, an array of service times and an array of content times. Moreover, we (possibly) store the
last time stamp that a patient starts waiting for an available nurse. In each iteration, we keep track of
certain statistical counters that are of interest, such as the number of waiting patients, waiting times
and utilization levels. These values depend on the parameters of the simulation, of which an overview is
given in Table B.1.

Parameter Description

n Number of beds
s Number of nurses
λ Arrival rate
µ Service rate
δ Content rate
p Probability of staying in the Emergency Department after service completion
K Number of patients that arrive in the simulation

Table B.1: Parameters of simulation.

In Figure B.1 we find the general construction of the simulation we used for all three models. At
initialization we start with empty queues, the number of arrived patients is set to zero as well as all
statistical counters and we schedule the first arrival event. At each iteration we update the current time
to the time the next event occurs, and register the time the system is in the state between the previous
and the current event. Then the event type is determined, which is either an arrival event, a service
completion event or a content completion event. These event types result in different activities for the
three models, which we will consider in the next sections. Finally, it is determined whether K patients
arrived in the simulation and if not, we iterate to the next event.

Initialization

Register queue state

Determine event type

Perform service

completion script
Perform arrival script

Perform content

completion script

#arrivals < K?

End

arrival

service completion

content completion

no yes

Figure B.1: General simulation construction for the three models.
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B.2 Erlang-R model

There are three event types that influence the state of the system, namely an arrival event, a service
completion event or a content completion event. In case of an arrival at time t, we first need to update the
number of arrivals that entered the system, since we chose this counter to determine the runlength of the
simulation. We immediately generate the amount of work that the patient needs. That is, we generate
the number of returns N , which is geometrically distributed with parameter p, N + 1 exponentially
distributed service time(s) with mean 1/µ and N exponentially distributed content time(s) with mean
1/δ. After adding the patient to the service queue, we need to determine whether there are enough nurses
available to serve this patient immediately. If so, we register that this patient has no waiting time and
schedule a service completion event at time t plus the first generated service time of this patient. If not,
we store t as the time that this patient starts to wait for service. Finally, we schedule the next arrival
event after an exponential amount of time (with mean 1/λ)

In case of a service completion event, we remove the patient from the service queue and determine
whether the patient will return for service (from its generated service pattern). If so, the patient is added
to the content queue and the next content completion event is scheduled. Otherwise, the patient leaves
the system and her LOS is stored. In both cases, we determine whether there is another patient still
waiting for service and if so, we register that patient’s waiting time and schedule a service completion
event.

In case of a content completion event, the patient moves from the content queue to the service queue.
If there is a nurse available, we register that this patient does not need to wait and schedule a service
completion event. Otherwise, t is stored as the time that this patient started to wait for service.

The activities of the three different event types are illustrated in Figure B.2. Here sq represents the
number of patients at the service queue and cq the number of patients at the content queue.

B.3 SERW model

To simulate the SERW model, we need to take into account an additional queue for the beds. This
results in a different script in case of an arrival and a service completion, but the content completion
script given in Figure B.2 remains the same.

An overview of the arrival script and the case that a patient leaves the system is given in Figure B.3.
Again, sq represents the number of patients at the service queue, cq the number of patients at the content
queue and in this case hq represents the number of patients in the holding queue.

In case of an arrival, we need to check whether there is a bed available for this patient. If so, we
register that this patient has no holding time (i.e. does not need to wait for a bed) and then the script
is the same as for the Erlang-R model. If not, we add the patient to the holding queue and schedule the
next arrival event after an exponentially distributed amount of time with mean 1/λ.

Also, the script of the service completion event is different in case that a patient leaves the system.
That is, we replace the node ‘Store LOS’ of B.2b with the scipt depicted in Figure B.3b. In case that the
holding queue is empty, we execute the same activities as for the Erlang-R model. Otherwise, the next
patient waiting for a bed is moved to the service queue and her holding time is registered. If a nurse
is available, we register that the patient does not need to wait and schedule a next service completion
event. Otherwise, there is another patient that was already waiting for an available nurse, and therefore
the patient currently assigned to a bed needs to wait for service. We store the time this patient starts
to wait for service and the nurse that completed service with the departed patient will start service with
the next patient waiting. Hence, we register her waiting time and schedule a next service completion
event.

