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The restricted Erlang-R Queue: Finite-size effects in service

systems with returning customers
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Galit B. Yom-Tov †

December 22, 2016

Abstract

Motivated by health care systems with repeated services that have both personnel (nurse
and physician) and space (beds) constraints, we study a restricted version of the Erlang-R
model. The space restriction policies we consider are blocking or holding in a pre-entrant
queue. We develop many-server approximations for the system performance measures when
either policy applies, and explore the connection between them. We show that capacity
allocation of both resources should be determined simultaneously, and derive the methodology
to determine it explicitly. We show that the system dynamics is captured by the fraction of
needy time in the network, and that returning customers should be accounted for both in
steady-state and time-varying conditions. We demonstrate the application of our policies in
two case studies of resource allocation in hospitals.

Keywords: Many-server approximations, QED regime, fixed-point analysis, returns, service sys-
tems, queueing models, health care operations, nurse staffing, beds allocation

1 Introduction

Because service systems are stochastic in nature, it is common practice to use queueing theory for
performance analyses and workforce planning. Traditionally, systems are modeled after a single
station queue, such as the M/M/s (Erlang-C), M/M/s/s (Erlang-B) or M/M/s + M (Erlang-
A) models, and fluid and diffusion approximations are used to provide insights into the process
dynamics. However, single station models often fail to capture the more intricate dynamics of
service networks. In a health care context, think of flows of patients in a hospital from one
medical ward to another [2], within the Emergency Department (ED) between different stages of
treatment [20], or between medical facilities [40]. Queueing networks can capture the dependency
between several service stages and several resources. More specifically, we are interested in the
ubiquitous feature, particularly present in health care environments, that customers during their
stay in the system might require a specific resource multiple times, e.g. physicians and nurses
who treat patients several times during their stay in the medical wards [25] or the ED [38], while
multiple resources are limited (e.g. physicians, nurses and beds).

An often ignored yet essential feature of service networks concerns the restriction on the number
of customers that can reside in the system simultaneously. Call centers, for instance, only have
a finite number of trunk lines [28], whereas in health care facilities, the number of beds poses a
constraint on the number of patients that can be admitted at the same time to a medical unit.
In such situations, two or more resources (personnel, trunk lines, beds) are restricted. In this

∗Department of Mathematics and Computer Science, Eindhoven University of Technology, P.O. Box 513, 5600
MB Eindhoven, The Netherlands ({j.s.h.v.leeuwaarden,b.w.j.mathijsen,f.sloothaak}@tue.nl)
†Faculty of Industrial Engineering and Management, Technion - Israel Institute of Technology, 32000 Haifa,

Israel, (gality@ie.technion.ac.il)

1

ar
X

iv
:1

61
2.

07
08

8v
1 

 [
m

at
h.

PR
] 

 2
1 

D
ec

 2
01

6



s

needy

exp(µ)

∞

content

exp(δ)
Arrivals

Poisson(λ)

p

1− p

n
holding

(a) Erlang-R model with holding.

blocked

s

needy

exp(µ)

∞

content

exp(δ)

Arrivals
Poisson(λ)

p

1− p

n

(b) Erlang-R model with blocking.

Figure 1: Restricted Erlang-R models with maximally n customers in system.

paper, we investigate the influence of such multiple restrictions on the network dynamics and the
required staffing policies.

The restricted Erlang-R model. The canonical model for service networks with returns is
the Erlang-R model [38] in which customers, during their stay in the system receive a random
number of services from the same pool of servers. Yom-Tov & Mandelbaum [38] showed that
such a simple network model can be used to determine staffing in an Israeli ED both in stable
and time-varying conditions. Nevertheless, empirical studies report that some countries, such
as the US, use a different operational mode that apply strict restrictions on entering the ED
[33]. In typical US EDs, a patient will not enter the ED until both a bed and a physician are
available to treat her. Those restrictions can be either physical (beds) restrictions or managerial
ones—for instance by imposing a patient-to-physician ratio. In this work, we extend the Erlang-R
model by enforcing a constraint on the maximum number of available places inside the service
facility. Our model hence incorporates two kinds of resource constraints: servers that provide
the actual service and the maximum available places inside the service system. Both affect the
system in a highly interdependent way. The model, presented in Figure 1, assumes s servers and
a maximum capacity of n concurrent places. We assume that customers arrive according to a
Poisson process with rate λ(t). In case a new arrival finds n or more customers already present,
we consider two options—either she waits outside the service facility in a holding queue until a
vacant space becomes available (Figure 1a) or she is blocked (Figure 1b), such as is the case when
patients are sent to an alternative facility. Once customers are admitted, they require assistance
from one of the s servers for an exponentially distributed duration with mean 1/µ. Then, with
probability 1− p, customers leave the system or, with probability p, return to service again after
an exponentially distributed time with mean 1/δ. Following Jennings & de Véricourt [25] and
Yom-Tov & Mandelbaum [38], we call patients needy when they require attention from one of the
servers and content when they are in the delayed return phase. In addition, we call customers
holding when they are waiting outside the facility for an available space. We assume that the
arrival process, the needy times and content times are mutually independent. In the holding
queue and the needy queue, we apply the First-Come-First-Served (FCFS) discipline.

As mentioned, we consider two versions of the finite-capacity constraint. The first version
is called Erlang-R with holding, in which customers wait for an available space in the system.
The second version is called Erlang-R with blocking, in which customers meeting a full system
are blocked. Naturally, intermediate scenarios can be constructed in which a proportion of the
total arrival volume of customers indeed leaves upon finding a full system, while the rest joins the
holding room. While this paper focuses on the two extreme cases, straightforward adaptions can
fit these intermediate scenarios.

Examples of restricted Erlang-R. As noted before, an ED operated in the US can be modeled
using a restricted Erlang-R model. Another health care example are Medical Units (MU) in a
hospital. Such units specialize in specific types of illnesses (cadriatric, oncology, etc.) and have
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limited resources such as nurses and beds. If the unit is full, new patients are either allocated to an
alternative medical unit, i.e. blocked, or wait for an available bed. Both policies are problematic
in terms of quality-of-care, because the personnel in the alternative unit (or the ED) may be less
knowledgable and waiting in the ED was shown to increase mortality. Moreover, ED waiting
may reduce available capacity for treating ED patients [8, 4], hence endangering both the delayed
patient as well as others. Both the number of personnel (nurses and physicians) and the number
of beds impact service dynamics and quality-of-care. Research so far looked at the capacity
allocation of those resources separately. Green & Yankovic [14] and Jennings & de Véricourt [24]
looked at nurse staffing in medical units, while Bekker et al. [10] looked into bed allocation. The
unified model we suggest enables us to capture the dependency between those two decisions, and
its impact on other medical units in the hospital. At the same time, we capture the two most
commonly used modes of operation—blocking and holding of new patients.

1.1 Contributions

Our main goal is to provide staffing policies for the restricted Erlang-R models that ensures
high resource utilization, while at the same time maintains a good quality-of-care. This goal
relates to the philosophy of the Quality-and-Efficiency-Driven (QED) regime known in many-
server asymptotic theory. We discuss the main ideas behind this regime further in §2. In this
paper, we obtain asymptotic results for the Erlang-R model with blocking in the QED regime
(§4.2). Following [24], we employ a two-fold QED staffing policy: s = R1 + β

√
R1 for the number

of servers and n = R1/r+ γ
√
R1/r for the number of customers in the system, where β and γ are

constants, R1 is the offered load of the servers and r is the fraction of time a customer spends in the
needy state. We establish limiting expressions for performance measures, such as the probability
of delay and blocking, in the form of explicit functions that depend solely on β and γ. In deriving
these limit results, we use the available product-form solution for the stationary distribution.

Likewise, we pursue QED performance for the Erlang-R model with holding. However, a
direct analytic approach is obstructed by the absence of product-form solutions. We provide
two solutions for establishing QED behavior. First, we provide stochastic performance bounds
that stay meaningful in the QED regime (§3.3), which demonstrate the non-degenerate behavior
of the two-fold scaling in the large-system limit. Second, we develop a heuristic method that
quantifies the difference between the scalable holding model and the blocking model (§4.3). This
is based on the following unique approach: initially blocked patients in the blocking model are
seen as if they reattempt to get access after a some delay. The behavior of this retrial model
then resembles the Erlang-R model with blocking without retrials, yet with an increased arrival
rate. The increase in arrival rate turns out to be the solution of a fixed-point equation. Using our
results on the asymptotic behavior of the model with blocking in the QED regime, we then obtain
approximative QED performance measures for the model with holding. Finally, we use these QED
results to develop algorithms for dimensioning and time-varying staffing (§5.1).

Using the approximations developed, numerical analysis and simulation we provide the follow-
ing managerial insights:

• We show that all resource allocation of personnel and beds should be synchronized in order to
avoid waste, and that the QED scaling provides an efficient, flexible, and easy to implement
methodology to do so.

• We conclude that reentrant customers in a restricted network are more significant than in an
open network (Erlang-R). In contrast to the open model, in which returning customers need
to be accounted for only in time-varying systems, the restricted Erlang-R model requires
explicit consideration of returning customers under stationary conditions as well.

• We show that the influence of the network structure on the system dynamics crucially depend
on the fraction of time a patient spends being needy during her stay in the system. We then
explore the influence of r on operational decisions.
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• Combining the theoretical results, we explore the implication of managerial decisions in
designing an MU (§5) and an ED (§6.4). In §5, we show that enabling customers to hold in
ED before entering an MU, requires more resources both in the MU and the ED. In Section
6.4, we compare the pros and cons of imposing strict constraints on entering an ED. We
find that size restrictions have the ability to improve the quality-of-service of the processes
within the facility, at the expense of a slight increase in pre-entrant wait and server efficiency
levels.

• Finally, we show that restricting the number of admitted customers protects those customers
with complicated demand consisting of relatively many retrials/interruptions (§6.3).

When dealing with time-varying patient demands, one requires some modifications in the QED
results in order to obtain stable performance at every moment in time. We transform the two-
fold staffing policy into a time-varying one based on the Modified Offered Load (MOL) method
(§6.4). This method approximates the offered load at the needy station at each point in time via
a corresponding system with ample resources. By noting that the latter system coincides with
the Erlang-R model with ample servers, we adopt the offered load approximations given in [38].
Numerical experiments justify this method and we use this approach in our case study §6.4.

2 Literature review

Due to increasing demand and tightening budgets in health care, there is a growing need for
efficient workforce management [16]. Personnel (nurse and physician) expenditure is one of the
biggest factors in hospital costs [27], and inadequate nursing levels have been mentioned as a
significant factor in medical errors and ED overcrowding. In order to establish appropriate nursing
levels, a staffing policy requires assessment of a wide range of variables, such as differing nurse
expertise and patient acuity during the day. Current methods, such as the minimum nurse-to-
patient ratios, are often too inflexible to capture those varying conditions. The American Hospital
Association (AHA) and others call for dynamic staffing policies that can deal with the complex
and evolving nature of health care [1]. Workforce management in health care systems has been
studied extensively; see [11, 18, 19] for overviews. In recent years it has become apparent that
queueing models can be helpful in developing staffing and routing recommendations, not just for
large-scale service systems, but also for the small and complicated health care systems.

The first to try such an approach through queueing models were Green & Savin [15, 16] who
used the single station stationary Erlang-C model to set staffing levels in EDs and panel sizes for
clinics. Using a similar approach, [3] used Erlang-B model to determine bed allocation for medical
wards. The first to observe the significant impact of interrupted services in a health care setting
were Jennings & de Véricourt [24, 25]. Motivated by the need to set nurse-to-patient ratios for
internal wards, they considered a closed queueing system with s nurses and n beds, whuch we
will refer to as the closed ward model. This is essentially the Erlang-C model with the additional
restriction that a finite population of the n patients requires care. In their model, all beds are
always occupied, and patients alternate between two phases: the needy phase where patients
require service of a nurse and the content phase where they do not; see Figure 2a. The system
dynamics of restricted Erlang-R model are equivalent to those of the closed ward model of [24] if
the holding queue would never be empty.

Campello et al. [7] analyzed a similar operational decision, referred to as ED case management,
which determines the maximal number of patients a physician should handle in parallel. They
also used queueing networks and analyzed the stationary distribution. Note that in practice such
decision is not only affected by operational measurements such as waiting times, but also by
psychological constraints that limit physician capability to manage multiple tasks (patients) in
parallel. Diwas [12] provided empirical evidence that physicians should not treat more than 6-7
patients at the same time. Therefore, many hospitals in the US restrict entrance to EDs even if
beds are available if physicians are overloaded. We too consider such constraints, and analyze their
impact on performance. We take a different approach than [7]; instead of analyzing numerically
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Figure 2: Two basic models with interrupted services.

steady-state distributions, we develop many-server approximations that can produce insight into
the system dynamics, and can be incorporated into time-varying staffing procedures (see §6.4).

The model in [24, 25] was developed for modeling internal dynamics within an internal ward.
However, in the ED, beds are not constantly occupied and the utilization level depends on the
flow of patients that arrive from outside the system. Yom-Tov & Mandelbaum [38] highlight the
interrupted services while accounting for the transient nature of patient’s arrival process, and in-
troduced the Erlang-R model as a model for an ED. The Erlang-R model is an open two-station
queueing network that has the same layout as the restricted Erlang-R model, except that all
patients find a bed available upon arrival, see Figure 2b. In both models patients experience
the interrupted services, but the Erlang-R model has no further restrictions on the bed capacity,
hence neglecting the finite-size effects. Yom-Tov & Mandelbaum [38] showed, using a simulator
tailored to an Israeli ED, that the complicated small ED dynamics can be captured using the
relatively simple Erlang-R model, and hence, its recommendations can be implemented in ED
workforce management. Although the feature of interrupted services is present in many systems,
it is particularly important for modeling EDs, because the duration of the interruption is typically
much longer than the time patients require care from a nurse. This explains why the Erlang-R
model is considered to be the canonical model for EDs. The restricted Erlang-R model with hold-
ing/blocking thus extends the Erlang-R model with finite-size constraints which, like interrupted
services, are expected to have a decisive impact on performance.

Quality-and-Efficiency-Driven regime. The Quality-and-Efficiency driven (QED) regime for
many-server systems, also known as the Halfin-Whitt regime, adheres to a square-root staffing rule,
which is best explained for the Erlang-C model. This system can be characterized completely by
the staffing level s and the offered load R = λ/µ, which is the average workload pressure per time
unit on the system. Moreover, let ρ = R/s denote the server utilization level. Since exact analysis
provides little qualitative insight in performance with respect to the system parameters, we resort
to asymptotic analysis. This in turn provides approximations for the true system behavior. In
the QED regime [6, 17], the utilization level is driven to unity in accordance to (1 − ρ)

√
s → β

as s → ∞, for some fixed parameter β > 0. This gives rise to the square-root dimensioning
rule s = R + β

√
R, which prescribes that the number of nurses s exceeds the minimally required

offered load R, but only by a relatively small amount β
√
R. As s grows large, the probability of

delay tends to a non-degenerate function that only depends on the parameter β. This function is
strictly decreasing in β > 0 with range (0, 1). Consequently, any targeted delay probability can
be achieved by adjusting β. Moreover, the mean delay is of order 1/

√
s and hence asymptotically

negligible. In this paper, we take the same approach, but determine capacity for nurses and beds
simultaneously in such a way that both the probability to wait for a nurse and the probability to
wait for a bed are non-degenerate. Moreover, the utilization of both nurses and beds goes to unity
as the size of the system increases. While the QED regime gives precise limits when the system
size (s and n in our case) goes to infinity, it is by now well known that the asymptotic behavior
kicks in quickly, so that QED limits serve as sharp approximations, already for small systems. See
[23, 39, 34, 35, 13, 32] for various works that provide theoretical support for this fast relaxation.
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In recent years, a new approach for developing approximations of performance measures of queue-
ing systems with finite-size constraints in the QED regime was suggested by van Leeuwaarden et
al. [36, 37]. This approach characterizes the asymptotic dynamics of these analytically intractable
systems with finite-size restrictions through more tractable ones. We adopt this approach for
developing the approximations for the holding model in §4.3.

3 Models and performance measures

3.1 Three-dimensional Markov process

Since in the restricted Erlang-R model described the arrival process is taken Poisson, and all service
and content times are assumed independent and exponential, the system can be characterized in
terms of a Markov process. Let Q(t) = (H(t), Q1(t), Q2(t)) represent the number of patients in
the holding, needy and content state at time t, respectively. In both variants, n is the maximum
number of patients admitted to system, we have Q1(t) + Q2(t) ≤ n for all t ≥ 0. Due to the
absence of holding patients in the Erlang-R model with blocking, H(t) = 0 is enforced in this case,
whereas H(t) has unbounded support in the model with holding. This distinction requires us to
explore the stationary distribution of the two variants separately. Before doing so, we introduce
some additional notation. We define

R1 :=
λ

(1− p)µ
R2 :=

pλ

(1− p)δ
, (1)

where R1 and R2 can be interpreted as the offered workload brought towards the needy queue,
and the content (infinite-server) queue, respectively. Furthermore, we define

r :=
δ

δ + pµ
, (2)

which is the fraction of time a patient spends in the needy state (in case she experienced no wait
during her sojourn).

3.1.1 Erlang-R model with blocking.

In case of the blocking model, Q(t) reduces to a finite-state Markov process Q(t) = (Q1(t), Q2(t)),
where Q1(t) + Q2(t) ≤ n for all t ≥ 0. In fact, this is equivalent to the closed Jackson network
depicted in Figure 3 with finite population n. Station 1 in Figure 3 is an M/M/s queue with
service rate µ, modeling the number of needy patients, Q1(t). Station 2 models the number of
content patients, Q2(t), and can therefore be represented as an infinite-server queue with service
rate δ. A patient can enter the unit only if Q1(t) +Q2(t) < n. Station 0—a single-server queue—
moderates this as it only produces output at rate λ in case its queue length is positive, i.e. if
n−Q1(t)−Q2(t) > 0.
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Observe that because patients finding a full network are blocked, the number of patients in the
system cannot grow beyond n. Hence, the system is stable for all parameter settings, and hence a
steady-state distribution exists. Moreover, the simplification of the model with blocking allows us
to express the steady-state distribution of the system in explicit product-form. Let πb(j, k) denote
the steady-state probabilities of having j needy and k content patients in the system. Then,

πb(j, k) =

{
π0

1
κ(j)

1
k! ·R

j
1 ·Rk2 , if j + k ≤ n,

0, else,
(3)

where

κ(j) :=

{
j!, if j ≤ s,
s! sj−s, else,

and π−1
0 =

∑
j+k≤n

1
κ(j)

1
k! ·R

j
1 ·Rk2 .

