247 research outputs found

    A flexible sensor technology for the distributed measurement of interaction pressure

    Get PDF
    We present a sensor technology for the measure of the physical human-robot interaction pressure developed in the last years at Scuola Superiore Sant'Anna. The system is composed of flexible matrices of opto-electronic sensors covered by a soft silicone cover. This sensory system is completely modular and scalable, allowing one to cover areas of any sizes and shapes, and to measure different pressure ranges. In this work we present the main application areas for this technology. A first generation of the system was used to monitor human-robot interaction in upper- (NEUROExos; Scuola Superiore Sant'Anna) and lower-limb (LOPES; University of Twente) exoskeletons for rehabilitation. A second generation, with increased resolution and wireless connection, was used to develop a pressure-sensitive foot insole and an improved human-robot interaction measurement systems. The experimental characterization of the latter system along with its validation on three healthy subjects is presented here for the first time. A perspective on future uses and development of the technology is finally drafted

    A Review of Lower Limb Exoskeletons

    Get PDF
    In general, exoskeletons are defined as wearable robotic mechanisms for providing mobility. In the last six decades, many research work have been achieved to enhance the performance of exoskeletons thus developing them to nearly commercialized products. In this paper, a review is made for the lower limb exoskeleton concerning history, classification, selection and development, also a discussion for the most important aspects of comparison between different designs is presented. Further, some concluding remarks are withdrawn which could be useful for future work. Keywords: Exoskeletons, Lower extremity exoskeleton, Wearable robot

    Autonomous exoskeleton reduces metabolic cost of human walking during load carriage

    Get PDF
    Background: Many soldiers are expected to carry heavy loads over extended distances, often resulting in physical and mental fatigue. In this study, the design and testing of an autonomous leg exoskeleton is presented. The aim of the device is to reduce the energetic cost of loaded walking. In addition, we present the Augmentation Factor, a general framework of exoskeletal performance that unifies our results with the varying abilities of previously developed exoskeletons. Methods: We developed an autonomous battery powered exoskeleton that is capable of providing substantial levels of positive mechanical power to the ankle during the push-off region of stance phase. We measured the metabolic energy consumption of seven subjects walking on a level treadmill at 1.5 m/s, while wearing a 23 kg vest. Results: During the push-off portion of the stance phase, the exoskeleton applied positive mechanical power with an average across the gait cycle equal to 23 ± 2 W (11.5 W per ankle). Use of the autonomous leg exoskeleton significantly reduced the metabolic cost of walking by 36 ± 12 W, which was an improvement of 8 ± 3% (p = 0.025) relative to the control condition of not wearing the exoskeleton. Conclusions: In the design of leg exoskeletons, the results of this study highlight the importance of minimizing exoskeletal power dissipation and added limb mass, while providing substantial positive power during the walking gait cycle

    Enhancing performance during inclined loaded walking with a powered ankle-foot exoskeleton

    Get PDF
    A simple ankle-foot exoskeleton that assists plantarflexion during push-off can reduce the metabolic power during walking. This suggests that walking performance during a maximal incremental exercise could be improved with an exoskeleton if the exoskeleton is still efficient during maximal exercise intensities. Therefore, we quantified the walking performance during a maximal incremental exercise test with a powered and unpowered exoskeleton: uphill walking with progressively higher weights. Nine female subjects performed two incremental exercise tests with an exoskeleton: 1 day with (powered condition) and another day without (unpowered condition) plantarflexion assistance. Subjects walked on an inclined treadmill (15 %) at 5 km h(-1) and 5 % of body weight was added every 3 min until exhaustion. At volitional termination no significant differences were found between the powered and unpowered condition for blood lactate concentration (respectively, 7.93 +/- A 2.49; 8.14 +/- A 2.24 mmol L-1), heart rate (respectively, 190.00 +/- A 6.50; 191.78 +/- A 6.50 bpm), Borg score (respectively, 18.57 +/- A 0.79; 18.93 +/- A 0.73) and peak (respectively, 40.55 +/- A 2.78; 40.55 +/- A 3.05 ml min(-1) kg(-1)). Thus, subjects were able to reach the same (near) maximal effort in both conditions. However, subjects continued the exercise test longer in the powered condition and carried 7.07 +/- A 3.34 kg more weight because of the assistance of the exoskeleton. Our results show that plantarflexion assistance during push-off can increase walking performance during a maximal exercise test as subjects were able to carry more weight. This emphasizes the importance of acting on the ankle joint in assistive devices and the potential of simple ankle-foot exoskeletons for reducing metabolic power and increasing weight carrying capability, even during maximal intensities

    Development of a haptic mobile industrial lifting aid

    Get PDF

    Towards standards for the evaluation of active back-support exoskeletons to assist lifting task

    Get PDF
    Back-support exoskeletons have been recently proposed to reduce the risk of injuries for workers performing repetitive lifting tasks. Appropriate standards for their evaluation do not exist, but their definition would promote large-scale adoption in workplaces. This paper presents relevant standards and evaluation metrics as applied to similar devices and discusses their applicability to back-support exoskeletons, with the final goal to propose a reference methodology

    Design and Control of Lower Limb Assistive Exoskeleton for Hemiplegia Mobility

    Get PDF

    Modeling and simulation study of electromechanically system of the human extremity exoskeleton

    Get PDF
    In order to design a suitable control scheme for human extremity exoskeleton, the interaction force control scheme which regards human body as the work environment of human extremity exoskeleton was proposed. And then, the electromechanical system of human extremity exoskeleton was simplified, and the modeling and simulation study of the electromechanical system by using Matlab/Simulink module was carried out. The angular deviations between human extremity exoskeleton joints and human body joints were obtained by the simulation. Besides, the torques provided by human body and motors for human extremity exoskeleton joints to bear heavy payload were calculated. The analysis of the simulation calculation results proves that the interaction force control scheme can achieve good man-machine coordinated walking as well as help human body bear heavy payload. Besides, the upper extremity exoskeleton experiment was conducted, and the same conclusion with the simulation study was obtained
    • …
    corecore