5,778 research outputs found

    Carotid Atherosclerotic Markers in CADASIL

    Get PDF
    Purpose: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a cerebral small vessel disease caused by mutations of the NOTCH3 gene. Marked variations in disease severity have raised the hypothesis that non-genetic factors may modulate the expressivity of the phenotype. The aim of the current study was to evaluate whether atherosclerosis, assessed by carotid duplex ultrasonography, is associated with variations in the clinical and MRI phenotype of CADASIL. Methods: Data from 144 consecutive patients enrolled in an ongoing prospective cohort study were collected. Degree of disability was assessed by the modified Rankin Scale, that of cognitive impairment by the Mattis Dementia Rating Scale (MDRS). The total volume of the brain, of lacunar lesions and of white matter hyperintensities, the number of cerebral microhemorrhages, and parameters derived from histograms of apparent diffusion coefficient were measured on cerebral MRI. Atherosclerosis was evaluated by B-mode ultrasonography of carotid arteries. Both the carotid intima-media thickness cIMT) and the presence of carotid plaques or stenosis were recorded. Results: Higher cIMT was found to be independently associated with lower MDRS scores when this score was less than the quartile limit (p = 0.02). Only a trend for a positive association was detected between cIMT and the Rankin score (p = 0.06). There was no significant association between carotid markers and the occurrence of stroke or MRI parameters except for diffusion data. The mean and peak values of MRI diffusion histograms were found positively associated with the presence of plaques (p < 0.01). Conclusion: The results suggest that the severity of atherosclerosis may relate to cognitive decline in CADASIL and that this effect is possibly related to the degree of microstructural cerebral tissue lesions. Longitudinal studies are needed to confirm these results. Copyright (C) 2010 S. Karger AG, Base

    Improved detection of molecular markers of atherosclerotic plaques using sub-millimeter PET imaging

    Get PDF
    Since atherosclerotic plaques are small and sparse, their non-invasive detection via PET imaging requires both highly specific radiotracers as well as imaging systems with high sensitivity and resolution. This study aimed to assess the targeting and biodistribution of a novel fluorine-18 anti-VCAM-1 Nanobody (Nb), and to investigate whether sub-millimetre resolution PET imaging could improve detectability of plaques in mice. The anti-VCAM-1 Nb functionalised with the novel restrained complexing agent (RESCA) chelator was labelled with [F-18]AlF with a high radiochemical yield (>75%) and radiochemical purity (>99%). Subsequently, [F-18]AlF(RESCA)-cAbVCAM1-5 was injected in ApoE(-/-) mice, or co-injected with excess of unlabelled Nb (control group). Mice were imaged sequentially using a cross-over design on two different commercially available PET/CT systems and finally sacrificed for ex vivo analysis. Both the PET /CT images and ex vivo data showed specific uptake of [F-18]AlF(RESCA)-cAbVCAM1-5 in atherosclerotic lesions. Non-specific bone uptake was also noticeable, most probably due to in vivo defluorination. Image analysis yielded higher target-to-heart and target-to-brain ratios with the beta-CUBE (MOLECUBES) PET scanner, demonstrating that preclinical detection of atherosclerotic lesions could be improved using the latest PET technology

    Imaging of atherosclerosis: magnetic resonance imaging

    Get PDF
    Atherosclerosis and its thrombotic complications are the major cause of morbidity and mortality in the industrialized countries. Despite advances in our understanding of the pathophysiology, pathogenesis, and new treatment modalities, the absence of an adequate non-invasive imaging tool for early detection limits both the prevention and treatment of patients with various degrees and anatomical localizations of atherothrombotic disease. An ideal clinical imaging modality for atherosclerotic vascular disease should be safe, inexpensive, non-invasive or minimally invasive, accurate, and reproducible, and the results should correlate with the extent of atherosclerotic disease and have high predictive values for future clinical events. High-resolution magnetic resonance imaging (MRI) has emerged as the most promising technique for studying atherothrombotic disease in humans in vivo. Most importantly, MRI allows for the characterization of plaque composition, i.e. the discrimination of lipid core, fibrosis, calcification, and intraplaque haemorrhage deposits. Magnetic resonance imaging also allows for the detection of arterial thrombi and in defining thrombus age. Magnetic resonance imaging has been used to monitor plaque progression and regression in several animal models of atherosclerosis and in humans. Emerging MRI techniques capable of imaging biological processes, including inflammation, neovascularization, and mechanical forces, may aid in advancing our understanding of the atherothrombotic disease. Advances in diagnosis do prosper provided they march hand-in-hand with advances in treatment. We stand at the threshold of accurate non-invasive assessment of atherosclerosis. Thus, MRI opens new strategies ranging from screening of high-risk patients for early detection and treatment as well as monitoring of the target lesions for pharmacological intervention. Identification of subclinical atherosclerosis and early treatment initiation has the potential to surpass conventional risk factor assessment and management in terms of overall impact on cardiovascular morbidity and mortality. Such strategy is currently under clinical investigatio

    Development of probes for molecular imaging : evaluation in models of inflammation and atherosclerosis