B.4 SERB model

For the SERB model, only the arrival script differs from the Erlang-R model. In case of an arrival, we
first check whether there is a bed available for this patient. Only if this is the case, we generate the
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patient’s service pattern, add the patient to the service queue and then execute the same activities as for
the Erlang-R model. Otherwise, we register a refused patient and schedule the next arrival. This arrival
script is illustrated in Figure B.4. Again, sq represents the number of patients at the service queue and
cq the number of patients at the content queue.

B.5 Time-varying arrivals

These simulations can be extended to account for time-varying arrivals as well. First, this can be done
by providing a data set with fixed arrival times. Then the next arrival is scheduled by finding the next
arrival time of the data set.

Alternatively, the arrival rate can be changed over time. A next arrival is then generated after
an exponentially distributed time with rate λ(t), where t is the time stamp the next arrival event is
generated.

In our simulation we assume the arrival rate to be constant throughout the period of an hour, after
which it is allowed to change value. Accordingly, the number of beds and nurses only needs to be re-
evaluated at the beginning of these time epochs. Note that in a time-varying setting there can be less
nurses and less beds available in the previous hour for staffing rules (5.8) and (5.9). In reality, a nurse
finishes her service to a patient and a patient will be redirected to the holding room once she is assigned
to an examination room. Therefore, we decreased the number of nurses and the number of beds after a
service completion and a departure respectively.

Remark 3. When we determine the bed utilization rate or the nurse utilization level, we average the
mean number of occupied beds and the mean number of busy nurses over the number of beds or nurses
that should be in the system according to the staffing policy (5.8) and (5.9). Therefore, our results might
indicate that these utilization rates exceed one (in case a bed or a nurse finishes service). We should
interpret this as an utilization rate nearly equal to one.

B.6 Our simulation settings

To determine the behavior of the models we simulated K = 5000000 patient arrivals for ten times and
averaged the outcomes. Moreover, when we consider the asymptotic behavior we executed our simulation
experiment five times for K = 10000000 and averaged the outcomes. Recall that in the QED regime the
probability of waiting for a nurse and the probability of holding for a bed stabilizes for the SERW model
in stationarity. To approximate the true limiting values in this case, we set R = 250 and called its
outcome the true limiting probability. Lastly, for the time-varying setting we simulated 100000 days for
ten times and averaged the outcomes per hour.
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Arrival

Update #arrivals

∣sq∣ + ∣cq∣ < n?

Register blocked patient
Generate service pattern

Add patient to sq

∣sq∣ ≤ s?

Register no waiting time
Schedule service completion

Store start waiting time

Schedule next arrival

Next Event

yes no

yes no

Figure B.4: Arrival script SERB model.
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Appendix C

Proofs of analytical properties

Proof of Proposition 2.2.2. The balance equations of a birth-death process are given by

λiπi = µi+1πi+1, i = 0,1, ..., I, (C.1)

and we have the normalization condition
I

∑
i=0

πi = 1. (C.2)

Then (C.1) yields the recursion

πi = π0∏ij=1
λj−1

µj
, i = 0,1, ..., I, (C.3)

and from the normalization condition we obtain

π0 =
⎡⎢⎢⎢⎣

I

∑
i=0

i

∑
j=1

λj−1

µj

⎤⎥⎥⎥⎦

−1

. (C.4)

For π0 to be finite, we find the necessary and sufficient condition ∑Ii=0∑
i
j=1

λj−1

µj
<∞, which ensures that

a stationary distribution exists.

Proof of Proposition 2.3.1. The queue length behaves like a birth-death process with I =∞. The rates
are given by λi = λ for all i ∈ N and

µi = { iµ for 0 ≤ i ≤ s − 1,
sµ for i ≥ s.

Then the proposition follows directly from Proposition 2.2.2.

Proof of Proposition 2.4.1. The queue length behaves like a birth-death process with I = s. The rates
are given by λi = λ for all 0 ≤ i ≤ s − 1 and µi = iµ for all 0 ≤ i ≤ s. Then the stationary distribution
follows directly from Proposition 2.2.2.

Proof of Lemma 2.4.2. We have that

B(s,R)−1 =
∑sj=0R

j/j!
Rs/s!

