133 research outputs found

    Switched Capacitor Integrated (2n + 1)-Level Step-Up Single-Phase Inverter

    Get PDF

    Symmetric Multi-Level Boost Inverter with Single DC Source Using Reduced Number of Switches

    Get PDF
    In this paper a novel multilevel boost DC to DC converter with H-Bridge inverter circuit for single DC source is proposed. The proposed scheme has two stages: the first one is a multilevel boost converter which gives a multilevel dc output for a single dc source and the second level is a H-Bridge converter which converts multilevel DC to multilevel AC at required frequency. This DC-DC converter not only reduces the DC source but also reduces the switches, diodes and capacitors. This leads to decrease of the amount and the inverter space installation in order to increase the required output voltage by increasing the number of capacitors and diodes in the DC to DC converter. Comparison between the number of power switches for the suggested topology and other topologies in the recent literature is presented. Simulation results are conveyed through MatLAB/Simulink domain and the working of the suggested converter is realized

    Power quality improvement utilizing photovoltaic generation connected to a weak grid

    Get PDF
    Microgrid research and development in the past decades have been one of the most popular topics. Similarly, the photovoltaic generation has been surging among renewable generation in the past few years, thanks to the availability, affordability, technology maturity of the PV panels and the PV inverter in the general market. Unfortunately, quite often, the PV installations are connected to weak grids and may have been considered as the culprit of poor power quality affecting other loads in particular sensitive loads connected to the same point of common coupling (PCC). This paper is intended to demystify the renewable generation, and turns the negative perception into positive revelation of the superiority of PV generation to the power quality improvement in a microgrid system. The main objective of this work is to develop a control method for the PV inverter so that the power quality at the PCC will be improved under various disturbances. The method is to control the reactive current based on utilizing the grid current to counteract the negative impact of the disturbances. The proposed control method is verified in PSIM platform. Promising results have been obtaine

    Control of distributed power in microgrids: PV field to the grid, islanding operation, and ultra-fast charging station.

    Get PDF
    Aquesta tesi explora el control de l'energia distribuïda en microxarxes (MG) i aborda diversos reptes relacionats amb el control, l'estabilitat, la compartició d'energia, el disseny del convertidor d'energia, la connexió a la xarxa, la càrrega ultraràpida i el subministrament d'energia renovable. El rendiment dels MG s'analitza tant en modes d'operació connectats a la xarxa com en illa, considerant diferents configuracions i escenaris de flux d'energia. La tesi se centra en diversos reptes clau, com ara maximitzar l'extracció d'energia de matrius fotovoltaiques (PV) en MG que utilitzen convertidors DC-DC, injectar potència MG excedent a la xarxa principal mitjançant inversors de font de tensió DC-AC (VSI) sota càrregues no lineals i desequilibrades, optimitzant el rendiment de MG i la compartició d'energia en mode illa mitjançant VSI, connectant-se a la xarxa principal en el punt d'acoblament comú (PCC) mitjançant transformadors de baixa freqüència (LFT) i transformadors d'estat sòlid (SST) i explorant topologies de convertidors de potència per ultra -càrrega ràpida de CC de vehicles elèctrics (EV). L'ús de SST en lloc de LFT pot millorar la capacitat de MG alhora que redueix el volum i el pes de l'arquitectura elèctrica MG. Aquesta tesi proporciona coneixements i solucions per abordar els reptes esmentats anteriorment, contribuint a l'avenç del control, l'estabilitat, la qualitat de l'energia i la integració eficient de les fonts d'energia renovables i la càrrega dels vehicles elèctrics.Esta tesis explora el control de la potencia distribuida en microrredes (MGs) y aborda diversos retos relacionados con el control, la estabilidad, el reparto de potencia, el diseño de convertidores de potencia, la conexión a la red, la carga ultrarrápida y el suministro de energías renovables. El rendimiento de las MG se analiza tanto en modo de funcionamiento conectado a la red como en modo aislado, considerando diferentes configuraciones y escenarios de flujo de potencia. La tesis se centra en varios retos clave, como la maximización de la extracción de energía de las matrices fotovoltaicas (FV) en las MG utilizando convertidores CC-CC, la inyección del excedente de energía de las MG en la red principal a través de inversores de fuente de tensión CC-CA (VSI) bajo cargas no lineales y desequilibradas, la optimización del rendimiento de las MG y del reparto de energía en modo aislado mediante VSI, la conexión a la red principal en el punto de acoplamiento común (PCC) mediante transformadores de baja frecuencia (LFT) y transformadores de estado sólido (SST), y la exploración de topologías de convertidores de potencia para la carga ultrarrápida en corriente continua de vehículos eléctricos (VE). El uso de SST en lugar de LFT puede mejorar la capacidad de la MG y, al mismo tiempo, reducir el volumen y el peso de la arquitectura eléctrica de la MG. Esta tesis aporta ideas y soluciones para abordar los retos mencionados, contribuyendo al avance del control de la MG, la estabilidad, la calidad de la energía y la integración eficiente de fuentes de energía renovables y la carga de vehículos eléctricos. Traducción realizada con la versión gratuita del traductor www.DeepL.com/TranslatorThis thesis explores the control of distributed power in microgrids (MGs) and addresses various challenges related to control, stability, power sharing, power converter design, grid connection, ultra-fast charging, and renewable energy supply. The performance of MGs is analysed in both grid-connected and islanded modes of operation, considering different configurations and power flow scenarios. The thesis focuses on several key challenges, including maximising power extraction from photovoltaic (PV) arrays in MGs utilizing DC-DC converters, injecting surplus MG power into the main grid via DC-AC voltage source inverters (VSIs) under nonlinear and unbalanced loads, optimising MG performance and power sharing in islanded mode through VSIs, connecting to the main grid at the point of common coupling (PCC) using low-frequency transformers (LFTs) and solid-state transformers (SSTs), and exploring power converter topologies for ultra-fast DC charging of electric vehicles (EVs). The use of SSTs instead of LFTs can enhance MG capability while reducing the volume and weight of the MG electrical architecture. This thesis provides insights and solutions to address the aforementioned challenges, contributing to the advancement of MG control, stability, power quality, and efficient integration of renewable energy sources and EV charging