3.1.2 Erlang-R with holding.

The Erlang-R model with holding does not lead to a Jackson network with an elegant product-
form solution for the steady-state distribution, because the holding queue cannot be modeled as a
station that is independent from the other queues in the system. However, we are able to describe
the system as a two-dimensional Markov process without loss of information. To see this, define
N := {N(t), t ≥ 0} with N(t) := H(t) +Q1(t) +Q2(t), the total number of patients in the system
(including the holding queue). Using the restriction Q1(t) +Q2(t) ≤ n together with the fact that
no bed is left vacant if a patient is waiting in the holding queue, this yields

H(t) = (N(t)− n)
+
, t ≥ 0,

where (·)+ := max{0, ·}. For the same reason, Q2(t) = N(t) − Q1(t) if H(t) = 0, and Q2(t) =
n−Q1(t) otherwise. In other words,

Q2(t) = min{N(t), n} −Q1(t), t ≥ 0.

Therefore, we can express the state of all three queues in the Erlang-R model with holding using
a two-dimensional Markov process X := {X(t), t ≥ 0}, where

X(t) := (N(t), Q1(t)) .

The process X lives on the semi-infinite strip

X(t) ∈ { (i, j) | j ≤ min{i, n}, i ∈ N0, j ∈ {0, 1, . . . , n} } ,

and belongs to the class of Quasi-Birth-Death (QBD) processes. The reader is referred to Ap-
pendix A in the e-companion for a detailed description of this process, in terms of its transition
diagram and generator matrix.

Contrary to the model with blocking, the system with holding can become unstable in case
capacity is insufficient to satisfy patient demand.

Proposition 1. The Erlang-R model with holding is stable if and only if

λ

(1− p)µs
<

∑s
i=0

i
s

(
n
i

) (
δ
pµ

)i
+
∑n
i=s+1

(
n
i

)
i!
s!s

s−i
(
δ
pµ

)i
∑s
i=0

(
n
i

) (
δ
pµ

)i
+
∑n
i=s+1

(
n
i

)
i!
s!s

s−i
(
δ
pµ

)i =: ρmax(s, n). (4)

The proof is given in Appendix A.2 and follows from the general theory for QBD processes.
Observe that ρmax(s, n) poses an upper bound on the occupancy level of the servers in the

holding model, which is clearly smaller than 1 for all s and n. In addition, this implies that the
maximum workload Rmax(s, n) := s · ρmax(s, n) the system is able to handle is strictly less than s.
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Figure 4: The maximum achievable workload in the restricted Erlang-R model with holding for
r = 0.25.

If we compare this to the open Erlang-R model, in which the maximal attainable workload equals
s, we observe the effect of finite-size constraints on operational performance. Figure 4 shows the
influence of both s and n on the maximum feasible workload in case r = 0.25. From these graphs,
note that if s� rn, Rmax grows almost linearly with s. Furthermore, Rmax(s, n) is increasing in
n for s fixed. A logical practical consequence is that a larger number of beds allows for a larger
patient volume to enter the ED with the same number of nurses. Moreover, Rmax(s, n) is increasing
in s, but as in Figure 4a, adding an extra nurse does not increase the stability region in case n
is too tight. Conversely, adding extra beds does not increase Rmax(s, n) if the number of nurses
does not allow for an increase in offered load, see Figure 4b. Additionally, it is easily verified that
Rmax(s, n) is upper bounded by both s and Rmax(n, n) = rn. Therefore, a careful balance is called
for between servers (nurses) and beds, so that resources will be efficiently utilized. We observe that
when the ratio s/n ≈ r, the system is better balanced. We will propose an appropriate balance
between resources by defining a synchronized QED capacity recommendation for both servers and
beds in §4.

Managerial insight 1. Both the number of nurses s and the number of beds n play a restricting
role on the maximum demand the system can handle. Therefore, they should be balanced together.

Provided that the system is stable, the stationary distribution of the QBD process X can
be obtained numerically by the matrix geometric method [31]. Subsequently, we can derive the
stationary distribution of the original Q(t), denoted by πh(·, ·, ·).

3.2 Performance measures

In this work, we concentrate on five performance measures that are central to our analysis. In
the definitions that follow, we present expressions for these measures in terms of a general three-
dimensional measure π, which one can replace by either πb or πh, depending on the scenario
considered. In the remainder of this work, we will augment the measures related to the Erlang-R
model with blocking and holding by the superscript b and h, respectively1.

As relevant performance measures, we consider the probability of holding (blocking) at enter-
ing the system, the probability of delay at the needy queue, expected waiting time for a nurse,
utilization of nurses and utilization of beds:

P(hold) =

∞∑
i=0

n∑
j=0

π(i, j, n− j), P(delay) ≈
∞∑
i=0

n∑
j=s

n−j∑
k=0

π(i, j, k), (5)

8



E[W ] ≈
∞∑
i=0

n∑
j=s

n−j∑
k=0

max{0, j − s+ 1}
µ

π(i, j, k), (6)

ρs =
1

s

∞∑
i=0

n∑
j=0

n−j∑
k=0

min{j, s}π(i, j, k), ρn =
1

n

∞∑
i=0

n∑
j=0

n−j∑
k=0

min{i, n}π(i, j, k). (7)

It should be stressed that the above expression for the delay probability and the expected
waiting time for a nurse is not exact. For the blocking model one can use the Arrival Theorem [9],
whereby the exact expression uses n − 1 instead of n; for the holding model, the arrival process
to the needy queue, which consists of both external arrivals and content patients becoming needy,
is not Poisson. Therefore, we cannot use the PASTA argument for the holding model. However,
for both models, as we will be studying the system as s and n become large, this approximation
error will become negligible.

3.3 Stochastic bounds

Although the two variants of the Erlang-R model differ with respect to the admission policy,
and require different mathematical treatment, we would like to be able to capture their relative
performance. We substantiate the intuition that the holding room leads to more patients in the
ED, in the following result.

Proposition 2. Let Qb1, Qb2, Qh1 , Qh2 denote the nurse and content queue length processes in
the Erlang-R model with blocking and holding, respectively. Let H(0) = 0, Qb1(0) = Qh1 (0) and
Qb2(0) = Qb2(0). For all t ≥ 0,

Qb1(t) +Qb2(t) �st Q
h
1 (t) +Qh2 (t) �st n, (8)

Qb2(t) �st Q
h
2 (t), (9)

Qb1(t) �st Q
h
1 (t) +H(t), (10)

where X �st Y implies P(X ≥ k) ≤ P(Y ≥ k) for all k ≥ 0.

The proof of Proposition 2 uses sample path coupling and can be found in Appendix B. Note
that as an immediate consequence, we have

Pb(hold) = lim
t→∞

P
(
Qb1(t) +Qb2(t) ≥ n

)
≤ lim
t→∞

P
(
Qh1 (t) +Qh2 (t) ≥ n

)
= Ph(hold)

and by similar reasoning ρbn ≤ ρhn.

Managerial insight 2. Under similar offered load and capacity constraints, utilization levels for
the nurses in the Erlang-R model with blocking are lower than in the Erlang-R model with holding.
Moreover, the total number of waiting patients in the setting with holding is stochastically larger
than in the setting with blocking, and in the open Erlang-R model.

We further discuss the differences between both models in §5 and §6.

4 Two-fold QED regime

We do not want to waste capacity of either servers or beds without getting significant advantage in
term of performance. We therefore take an asymptotic approach that lets the external arrival rate
λ grow to infinity, while scaling s and n accordingly. In doing so, we intend to establish QED-type
system behavior, i.e. high occupancy levels of both nurses and beds and good quality-of-service.

9



4.1 Two-fold scaling rule

In order to identify the scaling of s and n as λ → ∞, we draw inspiration from the two-fold
scaling rule in [24] and [28], which follows the celebrated square-root staffing principle discussed
in §2. This principle suggests that, in the most general setting, capacity should be equal to the
expected offered load entering the system, let us say R, plus an additional variability hedge that
is proportional to

√
R. In the restricted Erlang-R model, we have two capacity sources, namely s

and n, which experience different relevant amount of works.
The offered load the servers in the needy queue experience is given by R1, as in the regular

Erlang-R model; it does not change due to the finite-size effects, since all patients are served
eventually. Hence, we only need to account for the interrupted services. It follows that the
appropriate staffing rule for the nurses in the QED regime remains s = R1 + β

√
R1 for some

constant β > 0.
To establish the bed capacity level, we need to reflect on the load offered to the beds. Observe

that beds remain occupied both in needy and content states. This suggests that Rn := R1 +R2 =
R1/r, with R1 and R2 as in (1) and r the expected fraction of time a patient spends at the nurse
station, defined in (2). As a result, the appropriate staffing rule is n = Rn + γ

√
Rn for some

constant γ > 0. In conclusion, the two-fold QED scaling rule is given by

s = R1 + β
√
R1 + o(

√
R1)

n = R1

r + γ
√

R1

r + o(
√
R1)

(11)

with β, γ > 0 constants and R1 := λ/((1− p)µ).
Recall that we saw in Figure 4 that resources seem efficiently utilized if s/n ≈ r. Scaling (11)

is in line with this reasoning since

s

n
= r

(
1 +

β − γ
√
r√

R1

+O(1/R1)

)
.

Remark 1. In [24], a similar scaling regime is considered, which only relates s and n through a
square-root scaling, namely the regime s = rn + γ̂

√
n, which is equivalent to the second relation

in (11) if γ̂ = β
√
r− γr. Due to the absence of external arrivals in this closed system, they let the

number of beds n approach infinity as opposed to λ in our settings. Nevertheless, this results in
the same asymptotic regime.

Before turning to asymptotic expressions for the performance measures concerning the Erlang-
R model with blocking/holding, we conduct a few numerical experiments to confirm that the
scaling in (11) indeed leads to desired QED behavior.

In Figure 5 we plotted the sample paths of the three-dimensional queue length process of the
holding model in which β and γ are fixed, and R1 is increased. Observe that the needy queue
length Q1(t), plotted in orange in Figure 5, fluctuates around the values s, and stabilizes for larger
values of R1. This naturally implies that the server (nurses) utilization approaches 100%, while
the number of patients waiting is O(

√
R1). Furthermore, we see that the percentage of occupied

beds also tends to 100%, while the holding queue length remains small. The holding queue is of
much smaller order than R1, which implies that the holding time of a patient becomes negligible as
R1 →∞. From these empirical findings we deduce that under scaling (11) the restricted Erlang-R
model exhibits QED behavior on two levels: Outside the facility while waiting for an available
bed, and inside the facility while waiting for attention of a nurse.

We also check how the Erlang-R model with blocking or holding and the closed ward model of
[24] relate under scaling (11). In Figure 6, we plot the performance measures, obtained through
simulation, for the three models in which we fix β = γ = 0.5 and vary the arrival rate λ. First,
we see that P(delay) stabilizes as λ → ∞ in all three models under scaling (11), and the delay
probability of the model with holding lies in between the other two. Second, note that the expected
waiting time for a nurse in all models converges to 0 as λ increases. In fact, the rate of decay
is similar in all three models. We observe that ρs approaches unity in all three models, and the
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Figure 5: Sample paths of H(t) (blue), Q1(t) (orange) and Q1(t) +Q2(t) (green) of the Erlang-R
model with holding with parameters µ = 1, δ = 0.25, p = 0.75 and β = γ = 1. The staffing levels
s and n are depicted by the dashed lines.
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Figure 6: Asymptotic behavior of the restricted Erlang-R model with holding and blocking, and
the Closed ward model for µ = 1, δ = 0.2, p = 0.8 and β = γ = 0.5.

rate of convergence seems again comparable. Finally, and most importantly, we notice an ordering
between the three models. Namely, in all performance measures considered in Figure 6, Erlang-R
with holding appears to be upper bounded by the closed ward and lower bounded by the Erlang-R
with blocking. In a multitude of parameter settings of (β, γ), we have seen the same ordering,
leading to the following conjecture:

Conjecture 1. Let Qb1(∞), Qh1 (∞) and Qc1(∞) denote the stationary number of needy patients
in the Erlang-R model with blocking, holding and the closed ward, respectively. Then,

Qb1(∞) �st Q
h
1 (∞) �st Q

c
1(∞). (12)

Observe that Conjecture 1 poses a stronger statement than the third assertion in Proposition
2.

4.2 QED limits for Erlang-R with blocking

We now continue our analysis by examining the limiting behavior under scaling (11). We first
derive QED limits for some performance measures of the Erlang-R model with blocking. Using
the explicit expressions for the blocking model in (3), we derive the limiting values of the relevant
performance measures defined in §3.2 in terms of β and γ.
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Theorem 2. Let s and n scale as in (11) with −∞ < β <∞, γ > 0 as λ→∞. Then, if β 6= 0,

gb(β, γ) := lim
λ→∞

Pb(delay) =

1 +
β
∫ β
−∞ Φ

(
γ−t
√
r√

1−r

)
dΦ(t)

φ(β)Φ(η)− φ(
√
β2 + η2)e

1
2ω

2

Φ(ω)

−1

, (13)

f b(β, γ) := lim
λ→∞

√
R1 · Pb(block) =

√
rφ(γ)Φ(−ω

√
r) + φ(

√
β2 + η2) e

1
2ω

2

Φ(ω)∫ β
−∞ Φ

(
γ−t
√
r√

1−r

)
dΦ(t) + φ(β)Φ(η)

β − φ(
√
β2+η2)

β e
1
2ω

2

Φ(ω)
,

(14)

hb(β, γ) := lim
λ→∞

√
R1 · E[W ] =

φ(β)Φ(η)
β2 +

(
β
r −

γ√
r
− 1

β

)
φ(
√
η2+β2)

β e
1
2ω

2

Φ(ω)−
√

1−r
r

φ(β)φ(η)
β∫ β

−∞Φ
(
γ−t
√
r√

1−r

)
dΦ(t) + φ(β)Φ(η)

β − φ(
√
β2+η2)

β e
1
2ω

2

Φ(ω)
,

(15)

and if β = 0,

gb0(γ) := lim
λ→∞

Pb(delay) =

1 +

∫ 0

−∞Φ
(
γ−t
√
r√

1−r

)
dΦ(t)√

1−r
r

1√
2π

(ηΦ(η) + φ(η))

−1

, (16)

f b0(γ) := lim
λ→∞

√
R1 · Pb(block) =

√
r φ(γ)Φ(−ω

√
r) + 1√

2π
Φ(η)∫ β

−∞Φ
(
γ−t
√
r√

1−r

)
dΦ(t) +

√
1−r
r

1√
2π

(ηΦ(η) + φ(η))
, (17)

hb0(γ) := lim
λ→∞

√
R1 · E[W ] =

1

2µ

(
γ2/r + 1

)
Φ(η) + ηφ(η)

r
1−r
√

2π
∫ 0

−∞ Φ
(
γ−t
√
r√

1−r

)
dΦ(t) +

√
r

1−r (ηΦ(η) + φ(η))
, (18)

where η = γ−β
√
r√

1−r and ω := γ−β/
√
r√

1−r .

The proof of Theorem 2 can be found in Appendix C.
Theorem 2 proves that the scaling (11) results in QED behavior: the probability of waiting

in Equations (13) and (16) converges to a limit that is strictly between 0 and 1. Notice that all
limits in Theorem 2 are functions of three parameters: β and γ, which are decision variables, and
the fraction of needy time r, which is dictated by the physics of the system.

Theorem 2 also shows that the probability of blocking (Equations (14) and (17)) is of order
1/
√
R1. For example, assume that the fraction of needy time r is 0.5 and the system is large (100

servers). Using Figure 7, we observe that, by choosing the pair γ = 1 and β = 0.245, we actually
aim at a probability of getting served immediately to be 40%. At the same time, the probability
of getting immediately a bed is 97%. Thus, our QED policy puts more emphasis on preventing
blocking than waiting.

Theorem 2 further shows that the expected waiting (Equations (15) and (18)) is of order 1/
√
R1

too and hence vanishes in the large-system limit.
We see from Theorem 2 that achieving target service levels is always an interplay between

β and γ. Figure 7a shows for instance that in order to keep P(delay) ∈ (0.25, 0.75), choosing
γ = −1 requires β to stay within the range [−1.4,−0.5], while γ = 1 corresponds to values of β in
[−0.4, 0.5].

While the two-fold scaling rule in (11) automatically captures the right dimensioning ratio as
the system scales up, Theorem 2 shows that the parameters β and γ provide a means to fine-tune
the performance. Figure 7b confirms how adding nurses, i.e. increasing β, does not improve the
blocking probability if the number of beds, i.e. γ, is too tight. This is in accordance with our
previous observations in Figure 4 for the exact steady-state distribution.

To test the accuracy of the asymptotic results in Theorem 2 as approximations in a realistic
setting, we plot in Figure 8 the exact probability of delay and blocking for an Erlang-R model with
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Figure 7: Asymptotic delay and scaled blocking probability for r = 0.5 based on Theorem 2.
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Figure 8: Comparison of exact performance measures (solid) against asymptotic approximations
(dashed) with β = (s − R1)/

√
R1 and γ = (n − R1/r)/

√
R1/r for λ = 2, µ = 1, δ = 0.25 and

p = 0.75.

R = 8 and r = 0.25, as a function of s. The exact probabilities are given by Equation (5), and their
respective asymptotic approximations are based on Theorem 2. Despite the realistic moderate size
of the system (R = 8), we see that the QED approximations are remarkably accurate for many
settings (s, n). This fast relaxation is in line with observations made earlier in the QED literature
[6, 23].

In Appendix E.1, we furthermore compare the asymptotic delay and blocking probability in
three additional scenarios. In Tables 2–4 we compute the exact probabilities of delay and blocking
through the explicit forms in (5) for various values of the offered-load R1, which are omitted
here due to space constraints. The numerical results show that gb(β, γ), f b(β, γ) and hb(β, γ)
provide accurate approximations to P(delay),

√
R1P(block) and

√
R1 E[W ] in pre-limit systems.

The quality of the approximations increases with R1. Naturally, fluctuations occur for relatively
small values of R1, because s and n need to be rounded to an integer.

4.3 QED limits for Erlang-R with holding

As explained in §4, the model with holding has no product-form steady-state distribution, which
makes it hard (if not impossible) to obtain QED limits. Instead, we derive QED approximations
by exploiting a connection with the blocking model.

We first prove that under scaling (11), the upper bound on the utilization level of the nurses
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needed to achieve stability in the model with holding, as given in Proposition 1, converges to unity
as R→∞. This facilitates high utilization levels of both nurses and beds, a key characteristic of
the QED regime.

Proposition 3. Let s and n scale with R1 →∞ as in (11). Then, for λ→∞,

ρmax(s, n)→ 1.

The proof can be found in Appendix D. Combining Proposition 3 with Proposition 1 shows
that indeed the scaling we use results in a highly utilized system.