= 1 +
∑s−1
j=0 R

j/j!
Rs−1/(s − 1)!

⋅ s
R

= 1 +B(s − 1,R)−1 ⋅ s
R

= RB(s − 1,R) + s
RB(s − 1,R)

.
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We can conclude that

B(s + 1,R) = RB(s,R)
RB(s,R) + s + 1

.

Proof of Lemma 2.4.3. We will prove this by considering its distribution in terms of R. We have that

C(s,R)−1 = s −R
s

⋅ s!
Rs

⋅
⎡⎢⎢⎢⎣

s−1

∑
j=0

Rj/j! + s

s −R
Rs

s!

⎤⎥⎥⎥⎦

= (1 − ρ) ⋅ s!
Rs

⋅
⎡⎢⎢⎢⎣

s

∑
j=0

Rj/j! + ( s

s −R
− 1) R

s

s!

⎤⎥⎥⎥⎦

= (1 − ρ)B(s, ρ)−1 + s −R
s

⋅ r

s −R
= ρ + (1 − ρ)B(s, ρ)−1.

Alternative proof of Lemma 2.4.3. The Erlang delay formula in its basic form is defined for integer values
of s, but we can extend this formula for continuous values as well. Using the continuous extensions of
the Erlang-B and the Erlang-C formula, one can provide an alternative proof, see [25]. We include this
proof here for completeness.

For all real s > R the continuous extensions of the Erlang-B formula and the Erlang-C formula read

B(s,R) = (R∫
∞

0
e−Rt(1 + t)sdt)

−1

, (C.5)

C(s,R) = (R∫
∞

0
te−Rt(1 + t)s−1dt)

−1

. (C.6)

Note that

B(s,R)−1 = R∫
∞

0
e−Rt(1 + t)sdt

= R∫
∞

0
e−Rt(1 + t)s−1(1 + t)dt

= R∫
∞

0
e−Rt(1 + t)s−1dt +R∫

∞

0
te−Rt(1 + t)s−1dt

= R∫
∞

0
e−Rt(1 + t)s−1dt +C(s,R)−1.

Therefore,

C(s,R)−1 = B(s,R)−1 −R∫
∞

0
e−Rt(1 + t)s−1dt

= B(s,R)−1 −R([(1 + t)
s

s
e−Rt]

∞

0

− ∫
∞

0
−Re−Rt (1 + t)

s

s
dt)

= B(s,R)−1 + R
s
− R
s
∫

∞

0
Re−Rt(1 + t)sdt

= ρ + (1 − ρ)B(s,R)−1.
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Proof of Lemma 2.3.2. This can be proven by applying Lemmas 2.4.2 and 2.4.3. Now,

C(s + 1,R)−1 = R

s + 1
+ (1 − R

s + 1
)B(s + 1,R)−1

= R

s + 1
+ s + 1 −R

s + 1
(1 + s + 1

R
B(s,R)−1)

= 1 + s + 1 −R
R

B(s,R)−1

= 1 + s + 1 −R
R

s

s −R
(C(s, r)−1 − R

s
)

= 1 + (s + 1 −R)s
R(s −R)C(s, r)

− s + 1 −R
s −R

= (s + 1 −R)s
R(s −R)C(s, r)

− 1

s −R

= (s + 1 −R)s −RC(s, r)
R(s −R)C(s, r)

.

We can conclude that recursion (2.6) holds.

Proof of Proposition 4.1.1. The queue length behaves like a birth-death process with I = n. The rates
are given by λi = λ(n − i) as the rate from the finite source for all 0 ≤ i ≤ n. The death rates are
µi = min{i, s}µ for all 0 ≤ i ≤ n. Then the stationary distribution follows directly from Proposition
2.2.2.

Proof of Proposition 4.1.2. We note that the closed ward model is a two-node closed Jackson network.
The arrival theorem for a closed Jackson network states that the activation at any node observes time
averages excluding the patient itself. That is, the probability that a patient finds k needy patients upon
activation equals the fraction of time that there are a k needy patients in the same closed Jackson network
with n − 1 patients. Then the probability of waiting follows directly.

