17 research outputs found

    Integrated Circuit Design for High Data Rate Polymer Microwave Fiber Communication

    Get PDF
    The rapid development of semiconductor processes with a maximum frequency of oscillation well above 300 GHz enables new applications at frequencies above 100 GHz to be researched and developed. Such applications include wireless backhaul, wireless access, radar and radiometer sensors, wireless energy distribution and harvesting, etc.\ua0For several of these applications, a throughput in data rate well above 10 Gbps, even up to 100 Gbps, is required. Optical fiber communication is the leading option for high data rate and long-range wired communication. However, for shorter ranges like chip-to-chip or module-to-module (up to ten meters), millimeter-wave communication over a polymer microwave fiber (PMF) is an interesting alternative due to its potential low cost. Other advantages include flexibility, less sensitivity to temperature variations, and a more relaxed mechanical tolerance requirement. Similar to optical fiber, dispersion occurs on PMFs and will cause symbol interference. Different ways to deal with this effect are investigated, for example, pulse shaping and equalization of the signal.\ua0This work proposes and presents various circuit solutions enabling high data rate communication. Two technologies are used, 250 nm InP DHBT and 130 nm SiGe BiCMOS. An energy-efficient solution using an RF-DAC and power detector for pulse amplitude modulated links are evaluated, as well as an I/Q modulated solution. I/Q (de-)modulators require more complexity, but the increased spectral efficiency can also increase the data rate further.\ua0\ua0In summary, I explore the opportunities and challenges of short-range, ultra-high data rate, PMF bound communication, which is found to support 56 Gbps error-free (BER<10-12) data and 102 Gbps with a BER=2.1*10-3

    Large-Scale Photonics Integration: Data Communications to Optical Beamforming

    Get PDF
    Integrated photonics is an emerging technology that has begun to transform our way of life with the same amount of impact that integrated CMOS electronics has. Currently, photonics integration is orders of magnitude less complicated than its electronics counterparts. Nonetheless, it serves as one of the main driving forces to meet the exponentially increasing demand for high-speed and low-cost data transfer in the Information Age. It also promises to provide solutions for next-generation high-sensitivity image sensors and precision metrology and spectroscopy instruments. In this thesis, integrated photonics architectures for solid-state photonic beamforming and processing are investigated for high-resolution and high sensitivity lens-free transceiver applications. Furthermore, high-efficiency integrated electro-optical modulators aiming to meet the demand of high-density photonic integration with improved modulation efficiency, small footprint, and lower insertion loss are investigated. Two integrated photonic solid-state beamforming architectures incorporating two-dimensional apertures are explored. First, a novel transceiver architecture for remote sensing, coherent imaging, and ranging applications is demonstrated. It reduces system implementation complexity and offers a methodology for very-large-scale coherent transceiver beamforming applications. Next, a transmitter beamforming architecture inspired by the diffraction pattern of the slit annular ring is analyzed and demonstrated. This transceiver architecture can be used for coherent beamforming applications such as imaging and point-to-point optical communication. Finally, a coherent imager architecture for high-sensitivity three-dimensional imaging and remote-sensing applications is present. This novel architecture can suppress undesired phase fluctuations of the optical carrier signal in the illumination and reference paths, providing higher resolution and higher acquisition speed than previous implementations. Moreover, several compact, high-speed CMOS compatible modulators that enable high-density photonic integration are explored. Ultra-compact and low insertion loss silicon-organic-hybrid modulators are designed and implemented for high-speed beamforming and high-efficiency complex signal modulation applications. Finally, a novel integrated nested-ring assisted modulator topology is analyzed and implemented for high-density and high modulation efficiency applications.</p

    Automatic Tuning of Silicon Photonics Millimeter-Wave Transceivers Building Blocks

    Get PDF
    Today, continuously growing wireless traffic have guided the progress in the wireless communication systems. Now, evolution towards next generation (5G) wireless communication systems are actively researched to accommodate expanding future data traffic. As one of the most promising candidates, integrating photonic devices in to the existing wireless system is considered to improve the performance of the systems. Emerging silicon photonic integrated circuits lead this integration more practically, and open new possibilities to the future communication systems. In this dissertation, the development of the electrical wireless communication systems are briefly explained. Also, development of the microwave photonics and silicon photonics are described to understand the possibility of the hybrid SiP integrated wireless communication systems. A limitation of the current electrical wireless systems are addressed, and hybrid integrated mm-wave silicon photonic receiver, and silicon photonic beamforming transmitter are proposed and analyzed in system level. In the proposed mm-wave silicon photonic receiver has 4th order pole-zero silicon photonic filter in the system. Photonic devices are vulnerable to the process and temperature variations. It requires manual calibration, which is expensive, time consuming, and prone to human errors. Therefore, precise automatic calibration solution with modified silicon photonic filter structure is proposed and demonstrated. This dissertation demonstrates fully automatic tuning of silicon photonic all-pass filter (APF)-based pole/zero filters using a monitor-based tuning method that calibrates the initial response by controlling each pole and zero individually via micro-heaters. The proposed tuning approach calibrates severely degraded initial responses to the designed elliptic filter shapes and allows for automatic bandwidth and center frequency reconfiguration of these filters. This algorithm is demonstrated on 2nd- and 4th-order filters fabricated in a standard silicon photonics foundry process. After the initial calibration, only 300ms is required to reconfigure a filter to a different center frequency. Thermal crosstalk between the micro-heaters is investigated, with substrate thinning demonstrated to suppress this effect and reduce filter calibration to less than half of the original thick substrate times. This fully automatic tuning approach opens the possibility of employing silicon photonic filters in real communication systems. Also, in the proposed beamforming transmitter, true-time delay ring resonator based 1x4 beamforming network is imbedded. A proposed monitor-based tuning method compensates fabrication variations and thermal crosstalk by controlling micro-heaters individually using electrical monitors. The proposed tuning approach successfully demonstrated calibration of OBFN from severely degraded initial responses to well-defined group delay response required for the targeted radiating angle with a range of 60â—¦ (-30â—¦ to 30â—¦ ) in a linear beamforming antenna array. This algorithm is demonstrated on OBFN fabricated in a standard silicon photonics foundry process. The calibrated OBFN operates at 30GHz and provide 2GHz bandwidth. This fully automatic tuning approach opens the possibility of employing silicon OBFN in real wideband mm-wave wireless communication systems by providing robust operating solutions. All the proposed photonic circuits are implemented using the standard silicon photonic technologies, and resulted in several publications in IEEE/OSA Journals and Conferences