As observed before, the nature of the two variants of the model is similar up to the fact that a
fraction of the patients is deferred on arrive in the setting with blocking, whereas all the arriving
patients are eventually admitted into the system in the holding model. This implies that, given s
and n, the nurses face an increased workload in case of a holding room. In fact, Theorem 2 shows
that the blocking probability is of order 1/

√
R1, yielding a volume of blocked patients of order√

R1 in setting with blocking. Accordingly, if Rb = R1 and Rh denote the nominal load arriving
to the nurses in the model with blocking and holding, respectively, we can argue that

Rh = Rb + α
√
Rb + o(

√
Rb),

for some α > 0. Notice that this additional load is of the same order as the safety staffing in the
blocking model staffing rule (11). As s and n remain unchanged, we rewrite (11) in terms of Rh,

s = Rh + (β − α)
√
Rh + o(

√
Rh),

n =
Rh

r
+
(
γ − α/

√
r
)√Rh

r
+ o(
√
Rh), (19)

where we have used Rb = O(Rh). Observe that the square-root principle prevails also after
this substitution, albeit with different hedging parameters. We therefore heuristically argue that
the holding model under scaling (11) with parameters β and γ mimics the blocking model with
parameters β − α and γ − α/

√
r, respectively.

Observe, however, that we have not yet specified the value of α. By definition, α
√
Rb is the

expected volume of patients that would be rejected in the model with blocking, that is, Rh times
the probability of not being admitted to the system directly. By the construction in (19), this
volume asymptotically equals Rh · Pb(block), with parameters β − α and γ − α/

√
r, which by

Theorem 2 is approximated by

f b
(
β − α, γ − α/

√
r
)
/
√
Rh

as Rh grows large. In conclusion, α is characterized as the solution of the fixed-point equation

α = fh
(
β − α, γ − α/

√
r
)
, (20)

and as a result, we are able to approximate the delay probability in the Erlang-R model with
holding as

Ph(delay) ≈ gb(β − α, γ − α/
√
r) =: gh(β, γ). (21)

Likewise, the scaled the mean waiting time for a server can be approximated by√
R1 · E[W ] ≈ hb(β − α, γ − α/

√
r) =: hh(β, γ). (22)

This also implies that the holding queue is O(
√
R1). Subsequently, we argue that the expected

holding time (pre-entering wait) under the QED policy is O(1/
√
R1) and hence asymptotically

negligible. We justify this claim numerically in §6.

Remark 3. Notice that in the reasoning leading to (20), we implicitly assumed that the additional
volume α

√
R1 is an independent Poisson process, which is obviously not the case. Therefore,

(21)–(22) are approximations for pre-limit systems that are not asymptotically correct as λ→∞.
Nevertheless, our heuristic approach seems to performs well as we confirm numerically next.
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In Figure 9, we repeat the numerical experiments of Figure 8 for the model with holding.
Since the heuristic does not provide an approximation for the holding probability, Figure 9b only
plots the simulated holding probabilities. Those are provided to better understand the implication
of operational decision. Recall that the holding system is only stable (i.e. P(hold) < 1) if both
s > R1 = 8 and n > R1/r = 32. We nevertheless included the boundary case n = 32 for illustrative
purposes. The graphs in Figure 9 show that the heuristic captures the congestion levels well, even
for this moderate-size system.

To see how this heuristic approach performs under different settings, and particularly if R1 →
∞, we compare in Appendix E.2 the approximated delay probability in the Erlang-R model with
holding as solution of the fixed-point procedure to the outcomes of simulation experiments. We
omit the tables here due to space constraints. We conclude from these tables that the approxima-
tion is good. As R1 increases, the simulated values move closer to the heuristic approximation.
Extensive numerical experiments suggest that load is slightly underestimated in the limit. The
best results in terms of accuracy are attained for small r. This suggests that the quality of the
heuristic method improves as r gets smaller. These are exactly the parameter settings for which
this model is relevant.
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Figure 9: Comparison of simulated delay probability (solid) against asymptotic approximations
(dashed) with β = (s − R1)/

√
R1 and γ = (n − R1/r)/

√
R1/r for λ = 2, µ = 1, δ = 0.25 and

p = 0.75.

5 Dimensioning

We will now use the accurate asymptotic approximations of the previous section to define a proce-
dure that determines resource capacity in the restricted Erlang-R models. That is, we aim to set
the number of nurses s and the number of beds n, such that a preset performance level is achieved.
We take the probability of delay at the needy queue and the probability of blocking/holding at
the pre-entrant queue as the target performance objectives.

5.1 Capacity setting for Erlang-R with blocking

In the setting with blocking, we can readily use the asymptotic results of Theorem 2 to (numeri-
cally) find a pair of parameters (β∗, γ∗) to meet the performance requirements. For instance, given
that we want the delay probability to be at most ε, we first solve the equation gb(β∗, γ∗) = ε and
then assign s = dR1 + β∗

√
R1e and n = dR1/r + γ∗

√
R1/re. Note that there could be multiple

solutions to that problem, i.e. there could be multiple combinations of number of beds and number
of nurses that can result in the same value of a single performance level. The system manager can
ultimately decide which of these feasible solutions fits the environment best, for instance taking
into account space and cost constraints.
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We illustrate the resource allocation decisions in an MU setting, using data originated from
two articles by Lundgren & Segesten [29] and Green & Yankovic [14]. Green & Yankovic describe
an MU that has 42 beds, with average occupancy level 78%, and Average Length of Stay (ALOS)
4.3 days. Lundgren & Segesten studied nurses’ service times in a medical-surgical ward. They
found that the average service time in their unit was 15.3 minutes per service, and that the average
demand rate for each patient is 0.38 requests per hour. Therefore, we take an average service time
of 15 minutes and assume that there are 0.4 requests per hour from each patient. Fitting this
data to our model results in the following parameters values: λ = 0.32, µ = 4, δ = 0.4, p = 0.975
and the fraction of needy time is then approximately r = 0.09. This yields nominal offered load
R1 = 3.2 and R1/r = 34.4.
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Figure 10: Approximate performance of restricted Erlang-R with blocking for r ≈ 0.09 and R1 =
3.2, as functions of β.

Figure 10 visualizes the dimensioning procedure for this particular MU. The hospital man-
agement can find a pair of n and s to meet certain criteria, for example to achieve target delay
probability ε = 0.5 with reasonable blocking probability. Figure 10a indicates that this target
can be achieved by a variety of pairs, for instance (β1, γ1) = (−0.06,−1), (β2, γ2) = (0.16, 0),
(β3, γ3) = (0.36, 1) or (β4, γ4) = (0.46, 2), among infinitely many others. According to Figure 10b,
the pairs named above lead to blocking probabilities 0.293, 0.165, 0.071 and 0.021, respectively. If
the manager decides that probability of blocking of more than 10 percent is not acceptable, this
leaves the choices (β3, γ3) = (0.36, 1) or (β4, γ4) = (0.46, 2) as candidate parameter pairs. Using
the two-fold square-root staffing rule si = dR1 + βi

√
R1e and ni = [R1/r + γ

√
R1/r], this yields

feasible staffing levels (s3, n3) = (4, 40) and (s4, n4) = (5, 46). The ultimate decision to apply any
of these solutions can be based on external factors, such as operational costs or space limitations
of number of beds.

5.2 Capacity setting for Erlang-R with holding

For the holding model, we need a more sophisticated approach, exploiting the asymptotic approx-
imation with the fixed-point equation in (20). We propose the following dimensioning procedure
to achieve a preset target delay probability at the needy queue.

Algorithm 1. Stationary dimensioning algorithm.
Input: Target delay probability ε. Parameters λ, µ, δ and p.
Output: Staffing levels s and n.

1. Set R1 := λ
(1−p)µ and r = δ

δ+pµ .

2. Determine parameters (β∗, γ∗) such that gb(β∗, γ∗) = ε.
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3. Set β = β∗ + f b(β∗, γ∗) and γ = γ∗ + f b(β∗, γ∗)/
√
r.

4. Return s =
⌈
R1 + β

√
R1

⌉
and n = bR1/r + γ

√
R1/rc.

Remark 4. In Step 2 of Algorithm 1 infinitely many pairs (β∗, γ∗) satisfy the delay probability
equation. For practical purposes, it is convenient to fix either β∗ or γ∗ beforehand, and then solve
gb(β∗, γ∗) = ε for the remaining unknown. The preset value should however be chosen with care,
since gb(β∗, γ∗) is upper bounded by the Halfin-Whitt delay probability formula

gHW(β∗) =

(
1 +

β∗Φ(β∗)

φ(β∗)

)−1

.

Hence, if ε > gHW(β∗), then no feasible solution to gb(β∗, γ∗) = ε exists. This should be considered
when choosing β∗. Furthermore, it is evident from Step 3 that the final values (β, γ) are always
larger than (β∗, γ∗).

We now use the same example as in §5.1 to demonstrate capacity allocation decisions for the
model with holding. This can be viewed as the additional capacity the MU needs in terms of nurses
and beds, in order to account for the fact that patients are waiting in the ED to be admitted, into
the preferred MU, instead of being blocked and transferred to a less preferred unit. Observe that
the holding model leaves less flexibility for management in choosing system parameters due to
stability constraints. For example, the policy with n = 30 (γ = −0.75) is infeasible in the holding
model. For similar reasons, only nurse staffing levels with β > 0, or s > R1 = 3.2 are feasible.

Targeting a delay probability of 0.5 with n = 40, Figure 11 shows that operating an MU with
holding room requires β = 0.475 or s = 5. Recall that under the blocking policy, only s = 4 nurses
were needed to achieve a delay probability of 0.5. This example hence shows how the managerial
decision to have a holding room, rather than deferring patients to less preferred medical units,
requires additional workforce in that unit (as well as the ED). This example also shows that
the facility with holding room is able to treat fewer patients simultaneously than under blocking
constraints, in line with the bounds in §3.3 and Conjecture 1.
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Figure 11: Approximate delay probability of restricted Erlang-R system with holding for r ≈ 0.09
and R1 = 3.2

6 Model analysis and managerial implications

In this section, we use the analysis and algorithms developed in earlier sections to gain insights
into the importance of the capacity restrictions and customer returns in a restricted Erlang-R
system by drawing a comparison to related models studied in the literature.
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Figure 12: Asymptotic performance measures as a function of r in the restricted Erlang-R model
with blocking for γ = 1.

6.1 The influence of customer returns or the role of r

Here we study how the parameter r affects the service level in the restricted Erlang-R model with
blocking, on the basis of the asymptotic expressions in Theorem 2.

To better understand the connection with the single-station model and the importance of
returns we examine the role of r. Recall the interpretation of r as the fraction of time a patient
is needy during his stay within the system in the idealized scenario with infinite capacity, i.e. for
r ∈ (0, 1). The case r = 1 corresponds to the setting in which patients are needy all the time, in
this case customers get service in one time. When r = 1 the infinite-server queue, describing the
number of content patients, disappears from the queueing system and we end up with a standard
loss model—M/M/s/n queue—in which capacity is scaled as

s = R1 + β
√
R1, n = R1 + γ

√
R1.

This staffing rule only makes sense in case β < γ, since no delay is experienced if n ≤ s. If indeed
γ > β, then the asymptotic delay probability and scaled blocking probability are given by [30],

gB(β, γ) =
1− e−β(γ−β)

1− e−β(γ−β) + βΦ(β)/φ(β)
, fB(β, γ) =

βe−β(γ−β)

1− e−β(γ−β) + βΦ(β)/φ(β)
.

We can see that f b(β, γ) of increasing β approaches a lower bound that is a function of r.
To see this, observe that as β grows, delays at the nurse queue vanish. Then the sojourn time
of an admitted patient only consists of a geometric number of needy and content periods with
mean (1/µ + p/δ)/(1 − p) = 1/rµ(1 − p). The blocking model can in this case be modeled as an
M/G/n/n queue, with offered load λ/(rµ(1−p)) = R1/r, in which the scaled blocking probability
is known to be, see [22],√

R1 P(block) =
√
R1

(R1/r)
n/n!∑n

k=0(R1/r)k/k!
→
√
r
φ(γ)

Φ(γ)
,

as R1 →∞. This function of r is plotted in Figure 12b as the dashed line.
We observe that in general the probability of blocking increases with r, regardless of the

capacity constraints on the needy station. We can explain this by observing that r influences only
n in the QED staffing rule. When n reduces, more patients are blocked. Therefore, if customers
spend relatively more time in needy state, which usually indicates services that are less interrupted,
blocking will increase. Delays, on the other hand, will decrease in such situations—the minimal
delay possible can be achieved if service is given in one time (r = 1). Returns or interruptions
increase delays significantly under QED staffing.
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Figure 13: Asymptotic delay probability in open Erlang-R (dashed), restricted Erlang-R with
blocking (•) and restricted Erlang-R with holding (�), as function of γ.

Managerial insight 3.

1. Returning customers should be explicitly accounted for in determining staffing in a system
with space constraints both in steady-state and transient conditions.

2. The above becomes more important as the proportion of time spend in needy state becomes
small, since then the number of customer contributing to the space constrains increases.

3. As returns become more spread over the patient’s length-of-stay (r decreases), delay increases
and blocking decreases.

6.2 Comparing restricted and unrestricted Erlang-R models

Given the expressions for the asymptotic delay probability in the open Erlang-R model, and its
restricted versions with blocking and holding, we compare the three policies for various values of
β, γ and r. Figure 13 plots the delay probability for blocking (gb(β, γ)), holding (gh(β, γ)) and
Erlang-R (gHW(β)) models, as functions of γ, while keeping β fixed, for three values of r. We
make a couple of observations. Notice that

gb(β, γ) ≤ gh(β, γ) ≤ gHW(β)

for all β, γ > 0 and r. In that sense, the holding model is an interpolation between the blocking and
the open model. As expected, the delay probabilities in the restricted models converge to those of
the open Erlang-R model, because increasing γ is tantamount to lifting the stringent constraints
on the system size. Note that the rate of conversion is fast—one can provide probability of waiting
close to that of the open model with small values of γ. Indeed, the fact that when using QED
staffing not much of excessive delay results from the beds restriction is important by itself. Also,
we observe that the difference between delay probabilities increases with r.

6.3 The impact of visit number

We next reflect on the impact of operational capacity decisions on different customer populations.
We measure patient’s complexity by the number of times she needs to see the nurse or the physician
during her stay. In the ED context, simple-to-treat patients will need to see the physician once,
while complex ones will need multiple visits. Hence, we divide the patients into complexity groups
by the number of visits in the needy station. Since the number of visits is geometrically distributed,
we have a higher proportion of simple patients than complex ones; that fits well the health care
environment.

Figure 14 shows the waiting time in the needy and pre-entring queues, and the total waiting
time, as a function n (number of beds), for each complexity group. Obviously, the expected
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waiting time in the pre-entring queue decreases with n, while the needy waiting time increases.
For patients who require a relative large number of visits of the physician, in this case more than
6, the total needy wait is the dominant part of the total waiting time. Therefore, as n grows, the
total waiting time first decreases and then increases. In fact, Figure 14b suggests that there is
an optimal number of beds n that minimizes the total wait for each complexity type. Thus, size
restrictions reduce the length-of-stay of patients with complex health conditions (given that the
constraint is not too tight). On the other hand, this figure also shows that no such n exists for
patients who only require little assistance. Hence, there is no n that improves the sojourn time of
all patients in the ED simultaneously. This leaves the decision to the hospital manager to weigh
the importance of patients of different complexity levels.

Remark 5. From a different perspective, note that in communication queueing systems, the
partition of a job to sizable quantities and scheduling those jobs in a similar dynamic to the
Erlang-R model became a popular way for increasing throughput. This is because this effectively
schedule jobs by their size even though the total job requirements are uncertain. This in fact creates
a shortest-job-first policy without prior knowledge of job size [5]. Considering that perspective
we note that the Erlang-R model actually prioritize simple jobs over complex ones. But without
restrictions, when load is too high, such procedures may lead to very long LOS of long jobs. The
capacity restriction we analyze in this paper, in both of its versions, limits such delays. Hence,
even in cases in which the returns themselves are created by a managerial decision, imposing the
additional managerial restriction on entering the system has benefits.
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Figure 14: Expected waiting times as a function of n given the number of visits N in the Erlang-R
model with holding with λ = 2 µ = 1, δ = 0.25, p = 0.75 and s = 9.

6.4 Case study: comparison of operational decisions

We now illustrate how the managerial decision to operate under a specific operational regime
affects ED performance in terms of efficiency and quality-of-care, through a case study. The
practical environment we investigate is the ED of a moderately-sized hospital, which faces the
arrival pattern λ(t) plotted in Figure 15a on a typical workday. Other parameters of the model
are estimated to be µ = 6.67, δ = 2.18 and p = 0.76, so that r = 0.301. (Parameters were
taken from [38]). In order to set time-varying staffing levels s(t) and n(t), we adopt the MOL
approximation of the demand process of [26]. This approach initially presumes infinite capacity
to obtain the number of customers R(t) in the queueing system as a function of time. This offered
load function then replaces (constant) value of R in the stationary dimensioning scheme under
consideration, to determine the adequate number of servers at each point in time. Following this
idea in our two-dimensional queueing system, we find the offered load function for the nurses R1(t)
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Figure 15: Empirical arrival rate and offered load functions R1(t) and R1(t) +R2(t) in Israeli ED
and corresponding capacity functions

and the offered load function for the beds R1(t) +R2(t) as the solution of the system of ODEs,

d

dt
R1(t) = λ(t) + δR2(t)− µR1(t), (23)

d

dt
R2(t) = pµR1(t)− δR2(t), (24)

see [38, Thm. 2] for details. For this case study’s parameters, these offered load functions are also
plotted in Figure 15a. While the number of nurses can be adjusted in a relatively flexible manner,
the value of n, which echoes a hard restriction on the ED capacity, is naturally less amenable to
fluctuations. The reason is that the maximum ED capacity is to a large extent determined by
its hardware, such as beds and medical equipment. However, the ED manager might deliberately
consider reducing n during more quiet periods of the day, e.g. during the night, by imposing bed-
to-physician constraints. This is done, for example, when setting a case management constraint
[33, 7]. Therefore, we consider the scenario in which both s and n are time-dependent but we do
not force a constant case management quantity, rather let our new methodology to recommend
an appropriate one.

Extrapolating Algorithm 1 to the time-varying case, Step 4 is replaced by

s(t) = R1(t) + β
√
R1(t),

n(t) = R1(t) +R2(t) + γ
√
R1(t) +R2(t),

for some β, γ > 0. Since R1(t) and R2(t) are given, the QED staffing problem again reduces to
finding the pair (β, γ).

Figure 15b plots the capacity functions for β = 0.5 and γ = 0.5, assuming capacity can only
be adjusted every 30 minutes. In this case study, we consider three pairs of parameters (β, γ).
For each of these we investigate, using simulation, the differences in the time-varying performance
indicators between the policy with blocking and holding.