    Power Electronic Converter Configuration and Control for DC Microgrid Systems

    Get PDF

    Emerging Converter Topologies and Control for Grid Connected Photovoltaic Systems

    Get PDF
    Continuous cost reduction of photovoltaic (PV) systems and the rise of power auctions resulted in the establishment of PV power not only as a green energy source but also as a cost-effective solution to the electricity generation market. Various commercial solutions for grid-connected PV systems are available at any power level, ranging from multi-megawatt utility-scale solar farms to sub-kilowatt residential PV installations. Compared to utility-scale systems, the feasibility of small-scale residential PV installations is still limited by existing technologies that have not yet properly address issues like operation in weak grids, opaque and partial shading, etc. New market drivers such as warranty improvement to match the PV module lifespan, operation voltage range extension for application flexibility, and embedded energy storage for load shifting have again put small-scale PV systems in the spotlight. This Special Issue collects the latest developments in the field of power electronic converter topologies, control, design, and optimization for better energy yield, power conversion efficiency, reliability, and longer lifetime of the small-scale PV systems. This Special Issue will serve as a reference and update for academics, researchers, and practicing engineers to inspire new research and developments that pave the way for next-generation PV systems for residential and small commercial applications

    Power Converters in Power Electronics

    Get PDF
    In recent years, power converters have played an important role in power electronics technology for different applications, such as renewable energy systems, electric vehicles, pulsed power generation, and biomedical sciences. Power converters, in the realm of power electronics, are becoming essential for generating electrical power energy in various ways. This Special Issue focuses on the development of novel power converter topologies in power electronics. The topics of interest include, but are not limited to: Z-source converters; multilevel power converter topologies; switched-capacitor-based power converters; power converters for battery management systems; power converters in wireless power transfer techniques; the reliability of power conversion systems; and modulation techniques for advanced power converters

    Review of dc-dc converters for multi-terminal HVDC transmission networks

    Get PDF
    This study presents a comprehensive review of high-power dc-dc converters for high-voltage direct current (HVDC) transmission systems, with emphasis on the most promising topologies from established and emerging dc-dc converters. In addition, it highlights the key challenges of dc-dc converter scalability to HVDC applications, and narrows down the desired features for high-voltage dc-dc converters, considering both device and system perspectives. Attributes and limitations of each dc-dc converter considered in this study are explained in detail and supported by time-domain simulations. It is found that the front-to-front quasi-two-level operated modular multilevel converter, transition arm modular converter and controlled transition bridge converter offer the best solutions for high-voltage dc-dc converters that do not compromise galvanic isolation and prevention of dc fault propagation within the dc network. Apart from dc fault response, the MMC dc auto transformer and the transformerless hybrid cascaded two-level converter offer the most efficient solutions for tapping and dc voltage matching of multi-terminal HVDC networks
    corecore