    Survey of Photonic and Plasmonic Interconnect Technologies for Intra-Datacenter and High-Performance Computing Communications

    Get PDF
    Large scale data centers (DC) and high performance computing (HPC) systems require more and more computing power at higher energy efficiency. They are already consuming megawatts of power, and a linear extrapolation of trends reveals that they may eventually lead to unrealistic power consumption scenarios in order to satisfy future requirements (e.g., Exascale computing). Conventional complementary metal oxide semiconductor (CMOS)-based electronic interconnects are not expected to keep up with the envisioned future board-to-board and chip-to-chip (within multi-chip-modules) interconnect requirements because of bandwidth-density and power-consumption limitations. However, low-power and high-speed optics-based interconnects are emerging as alternatives for DC and HPC communications; they offer unique opportunities for continued energy-efficiency and bandwidth-density improvements, although cost is a challenge at the shortest length scales. Plasmonics-based interconnects on the other hand, due to their extremely small size, offer another interesting solution for further scaling operational speed and energy efficiency. At the device-level, CMOS compatibility is also an important issue, since ultimately photonics or plasmonics will have to be co-integrated with electronics. In this paper, we survey the available literature and compare the aforementioned interconnect technologies, with respect to their suitability for high-speed and energy-efficient on-chip and offchip communications. This paper refers to relatively short links with potential applications in the following interconnect distance hierarchy: local group of racks, board to board, module to module, chip to chip, and on chip connections. We compare different interconnect device modules, including low-energy output devices (such as lasers, modulators, and LEDs), photodetectors, passive devices (i.e., waveguides and couplers) and electrical circuitry (such as laserdiode drivers, modulator drivers, transimpedance, and limiting amplifiers). We show that photonic technologies have the potential to meet the requirements for selected HPC and DC applications in a shorter term. We also present that plasmonic interconnect modules could offer ultra-compact active areas, leading to high integration bandwidth densities, and low device capacitances allowing for ultra-high bandwidth operation that would satisfy the application requirements further into the future

    Photonic and Electronic Co-integration for Millimetre-Wave Hybrid Photonic-Wireless Links

    Get PDF

    Photonic and Electronic Co-integration for Millimetre-Wave Hybrid Photonic-Wireless Links

    Get PDF

    Integrated Filters and Couplers for Next Generation Wireless Tranceivers

    Get PDF
    The main focus of this thesis is to investigate the critical nonlinear distortion issues affecting RF/Microwave components such as power amplifiers (PA) and develop new and improved solutions that will improve efficiency and linearity of next generation RF/Microwave mobile wireless communication systems. This research involves evaluating the nonlinear distortions in PA for different analog and digital signals which have been a major concern. The second harmonic injection technique is explored and used to effectively suppress nonlinear distortions. This method consists of simultaneously feeding back the second harmonics at the output of the power amplifier (PA) into the input of the PA. Simulated and measured results show improved linearity results. However, for increasing frequency bandwidth, the suppression abilities reduced which is a limitation for 4G LTE and 5G networks that require larger bandwidth (above 5 MHz). This thesis explores creative ways to deal with this major drawback. The injection technique was modified with the aid of a well-designed band-stop filter. The compact narrowband notch filter designed was able to suppress nonlinear distortions very effectively when used before the PA. The notch filter is also integrated in the injection technique for LTE carrier aggregation (CA) with multiple carriers and significant improvement in nonlinear distortion performance was observed. This thesis also considers maximizing efficiency alongside with improved linearity performance. To improve on the efficiency performance of the PA, the balanced PA configuration was investigated. However, another major challenge was that the couplers used in this configuration are very large in size at the desired operating frequency. In this thesis, this problem was solved by designing a compact branch line coupler. The novel coupler was simulated, fabricated and measured with performance comparable to its conventional equivalent and the coupler achieved substantial size reduction over others. The coupler is implemented in the balanced PA configuration giving improved input and output matching abilities. The proposed balanced PA is also implemented in 4G LTE and 5G wireless transmitters. This thesis provides simulation and measured results for all balanced PA cases with substantial efficiency and linearity improvements observed even for higher bandwidths (above 5 MHz). Additionally, the coupler is successfully integrated with rectifiers for improved energy harvesting performance and gave improved RF-dc conversion efficienc
    corecore