The simulation results are presented in Figure 16. Figure 16a shows that the MOL approach
for capacity allocation roughly stabilizes the delay probability. Figure 16b shows that the fraction
of patients not entering the ED on arrival in the blocking model is reasonable for all parameter
pairs considered and are ordered according to γ. We also see a significant difference with holding.
Observe also that the holding probability drops in the period 8–13, which is exactly the period
when the system is experiencing peak offered load. Hence, this temporary reduction is in line with
our asymptotic findings that the probability of blocking/holding is O(1/

√
R1).

Finally note that the three parameter settings lead to different nurse-to-patient ratios. Clearly,
larger β leads to small nurse-to-patient ratios (due do larger staffing). Figure 16c demonstrates
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Figure 16: Simulation results for case study. Solid and dashed lines represent time-varying per-
formance in the blocking and holding model, respectively.
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Figure 17: Simulated queue length of holding model with different values of γ.

that for (β, γ) = (1, 1.5) and (β, γ) = (2, 1) the difference between the holding policy and the
blocking policy is small. However, for (β, γ) = (0.1, 2) we see a significant increase in the ratio
during night hours. This may be due to the tight nurse schedule, that causes the holding queue to
build up just before midnight. This queue then empties latter on, causing an increase in workload
per nurse in the period 24–7.

To see the direct effect of the size restriction on the queue lengths, we plotted the mean holding
and service queue lengths in the holding model as a function of the parameter γ in Figure 17.
Note that for all γ considered, the holding queue length are, as expected, of a smaller order than
the number of patients admitted. Also, the holding queue length decreases as we increase γ. The
service queue lengths naturally approach the expected queue lengths in the Erlang-R model as γ
is increased.

7 Conclusions and future research

In this research we developed and analyzed a queueing network with repeated services that has
capacity restrictions both on service and accessibility. We not only developed approximations for
the performance of the system with a blocking policy, but also constructed a new innovative way
to use those results to approximate performance of the intractable model with holding. Those
approximations were based on a fixed-point analysis, and enabled us to take the first step towards
characterizing the pre-entering queue behavior in the QED regime. In addition, the unified analysis
enabled us to connect the two policies and to deepen the understanding of the practical application
of the two. We showed in two realistic case studies the application of those two models to medical
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unit resource allocation. We discussed the implication of holding patients both in terms of the
range of possible combinations that results from stability constraints, and in terms of its impact
on waiting in the system. Finally, we showed that the approximations are accurate for a wide
range of parameters.
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[5] T. Bonald and C. Comté. Networks of multi-server queues with parallel processing. Unpub-
lished manuscript, 2016.

[6] S.C. Borst, A. Mandelbaum, and M.I. Reiman. Dimensioning large call centers. Operations
Research, 52(1):17–34, January-February 2004.

[7] F. Campello, A. Ingolfsson, and R.A. Shumsky. Queueing models of case managers. Manage-
ment Science, 2016. Articles in advance.

[8] R. Carmen and I. van Nieuwenhuyse. How inpatient boarding impacts ED performance: A
queueing analysis. Working paper, KU Leuven, 2016.

[9] H. Chen and D.D. Yao. Fundamentals of Queueing Networks: Performance, Asymptotics,
and Optimization. Springer, 2001.

[10] A.M. de Bruin, R. Bekker, L. van Zanten, and G.M. Koole. Dimensioning hospital wards
using the Erlang loss model. Annals of Operations Research, 178(1):23–43, 2009.

[11] B.T. Denton, editor. Handbook of healthcare operations management: Methods and applica-
tions. North Holland, New York, 2nd edition, 2013.

[12] KC S. Diwas. Does multitasking improve performance? evidence from the emergency depart-
ment. Manufacturing & Service Operations Management, 16(2):168–183, 2014.

[13] D. Gamarnik and D.A. Goldberg. On the rate of convergence to stationarity of the M/M/N
queue in the Halfin-Whitt regime. The Annals of Applied Probability, 23(5):1879–1912, 2013.

[14] L. Green and N. Yankovic. Identifying good nursing levels: A queuing approach. Operations
Research, 59(4):942–955, 2011.

[15] L.V. Green. Using queueing theory to increase the effectiveness of physician staffing in the
emergency department. Academic Emergency Medicine, 13:61–68, 2006.

[16] L.V. Green and S. Savin. Reducing delays for medical appointments: A queueing approach.
Operations Research, 56(6):1526–1538, 2008.

[17] S. Halfin and W. Whitt. Heavy-traffic limits for queues with many exponential servers.
Operations Research, 29(3):567–588, 1981.

[18] R.W. Hall, editor. Patient Flow: Reducing Delay in Healthcare Delivery. Springer, 2006.

23



[19] R.W. Hall, editor. Handbook of Healthcare System Scheduling. Springer, 2012.

[20] Junfei Huang, Boaz Carmeli, and Avishai Mandelbaum. Control of patient flow in emer-
gency departments, or multiclass queues with deadlines and feedback. Operations Research,
63(4):892–908, 2015.

[21] J.R. Jackson. Jobshop-like queueing systems. Management Science, 10(1):131–142, 1963.

[22] A.J.E.M. Janssen, J.S.H. van Leeuwaarden, and B. Zwart. Gaussian expansions and bounds
for the Poisson distribution applied to the Erlang-B formula. Advances in Applied Probability,
40(1):122–143, 2008.

[23] A.J.E.M. Janssen, J.S.H. van Leeuwaarden, and B. Zwart. Refining square-root safety staffing
by expanding Erlang C. Operations Research, 59(6):1512–1522, 2011.

[24] O.B. Jennings and F. de Véricourt. Dimensioning large-scale memberschip services. Opera-
tions Research, 55(1):173–187, 2008.

[25] O.B. Jennings and F. de Véricourt. Nurse staffing in medical units: A queueing perspective.
Operations Research, 59(6):1320–1331, 2011.

[26] O.B. Jennings, A. Mandelbaum, W.A. Massey, and W. Whitt. Server staffing to meet time-
varying demand. Management Science, 42(10):1383–1394, 1996.

[27] G. Kazahaya. Harnessing technology to redesign labor cost management reports. Healthcare
Financial Management, 59(4):94–100, 2005.

[28] P. Khudyakov, P.D. Feigin, and A. Mandelbaum. Designing a call center with an IVR (In-
teractive Voice Response). Queueing Systems, 66(3):215–237, 2010.

[29] S. Lundgren and K. Segesten. Nurses use of time in a medical-surgical ward with all-rn
staffing. Journal of Nursing Management, 9(1):13–20, 2001.

[30] W.A. Massey and R.B. Wallace. An asymptotically optimal design of the M/M/c/k queue.
Unpublished report, 2004.

[31] M.F. Neuts. Matrix-Geometric Solutions in Stochastic Models. The John Hopkins University
Press, Baltimore, 1981.

[32] J. Sanders, S.C. Borst, A.J.E.M. Janssen, and J.S.H. vvan Leeuwaarden. Optimality gaps in
asymptotic dimensioning of many-server systems. Operations Research Letters, 44(3):369–365,
2016.

[33] H. Song, A.L. Tucker, and K.L. Murrell. The diseconomies of queue pooling: An empirical
investigation of emergency department length of stay. Management Science, 61(12):3032–
3053, 2015.

[34] J.S.H. van Leeuwaarden and C. Knessl. Transient behavior of the halfinwhitt diffusion.
Stochastic Processes and their Applications, pages 1524–1545, 2011.

[35] J.S.H. van Leeuwaarden and C. Knessl. Spectral gap of the Erlang-A model in the Halfin-
Whitt regime. Stochastic Systems, 2(1):149–207, 2012.

[36] J.S.H. van Leeuwaarden, B.W.J. Mathijsen, and F. Sloothaak. Delayed workload shifting
in many-server systems. ACM SIGMETRICS Performance Evaluation Review, 43(2):10–12,
2015.

[37] J.S.H. van Leeuwaarden, B.W.J. Mathijsen, and F. Sloothaak. Cloud provisioning in the QED
regime. Proceedings of the 9th EAI International Conference on Performance Evaluation
Methodologies and Tools, pages 180–187, 2016.

24



[38] G.B Yom-Tov and A. Mandelbaum. Erlang-R: A time-varying queue with reentrant cus-
tomers, in support of healthcare staffing. Manufacturing & Service Operations Management,
16(2):283–299, 2014.

[39] B. Zhang, J.S.H. van Leeuwaarden, and B. Zwart. Refining square-root staffing for call centers
with impatient customers. Operations Research, 60:461–474, 2012.
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A Description of the QBD process

A.1 The QBD-process

We consider the QBD-process X = {N,Q1} in stationarity. Let ν(i) = min{i, s}µ. To determine
the (outgoing) transition rates of the process X we distinguish between the following cases:

• Transitions from (0, 0): There are no patients in the Emergency Department and thus the
only possible occurrence is when a new patient arrives. This results in a transition to (1, 1)
and occurs with rate λ.

• Transitions from (i, 0), 1 ≤ i < n: There are exactly i patients assigned to a bed of which
none are seen by a nurse. Then either one of those patients becomes needy, or a new patient
arrives at the Emergency Department that can immediately be seen by a nurse. The first
results in a transition to (i, 1) and occurs at rate iδ, and the second results in a transition
to (i+ 1, 1) and occurs with rate λ.

• Transitions from (i, 0), i ≥ n: Again, the only possible transitions arises from either a newly
arrived patient or a patient assigned to a bed becoming needy. However, a newly arrived
patient finds all beds occupied and needs to wait. Thus, with rate λ we have a transition to
(i+ 1, 0) and with rate nδ a transition to (i, 1).

• Transitions from (i, i), i < n: In this case all patients assigned to a bed are in need of service.
With rate λ a new patient arrives at the Emergency Department. She joins the (possible)
queue to be seen by a nurse immediately, so this results in a transition to (i + 1, i + 1).
Moreover, since there are only s < n nurses, a service completion occurs with rate ν(i).
With probability p the patient turns to the holding phase, so in total we still have i patients
with one patient less in queue for a nurse. With probability 1 − p the patient leaves the
Emergency Department, decreasing both N and Q1 by one. In other words, with rate pν(i)
we have a transition to (i, i−1) and with rate (1−p)ν(i) we have a transition to (i−1, i−1).

• Transitions from (n, n): Similar to the previous case, we have a transition to (n, n− 1) with
rate psµ and with rate (1− p)sµ we have a transition to (n− 1, n− 1). In this case however,
a newly arrived patient finds all beds occupied, resulting in a transition to (n + 1, n) with
rate λ.

• Transitions from (i, n), i > n: We have a transition to (i+ 1, n) with rate λ and a transition
to (i, n − 1) with rate psµ. In case that a patient leaves the Emergency Department there
are i − n > 0 patients in the holding room waiting for an available bed. Thus, one of the
i− n patients in the holding room is assigned to the available bed in need of service. That
is, with rate (1− p)sµ we have a transition to (i− 1, n).

• Transitions from (i, j), 1 ≤ j < i < n: There are four possible transitions. First, with rate
λ there is a new arrival which results in a transition to (i + 1, j + 1). Second, with rate
(i− j)δ a patient in one of the beds becomes needy, which results in a transition to (i, j+ 1).
Third, with rate pν(j) a patient turns to the content state after service completion, which
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Figure 18: Illustration of state space and the transitions for the Erlang-R model with holding.

results in a transition to (i, j−1). Last, with rate (1−p)ν(j) a patient leaves the Emergency
Department after service completion, which results in a transition to (i− 1, j − 1).

• Transitions from (n, j), 1 ≤ j < n: This case is similar to the previous one. The only
difference arises when a new patient arrives, since all n beds are already occupied. Thus,
with rate λ we have a transition to (n+ 1, j).

• Transitions from (i, j), i > n, 1 ≤ j ≤ n: This case is the previous one, except when a patient
leaves the Emergency Department after service completion. Then one of the (i−n) patients
in the holding room will be assigned to a bed in need of service. This results in a transition
to (i− 1, j) with rate (1− p)ν(j).

The state space and transition rates of the Erlang-R model with holding are illustrated in Figure 18.
The state space can be partitioned according to its levels, where level i corresponds to a total

queue length N = i patients. This results in an infinite-sized matrix consisting of blocks, where
each block corresponds to the transition flow from one level to another. Since the only transitions
allowed are within the same level or between two adjacent levels in a QBD-process, we obtain a
tridiagonal block structure. Each block consists of elements representing the transition rate of one
state to another, and therefore each block is a matrix of size at most (n+ 1)× (n+ 1).

For the Erlang-R model with holding this gives the following result. Let P denote the transition
matrix of the process {N(t), Q1(t)}. We have the boundary levels {1, 2, ..., n} and P is of the form

P =



B00 B01

B10 B11 B12

B21 B22 B23

. . .
. . .

. . .

Bnn−1

Bn−1n Bnn A0

A2 A1 A0

A2 A1 A0

. . .
. . .

. . .


,
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where Bii ∈ R(i+1)×(i+1), Bi i−1 ∈ R(i+1)×i, Bi−1 i ∈ Ri×(i+1), and A0, A1, A2 ∈ R(n+1)×(n+1).
The matrices of transition rates for the boundary states are given by

B00 = (−λ), Bi−1 i =


0 λ

. . . λ
. . .

. . .

0 λ

 ,

Bi i−1 =



0
(1− p)µ 0

(1− p)ν(2)
. . .

. . . 0
(1− p)ν(i)


and

Bii =


−(λ+ iδ) iδ

pµ −(λ+ µ+ (i− 1)δ) (i− 1)δ

. . .
. . .

. . .

pν(i− 1) −(λ+ ν(i− 1) + δ) δ
pν(i) −(λ+ ν(i))

 .

Moreover, the transition rates are given by

A0 =


λ

λ
. . .

λ

 ,

A2 =



0
(1− p)µ

2(1− p)µ
. . .

s(1− p)µ
. . .

s(1− p)µ


and

A1 =



−(λ+ nδ) nδ
pµ −(λ+ µ+ (n− 1)δ) (n− 1)δ

. . .
. . .

. . .

spµ −(λ+ sµ+ (n− s)δ) (n− s)δ

. . .
. . .

. . .

spµ −(λ+ sµ+ δ) δ
spµ −(λ+ sµ)


.

A.2 Stability condition

From the general theory of QBD processes [31] follows that the Markov process {N(t), Q1(t)} is
ergodic (stable) if and only if

πA0e < πA2e, (25)
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where e is the all one column vector and π = (π0, ..., πn) is the equilibrium distribution of the
Markov process with generator A∗ := A0 +A1 +A2. In other words, π is such that

πA∗ = 0, πe = 1, (26)

and

A∗ =



−nδ nδ
pµ −(pµ+ (n− 1)δ) (n− 1)δ

. . .
. . .

. . .

spµ −(psµ+ (n− s)δ) (n− s)δ

. . .
. . .

. . .

psµ −(psµ+ δ) δ
psµ −psµ


.

Then π must satisfy the balance equations

−nδπ0 + pµπ1 = 0,

(n− j + 1)δπj−1 − (pν(j) + (n− j)δ)πj + pν(j + 1)πj+1 = 0,

δπn−1 − psµπn = 0,

with ν(j) = min{j, s}µ, and the normalization condition

n∑
i=0

πi = 1.

It is readily verified that

πi =

 π0

(
n
i

) (
δ
pµ

)i
for 0 ≤ i ≤ s,

π0

(
n
i

)
i!
s!s

s−i
(
δ
pµ

)i
for s+ 1 ≤ i ≤ n

(27)

with

π0 =

(
s∑
i=0

(
n

i

)(
δ

pµ

)i
+

n∑
i=s+1

(
n

i

)
i!

s!
ss−i

(
δ

pµ

)i)−1

.

satisfies the balance equations and the normalization condition.

Proposition 4. The distribution of the closed two-node Jackson network illustrated in Figure 2a
is given by

π̂i =

 π̂0

(
n
i

) (
δ
pµ

)i
for 0 ≤ i ≤ s,

π̂0

(
n
i

)
i!
s!s

s−i
(
δ
pµ

)i
for s+ 1 ≤ i ≤ n

(28)

with

π̂0 =

[
s∑
i=0

(
n

i

)(
δ

pµ

)i
+

n∑
i=s+1

(
n

i

)
i!

s!
ss−i

(
δ

pµ

)i]−1

.

Proof. We have a two-node closed Jackson network, with probability transition matrix

P =

(
1− p p

1 0

)
.
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Let ri(m) denote the rate of service when there are m patient at queue i, so r1(m) = min{m, s}
and r2(m) = m. The throughput vector γ = (γ1, γ2) ∈ R1

2 must satisfy γ = γP and we find
that γ = (p, 1) suffices. From the general theory of Jackson networks, see [21], it follows that the
stationary distribution is given by

πi = G−1g1(i)g2(n− i)

with

g1(i) = (γ1/µ)i∏i
m=1 r1(m)

, g2(n− i) = (γ2/δ)
n−i∏n−i

m=1 r2(m)
,

and normalization constant G =
∑n
i=0 g1(i)g2(n− i). Then,

g1(i) =

{ 1
i!µi for 0 ≤ i ≤ s,

1
s!si−sµi for s+ 1 ≤ i ≤ n,

g2(n− i) =
1

(n− i)!

(p
δ

)n(δ
p

)i
,

and rewriting the expressions yields (28).

A.3 Stationary distribution

Assuming that the stability condition is satisfied, we can determine the unique stationary distri-
bution of the Markov process {N(t), Q1(t)}. The vector πi can be written as πn+i = πnG

i for
i = 0, 1, ..., where G is the minimal nonnegative solution of the non-linear matrix equation

A0 +GA1 +G2A2 = 0. (29)

The balance equations can be written as

πi−1A0 + πiA1 + πi+1A2 = 0, i = n+ 1, n+ 2, ...

and using πn+i = πnG
i−n for i = 0, 1, ..., this find

πnG
i−n−1 (A0 +GA1 +GA2) = 0, i = n+ 1, n+ 2, ....

Moreover, we have the boundary equations

π0B00 + π1B10 = 0

π0B01 + π1B11 + π2B21 = 0

π1B12 + π1B22 + π2B32 = 0

...

πn−2Bn−2n−1 + πn−1Bn−1n−1 + πnBnn−1 = 0

πn−1Bn−1n + πnBnn + πn+1A2 = 0,

along with the normalization equation

1 =

∞∑
i=0

πie =

n−1∑
i=0

πie+ πn(I −G)−1e,

where we slightly abuse notation by using e as the all ones vector of appropriate size. We note
that the matrix G has a spectral radius less than one and therefore (I −G) is invertible.
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These equations provide the tools for finding the equilibrium probabilities. Although it is hard
to solve G analytically from Equation (29), it is easy to solve numerically by using the following
algorithm (matrix-geometric method). Rewriting (29) gives

G = −(A0 +G2A2)A−1
1 ,

where A1 is invertible, since it is a transient generator matrix. Let

Gk+1 = −(A0 +G2
kA2)A−1

1 ,

starting with Gk = 0. We note that Gk ↑ G as k grows to infinity [31]. Once ||Gk+1 − Gk||2 is
below a certain preset threshold, we approximate G by Gk+1.