Suppose an activated patient finds k ≥ s patients in the system. Then the patient must wait for
(k − s + 1) stages of exponentials with rate sµ. By definition, this is an Erlang distributed random
variable. Let W denote the stationary in-queue waiting time for a new arriving patient and Q the
number of patients in need of service. Thus, the probability the patient must wait longer than threshold
t is

P (W > t∣Q = k) = e−sµt
k−s

∑
j=0

(sµt)j

j!
.

By conditioning on the number of needy patients upon activation, we obtain the result for the probability
of excessive delay.

The expected waiting time can be determined by using the probability of excessive delay. That is,

E(W ) = ∫
∞

0
P (W > t)dt =

n−1

∑
k=s

π
(n−1)
k

k−s

∑
j=0
∫

∞

0

(µst)j

j!
e−µstdt =

n−1

∑
k=s

π
(n−1)
k

k−s

∑
j=0

1

µs

= 1

µs

n−1

∑
k=s

π
(n−1)
k (k − s + 1).

The utilization level is a direct consequence of its definition.

Proof of Proposition 4.2.3. The first property is quite straightforward. By the PASTA property, we have
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that

α ∶= P (W > 0) =
∞

∑
j=0

∞

∑
i=s

Ri

s!si−s
c1
Rj2
j!
c2

=
∞

∑
i=s

Ri

s!si−s
c1

= Rs

s!(1 −R/s)
c1.

For the second property we will condition on the number of patients that are already waiting or being
seen by a nurse in the examination room. Suppose that at the moment a new patient arrives to the
Emergency Department, there are already k patients. So the arriving patient must wait for (i − s + 1)+
stages, each exponentially distributed with rate µs. This corresponds to an Erlang distribution with
(i − s + 1)+ stages, thus the probability that the arriving patient’s waiting time exceeds t equals

∫
∞

t

sµ(sµx)i−s

(i − s)!
e−µsxdx.

Then we have

P (Q1 = i) =
∞

∑
j=0

π(i+s)j =
(R)i+s

s!si
c1 = α(1 − R

s
)(R

s
)
i

= α(1 − ρR)ρiR.

Equivalently, N1∣W > 0 has a geometric distribution with parameter ρR.

Let Ek denote an Erlang-k distribution with rate µs. Then,

P (W > t∣W > 0) =
∞

∑
i=0

P (N1 = i∣W > 0)P (Ei−s+1 > t)

=
∞

∑
i=0

(1 − ρR)ρiR ∫
∞

t

sµ(sµx)i

i!
e−µsx dx

= µs(1 − ρR)∫
∞

t

∞

∑
i=0

(Rµx)i

i!
e−µsx dx

= µs(1 − ρR)∫
∞

t
e−µs(1−ρR)x dx

= e−µs(1−ρR)t.

Thus indeed, W ∣W > 0 is exponentially distributed with rate µs(1 − ρR).
The last two properties follow from the second property. We have

P (W > t) = P (W > t∣W > 0)P (W > 0) = αe−µs(1−ρR)t,

and

E(W ) = ∫
∞

0
P (W > t)dt = ∫

∞

0
αe−µs(1−ρR)t dt = α

µs(1 − ρR)
.

We will give a direct proof for the utilization level of the Erlang-R model. The probability that there
are i patients in front of the service queue is

⎧⎪⎪⎨⎪⎪⎩

Ri

i!
c1 if i ≤ s,
Ri

s!si−s c1 if i ≥ s,

where

c1 = [ Rs

s!(1 −R/s)
+
s−1

∑
i=0

Ri

i!
]
−1

.
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Therefore the occupation rate is equal to

ρR = c1 [
s

∑
i=0

i

s

Ri

i!
+

∞

∑
i=s+1

Ri

s!si−s
] (C.7)

= c1
R

s
[
s

∑
i=1

Ri−1

(i − 1)!
+

∞

∑
i=s+1

Ri−1

s!si−1−s
] (C.8)

= c1
R

s
[
s−1

∑
i=0

Ri

i!
+

∞

∑
i=s

Ri

s!si−s
] (C.9)

= c1
R

s
c−1
1 = R

s
. (C.10)

Proof of Proposition 4.3.1. We consider the closed Jackson network given in Figure 4.7. The distribution
follows by the theory of closed Jackson networks, see e.g. [15].