    Get PDF
    The imaging field is rapidly evolving and in the last two decades there have been tremendous developments in the field of multimodal imaging. Multimodal molecular imaging approaches that utilize ultrasound/magnetic resonance imaging (US/MRI), single-photon emission computed tomography/computed tomography (SPECT/CT), or positron emission tomography/MRI (PET/MRI) may provide additional detailed information at the cellular and molecular level to help identify patients with vulnerable plaques that are at risk of rupture. The search for specific biomarkers in combination with specific and optimized molecular probes may help to prevent adverse events such as myocardial infarctions or strokes. Current clinical contrast agents do not provide information on the inflammatory components of atherosclerotic plaques; thus, more specific molecular probes are needed. This thesis focuses on probe development for different molecular imaging techniques using multimodal and targeting approaches. Several types of molecular probe were evaluated: bimodal and multimodal microbubbles, as well as chemically modified human serum albumin (HSA)-based probes (aconitylated (Aco) and maleylated (Mal)) for targeting markers of inflammation; adhesion molecules on endothelial cells or macrophages, and scavenger receptor A1 (SR-A1) on macrophages. Evaluation of these molecular probes was facilitated by their physical properties enabling assessment with fluorescence microscopy, flow cytometry, and nuclear imaging properties for in vivo molecular imaging with SPECT/CT and PET/MRI. We found that functionalizing molecular probes with targeting moieties greatly improved the targeting specificity and avidity to the target compared to non-targeted molecular probes. Furthermore, these molecular probes were successfully radiolabeled with a detectable in vivo signal by 99mTc-anti-ICAM-1- MBs imaging of inflammation with SPETC/CT, and atherosclerosis by 89Zr-Mal-HSA with PET/MRI. Ex vivo evaluation of HSA-based probes showed significant accumulation in atherosclerotic lesions of Apoe-/- mice, as quantified by gamma counter and phosphor imaging autoradiography, compared to wild type (WT) mice. In conclusion, adhesion molecule targeting and scavenger receptor targeting with functionally modified probes in this thesis showed potential for the imaging of inflammation and atherosclerosis. Of the evaluated probes, modified HSA-based probes seem to have the greatest potential for clinical application in molecular imaging of atherosclerosis

    Plaque imaging volume analysis: technique and application

    Get PDF
    The prevention and management of atherosclerosis poses a tough challenge to public health organizations worldwide. Together with myocardial infarction, stroke represents its main manifestation, with up to 25% of all ischemic strokes being caused by thromboembolism arising from the carotid arteries. Therefore, a vast number of publications have focused on the characterization of the culprit lesion, the atherosclerotic plaque. A paradigm shift appears to be taking place at the current state of research, as the attention is gradually moving from the classically defined degree of stenosis to the identification of features of plaque vulnerability, which appear to be more reliable predictors of recurrent cerebrovascular events. The present review will offer a perspective on the present state of research in the field of carotid atherosclerotic disease, focusing on the imaging modalities currently used in the study of the carotid plaque and the impact that such diagnostic means are having in the clinical setting

    PET/MR imaging of hypoxic atherosclerotic plaque using 64Cu-ATSM

    Get PDF
    ABSTRACT OF THE DISSERTATION PET/MR Imaging of Hypoxic Atherosclerotic Plaque Using 64Cu-ATSM by Xingyu Nie Doctor of Philosophy in Biomedical Engineering Washington University in St. Louis, 2017 Professor Pamela K. Woodard, Chair Professor Suzanne Lapi, Co-Chair It is important to accurately identify the factors involved in the progression of atherosclerosis because advanced atherosclerotic lesions are prone to rupture, leading to disability or death. Hypoxic areas have been known to be present in human atherosclerotic lesions, and lesion progression is associated with the formation of lipid-loaded macrophages and increased local inflammation which are potential major factors in the formation of vulnerable plaque. This dissertation work represents a comprehensive investigation of non-invasive identification of hypoxic atherosclerotic plaque in animal models and human subjects using the PET hypoxia imaging agent 64Cu-ATSM. We first demonstrated the feasibility of 64Cu-ATSM for the identification of hypoxic atherosclerotic plaque and evaluated the relative effects of diet and genetics on hypoxia progression in atherosclerotic plaque in a genetically-altered mouse model. We then fully validated the feasibility of using 64Cu-ATSM to image the extent of hypoxia in a rabbit model with atherosclerotic-like plaque using a simultaneous PET-MR system. We also proceeded with a pilot clinical trial to determine whether 64Cu-ATSM MR/PET scanning is capable of detecting hypoxic carotid atherosclerosis in human subjects. In order to improve the 64Cu-ATSM PET image quality, we investigated the Siemens HD (high-definition) PET software and 4 partial volume correction methods to correct for partial volume effects. In addition, we incorporated the attenuation effect of the carotid surface coil into the MR attenuation correction _-map to correct for photon attention. In the long term, this imaging strategy has the potential to help identify patients at risk for cardiovascular events, guide therapy, and add to the understanding of plaque biology in human patients

    Non-invasive anatomic and functional imaging of vascular inflammation and unstable plaque

    Get PDF
    Over the last several decades, basic cardiovascular research has significantly enhanced our understanding of pathobiological processes leading to formation, progression, and complications of atherosclerotic plaques. By harnessing these advances in cardiovascular biology, imaging has advanced beyond its traditional anatomical domains to a tool that permits probing of particular molecular structures to image cellular behaviour and metabolic pathways involved in atherosclerosis. From the nascent atherosclerotic plaque to the death of inflammatory cells, several potential molecular and micro-anatomical targets for imaging with particular selective imaging probes and with a variety of imaging modalities have emerged from preclinical and animal investigations. Yet, substantive barriers stand between experimental use and wide clinical application of these novel imaging strategies. Each of the imaging modalities described herein faces hurdles—for example, sensitivity, resolution, radiation exposure, reproducibility, availability, standardization, or costs. This review summarizes the published literature reporting on functional imaging of vascular inflammation in atherosclerotic plaques emphasizing those techniques that have the greatest and/or most immediate potential for broad application in clinical practice. The prospective evaluation of these techniques and standardization of protocols by multinational networks could serve to determine their added value in clinical practice and guide their development and deploymen
    • …
    corecore