B Proof of Proposition 2

First, note that by definition of the Erlang-R model with holding, in which no more that n patients
can be admitted in the ED simultaneously, that Qh1 (t)+Qh2 (t) ≤ n = QJ1 (t)+QJ2 (t) follows directly.
Therefore, we only consider the relation between the states in the blocking and holding variants
Erlang-R model.

As noted Section 3.1, the model with holding can be characterized as a three-dimensional
Markov chainXh(t) = (H(t), Qh1 (t), Qh2 (t)) in which the components denote the number of holding,
needy and content patients respectively. The Erlang-R model with blocking similarly admits a
Markov process description, but with two dimensions, namely Xb(t) = (Qb1(t), Qb1(t)).

We prove the result by constructing a coupling between the Markov processes Xh and Xb. Let

Z(t) :=
(
X̂h(t), X̂b(t)

)
=
(
Ĥ(t), Q̂h1 (t), Q̂h2 (t), Q̂b1(t), Q̂b2(t)

)
.

We first define the transition rates of this five-dimensional Markov process, which naturally
only depend on the current state of the system. After that we show that the transition rates
relevant to X̂h(t) and Xh(t) coincide with those of either Xh(t) or X̂b(t), respectively. The latter
implies that the marginal transitions of X̂h(t) and Xb(t) (and X̂b(t) and Xh(t)) are equal, and
hence so are their probability distribution of the Markov processes.

Let Z(t) = (h, qh1 , q
h
2 , q

b
1, q

b
2). While defining the reachable states from this state and associated

transition rates, we distinguish four transition types, and further differentiate the transition rates
depending on the current state.

Arrival. Arrivals to occur in both models simultaneously, but are handled differently according
to the current queue lengths.

1. If qh1 + qh2 < n and qb1 + qb2 < n,

(h, qh1 + 1, qh2 , q
b
1 + 1, qb2) with rate λ, (30)

2. if qh1 + qh2 = n and qb1 + qb2 < n,

(h+ 1, qh1 , q
h
2 , q

b
1 + 1, qb2) with rate λ, (31)

3. if qh1 + qh2 < n and qb1 + qb2 = n,

(h, qh1 + 1, qh2 , q
b
1, q

b
2) with rate λ, (32)

4. if qh1 + qh2 = n and qb1 + qb2 = n,

(h+ 1, qh1 + 1, qh2 , q
b
1, q

b
2) with rate λ, (33)

Departure. Basically, we align service completions in the two models, but allow a completion
occurring solely in either of one of the two models, only if the queue length in this model is strictly
larger than in the other one.
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1. If qh1 ≥ qb1 and h > 0{
(h− 1, qh1 , q

h
2 , q

b
1 − 1, qb2) with rate (qb1 ∧ s)(1− p)µ,

(h− 1, qh1 , q
h
2 , q

b
1, q

b
2) with rate [(qh1 ∧ s)− (qb1 ∧ s)](1− p)µ.

(34)

2. If qh1 < qb1 and h > 0{
(h− 1, qh1 , q

h
2 , q

b
1 − 1, qb2) with rate (qh1 ∧ s)(1− p)µ,

(h, qh1 , q
h
2 , q

b
1 − 1, qb2) with rate [(qb1 ∧ s)− (qh1 ∧ s)](1− p)µ.

(35)

3. If qh1 ≥ qb1 and h = 0{
(0, qh1 − 1, qh2 , q

b
1 − 1, qb2) with rate (qb1 ∧ s)(1− p)µ,

(0, qh1 − 1, qh2 , q
b
1, q

b
2) with rate [(qh1 ∧ s)− (qb1 ∧ s)](1− p)µ.

(36)

4. If qh1 < qb1 and h = 0{
(0, qh1 − 1, qh2 , q

b
1 − 1, qb2) with rate (qh1 ∧ s)(1− p)µ,

(0, qh1 , q
h
2 , q

b
1 − 1, qb2) with rate [(qb1 ∧ s)− (qh1 ∧ s)](1− p)µ.

(37)

Become content The differentiation between transitions is similar to those in the departure
transition type.

1. If qh1 ≥ qb1,{
(h, qh1 − 1, qh2 + 1, qb1 − 1, qb2 + 1) with rate (qb1 ∧ s)pµ,
(h, qh1 − 1, qh2 + 1, qb1, q

b
2) with rate [(qh1 ∧ s)− (qb1 ∧ s)]pµ.

(38)

2. If qh1 < qb1,{
(h, qh1 − 1, qh2 + 1, qb1 − 1, qb2 + 1) with rate (qh1 ∧ s)pµ,
(h, qh1 , q

h
2 , q

b
1 − 1, qb2 + 1) with rate [(qb1 ∧ s)− (qh1 ∧ s)]pµ.

(39)

Become needy

1. If qh2 ≥ qb2, {
(h, qh1 + 1, qh2 − 1, qb1 + 1, qb2 − 1) with rate qb2δ,
(h, qh1 + 1, qh2 − 1, qb1, q

b
2) with rate (qh2 − qb2)δ,

(40)

2. If qh2 < qb2, {
(h, qh1 + 1, qh2 − 1, qb1 + 1, qb2 − 1) with rate qh2 δ,
(h, qh1 , q

h
2 , q

b
1 + 1, qb2 − 1) with rate (qb2 − qh2 )δ,

(41)

This set of transitions defines the dynamics of the Markov process Z(t) = (X̂h(t), X̂b(t)). Let
us now restrict our attention to the transitions in which (at least one of the) first three coordinates
of Z(t) changes, that is, the marginal transitions of the process X̂h. Let X̂h(t) = (h, qh1 , q

h
2 ), then

according to the transition scheme above, X̂h moves to state

1. If qh1 + qh2 < n (and hence necessarily h = 0),
(0, qh1 + 1, qh2 ) with rate λ,
(0, qh1 − 1, qh2 ) with rate (qh1 ∧ s)(1− p)µ,
(0, qh1 − 1, qh2 + 1) with rate (qh1 ∧ s)pµ,
(0, qh1 + 1, qh2 − 1) with rate qh2 δ.
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2. if qh1 + qh2 = n and h = 0,
(1, qh1 , q

h
2 ) with rate λ,

(0, qh1 , q
h
2 ) with rate (qh1 ∧ s)(1− p)µ,

(0, qh1 − 1, qh2 + 1) with rate (qh1 ∧ s)pµ,
(0, qh1 + 1, qh2 − 1) with rate qh2 δ.

3. if h > 0 (and hence necessarily qh1 + qh2 = n),
(h+ 1, qh1 , q

h
2 ) with rate λ,

(h− 1, qh1 , q
h
2 ) with rate (qh1 ∧ s)(1− p)µ,

(h, qh1 − 1, qh2 + 1) with rate (qh1 ∧ s)pµ,
(h, qh1 + 1, qh2 − 1) with rate qh2 δ.

One can check that these transitions indeed coincide with the transitions in the original holding

model, hence X̂h(t)
d
= Xh(t).

Similarly, when the focusing on transitions of Z(t) that are relevant for X̂b(t), we deduce the
following transition scheme. If X̂b(t) = (qb1, q

b
2), then the next move according to the transitions

of Z(t) is 
(qb1 + 1{qb1+qb2<n}, q

b
2) with rate λ,

(qb1 − 1, qb2) with rate (qb1 ∧ s)(1− p)µ,
(qb1 − 1, qb2 + 1) with rate (qb1 ∧ s)pµ,
(qb1 + 1, qb2 − 1) with rate qb2δ.

These transition rates clearly coincide with the original Erlang-R model with blocking, and

also hence X̂b(t)
d
= Xh(t).

Next, we show that under this coupling scheme we have that if Ĥ(0) = 0, Q̂h1 (0) = Q̂b1(0) and
Q̂h1 (0) = Q̂b(0) then for all t ≥ 0, Z(t) satisfies the hypothesis:

(i) Q̂b1(t) + Q̂b2(t) ≤ Q̂h1 (t) + Q̂h2 (t),

(ii) Q̂b2(t) ≤ Q̂h2 (t),

(iii) Q̂b1(t) ≤ Q̂h1 (t) +H(t).

We do so by induction on the next state reached after a transition of the joint Markov process
Z = (X̂h, X̂b). First of all, Z(0) clearly satisfies (i)-(iii). Next, assume Z(t−) = (h, qh1 , q

h
2 , q

b
1, q

b
2)

satisfies the hypothesis and a transition occurs at t. We show that under the specified coupling
scheme, the state reached after the next transition, Z(t) must satisfy (i)-(iii) as well. To do so,
we differentiate between the four types of transitions that could occur: arrival, departure, become
content and become needy.
Arrival.
Recall that under our coupling scheme an arrival always occurs in both the holding and blocking
model simultaneously, see (30)–(33). Furthermore, qh2 and qb2 are unchanged during this transition,
rendering (ii) trivial.

By hypothesis qb1 + qb2 ≤ qh1 + qb2, hence the event qh1 + qh2 < n and qh1 + qb2 = n, with resulting
state (0, qh1 + 1, qh2 , q

b
1, q

b
2), can be excluded from our analysis We check the conditions for the

remaining three cases.

1. If Z(t) = (0, qh1 + 1, qh2 , q
b
1 + 1, qb2), then qb1 + qb2 < n and qh1 + qh2 < n.

(i) Q̂b1(t) + Q̂b2(t) = qb1 + qb2 + 1
(i)

≤ qh1 + qh2 + 1 = Q̂h1 (t) + Q̂h2 (t).

(iii) Q̂b1(t) = qb1 + 1
(iii)

≤ qh1 + 1 = Q̂h1 (t) = Q̂h1 (t) + Ĥ(t).

2. If Z(t) = (h+ 1, qh1 , q
h
2 , q

b
1 + 1, qb2), then qb1 + qb2 < n and qh1 + qh2 = n.
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(i) Q̂b1(t) + Q̂b2(t) = qb1 + qb2 + 1 ≤ n = qh1 + qh2 = Q̂h1 (t) + Q̂h2 (t).

(iii) Q̂b1(t) = qb1 + 1
(iii)

≤ qh1 + 1 = Q̂h1 (t) + Ĥ(t).

3. If Z(t) = (h+ 1, qh1 , q
h
2 , q

b
1, q

b
2), then qb1 + qb2 = qh1 + qh2 = n.

(i) Q̂b1(t) + Q̂b2(t) = qb1 + qb2
(i)

≤ qh1 + qh2 = Q̂h1 (t) + Q̂h2 (t).

(iii) Q̂b1(t) = qb1
(iii)

≤ qh1 + h < qh1 + h+ 1 = Ĥ(t).

Departure. By carefully examining the possible state transitions of Z(t) following a departure,
we list six reachable states. However, by (iii), we have that if h = 0, then qb1 ≤ qh1 , which excludes
the state (0, qh1 , q

h
2 , q

b
1, q

b
2) in (37) from the reachability graph. We check the remaining states for

conditions (i)–(iii). Again, during a departure, qb2 and qh2 are unchanged, so (ii) is automatically
satisfied by the induction hypothesis.

1. If Z(t) = (h− 1, qh1 , q
h
2 , q

b
1 − 1, qb2), then h > 0.

(i) Q̂b1(t) + Q̂b2(t) = qb1 + qb2 − 1
(i)

≤ qh1 + qh2 − 1 < qh1 + qh2 = Q̂h1 (t) + Q̂h2 (t).

(iii) Q̂b1(t) = qb1 − 1
(iii)

≤ qh1 + h− 1 = Q̂h1 (t) + Ĥ(t).

2. If Z(t) = (h− 1, qh1 , q
h
2 , q

b
1, q

b
2), then h > 0 and qh1 ≥ qb1 (*).

(i) Q̂b1(t) + Q̂b2(t) = qb1 + qb2
(i)

≤ qh1 + qh2 = Q̂h1 (t) + Q̂h2 (t).

(iii) Q̂b1(t) = qb1
(∗)
≤ qh1 − 1 ≤ qh1 + h− 1 = Q̂h1 (t) + Ĥ(t).

3. If Z(t) = (h, qh1 , q
h
2 , q

b
1 − 1, qb2), then h > 0 and qh1 < qb1 (*).

(i) Q̂b1(t) + Q̂b2(t) = qb1 + qb2 − 1 < qb1 + qb2
(i)

≤ qh1 + qh2 = Q̂h1 (t) + Q̂h2 (t).

(iii) Q̂b1(t) = qb1 − 1 < qb1
(∗)
≤ qh1 + h = Q̂h1 (t) + Ĥ(t).

4. If Z(t) = (h, qh1 − 1, qh2 , q
b
1 − 1, qb2), then h = 0.

(i) Q̂b1(t) + Q̂b2(t) = (qb1 − 1) + qb2 − 1 <
(i)

≤ (qh1 − 1) + qh2 = Q̂h1 (t) + Q̂h2 (t).

(iii) Q̂b1(t) = qb1 − 1
(iii)

≤ qh1 − 1 = Q̂h1 (t) + Ĥ(t).

5. If Z(t) = (0, qh1 − 1, qh2 , q
b
1, q

b
2), then h = 0 and qh1 > qb1 (*).

(i) Q̂b1(t) + Q̂b2(t) = qb1 + qb2
(i)

≤ (qh1 − 1) + qb2
(ii)

≤ (qh1 − 1) + qh2 = Q̂h1 (t) + Q̂h2 (t).

(iii) Q̂b1(t) = qy
(∗)
≤ qh1 − 1 = Q̂h1 (t) + Ĥ(t).

Content start. On the event of a patient becoming content, it is clear that the sums Q̂h1 (t)+Q̂h2 (t)
and Q̂b1(t)+Q̂b2(t) and H(t) are unaffected. This means that (i) is directly satisfied by the induction
hypothesis. According to (38)–(39), three states can be reached.

1. If Z(t) = (h, qh1 − 1, qh2 + 1, qb1 − 1, qb2 + 1),

(ii) Q̂b2(t) = qb2 + 1
(ii)

≤ qh2 + 1 = Q̂h2 (t).

(iii) Q̂b1(t) = qb1 − 1
(iii)

≤ qh1 + h− 1 = Q̂h1 (t) + Ĥ(t).

2. If Z(t) = (h, qh1 − 1, qh2 + 1, qb1, q
b
2), then qh1 > qb1 (*),

(ii) Q̂b2(t) = qb2
(ii)

≤ qh2 < qh2 + 1 = Q̂h2 (t).

(iii) Q̂b1(t) = qb1
(iii)

≤ qh1 + h < qh1 + 1 + h = Q̂h1 (t) + Ĥ(t).
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3. If Z(t) = (h, qh1 , q
h
2 , q

b
1 − 1, qb2 + 1), then qb1 > qh1 and hence by (iii) h > 0. The latter is only

possible if qh1 + qh2 = n (*),

(ii) Q̂b2(t) = qb2 + 1 ≤ n− qb1 + 1 = (qh1 + qh2 )− qb1 + 1
(∗)
≤ qh2 = Q̂h2 (t).

(iii) Q̂b1(t) = qb1 − 1 < qh1 + h− 1
(∗)
≤ qh1 + h = Q̂h1 (t) + Ĥ(t).

Become needy.
Just as in the event of content start, the sums Q̂h1 (t) + Q̂h2 (t) and Q̂b1(t) + Q̂b2(t) and H(t) are
unaffected, whereby (i) is directly satisfied by the induction hypothesis. By (ii), we have qh2 ≥ qb2.
This excludes the state (h, qh1 , q

h
2 , q

b
1 + 1, qb2 − 1) from being reached, see (41). We check the

remaining to possibilities.

1. If Z(t) = (h, qh1 + 1, qh2 − 1, qb1 + 1, qb2 − 1).

(ii) Q̂b2(t) = qb2 − 1
(ii)

≤ qh2 − 1 = Q̂h2 (t).

(iii) Q̂b1(t) = qb1 + 1
(iii)

≤ qh1 + h+ 1 = Q̂h1 (t) + Ĥ(t).

2. If Z(t) = (h, qh1 + 1, qh2 − 1, qb1, q
b
2), then qh2 > qb2 (*).

(ii) Q̂b2(t) = qb2
(∗)
≤ qh2 − 1 = Q̂h2 (t).

(iii) Q̂b1(t) = qb1
(iii)

≤ qh1 + h < qh1 + 1 + h = Q̂h1 (t) + Ĥ(t).

Hence, the state reached after any feasible transition under the coupling scheme satisfies the
conditions (i)–(iii). Thus we conclude that the joint process (Ĥ(t), Q̂h1 (t), Q̂h2 (t), Q̂b1(t), Q̂b2(t))
adheres to (i)–(iii) for all t. Consequently, we have that (i) implies

P
(
Qb1(t) +Qb2(t) ≥ k

)
= P

(
Qb1(t) +Qb2(t) ≥ k

)
=

n∑
j=0

P
(
Q̂b1(t) + Q̂b2(t) ≥ k, Q̂h1 (t) + Q̂h2 (t) = j

)
=

n∑
j=k

P
(
Q̂b1(t) + Q̂b2(t) ≥ k, Q̂h1 (t) + Q̂h2 (t) = j

)
≤

n∑
j=h

P
(
Q̂h1 (t) + Q̂h2 (t) = j

)
= P

(
Qh1 (t) +Qh2 (t) ≥ k

)
= P

(
Qh1 (t) +Qh2 (t) ≥ k

)
.

The other two orderings follow similarly.

Remark 6. Note that under this coupling scheme we cannot get the ordering Q̂h1 (t)(t) ≥ Q̂b1(t)(t)
for all t ≥ 0. A minimal counter example occurs for s = n = 1. Let Z(0) = ((0, 0, 0), (0, 0)). First,
two arrivals occur, such that state ((1, 1, 0), (1, 0)) is reached, followed by a departure transition,
yielding ((0, 1, 0), (0, 0)). Next, the one patient left in the model with holding system becomes
content, so that we obtain ((0, 0, 1), (0, 0)). At this stage, if an arrival occurs, the arriving patient
will be put in the holding queue in the model with holding, and admitted to nurse queue in the
model with blocking. Hence we end up in state ((1, 0, 1), (1, 0)), in which Q̂h1 (t) < Q̂b1(t).