Consider a general closed Jackson network, with M nodes, n customers and N(t) = (N1(t), ...,NM(t))
representing the number of customers present at each queue. A customer at station i requires an
exponentially distributed service duration with parameter µi and ri(m) denotes the rate of service
when there are m customers at queue i. Let P ∈ RM×M , with pij representing the probability that a
customer after service completion at queue i proceed to queue j. Then the throughputs γ = (γ1, ..., γM)
can be found by solving γ = γP (up to a scaling factor). Moreover, the stationary distribution is given
by

π(n1, ..., nM) = G−1
M

∏
i=1

gi(ni),

with

gi(ni) =
(κγi/µi)ni

∏nim=1 ri(m)

and normalization constant

G = ∑
n1+...+nM=n

M

∏
i=1

gi(ni).

The value κ > 0 is a scaling factor that can be chosen arbitrarily. We return to our particular closed
Jackson network.

The probability transition matrix for the SERB model is given by

P =
⎛
⎜
⎝

0 p 1 − p
1 0 0
1 0 0

⎞
⎟
⎠
.

The throughput vector γ = ( λ
1−p

, pλ
1−p

, λ) satisfies the equation γ = γP . Note that the rates of the stations

are given by r1(m) = min{m,s}, r2(m) =m and r3(m) = 1. Let κ = 1, so that

g1(i) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
i!
( λ
(1−p)µ

)
i

for 0 ≤ i ≤ s,
1

s!si−s ( λ
(1−p)µ

)
i

for s + 1 ≤ i ≤ n,

g2(j) = 1
j!

( pλ
(1−p)δ

)
j

for 0 ≤ j ≤ n − i,

g3(n − i − j) = 1.

This yields

πij ∶= P (Q1(∞) = i,Q2(∞) = j) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

π0
Ri

i!

Rj2
j!

if i ≤ s,0 ≤ i + j ≤ n,

π0
Ri

s!si−s
Rj2
j!

if i ≥ s, ,0 ≤ i + j ≤ n
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with

π
(

0 − 1) =
s

∑
l=0

l

∑
i=0

Ri

i!

Rl−i2

(l − i)!
+

n

∑
l=s+1

(
s

∑
i=0

Ri

i!

Rl−i2

(l − i)!
+

l

∑
i=s+1

Ri

s!si−s
Rl−i2

(l − i)!
)

=
n

∑
l=0

l

∑
i=0

Ri

i!

Rl−i2

(l − i)!
+

n

∑
l=s+1

l

∑
i=s+1

( 1

s!
ss−i − 1

i!
)Ri Rl−i2

(l − i)!

=
n

∑
l=0

(R +R2)l

l!
+

n

∑
l=s+1

l

∑
i=s+1

( 1

s!
ss−i − 1

i!
) 1

(l − i)!
RiRl−i2 .

Proof of 4.3.3. The blocking probability follows directly from the PASTA property and Corollary 4.3.2.
For the performance measures in terms of the waiting time, we exploit the arrival theorem for a closed
Jackson network. In particular, the probability that a patient finds k patients upon arrival at the
nursing station equals the average time that there are k patients in a closed system with n − 1 patients.
Then (4.11) follows directly.

Next we consider the probability that patients need to wait more than t time units. Suppose a patient
finds i patients in the service queue upon arrival. The waiting time then follows an Erlang distribution
with (i − s + 1)+ stages, where (x)+ = max{0, x}, each with rate sµ. Thus, if the patient needs to wait,
then the probability that she needs to wait longer than t time units is e−µst∑i−sj=0(sµt)j/j!. Conditioning
on the number of patients in the service queue upon arrival gives (4.12).

From this, we can determine the expected waiting time.

E(W ) = ∫
∞

0
P (W > t)dt =

n−1

∑
l=s

l

∑
i=s

π
(n−1)
i l−i

i−s

∑
k=0
∫

∞

0

µst

k!
e−µstdt

=
n−1

∑
l=s

l

∑
i=s

π
(n−1)
i l−i

i − s + 1

µs
,

which equals (4.13).