C Proof of Theorem 2 - Performance measures of Erlang-R
with blocking

For convenience we state the theorem here again.
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Theorem 7. Let s and n scale as in (11) with β, γ > 0 as λ→∞. Then, if β 6= 0

gb(β, γ) := lim
λ→∞

Pb(delay) =

1 +
β
∫ β
−∞ Φ

(
γ−t
√
r√

1−r

)
dΦ(t)

φ(β)Φ(η)− φ(
√
β2 + η2)e

1
2ω

2

Φ(ω)

−1

, (42)

f b(β, γ) := lim
λ→∞

√
R1 · Pb(block) =

√
rφ(γ)Φ(−ω

√
r) + φ(

√
β2 + η2) e

1
2ω

2

Φ(ω)∫ β
−∞ Φ

(
γ−t
√
r√

1−r

)
dΦ(t) + φ(β)Φ(η)

β − φ(
√
β2+η2)

β e
1
2ω

2

Φ(ω)
,

(43)

hb(β, γ) := lim
λ→∞

√
R1 · E[W ] =

φ(β)Φ(η)
β2 +

(
β
r −

γ√
r
− 1

β

)
φ(
√
η2+β2)

β e
1
2ω

2

Φ(ω)−
√

1−r
r

φ(β)φ(η)
β∫ β

−∞ Φ
(
γ−t
√
r√

1−r

)
dΦ(t) + φ(β)Φ(η)

β − φ(
√
β2+η2)

β e
1
2ω

2

Φ(ω)
,

(44)
and if β = 0,

gb0(γ) := lim
λ→∞

Pb(delay)

1 +

∫ 0

−∞ Φ
(
γ−t
√
r√

1−r

)
dΦ(t)√

1−r
r

1√
2π

(ηΦ(η) + φ(η))

−1

(45)

f b0(γ) := lim
λ→∞

√
R1 · Pb(block) =

√
r φ(γ)Φ(−ω

√
r) + 1√

2π
Φ(η)∫ β

−∞ Φ
(
γ−t
√
r√

1−r

)
dΦ(t) +

√
1−r
r

1√
2π

(ηΦ(η) + φ(η))
, (46)

hb0(γ) := lim
λ→∞

√
R1 · E[W ] =

1

2µ

(
γ2/r + 1

)
Φ(η) + ηφ(η)

r
1−r
√

2π
∫ 0

−∞ Φ
(
γ−t
√
r√

1−r

)
dΦ(t) +

√
r

1−r (ηΦ(η) + φ(η))
, (47)

where η = γ−β
√
r√

1−r and ω := γ−β/
√
r√

1−r .

In this appendix we prove the heavy-traffic approximations of the system-measures introduced
in Theorem 2. As a first stage we present and prove four lemmas.

Lemma 1. Let the variables λ, s and n tend to ∞ simultaneously and satisfy the QED scaling
conditions in (11) with β 6= 0. Define B1 as the expression

B1 =
e−R

s!
Rs1

1

1− ρ

n−s−1∑
l=0

1

l!
Rl2e

−R2 .

Then

lim
λ→∞

B1 =
φ(β)Φ(η)

β
.

Lemma 2. Let the variables λ, s and n tend to ∞ simultaneously and satisfy the QED scaling
conditions in (11) with β 6= 0. Define B2 as the expression

B2 =
e−(R1+R2)

s!
Rs1

ρn−s

1− ρ

n−s−1∑
l=0

1

l!

(
R2

ρ

)l
.

Then

lim
λ→∞

B2 =
φ(
√
η2 + β2)

β
e

1
2ω

2

Φ(ω).
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Lemma 3. Let the variables λ, s and n tend to ∞ simultaneously and satisfy the QED scaling
conditions in (11). Define A as the expression

A =
∑

i,j|i≤s,
i+j≤n−1

1

i!j!
Ri1R

j
2e
−(R1+R2). (48)

Then

lim
λ→∞

A =

∫ β

−∞
Φ

(
η + (β − t)

√
δ

µp

)
dΦ(t).

Lemma 4. Let the variables λ, s and n tend to ∞ simultaneously and satisfy the QED scaling
conditions in (11) with β = 0. Define B as the expression

B = e−(R1+R2) 1

s!
R1

s
n−s−1∑
j=0

1

j!
R2

j
n−s−j−1∑

i=0

ρi.

Then

lim
λ→∞

B =

√
µp

δ

1√
2π

(ηΦ(η) + φ(η)) = .

C.1 Proof of Lemma 1

Proof. By using Stirling’s formula
(
s! ≈

√
2πs

(
s
e

)s)
, and QED assumption that

√
s(1−R1/s)→ β

as λ→∞, one obtains for B1:

B1 ≈
es−R√

2πs
ρs
√
s

β

n−s−1∑
l=0

1

l!
(R2)

l
e−R2 =

es−Rρs√
2πβ

n−s−1∑
l=0

1

l!
Rl2e

−R2

=
es(1−ρ)√

2πβ
ρsP (Xλ ≤ n− s− 1)

where ρ = λ
(1−p)sµ , and Xλ is a random variable with the Poisson distribution with parameter R2.

When λ→∞, R2 →∞ too, since p, and δ are fixed. Note that

P(Xλ ≤ n− s− 1) = P
(
Xλ −R2√

R2

≤ n− s− 1−R2√
R2

)
Now we need to find the limit for the following fraction

n− s−R2√
R2

as λ→∞ using assumption that
√
s(1−R1/s)→ β as λ→∞.

lim
λ→∞

n− s−R2√
R2

= lim
λ→∞

n− R1

r − s+R1√
R1

r −R1

=
γ
√

R1

r − β
√
R1√

R1

r −R1

=
γ − β

√
r√

1− r
. (49)

Hence, define η = γ−β
√
r√

1−r . Thus, when λ → ∞, by the Central Limit Theorem (Normal approxi-

mation to Poisson) we have (
Xλ −R2√

R2

)
⇒ N(0, 1)

and due to assumption QED (i) of the lemma we get

P(Xλ ≤ n− s− 1)→ P(N(0, 1) ≤ η) = Φ(η), as λ→∞ (50)
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where N(0, 1) is a standard normal random variable with distribution function Φ(·). It follows
thus that

B1 ≈
es(1−ρ)√

2πβ
ρsΦ(η) =

es(1−ρ+ln ρ)

√
2πβ

Φ(η).

Making use of the expansion

ln ρ = ln(1− (1− ρ)) = −(1− ρ)− (1− ρ)2

2
+ o(1− ρ)2, (ρ→ 1)

one obtains

B1 ≈
es(1−ρ−(1−ρ)− (1−ρ)2

2 )

√
2πβ

Φ(η) =
e−

s(1−ρ)2
2

√
2πβ

Φ(η)

by QED assumption that
√
s(1−R1/s)→ β, it is clear that s(1− ρ)2 → β2, when λ→∞. This

implies

lim
λ→∞

B1 =
φ(β)Φ(η)

β

where φ(·) is the standard normal density function, and Φ(·) is the standard normal distribution
function. This proves Lemma 1.

C.2 Proof of Lemma 2

Again according to Stirling’s formula, and the QED assumption that n−s−R1−R2√
R1+R2

→ η as λ→∞,

one obtains for B2:

B2 ≈
es−R1−R2

√
2πs

ρn

1− ρ

n−s−1∑
l=0

1

l!

(
R2

ρ

)l
=
es(1−ρ)−R2

√
2πs

√
sρn

β
e
R2
ρ

n−s−1∑
l=0

1

l!

(
R2

ρ

)l
e−

R2
ρ

=
es(1−ρ)+R2( 1−ρ

ρ )
√

2πβ
ρnP(Yλ ≤ n− s− 1),

where ρ = λ
(1−p)sµ , and Yλ is a random variable with the Poisson distribution with parameter R2

ρ .

Note that

P(Yλ ≤ n− s− 1) = P

Yλ − R2

ρ√
R2

ρ

≤
n− s− 1− R2

ρ√
R2

ρ

 .

Now we need to find the limit for the following fraction
n−s−R2

ρ√
R2
ρ

as λ→∞ using assumption QED

(i).

lim
λ→∞

n− s− R2

ρ√
R2

ρ

= lim
λ→∞

η
√
R2 +R2 − R2

ρ√
R2

ρ

= lim
λ→∞

η
√
ρ+

√
R2(ρ− 1)
√
ρ

= η − lim
λ→∞

√
spµ

δ
(1− ρ) = η −

√
pµ

δ
β.

(51)

Denote ω = η−β
√

pµ
δ . Thus, when λ→∞, by the Central Limit Theorem (Normal approximation

to Poisson) we have Yλ − R2

ρ√
R2

ρ

⇒ N(0, 1)

and
P(Yλ ≤ n− s− 1)→ P(N(0, 1) ≤ ω) = Φ(ω), as λ→∞,
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where N(0, 1) is a standard normal random variable with distribution function Φ. It follows thus
that

B2 ≈
es(1−ρ)+R2( 1−ρ

ρ )
√

2πβ
ρnΦ(ω) =

es(1−ρ)+R2( 1−ρ
ρ )+n ln ρ

√
2πβ

Φ(ω).

Making use of the expansion

ln ρ = ln(1− (1− ρ)) = −(1− ρ)− (1− ρ)2

2
+ o(1− ρ)2, (ρ→ 1)

and using our assumptions that as λ → ∞: ρ → 1, s ≈ R1 + β
√
R1, n ≈ R1

r + γ
√

R1

r , and

n− s ≈ R2 + η
√
R2, one obtains

s(1− ρ) +R2

(
1− ρ
ρ

)
+ n ln ρ = s(1− ρ) +R2

(
1− ρ
ρ

)
− n

(
1− ρ+

(1− ρ)2

2

)
= −

(
n− s− R2

ρ

)
(1− ρ)− n(1− ρ)2

2
≈ −

(
η
√
R2 +R2 −

R2

ρ

)
(1− ρ)− n(1− ρ)2

2

=

(
R2

ρ
− n

2

)
(1− ρ)2 − η

√
R2(1− ρ) ≈

(
R2

ρ
− 1

2

(
R1

r
+ γ

√
R1

r

))
(1− ρ)2 − η

√
R2(1− ρ)

=

(
R2

ρ
− R1

2r

)
(1− ρ)2 − 1

2
γ

√
R1

r
(1− ρ)2 − η

√
R2(1− ρ)

=

(
R2

ρ
− R1

2r

)
β2

R!
− 1

2
γ

√
R1

r

β2

R1
− η
√
R2β

√
1

R1

≈ pµ

δρ
β2 − 1

2

(pµ
δ

+ 1
)
β2 − ηβ

√
pµ

δ
= −1

2
(η2 + β2) +

1

2
ω2.

Therefore,

lim
λ→∞

B2 ≈
es(1−ρ)+R2( 1−ρ

ρ )+n ln ρ

√
2πβ

Φ(ω) ≈ e−
1
2 (η2+β2)+ 1

2ω
2

√
2πβ

Φ(ω) =
φ(
√
η2 + β2)

β
e

1
2ω

2

Φ(ω).

This proves Lemma 2.

C.3 Proof of Lemma 3

We will find the asymptotic behavior of A by finding its lower and upper bounds. Let us consider
a partition {sh}lh=0 of the interval [0, s].

sh = s− hτ, h = 0, 1, ..., `; s`+1 = 0

where τ =
[
ε
√
R1

]
, ε is an arbitrary non-negative real and ` is a positive integer.

If λ and s tend to infinity and satisfy the QED assumption that n−s−R1−R2√
R1+R2

→ η as λ → ∞,

then ` < s
τ for λ big enough and all the sh belong to [0, s]; h = 0, 1, ..., `. Emphasize that the

length τ of every interval [sh−1, sh] depends on λ. The variable A is given by the formula (48).
Let us consider a lower estimate for A given by the following sum:

A ≥ A1 =
∑̀
h=0

sh∑
i=sh+1

1

i!
Ri1e

−R1 ·
n−sh−1∑
j=0

1

j!
Rj2e

−R2

=
∑̀
h=0

sh∑
i=sh+1

1

i!
Ri1e

−RP(Yn ≤ n− sh − 1)

=
∑̀
h=0

P(sh+1 ≤ Xn ≤ sh)P(Yn ≤ n− sh − 1)

(52)
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where Xn and Yn are independent Poisson random variables with parameters R1 and R2, respec-
tively.

If λ→∞ then R1 →∞, since p and µ are fixed. Note that

P(sh+1 ≤ Xn ≤ sh) = P
(
sh+1 −R1√

R1

≤ Xn −R1√
R1

≤ sh −R1√
R1

)
.

Thus, when λ→∞, by the Central Limit Theorem (Normal approximation to Poisson) we have

Xn −R√
R1

⇒ N(0, 1).

Since

lim
λ→∞

sh −R1√
R1

= lim
λ→∞

s− hε
√
R1 −R1√
R1

= lim
λ→∞

R1 − β
√
R1 − hε

√
R1 −R1√

R1

= β − hε

we obtain:

P(sh+1 ≤ Xn ≤ sh) = Φ(β − hε)− Φ(β − (h+ 1)ε), h = 0, .., `− 1

P(0 ≤ Xn ≤ s`) = Φ(β − `ε).
(53)

Similarly, if λ→∞ then R2 →∞, since p,δ and γ are fixed. Note that

P(Yn ≤ n− sh) = P
(
Yn −R2√

R2

≤ n− sh −R2√
R2

)
.

Thus, when λ→∞, by the Central Limit Theorem (Normal approximation to Poisson) we have

Yn −R2√
R2

⇒ N(0, 1).

Since

lim
λ→∞

n− sh −R2√
R2

= lim
λ→∞

n− s− hε
√
R1 −R2√

R2

= lim
λ→∞

R2 + η
√
R2 − hε

√
R1 −R2√

R2

= η − hε
√
R1√
R2

= η − hε

√
δ

pµ
,

we obtain:

P(Yn ≤ n− sh) = Φ

(
η − hε

√
δ

pµ

)
, h = 0, .., ` (54)

It follows from (52), (53), and (54) that

lim
λ→∞

A ≥
`−1∑
h=0

(Φ(β−hε)−Φ(β− (h+ 1)ε))Φ

(
η − hε

√
δ

pµ

)
+ Φ(β− `ε)Φ

(
η − `ε

√
δ

pµ

)
(55)

which is the lower Riemann-Stieltjes sum of the integral

−
∫ ∞

0

Φ

(
η + x

√
δ

pµ

)
dΦ(β − x) =

∫ β

−∞
Φ

(
η + (β − t)

√
δ

pµ

)
dΦ(t) (56)

39



corresponding to the partition {β − hε}`h=0 of the semi axis (−∞, β). Similarly, let us take the
upper estimate for A as the following sum:

A ≤ A2 =
∑̀
h=0

sh∑
i=sh+1

1

i!
Ri1e

−R1

n−sh+1−1∑
j=0

1

j!
Rj2e

−R2

=
∑̀
h=0

sh∑
i=sh+1

1

i!
Ri1e

−RP(Yn ≤ n− sh+1 − 1)

=
∑̀
h=0

P(sh+1 ≤ Xn ≤ sh)P(Yn ≤ n− sh+1 − 1)

(57)

where Xn and Yn are the same random variable as before. Using the same calculation that were
computed for the upper boundary we obtain

lim
λ→∞

A ≤
`−1∑
h=0

(Φ(β − hε)− Φ(β − (h+ 1)ε)) Φ

(
η − (h+ 1)ε

√
δ

pµ

)
+ Φ(β − `ε) (58)

which is the upper Riemann-Stieltjes sum for the integral (56). When ε→ 0 the boundaries (55)
and (58) lead to the following equality

lim
λ→∞

A =

∫ β

−∞
Φ

(
η + (β − t)

√
δ

pµ

)
dΦ(t) =

∫ β

−∞
Φ

(
γ − t

√
r√

1− r

)
dΦ(t)

This proves Lemma 3.

C.4 Proof of Lemma 4

Proof. First, we will rewrite Equation (48):

B = e−(R1+R2) 1

s!
R1

s
n−s−1∑
j=0

1

j!
R2

j
n−s−j−1∑

i=0

ρi = e−(R1+R2) 1

s!
R1

s
n−s−1∑
j=0

1

j!
R2

j 1− ρn−s−j

1− ρ
.

When β = 0, as λ→∞, by the QED assumption that
√
s(1− ρ)→ β, ρ = 1. Therefore,

n−s−j−1∑
i=0

ρi = n− s− j.

When β → 0, ρ → 1 but still ρ 6= 1, the expression 1−ρn−s−j

1−ρ can be approximated by 1−ρi
1−ρ ≈ i.

Thus,

lim
ρ→1

n−s−j−1∑
i=0

ρi = n− s− j,
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which is the same phrase as when ρ = 1. Hence,

B ≈ e−(R1+R2) 1

s!
R1

s
n−s−1∑
j=0

1

j!
R2

j(n− s− j)

= e−(R1+R2) 1

s!
R1

s

(n− s)
n−s−1∑
j=0

1

j!
R2

j −
n−s−1∑
j=0

1

j!
R2

j −
n−s−1∑
j=0

j

j!
R2

j


= e−(R1+R2) 1

s!
R1

s

(n− s)
n−s−1∑
l=0

1

l!
Rl2 −

n−s−2∑
j=0

1

j!
R2

j −R2

n−s−2∑
j=0

1

j!
R2

j


= e−(R1+R2) 1

s!
R1

s

(
(n− s)

n−s−1∑
l=0

1

l!
Rl2 −

n−s−2∑
l=0

1

l!
Rl2 −R2

n−s−2∑
l=0

1

l!
Rl2

)

= e−(R1+R2) 1

s!
R1

s

(
(n− s−R2)

n−s−1∑
l=0

1

l!
Rl2 +

Rn−s2

(n− s− 1)!

)

≈ es−R 1√
2πs

ρs

(
(n− s−R2)

n−s−1∑
l=0

1

l!
Rl2e

−R2 +
Rn−s2 e−R2

(n− s− 1)!

)

=
1√
2πs

(
(n− s−R2)

n−s−1∑
l=0

1

l!
Rl2e

−R2 +
Rn−s2 e−R2

(n− s− 1)!

)
.

As seen in Equation (50)

(n− s−R2)

n−s−1∑
l=0

1

l!
Rl2e

−R2 ≈ η
√
R2Φ(η).

By using Stirling’s formula:

Rn−s2 e−R2

(n− s− 1)!
=

(n− s)Rn−s2 e−R2

(n− s)!
≈ (n− s)en−s−R2√

2π(n− s)

(
R2

n− s

)n−s
=

(n− s)en−s−R2+(n−s) ln ( R2
n−s )√

2π(n− s)
=

√
n− s

2π
e(n−s)(1− R2

n−s+ln ( R2
n−s )).

By assuming that n−s−R1−R2√
R1+R2

→ η when λ→∞

(n− s)
(

1− R2

n− s
+ ln

(
R2

n− s

))
= (n− s)

(
1− R2

n− s
−
(

1− R2

n− s

)
− 1

2

(
1− R2

n− s

)2
)

= −n− s
2

(
1− R2

n− s

)2

= −1

2

(n− s−R2)
2

n− s
≈ −1

2

(
η
√
R2

)2
η
√
R2 +R2

≈ −1

2

(
η
√
R2

)2
η
√
R2 +R2

≈ −η
2

2
.

Therefore, by the QED assumption that n−s−R1−R2√
R1+R2

→ η .

√
n− s

2π
e(n−s)(1− R2

n−s+ln ( R2
n−s )) ≈

√
η
√
R2 +R2

2π
e−

η2

2 =

√
η
√
R2 +R2φ(η) ≈

√
R2φ(η).
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Combining the above approximations and the assumption that β = 0 and therefore s = R1 yields

B ≈ 1√
2πs

(
(n− s−R2)

n−s−1∑
l=0

1

l!
Rl2e

−R2 +
Rn−s2 e−R2

(n− s− 1)!

)

≈ 1√
2πs

(
η
√
R2Φ(η) +

√
R2φ(η)

)
=

√
R2√
2πs

(ηΦ(η) + φ(η))

=

√
R2√

2πR
(ηΦ(η) + φ(η)) =

√
pµ

δ

1√
2π

(ηΦ(η) + φ(η)) =

√
1− r
r

1√
2π

(ηΦ(η) + φ(η)) .

This proves Lemma 4.

C.5 Approximation of the Probability of Delay

The first approximation will be for the measure: the probability of waiting or the probability of
delay.

Theorem 8. Let the variables λ, s and n tend to ∞ simultaneously and satisfy the QED scaling
conditions in (11). Then if β 6= 0

lim
λ→∞

P(W > 0) =

(
1 +

β
∫ β
−∞ Φ

(
η + (β − t)

√
ξ
)
dΦ(t)

φ(β)Φ(η)− φ(
√
η2 + β2)e

1
2ω

2
Φ(ω)

)−1

,

and if β = 0,

lim
λ→∞

P(W > 0) =

1 +

∫ 0

−∞Φ
(
γ−t
√
r√

1−r

)
dΦ(t)√

1−r
r

1√
2π

(ηΦ(η) + φ(η))

−1

,

where ξ = R1

R2
= δ

pµ , ω = η − β
√
ξ−1.

Proof. Proof: By the Arrival theorem for closed networks,

Pn(W > 0) = Pn−1(Q1(∞) ≥ s) =

n−1∑
m=s

m∑
i=s

πbn−1(i,m− i)

= πn−1
0

n−1∑
m=s

m∑
i=s

1

s!si−s
Ri1

1

(m− i)!
Rm−i2 ,

where

πn−1
0 =

(
n−1∑
l=0

1

l!
(R1 +R2)

l
+

n−1∑
m=s

m∑
i=s

(
1

s!si−s
− 1

i!

)
1

(m− i)!
Ri1R

m−i
2

)−1

.

Thus,

Pn(W > 0) =

(
1 +

A

B

)−1

,

where

A =

n−1∑
l=0

1

l!
(R1 +R2)

l
e−(R1+R2) −

n−1∑
m=s

m∑
i=s

1

i!(m− i)!
Ri1R

m−i
2 e−(R1+R2)

=
∑

i,j|i≤s,
i+j≤n−1

1

i!j!
Ri1R

j
2e
−(R1+R2),
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B =

n−1∑
m=s

m∑
i=s

1

s!si−s
Ri1

1

(m− i)!
Rm−i2 e−(R1+R2) =

n−s−1∑
j=0

n−j−1∑
i=s

1

s!si−s
Ri1

1

j!
Rj2e

−(R1+R2)

=

n−s−1∑
j=0

n−s−j−1∑
i=0

1

s!si
1

j!
Ri+s1 Rj2e

−(R1+R2) =
1

s!
Rs1e

−(R1+R2)
n−s−1∑
j=0

1

j!
Rj2

n−s−j−1∑
i=0

ρi,

(59)

and ρ = λ
(1−p)sµ = R1

s .

Then under the QED assumption that
√
s(1− ρ)→ β, −∞ < β <∞, if β 6= 0 as λ→∞, we

can rewrite the right-hand side in the following way:

B =
1

s!
Rs1e

−(R1+R2)
n−s−1∑
j=0

1

j!
Rj2

1− ρn−s−j

1− ρ

=
1

s!
Rs1e

−(R1+R2) 1

1− ρ

n−s−1∑
j=0

1

j!
Rj2 −

1

s!
Rs1e

−(R1+R2) ρ
n−s

1− ρ

n−s−1∑
j=0

1

j!

(
R2

ρ

)j
= B1 −B2.

(60)

Applying Lemmas 1,2, and 3 if β 6= 0 we get

lim
λ→∞

P(W > 0) =

1 +
β
∫ β
−∞ Φ

(
η + (β − t)

√
δ
pµ

)
dΦ(t)

φ(β)Φ(η)− φ(
√
η2 + β2)e

1
2ω

2
Φ(ω)

−1

.

Applying Lemma 3 and 4 when β = 0 we get

lim
λ→∞

P(W > 0) =

1 +

∫ 0

−∞Φ
(
γ−t
√
r√

1−r

)
dΦ(t)√

1−r
r

1√
2π

(ηΦ(η) + φ(η))

−1

.

This proves Theorem 8.

C.6 Approximation of the Expected Waiting Time

In this appendix we will prove the approximation for the expected waiting time, stated in Section
4.2. The exact measure was defined in Section 3.2. For convenience we state the theorem here
again. The first theorem gives the approximation for the case where β 6= 0.

Theorem 9. Let the variables λ, s and n tend to ∞ simultaneously and satisfy the QED scaling
conditions in (11) with β 6= 0. Then

lim
λ→∞

√
sE[W ] =

1

µ

(
1
ξ −

η
β
√
ξ
− 1

β2

)
φ(
√
β2 + η2) e

1
2ω

2

Φ(ω) + φ(β)Φ(η)
β2 − φ(β)φ(η)√

ξβ∫ β
−∞ Φ(η + (β − t)

√
ξ) dΦ(t) + φ(β)Φ(η)

β − φ(
√
β2+η2)

β e
1
2ω

2

Φ(ω)
,

where ξ = R1

R2
= δ

pµ , ω = η − β
√
ξ−1.

Proof. Proof: It follows from (6) that the expectation of the waiting time is given by

E[W ] =

∫ ∞
0

pn(s; t)dt =
1

µs

n−1∑
m=s

m∑
i=s

πn−1(i,m− i)(i− s+ 1)

=
1

µs

n−1∑
m=s

m∑
i=s

πn−1(i,m− i)(i− s) +
1

µs

n−1∑
m=s

m∑
i=s

πn−1(i,m− i)

=
1

µs

n−1∑
m=s

m∑
i=s

πn−1(i,m− i)(i− s) +
1

µs
P(W > 0) = C +D,

(61)
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where D is given by

D =
1

µs
P(W > 0) =

1

µs

B

A+B

and A and B were defined in (48) and (59), respectively, and C is given by,

C =
1

µs

n−1∑
m=s

m∑
i=s

πn−1(i,m− i) (i− s)

=
1

µs
π0

n−1∑
m=s

m∑
i=s

Ri1
s!si−s

Rm−i2

(m− i)!
(i− s) =

1

µs

Ge−(R1+R2)

A+B
.

We will rewrite G in the following way:

G =

n−1∑
m=s

m∑
i=s

Ri1
s!si−s

Rm−i2

(m− i)!
(i− s) =

n−s−1∑
j=0

n−j−1∑
i=s

Ri1
s!si−s

Rj2
j!

(i− s)

=

n−s−1∑
j=0

n−s−j−1∑
i=0

Ri+s1

s!si
Rj2
j!
i =

Rs1
s!

n−s−1∑
j=0

n−s−j−1∑
i=0

i ρi
Rj2
j!

Using the formula

M∑
l=0

l ρl = ρ
( M∑
l=0

ρl
)′

= ρ
(1− ρM+1

1− ρ

)′
= −M ρM+1

1− ρ
+ ρ

1− ρM

(1− ρ)2
, (62)

we can rewrite G as a sum G = G1 +G2, where

G1 = −R
s
1

s!

n−s−1∑
j=0

(n− s− j − 1)
ρn−s−j

1− ρ
Rj2
j!
,

and

G2 =
Rs1
s!

n−s−1∑
j=0

ρ
1− ρn−s−j−1

(1− ρ)2

Rj2
j!
.

Therefore,

G1 = −R
s
1

s!

n−s−1∑
j=0

(n− s− j − 1)
ρn−s−j

1− ρ
Rj2
j!

= −(n− s− 1)
Rs1
s!

n−s−1∑
j=0

ρn−s−j

1− ρ
Rj2
j!

+
Rs1
s!

n−s−1∑
j=0

j
ρn−s−j

1− ρ
Rj2
j!

= −(n− s− 1)
ρn−s

1− ρ
Rs1
s!

n−s−1∑
j=0

(R2/ρ)j

j!
+
Rs1
s!

ρn−s

1− ρ

n−s−1∑
j=0

j
(R2/ρ)j

j!

= −(n− s− 1)
ρn−s

1− ρ
Rs1
s!

n−s−1∑
j=0

(R2/ρ)j

j!
+
Rs1
s!

R2

ρ

ρn−s

1− ρ

n−s−2∑
j=0

(R2/ρ)j

j!

= − (n− s−R2/ρ− 1)
ρn−s

1− ρ
Rs1
s!

n−s−1∑
j=0

(R2/ρ)j

j!
− Rs1

s!

1

1− ρ
Rn−s2

(n− s− 1)!

= − (n− s−R2/ρ− 1) eR1+R2 B2 −
1

1− ρ
Rs1
s!

Rn−s2

(n− s− 1)!
,
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where B2 was defined in Lemma 2. For G2 we have,

G2 =
Rs1
s!

ρ

(1− ρ)2

n−s−1∑
j=0

(
1− ρn−s−j−1

) Rj2
j!

=
Rs1
s!

ρ

(1− ρ)2

n−s−1∑
j=0

Rj2
j!
− Rs1

s!

ρn−s

(1− ρ)2

n−s−1∑
j=0

(R2/ρ)j

j!

= eR1+R2
1

1− ρ
(ρB1 −B2),

with B1 as in Lemma 1. Note that

n− s− R2

ρ
− 1 = R2 − η

√
R2 −

R2

ρ
− 1 = R2 (1− 1/ρ) + η

√
R2 − 1

= R2

(
R1 − s√
R1

)
+ η
√
R2 − 1 = R2 · −

β
√
R1

R1
+ η
√
R2 − 1 ≈

√
R1

(
η
√
ξ − βξ

)
≈
√
s
(
η/
√
ξ − β/ξ

)
,

for s large, where ξ = R1/R2 = δ/pµ. Furthermore,

1

1− ρ
Rs1
s!

Rn−s2

(n− s− 1)!
=
n− s
1− ρ

Rs1
s!

Rn−s2

(n− s)!

=
n− s
1− ρ

eR1+R2 P (Pois(R1) = s) P (Pois(R2) = n− s)

=
R2 + η

√
R2

β/
√
R1

eR1+R2P (Pois(R1) = s) P (Pois(R2) = n− s)

=
√
R2 eR1+R2

1

β

√
R1P (Pois(R1) = s) ·

√
R2P (Pois(R2) = n− s))

≈
√
R1 eR1+R2

1√
ξβ

φ(β)φ(η),

where we used that
√
RP(Pois(R) = R+ x

√
R)→ φ(x) as R→∞. Hence, we have for G1

1√
s

e−(R1+R2)G1 → −
(
η/
√
ξ − β/ξ

)
· φ(

√
β2 + η2)

β
e

1
2ω

2

Φ(ω)− 1√
ξβ

φ(β)φ(η)

and for G2

1√
s

e−(R1+R2)G2 =
1√
s

1

1− ρ
(ρB1 −B2) ≈ 1

β
(ρB1 −B2)

→ φ(β)Φ(η)

β2
− φ(

√
β2 + η2)

β2
e

1
2ω

2

Φ(ω),

as s→∞. In total, this gives

1√
s

e−(R1+R2)G→
(

1

ξ
− η

β
√
ξ
− 1

β2

)
φ(
√
β2 + η2) e

1
2ω

2

Φ(ω) +
φ(β)Φ(η)

β2
− φ(β)φ(η)√

ξβ
. (63)

We can conclude,√
R1 E[W ] =

√
R1

µs

Ge−(R1+R2)

A+B
+

√
s

µs
P(W > 0) =

√
s

µs

Ge−(R1+R2)

A+B
+

1

µ
√
s
P(W > 0)

→ 1

µ

(
1
ξ −

η
β
√
ξ
− 1

β2

)
φ(
√
β2 + η2) e

1
2ω

2

Φ(ω) + φ(β)Φ(η)
β2 − φ(β)φ(η)√

ξβ∫ β
−∞ Φ(η + (β − t)

√
ξ) dΦ(t) + φ(β)Φ(η)

β − φ(
√
β2+η2)

β e
1
2ω

2

Φ(ω)
,

as s→∞.
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The second theorem gives the approximation for the case where β = 0.

Theorem 10. Let the variables λ, s and n tend to ∞ simultaneously and satisfy the QED scaling
conditions in (11) with β = 0. Then

lim
λ→∞

√
sE[W ] =

1

2µ

ξ−1
(
(η2 + 1)Φ(η) + ηφ(η)

)
√

2π
∫ 0

−∞ Φ
(
η − t

√
ξ
)
dΦ(t) +

√
ξ−1 (ηΦ(η) + φ(η))

,

where ξ = R1

R2
= δ

pµ , ω = η − β
√
ξ−1.

Proof. Proof: As before

E[W ] =
1

µs

Ge−(R1+R2) +B

A+B
. (64)

Since β = 0, we have ρ = 1 so that

G =
Rs1
s!

n−s−1∑
j=0

n−s−j−1∑
i=0

i
Rj2
j!

=
1

2

Rs1
s!

n−s−1∑
j=0

(n− s− j)(n− s− j − 1)
Rj2
j!

=
1

2

Rs1
s!

(n− s− 1)
n−s−1∑
j=0

Rj2
j!

(n− s− j)− 1

2

Rs1
s!

n−s−1∑
j=0

j
Rj2
j!

(n− s− j)

=
1

2

Rs1
s!

(n− s− 1)

n−s−1∑
j=0

Rj2
j!

(n− s− j)− 1

2

Rs1
s!
R2

n−s−2∑
j=0

Rj2
j!

(n− s− j − 1)

=
1

2

Rs1
s!

(n− s− 1)

n−s−1∑
j=0

Rj2
j!

(n− s− j)− 1

2

Rs1
s!
R2

n−s−1∑
j=0

Rj2
j!

(n− s− j − 1)

=
1

2

Rs1
s!

(n− s− 1)

n−s−1∑
j=0

Rj2
j!

(n− s− j)− 1

2

Rs1
s!
R2

n−s−1∑
j=0

Rj2
j!

(n− s− j) +
1

2

Rs1
s!
R2

n−s−1∑
j=0

Rj2
j!

=
1

2

Rs1
s!

(n− s−R2 − 1)

n−s−1∑
j=0

Rj2
j!

(n− s− j) +
1

2

Rs1
s!
R2

n−s−1∑
j=0

Rj2
j!
.

Here,

e−R2

n−s−1∑
j=0

Rj2
j!

(n− s− j) = e−R2 (n− s)
n−s−1∑
j=0

Rj2
j!
− e−R2R2

n−s−2∑
j=0

Rj2
j!

= e−R2 (n− s−R2)

n−s−1∑
j=0

Rj2
j!

+ e−R2(n− s) Rn−s2

(n− s)!

= η
√
R2 P(Pois(R2) ≤ n− s− 1) + (n− s− 1)P(Pois(R2) = n− s)

= η
√
R2 P(Pois(R2) ≤ n− s) + (R2 − 1)P(Pois(R2) = n− s)

≈
√
R2 (ηΦ(η) + φ(η)) =

√
ξ−1
√
R1 (ηΦ(η) + φ(η)) . (65)

Furthermore
n− s− 1−R2 = η

√
R2 − 1 ≈ η

√
ξ−1
√
R1 (66)

and

e−R1−R2
Rs1
s!
R2

n−s−1∑
j=0

Rj2
j!

= ξ−1
√
R1

√
R1P(Pois(R1) = s)P(Pois(R2 ≤ n− s− 1)

≈
√
R1ξ

−1 φ(0)Φ(η). (67)
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Combining (65)-(67), we find

e−R1−R2G ≈ 1

2
ξ−1 η

√
R1 P(Pois(R1) = s) (ηΦ(η) + φ(η)) +

1

2

√
R1φ(0)Φ(η)

≈ 1

2
ξ−1η

√
R1 (ηΦ(η) + φ(η)) +

1

2
ξ−1
√
R1 φ(0)Φ(η)

=
1

2

√
R1 ξ

−1φ(0)
[
(η2 + 1)Φ(η) + η φ(η)

]
,

for R1 large. Hence, we can conclude

√
R1 E[W ] =

√
R1

µs

Ge−R1−R2

A+B
+

√
R1

µs
P(W > 0) ≈ 1√

R1µ

e−R1−R2G

A+B
+

1√
R1µ

P(W > 0)

→ 1

2µ

ξ−1
[
(η2 + 1)Φ(η) + η φ(η)

]
√

2π
∫ 0

−∞ Φ(η − t
√
ξ)dΦ(t) +

√
ξ−1(ηΦ(η) + φ(η))

,

where we used that φ(0) = 1/
√

2π, and η = γ−β
√
r√

1−r .

C.7 Approximation of the Blocking Probability

We prove here the approximations given in Theorem 2 of the probability of blocking. For conve-
nience we repeat here the relevant theorem.

Theorem 11. Let the variables λ, s and n tend to ∞ simultaneously and satisfy the QED scaling
conditions in (11) with β 6= 0. Then

lim
λ→∞

√
sP(block) =

√
rφ(γ)Φ(−ω

√
r) + φ(

√
η2 + β2)e

ω2

2 Φ(ω)∫ β
−∞Φ

(
η + (β − t)

√
ξ
)
dΦ(t) + φ(β)Φ(η)

β − φ(
√
η2+β2)

β e
1
2ω

2
Φ(ω)

(68)

where η = γ−β
√
r√

1−r , and ω = η − β
√

1−r√
r

= γ−β/
√
r√

1−r .

Proof. Proof: It follows from (5) that the probability of blocking is given by

Pn = π0

(
s∑
i=0

1

i!
Ri1

1

(n− i)!
Rn−i2 +

n∑
i=s+1

1

s!si−s
Ri1

1

(n− i)!
Rn−i2

)
=

δ1 + δ2

ξ̃ + ζ̃1 − ζ̃2
,

where

δ1 =

s∑
i=0

1

i!
Ri1

1

(n− i)!
Rn−i2 e−(R1+R2)

δ2 =

n∑
i=s+1

1

s!si−s
Ri1

1

(n− i)!
Rn−i2 e−(R1+R2)

Ã =
∑

i,j|i≤s,
i+j≤n

1

i!j!
Ri1R

j
2e
−(R1+R2)

B̃1 =
1

s!
Rs1

1

1− ρ

n−s∑
l=0

1

l!
Rl2e

−(R1+R2)

B̃2 =
1

s!
Rs1

ρn−s+1

1− ρ

n−s∑
l=0

1

l!