The utilization level follows from the definition.
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Proofs of QED properties

Proof of Proposition 3.2.1. We will first prove direction (⇐). So we assume that limn→∞(1−ρn)
√
n = β

for some β > 0. The Erlang loss formula is given by 2.5. Then,

P (Qn ≥ n) =
(nρn)n

n!(1 − ρn)
⎛
⎝

n−1

∑
j=0

(ρnn)j

j!
+ (ρnn)n

(1 − ρn)n!

⎞
⎠

−1

=
⎛
⎝

n−1

∑
j=0

(ρnn)j

j!
/ ( (nρn)n

n!(1 − ρn)
) + 1

⎞
⎠

−1

=
⎛
⎝

1 +
n−1

∑
j=0

(ρnn)j

j!
e−nρn/ ( (nρn)n

n!(1 − ρn)
e−nρn)

⎞
⎠

−1

= (1 + P (Xn ≤ n − 1)
(1 − ρn)P (Xn = n)

)
−1

,

where Xn is a Poisson distributed random variable with parameter nρn. By the properties of the Poisson
distribution, Xn is the sum of nρn independent Poisson random variables of rate one. From the Central
Limit Theorem follows that

Xn − nρn√
nρn

converges in distribution to the standard normal distribution. Let

zn =
(n − 1) − nρn√

nρn
= n(1 − ρn) − 1

√
nρn

.

For limn→∞(1 − ρn)
√
n = β > 0 to hold, we must have that ρn → 1. Then

lim
n→∞

zn =
√
n(1 − ρn)√

ρn
− 0 = β.

Thus,

P (Xn ≤ n − 1) = P (Xn − nρn√
nρn

≤ zn)→ Φ(β). (D.1)

To approximate P (Xn = n) we will apply Stirling’s formula. Stirling’s formula states that

n! ∼
√

2πn(n
e
)
n

(1 + 1

12n
+ 1

288n2
+ ...)
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So we can approximate n! by
√

2πn (n
e
)n. Then,

(1 − ρn)P (Xn = n) =
(nρn)n

n!(1 − ρn)
e−nρn

= ρnn
(1 − ρn)

√
2πn

enn−ne−nρn

= ρnn
(1 − ρn)

√
2πn

en(1−ρn)

= 1

(1 − ρn)
√

2πn
en(1−ρn+log ρn).

Applying Taylor series to the logarithm function we derive

log(x) = −
∞

∑
j=0

(1 − x)j

j
= −(1 − x) − (1 − x)2

2
+ o(1 − x)2.

Consequently,

(1 − ρn) lim
n→∞

P (Xn = n) = lim
n→∞

1

(1 − ρn)
√

2πn
en(1−ρn+log ρn)

= lim
n→∞

1

(1 − ρn)
√

2πn
en(1−ρn)

2
/2

= 1

β
√

2π
eβ

2
/2

= φ(β)
β

.

So both P (Xn ≤ n) and (1 − ρn)P (Xn = n) converge to a finite limit. Hence we conclude that

lim
n→∞

P (Qn ≥ n) = lim
n→∞

(1 + P (Xn ≤ n − 1)
(1 − ρn)P (Xn = n)

)
−1

= (1 + Φ(β)
φ(β)/β

)
−1

= (1 + βΦ(β)
φ(β)

)
−1

if limn→∞(1 − ρn)
√
n = β.

For the converse direction (⇒), assume limn→∞ P (Qn ≥ n) ∈ (0,1) and that limn→∞(1 − ρn)
√
n ≠ β

for any β > 0. Then we have three possibilities:

(a) (1 − ρn)
√
n→ 0 as n→∞,

(b) (1 − ρn)
√
n→∞ as n→∞,

(c) (1 − ρn)
√
n does not converge to any limit as n→∞.

We will show that all three cases lead to a contradiction.

For case (a) we have that zn → 0, where zn is as before. Then P (Xn ≤ n − 1) → Φ(0) = 1/2 and
(1 − ρn)P (Xn = n) = φ(β)/β → ∞ as n → ∞. So limn→∞ P (Qn ≥ n) will converge to one, which
contradicts our assumption.