(
R2

ρ

)l
e−(R1+R2).
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Note that by Lemmas 1,2 and 3

lim
λ→∞

B̃1 = lim
λ→∞

B1 =
φ(β)Φ(η)

β
,

lim
λ→∞

B̃2 = lim
λ→∞

B2 =
φ(
√
η2 + β2)

β
e

1
2η

2
1Φ(η1),

lim
λ→∞

Ã = lim
λ→∞

A =

∫ β

−∞
Φ

(
η + (β − t)

√
δ

pµ

)
dΦ(t),

δ1 =

s∑
i=0

1

i!
Ri1

1

(n− i)!
Rn−i2 e−(R1+R2) =

1

n!
e−(R1+R2)

s∑
i=0

n!

i!(n− i)!
Ri1R

n−i
2

=
1

n!
e−(R1+R2) (R1 +R2)

n
s∑
i=0

n!

i!(n− i)!

(
R1

R1 +R2

)i(
R2

R1 +R2

)n−i
=

1

n!
e−(R1+R2) (R1 +R2)

n
s∑
i=0

P(Xλ = (i, n− i))

= P(Yλ = n)

s∑
i=0

P(Xλ = (i, n− i)) = P(Yλ = n)P(X1
λ ≤ s)

where Xλ is a random variable with Multinomial distribution with parameters (n, pi, pj), pi =
R1

R1+R2
, pj = R2

R1+R2
, Yλ is a random variable with Poisson distribution with parameter R1 + R2,

and X1
λ is a random variable with Binomial distribution with parameters (n, pi). By the CLT and

the use of 51

P(X1
λ ≤ s) = Φ

(
s− npi√
npi(1− pi)

)
= Φ

 s− n R1

R1+R2√
n R1

R1+R2
(1− R1

R1+R2
)


= Φ

 s− n R1

R1+R2√
n R1

R1+R2

R2

R1+R2

 = Φ

(
s(R1 +R2)− nR1√

nR1R2

)

= Φ

(√
R1

R2

sR1+R2

R1
− n

√
n

)
= Φ

(√
R1

R2

s(1 + R2

R1
)− n

√
n

)

= Φ

(√
R1

R2

s+ R2

ρ − n√
n

)
= Φ

−√R1

R2

√
R2

nρ
·
n− s− R2

ρ√
R2

ρ


= Φ

−√ s

n
·
n− s− R2

ρ√
R2

ρ

 ≈ Φ

(
−
√

R1

R1 +R2
·
(
η − βR2

R1

))

= Φ

 βR2

R1
− η√

1 + R2

R1

 = Φ

(
β
√

pµ
δ − η√

1 + pµ
δ

)
.

(69)

By the normal approximation of the Poisson distribution:

P(Yλ = n) ≈ 1√
R1 +R2

φ

(
n− (R1 +R2)√

R1 +R2

)
≈ 1
√
s
√

1 + pµ
δ

φ

(
η
√

pµ
δ + β√

1 + pµ
δ

)
. (70)
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We based on the following equivalences (as λ tends to ∞) to develop Equations 69 and 70:

R1 +R2 =
λ

(1− p)µ
+

pλ

(1− p)δ
≈ s+ (1− p)sµ

(
p

(1− p)δ

)
= s

(
1 +

µp

δ

)
= s

(
1 +

R2

R1

)
;

n− (R1 +R2) ≈ s+R2 + η
√
R2 − (R1 +R2) = s+ η

√
R2 −R1 ≈ s+ η

√
R2 − s+ β

√
s

≈ η
√
sµp

δ
+ β
√
s;

n− (R1 +R2)√
R1 +R2

≈
η
√

µp
δ + β√

1 + µp
δ

.

Following Equations 69 and 70 we get

δ1 = P(Yλ = n)P(X1
λ ≤ s) ≈

1
√
s
√

1 + µp
δ

φ

(
η
√

µp
δ + β√

1 + µp
δ

)
Φ

(
β
√

µp
δ − η√

1 + µp
δ

)
. (71)

Now lets find an approximation for δ̃2.

δ2 =

n∑
i=s+1

1

s!si−s
Ri1

1

(n− i)!
Rn−i2 e−(R1+R2) =

e−(R1+R2)

s!s−s

n∑
i=s+1

ρi
1

(n− i)!
Rn−i2

=
e−(R1+R2)

s!s−s
Rn2

n−s−1∑
j=0

1

j!

(
ρ

R2

)n−j
=
e−(R1+R2)

s!s−s
ρn

n−s−1∑
j=0

1

j!

(
R2

ρ

)j
.

When comparing δ2 to B2 form Equation 60, we observe that

δ2 = (1− ρ)B2 ≈
β√
s
B2.

Therefore, based on the approximation of B2 from Lemma 2 we get

limλ→∞δ2 =
φ(
√
η2 + β2)√
s

e
1
2ω

2

Φ(ω).

This proves Theorem 11.

The next theorem gives the approximation for the case where β = 0.

Theorem 12. Let the variables λ, s and n tend to ∞ simultaneously and satisfy the QED scaling
conditions in (11) with β = 0. Define and ξ = R1

R2
= δ

pµ , then

lim
λ→∞

√
sP(block) =

√
rφ(γ)Φ(− γ

√
r√

1−r ) + 1√
2π

Φ(η)∫ 0

−∞ Φ
(
η − t

√
ξ
)
dΦ(t) +

√
1−r
r

1√
2π

(ηΦ(η) + φ(η))
, (72)

where η = γ−β
√
r√

1−r .

Proof. Proof: It follows from (5) that the probability of blocking is given by

Pn =
δ1 + δ2

Ã+ B̃
,
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where

δ1 =

s∑
i=0

1

i!
Ri1

1

i!
Rn−i2 e−(R1+R2)

δ2 =

n∑
i=s+1

1

s!si−s
Ri1

1

(n− i)!
Rn−i2 e−(R1+R2)

Ã =
∑

i,j|i≤s,
i+j≤n

1

i!j!
Ri1R

j
2e
−(R1+R2)

B̃ =
1

s!
Rs1

1

1− ρ

n−s∑
l=0

1

l!
Rl2e

−(R1+R2) − 1

s!
Rs1

ρn−s+1

1− ρ

n−s∑
l=0

1

l!

(
R2

ρ

)l
e−(R1+R2).

Note that by Lemmas 3 and 4

lim
λ→∞

Ã = lim
λ→∞

A =

∫ β

−∞
Φ

(
η + (β − t)

√
δ

µp

)
dΦ(t)

lim
λ→∞

B̃ = lim
λ→∞

B =

√
µp

δ

1√
2π

(ηΦ(η) + φ(η)) .

In addition, the approximations for δ1 and δ2 are the same as the proof of Theorem 11.

lim
β→0

lim
λ→∞

√
sδ2 =

1√
2π

Φ(η)

lim
β→0

lim
λ→∞

√
sδ1 =

1√
1 + µp

δ

φ

 η√
1 + δ

µp

Φ

(
− η√

1 + µp
δ

)
.

This proves Theorem 12.

D Proof of Proposition 3

Define

A(s, n) =

s∑
k=0

k

s

(
n

k

)
bk, B(s, n) =

n∑
k=s+1

k!

s!

(
n

k

)
ss−kbk, C(s, n) =

s∑
k=0

(
n

k

)
bk,

where b = δ/pµ = r/(1− r). Then

ρJ(s, n) =
A(s, n) +B(s, n)

C(s, n) +B(s, n)
.

Proving that ρmax(s, n)→ 1 as R→∞ with s and n as in (11) is equivalent to showing that

1− ρmax(s, n) =
C(s, n)−A(s, n)

C(s, n) +B(s, n)
=

(1 + b)−n[C(s, n)−A(s, n)]

(1 + b)−n[C(s, n) +B(s, n)]
→ 0. (73)
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First, we rewrite

(1 + b)−nA(s, n) = (1 + b)−n
s∑

k=1

n

s

(
n− 1

k − 1

)
bk

=
n

s

(
b

1 + b

) s−1∑
k=0

(
n− 1

k

)(
b

1 + b

)k (
1

1 + b

)n−1−k

=
rn

s

s−1∑
k=0

(
n− 1

k

)
rk(1− r)n−1−k =

rn

s
P(Bin(n− 1, r) ≤ s− 1)

=
rn

s
P

(
Bin(n− 1, r)− (n− 1)r√

nr(1− r)
≤ s− 1− (n− 1)r√

nr(1− r)

)
→ Φ

(
β − γ

√
r√

1− r

)
,

since nr/s = 1 +O(1/
√
R1). Also,

(1 + b)−nC(s, n) =

s∑
k=0

(
n

k

)(
b

1 + b

)k (
1

1 + b

)n−k
=

s∑
k=0

(
n

k

)
rk(1− r)n−k

= P(Bin(n, r) ≤ s)→ Φ

(
β − γ

√
r√

1− r

)
.

Therefore, we have (1 + b)−n[C(s, n)−A(s, n)]→ 0 as λ→∞. For the remaining term,

(1 + b)−nB(s, n) = (1 + b)−n
n∑

k=s+1

(
n

k

)
k!

s!
ss−kbk = (1 + b)−n

n!

s!
ss
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k=s+1

1
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(s
b
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ss
(
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s

)n n∑
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1
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ss−n
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m=0

1

m!

(s
b

)m
=
(r
s

)n n!

s!
ss es/b P(Pois(s/b) ≤ n− s− 1),

in which
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(
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s/b
≤ n− s− 1− s/b√

s/b

)
→ Φ

(
γ − β/

√
r√

1− r

)
,

as λ→∞. By Stirling’s approximation,(r
s

)n n!

s!
ss es/b ∼

(r
s

)n√n

s

nne−n

sse−s
ss es/b

=
(rn
s

)n√n

s
e−n+s+s/b =

(rn
s

)n√n

s
e−n+s/r.

Since,
rn

s
= 1 +

γ
√
r − β√
R1

+O(1/R1),

we find
√
n/s = 1/

√
r +O(1/

√
R1) and

log

[(rn
s

)n√n

s
e−n+s/r

]
= n log

[rn
s

]
− n+

s

r
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[(

1− rn

s

)
+

1

2
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s
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s
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s
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s

r
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s
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√
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as R→∞ and hence,

(1 + b)−nB(s, n)→ φ

(
γ
√
r − β√
r

)
Φ

(
γ − β/

√
r√

1− r

)
.

Hence, we conclude that the denominator of (73) converges to a constant value as λ grows, and
hence the 1− ρmax(s, n)→ 0 as λ→∞.

E Numerical results on accuracy of the asymptotic approx-
imations

In this section, we examine to accuracy of the asymptotic approximations of Theorem 2 and the
heuristic method in Section 4.3. We perform our numerical experiments for three case instances,
with parameter settings as in Table 1.

µ δ p r
Case 1 1 0.10 0.90 0.10
Case 2 1 0.25 0.75 0.25
Case 3 1 0.50 0.50 0.50

Table 1: Parameter settings for numerical experiments.

E.1 Restricted Erlang-R model with blocking

β = 1, γ = 1 β = 1, γ = 2

R1 P(d)
√
R1P(b)

√
R1E[W ] P(d)

√
R1P(b)

√
R1E[W ]

5 0.1270 0.0900 0.2283 0.1553 0.0212 0.1085
10 0.1340 0.0910 0.1919 0.1628 0.0206 0.1205
25 0.1981 0.0945 0.1614 0.2356 0.0216 0.2145
50 0.1513 0.0963 0.1588 0.1830 0.0205 0.1496

100 0.1880 0.0956 0.1532 0.2231 0.0224 0.2055
250 0.1797 0.0971 0.1399 0.2143 0.0219 0.2057

0.1767 0.0981 0.1437 0.2108 0.0217 0.1947

β = 2, γ = 1 β = 2, γ = 2

R1 P(d)
√
R1P(b)

√
R1E[W ] P(d)

√
R1P(b)

√
R1E[W ]

5 0.0237 0.0868 0.0282 0.0322 0.0192 0.0391
10 0.0206 0.0872 0.0188 0.0278 0.0183 0.0264
25 0.0277 0.0876 0.0123 0.0363 0.0174 0.0174
50 0.0185 0.0913 0.0116 0.0249 0.0175 0.0166

100 0.0232 0.0888 0.0103 0.0303 0.0183 0.0145
250 0.0203 0.0905 0.0079 0.0267 0.0179 0.0109

0.0188 0.0914 0.0084 0.0247 0.0177 0.0118

Table 2: Numerical results for Erlang-R model with blocking for Case 1.
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β = 1, γ = 1 β = 1, γ = 2

R1 P(d)
√
R1P(b)

√
R1E[W ] P(d)

√
R1P(b)

√
R1E[W ]

5 0.0911 0.1538 0.0479 0.1431 0.0345 0.0909
10 0.1010 0.1498 0.0560 0.1520 0.0326 0.1025
25 0.1594 0.1509 0.1058 0.2192 0.0405 0.1785
50 0.1201 0.1506 0.0726 0.1697 0.0381 0.1248

100 0.1514 0.1539 0.1001 0.2088 0.0398 0.1704
250 0.1459 0.1524 0.0957 0.2003 0.0397 0.1618

0.1429 0.1569 0.0940 0.1976 0.0391 0.1617

β = 2, γ = 1 β = 2, γ = 2

R1 P(d)
√
R1P(b)

√
R1E[W ] P(d)

√
R1P(b)

√
R1E[W ]

5 0.0130 0.1484 0.0044 0.0277 0.0294 0.0109
10 0.0121 0.1432 0.0042 0.0244 0.0267 0.0098
25 0.0182 0.1383 0.0070 0.0319 0.0295 0.0141
50 0.0119 0.1415 0.0043 0.0216 0.0301 0.0090

100 0.0154 0.1413 0.0059 0.0270 0.0290 0.0119
250 0.0136 0.1403 0.0051 0.0236 0.0291 0.0103

0.0126 0.1445 0.0048 0.0220 0.0284 0.0097

Table 3: Numerical results for Erlang-R model with blocking for Case 2.

E.2 Restricted Erlang-R model with holding
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β = 1, γ = 1 β = 1, γ = 2

R1 P(d)
√
R1P(b)

√
R1E[W ] P(d)

√
R1P(b)

√
R1E[W ]

5 0.0547 0.1945 0.0221 0.1181 0.0604 0.0617
10 0.0579 0.2158 0.0237 0.1325 0.0526 0.0746
25 0.1113 0.2086 0.0544 0.1959 0.0641 0.1311
50 0.0813 0.2050 0.0363 0.1523 0.0562 0.0933

100 0.1060 0.2146 0.0509 0.1873 0.0632 0.1250
250 0.1006 0.2179 0.0475 0.1820 0.0596 0.1214

0.1011 0.2185 0.0478 0.1792 0.0605 0.1199

β = 2, γ = 1 β = 2, γ = 2

R1 P(d)
√
R1P(b)

√
R1E[W ] P(d)

√
R1P(b)

√
R1E[W ]

5 0.0034 0.1888 0.0009 0.0175 0.0510 0.0057
10 0.0030 0.2093 0.0008 0.0172 0.0416 0.0058
25 0.0070 0.1937 0.0020 0.0243 0.0440 0.0089
50 0.0043 0.1946 0.0011 0.0163 0.0414 0.0056

100 0.0061 0.1999 0.0017 0.0207 0.0431 0.0076
250 0.0052 0.2037 0.0014 0.0185 0.0401 0.0067

0.0052 0.2039 0.0014 0.0173 0.0404 0.0063

Table 4: Numerical results for Erlang-R model with blocking for Case 3.

β = 1, γ = 1 β = 1, γ = 2

R1 P(d)
√
R1E[W ] P(d)

√
R1E[W ]

5 0.1532 0.1031 0.1628 0.1216
10 0.1622 0.1272 0.1697 0.1331
25 0.2340 0.2116 0.2413 0.2342
50 0.1817 0.1468 0.1890 0.1678

100 0.2199 0.1931 0.2304 0.2269
250 0.2110 0.1852 0.2176 0.2230

0.2076 0.1777 0.2187 0.2050

β = 2, γ = 1 β = 2, γ = 1

R1 P(d)
√
R1E[W ] P(d)

√
R1E[W ]

5 0.0310 0.0121 0.0344 0.0148
10 0.0267 0.0123 0.0292 0.0128
25 0.0348 0.0171 0.0373 0.0184
50 0.0240 0.0108 0.0258 0.0125

100 0.0293 0.0143 0.0317 0.0163
250 0.0256 0.0120 0.0276 0.0145

0.0229 0.0104 0.0257 0.0124

Table 5: Simulated and approximated probability of delay in Erlang-R model with holding for
Case 1.
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β = 1, γ = 1 β = 1, γ = 2

R1 P(d)
√
R1E[W ] P(d)

√
R1E[W ]

5 0.1327 0.0740 0.1620 0.1096
10 0.1446 0.0894 0.1683 0.1207
25 0.2204 0.1631 0.2442 0.2203
50 0.1694 0.1122 0.1888 0.1507

100 0.2098 0.1524 0.2322 0.2111
250 0.2033 0.1534 0.2190 0.1979

0.1840 0.1277 0.2109 0.1759

β = 2, γ = 1 β = 2, γ = 1

R1 P(d)
√
R1E[W ] P(d)

√
R1E[W ]

5 0.0219 0.0079 0.0322 0.0137
10 0.0199 0.0073 0.0284 0.0115
25 0.0283 0.0128 0.0375 0.0163
50 0.0190 0.0078 0.0255 0.0107

100 0.0244 0.0097 0.0314 0.0151
250 0.0214 0.0083 0.0272 0.0134

0.0169 0.0066 0.0234 0.0104

Table 6: Simulated and approximated probability of delay in Erlang-R model with holding for
Case 2.

β = 1, γ = 1 β = 1, γ = 2

R1 P(d)
√
R1E[W ] P(d)

√
R1E[W ]

5 0.0977 0.0413 0.1521 0.0851
10 0.1070 0.0469 0.1648 0.1028
25 0.1926 0.1076 0.2421 0.1874
50 0.1431 0.0727 0.1876 0.1342

100 0.1855 0.1012 0.2282 0.1714
250 0.1775 0.0963 0.2217 0.1765

0.1442 0.0711 0.1981 0.1354

β = 2, γ = 1 β = 2, γ = 1

R1 P(d)
√
R1E[W ] P(d)

√
R1E[W ]

5 0.0072 0.0019 0.0250 0.0081
10 0.0067 0.0018 0.0235 0.0082
25 0.0148 0.0043 0.0325 0.0133
50 0.0092 0.0025 0.0217 0.0081

100 0.0132 0.0038 0.0277 0.0105
250 0.0114 0.0033 0.0246 0.0099

0.0078 0.0022 0.0188 0.0069

Table 7: Simulated and approximated probability of delay in Erlang-R model with holding for
Case 3.
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