For case (b) we have that zn →∞, hence P (Xn ≤ n− 1)→ Φ(∞) = 1. Moreover, (1− ρn)P (Xn = n) =
φ(β)/β → 0 which leads to P (Qn ≥ n)→ 0, contradicting our assumption.
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Lastly, assume (1 − ρn)
√
n does not converge to any limit. Then the sequence will have two sub-

sequences converging to two different limits (possibly infinite), for which the converse reasoning still
holds. Note that (3.1) is a decreasing function of β, and hence we find that ε(β) strictly decreases in
β. Then the two subsequences of (1 − ρn)

√
n gives rise to two subsequences of P (Qn ≥ n) converging to

different limits, which contradicts our assumption.

Proof of Theorem 3.3.1. The proof is analogous to the proof of Theorem 3.2.1, we will only show (⇐)
here. We have

P (Qn ≥ n) =
√
n
(ρnn)n

n!

⎡⎢⎢⎢⎣

n

∑
j=0

(ρnn)j

j!

⎤⎥⎥⎥⎦

−1

=
√
n
⎡⎢⎢⎢⎣
1 +

n−1

∑
j=0

(ρnn)j

j!
e−nρn/ ((ρnn)n

n!
e−nρn)

⎤⎥⎥⎥⎦

−1

= [ 1√
n
+ P (Xn ≤ n − 1)√

nP (Xn = n)
]
−1

,

where Xn is again a Poisson distributed random variable with parameter nρn. Similar as in the proof of
Theorem 3.2.1, we have that

P (Xn ≤ n − 1)→ Φ(β).

To approximate
√
nP (Xn = n) we apply Stirling’s formula again and obtain

√
nP (Xn = n) =

√
n
(nρn)n

n!
e−nρn

∼ ρ
n
n

√
n√

2πn
enn−ne−nρn

= 1√
2π
en(1−ρn+log ρn)

→ 1√
2π
eβ

2
/2

= φ(β).

So both P (Xn ≤ n) and
√
nP (Xn = n) converge to a finite limit. Hence,

lim
n→∞

P (Qn ≥ n) = lim
n→∞

[ 1√
n
+ P (Xn ≤ n − 1)√

nP (Xn = n)
]
−1

= [0 + Φ(β)
φ(β)

]
−1

= φ(β)
Φ(β)

.

if limn→∞(1 − ρn)
√
n = β.

Proof of Proposition 4.1.1. Recall the distribution of a M/M/s//n queue

πi = { π0(nk)R
k for 0 ≤ k < s,

π0(nk)
k!
s!
ss−kRk for s ≤ k ≤ n.

with

π0 = [
s

∑
i=0

(n
k
)Rk +

n

∑
i=s+1

(n
k
)k!

s!
ss−kRk]

−1

.

In this proof, for convenience we leave out the subscript in sn although the dependency sn = rn+β
√
n

still holds.
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The approximate probability of delay can be written as

P (Qn ≥ s) = (1 + An
Bn

)
−1

,

with

An = ∑s−1
k=0 (n

k
)Rk, Bn = ∑nk=s (

n
k
)k!
s!
ss−kRk.

Note that R = λ/µ = r/(1 − r), thus

An =
s−1

∑
k=0

(n
k
)Rk

=
s−1

∑
k=0

(n
k
)rk(1 − r)−k

= (1 +R)n
s−1

∑
k=0

(n
k
)rk(1 − r)n−k

= (1 +R)nP (Xn ≤ s − 1),

where Xn is a binomial random variable with parameters n and r. Moreover,

Bn =
n

∑
k=s

(n
k
)k!

s!
ss−kRk

= n!

s!
ss

n

∑
k=s

1

(n − k)!
s−kRk−n

= n!

s!

Rn

sn−s

n

∑
k=s

1

(n − k)!
sn−kRk−n

= n!

s!

Rn

sn−s
es/R

n

∑
k=s

1

(n − k)!
(R
s
)
n−k

e−s/R

= n!

s!

Rn

sn−s
es/RP (Yn ≤ n − s),

where Y is a Poisson distributed random variable with parameter s/R. Thus the approximate probability
of delay can be written as

P (Qn ≥ s) = (1 +Cn
P (Xn ≤ s − 1)
P (Yn ≤ n − s)

)
−1

,

where

Cn =
s!

n!
( s
R

)
n (1 +R)n

ss
e−s/R.

Recall βn = (s/n − r)
√
n. Then by applying the CLT to Xn we obtain

P (Xn ≤ s − 1) = P
⎛
⎝

X − rn√
nr(1 − r)

≤ s − rn − 1√
nr(1 − r)

⎞
⎠

→ Φ
⎛
⎝

β√
r(1 − r)

⎞
⎠
,

since
s − rn − 1√
nr(1 − r)

= b
√
n − 1√

nr(1 − r)
→ β√

r(1 − r)
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as n→∞. Similarly,

P (Yn ≤ n − s) = P
⎛
⎝
Yn − s/R√

s/R
≤ n − s − s/R√

s/R
⎞
⎠

→ Φ( −β
r
√

1 − r
) ,

since

n − s − s/R√
s/R

= rn − rs − s(1 − r)√
s(1 − r)r

= rn − s√
s(1 − r)r

= −β√
s/n(1 − r)r

→ −β√
(1 − r)r2

= −β
r
√

1 − r

as n→∞.

Using Stirling’s approximation n! ∼ (2πn)1/2nne−n for Cn, we find

Cn ∼
(2πs)1/2sse−s

(2πn)1/2nne−n
( s
R

)
n (1 +R)n

ss
e−s/R

=
√
r ( s

rn
)
n+1/2

en−s(1−r)/r−s

=
√
r (1 + β

r
√
n
)
n+1/2

en−s/r.

Note that by Taylor expansion

n log(1 + β

r
√
n
) = n( β

r
√
n
− 1

2

β2

r2n
+O(n−3/2)) ,

so that

(1 + β

r
√
n
)
n

= en log(1+ β

r
√
n
) ∼ e

β
√
n
r −

β2

2r2 .

So this yields

Cn ∼
√
r (1 + β

r
√
n
)

1/2

e−
β2

2r2 →
√
re−

β2

2r2 .

We can conclude that

P (Qn ≥ s)→ f(β) =
⎛
⎜
⎝

1 + e−β
2
/(2r2

)
√
r

Φ (β/
√
r(1 − r))

Φ (−β/(r
√

1 − r))

⎞
⎟
⎠

−1

,

as n→∞.

For the other direction, suppose that αn ∶= P (Qn ≥ s) has a limit α ∈ (0,1) and that β ≠ f−1(α)
is a (possibly infinite) limit point of {(sn − r)

√
n}. We note that f ∶ R → (0,1) is a strictly decreasing

function.

Assume that β > f−1(α). Then we can construct a sequence {s′n} such that {(s′n − r)
√
n} →

min{β+f
−1
(α)

2
, f−1(α) + 1} and (by taking a subsequence) such that s′n ≤ sn. Then, by definition

f−1(α) < β′ <∞ and since f is a strictly decreasing function we find f(β′) < α. Let Q′
n denote the number

of customers in the n’th system with s′n servers. Since s′n ≤ sn, we have that P (Qn ≥ sn) ≤ P (Q′
n ≥ s′n),

but taking the limit on both sides yields α ≤ f(β′), a contradiction.

Assume that β < f−1(α). Then we can construct a sequence {s′n} such that {(s′n − r)
√
n} →

max{β+f
−1
(α)

2
, f−1(α) − 1} and s′n ≥ sn. Then −∞ < β′ < f−1(α) and thus f(β′) > α. Let Q′

n

Dimensioning large-scale service systems with returning patients 101



APPENDIX D. PROOFS OF QED PROPERTIES

denote the number of customers in the n’th system with s′n servers. Since s′n ≥ sn, we have that
P (Qn ≥ sn) ≥ P (Q′

n ≥ s′n), but taking the limit on both yields the contradiction α ≥ f(β′).
Hence the convergence αn → α ∈ (0,1) implies that (sn − r)

√
n converges to a unique finite limit as

well.

Proof of Proposition 4.2.4. The asymptotic results for the probability of waiting and utilization level are
direct consequences of the QED results we have for the Erlang-C model. For the expected waiting time,
consider

√
sE(W ) =

√
sE(W ∣W > 0)P (W > 0)

=
√
sP (W > 0)
µs(1 − ρR)

= P (W > 0)
µβ

√
R/s

which tends to (1 + βΦ(β)
φ(β)

)
−1

/(βµ) as R →∞.
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